Prefix codes, dynamic programming 2, matroids

1. Let $a = 0$, $b = 101$, $c = 100$, $d = 111$, $e = 1101$ and $f = 1100$ denote an encoding scheme for the characters a, b, c, d, e, f. What is the character sequence encoded by the following string?

 0100100100101111101110001101

You are asked to assign the above code-words to the letters a, b, c, d, e, f in any order you want, to encode a very long sequence of these characters. Which letter should you assign the code-word “0” to? And “1101”?

2. Represent the encoding scheme in the previous exercise with help of a binary tree. What is the depth of this tree? What is the correlation between each code-word and the depth of the corresponding leaf? Compute from this tree what the encoding cost of the sequence $acaccbdbeae$ is. Check your answer by comparing to the above 0-1 sequence.

3. Find the optimal Huffman code of a sequence of characters, where the character frequencies are $f : 5, e : 9, c : 12, b : 13, d : 16, a : 45$. (Hint: create the binary tree representing the code on the way.) How many merges did you execute during the algorithm? How many merges do you need if there are n different characters to encode?

4. Find the longest common subsequence of sequences $X = \langle A, A, B, A, C, D \rangle$ and $Y = \langle C, A, B, C, D, A \rangle$ with help of dynamic programming. Create a table C for this. What does cell $C[i, j]$ in your table stand for? What is the recursive formula you use to compute $C[i, j]$?

5. Write the sets of the graphical matroid of the graph below.

6. Show that all maximal independent sets in a matroid have the same size.

7. (CLRS 16.4-1) Show that (S, I_k) is a matroid, where S is a finite set and I_k is the set of all subsets of S of size at most k.