Lab Notes 2/10/12

I. Operations in a group

Group \mathbb{Z}^{*_p} | has p-1 elements

| If p is prime, all elements in group have a multiplicative inverse

Definition- a set that has binary operations that are associative, for all elements $a \in G$, there exists the multiplicative inverse, a^{-1} , in G, and has the property of closure.

- 1. Binary operations
 - a. For a (some operation) b, if $a,b\in G$, then $a*b\in G$
- 2. Multiplicative Inverse
 - a. $a \in G$
 - b. $\exists a^{-1} \in G$
 - c. Such that $a * a^{-1} = I$, where I is the identity(or 1)
- 3. Closure
 - a. All products and sums of elements within the group will still be in the group
 - b. EX: $G(\mathbb{Z}^{*}_{5}, +)$ 4+2=1 (Note: there is an implied (mod 5) here)

*	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

- c. Multiplication table of a closed group \mathbb{Z}^{*_5}
- d. This table is always symmetric along the diagonal
- II. Multiplicative Order

Definition of multiplicative order- the smalls k such that $a^k \equiv I \pmod{n}$

- 1. Example for \mathbb{Z}^* ⁵
 - a. $4^2 \equiv 1$ (means 2 is the multiplicative order of 4 in this group)
 - b. $3^4 \equiv 1$ (4 is the multiplicative order of 3)
- 2. Suppose $a \in \mathbb{Z}^{*_n}$ has a multiplicative order k. Show that for any $m \in \mathbb{Z}$, the multiplicative order of a^m is k/gcd(k,m)

Proof

```
(trying to prove (a^m)^{k/gcd(m,k)} \equiv 1 \pmod{n}
1. Let d = gcd(m,k)
```

- 2. k = dk'
- 3. m= dm'
- 4. $(a^m)^{k'} = a^{dm'k'} = a^{km'} \equiv (a^k)^{m'} \pmod{n}$
- 5. Since $ord_n(a) = k$ (Note "ord_n(a) means the multiplicative order of a (mod n) is k and this is told from the supposition)
- 6. For any integer y, if $a^y \equiv 1 \pmod{n}$ then k|y.
- 7. From $a^{mx} \equiv 1 \pmod{n}$ follows therefore k|mx|
- 8. mx = kl for some integer l
- 9. mx/d = kI/d
- 10.m'x = k'l
- 11.Since gcd(m', k') = 1
- 12.k'|x
- III. Quadratic Residue
 - a. a is a quadratic residue if $a{\equiv}x^2(mod\ n)$ for some $x{\in}\mathbb{Z}$
 - b. Euler Criterion
 - i. If a is a quadratic residue (mod p) then $a^{(p-1)/2}\equiv\!1$
 - ii. If $a^{(p-1)/2}$ is congruent to 1 it is a quadratic residue, if it is congruent to -1, it is not

EX: Show that 3 is a quadratic residue mod 23

1. $3^{(23-1)/2} \equiv 3^{11}$ 2. $\equiv 3^3 * 3^3 * 3$ 3. $\equiv 3^3 * 3^8$ 4. $\equiv 3^3 * 3^5 * 4$ 5. $\equiv 4 * 4 * 4 * 9$ 6. $\equiv 1$