Pinning Down "Privacy" in Statistical Databases

Adam Smith

Computer Science & Engineering Department Penn State

http://www.cse.psu.edu/~asmith

Crypto Tutorial, August 21, 2012

1

Large collections of personal information

- census data
- medical/public health data
- social networks
- recommendation systems
- trace data: search records, etc
- intrusion-detection systems

- larger data sets
- more types of data

Two conflicting goals

> Utility: Users can extract "aggregate" statistics

"Privacy": Individual information stays hidden

Two conflicting goals

Utility: Users can extract "aggregate" statistics
 "Privacy": Individual information stays hidden

• How can we define these precisely?

Variations on model studied in

- Statistics ("statistical disclosure control")
- Data mining / database ("privacy-preserving data mining" *)
- Since ~2002: Rigorous foundations & analysis

- No bright lines
 - Crypto: psychiatrist and patient
 - Data privacy: have to release some data at the expense of others

- No bright lines
 - Crypto: psychiatrist and patient
 - Data privacy: have to release some data at the expense of others
- Different from secure function evaluation
 - SFE: how do we securely distribute a computation we've agreed on?
 - Data privacy: what computation should we perform?

- How can crypto contribute?
 - Modeling
 - > Attacks ("cryptanalysis")
 - More hacking!
 - Coherent principles
 - Distributed models
- How can crypto benefit?
 - Theory of "moderate" security
 - > Applicable to areas such as anonymous communication, voting?

- Data privacy research is diverse
 - > Researchers from crypto, learning, algorithms, databases, ...
 - Tools from lots of areas

- Data privacy research is diverse
 - > Researchers from crypto, learning, algorithms, databases, ...
 - Tools from lots of areas
- Great progress
 - > We're 10 years ahead of where we were in 2002

> Area still immature

- Data privacy research is diverse
 - > Researchers from crypto, learning, algorithms, databases, ...
 - Tools from lots of areas
- Great progress
 - > We're 10 years ahead of where we were in 2002

> Area still immature

- This talk
 - More tutorial than survey
 - Much has been left out
 - Not only my work
 - ➢ Sparse on references

- Data privacy research is diverse
 - > Researchers from crypto, learning, algorithms, databases, ...
 - Tools from lots of areas
- Great progress
 - > We're 10 years ahead of where we were in 2002

Area still immature

- This talk
 - More tutorial than survey
 - Much has been left out
 - Not only my work
 - ➢ Sparse on references

Act I: Attacks

(Why is privacy hard?)

Reconstruction attacks

Act I: Attacks

> (Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

Act I: Attacks

> (Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

Act III: Algorithms

Basic techniques: noise addition, exponential sampling

Answering many queries

Exploiting "local" sensitivity

Act I: Attacks

- (Why is privacy hard?)
- Reconstruction attacks

• Act II: Definitions

- One approach: "differential" privacy
- Variations on the theme

Act III: Algorithms

- Basic techniques: noise addition, exponential sampling
- Answering many queries
- Exploiting "local" sensitivity

External Information

• Users have external information sources

Can't assume we know the sources

> Can't ignore them!

Anonymization schemes are regularly broken

Warm-up: fine-grained releases
 Netflix

Composition

- Reconstruction attacks
 - Based on approximate linear statistics
 - Based on synthetic data

- Ratings for subset of movies and users
- Usernames replaced with random IDs
- Some additional perturbation

Alice Bob Charlie Danielle Erica Frank

Anonymized NetFlix data Public, incomplete

Image credit: Arvind Narayanan Wednesday, September 19, 2012

Alice Bob Charlie Danielle Erica Frank

Anonymized NetFlix data Public, incomplete

Image credit: Arvind Narayanan

Alice Bob Charlie Danielle Erica Frank

Anonymized NetFlix data

Public, incomplete

On average, four movies uniquely identify user

Image credit: Arvind Narayanan

Alice Bob Charlie Danielle Erica Frank

Anonymized NetFlix data

Public, incomplete

On average, four movies uniquely identify user

Image credit: Arvind Narayanan

Example: two hospitals serve overlapping populations
 What if they independently release "anonymized" statistics?

- Example: two hospitals serve overlapping populations
 What if they independently release "anonymized" statistics?
- Composition attack: Combine independent releases
 Popular anonymization schemes leak lots of information

- Example: two hospitals serve overlapping populations
 What if they independently release "anonymized" statistics?
- Composition attack: Combine independent releases

Popular anonymization schemes leak lots of information

Other attacks

- Reidentifying individuals based on external sources, e.g.
 - Social networks [Backstrom, Dwork, Kleinberg '07, NS'09]
 - Computer networks [Coull, Wright, Monrose, Collins, Reiter '07, Ribeiro, Chen, Miklau, Townsley 08]
 - ➢ Genetic data (GWAS) [Homer et al. '08, ...]
 - > Advertising systems [Korolova]

• Examples so far: releasing individual information

- Examples so far: releasing individual information
- Problems:

- Examples so far: releasing individual information
- Problems:
 - Composition
 - Average salary before/after professor resigns

- Examples so far: releasing individual information
- Problems:
 - Composition
 - Average salary before/after professor resigns
 - "Global" result can reveal specific values:
 - "Support Vector Machine" output depends on only a few inputs

Is the problem granularity?

- Examples so far: releasing individual information
- Problems:
 - Composition
 - Average salary before/after professor resigns
 - "Global" result can reveal specific values:
 - "Support Vector Machine" output depends on only a few inputs
 - > Statistics may together encode data
 - Reconstruction attacks:

Too many, "too accurate" stats \Rightarrow reconstruct the data

• Robust even to fairly significant noise

Reconstruction Attacks [DiNi03]

Concrete setting: n users, each with secret $x(i) \in \{0, 1\}$. Subset query: for $S \subseteq \{1, ..., n\}$, let

$$f_S(x) = \frac{1}{n} \sum_{i \in S} x(i) = \frac{1}{n} \langle \chi_S, \vec{x} \rangle$$

Reconstruction Attacks [DiNi03]

Concrete setting: n users, each with secret $x(i) \in \{0, 1\}$. Subset query: for $S \subseteq \{1, ..., n\}$, let

$$f_S(x) = \frac{1}{n} \sum_{i \in S} x(i) = \frac{1}{n} \langle \chi_S, \vec{x} \rangle$$

What sets of subset queries $S_1, ..., S_m$ allow reconstruction?

Reconstruction Attacks [DiNi03]

Concrete setting: *n* users, each with secret $x(i) \in \{0, 1\}$. **Subset query:** for $S \subseteq \{1, ..., n\}$, let

What sets of subset queries $S_1, ..., S_m$ allow reconstruction?

- # queries m
- Error $d_{Hamming}(\hat{x}, x)$, for distortion $\alpha = \max_i |\hat{f}_{S_i} f_{S_i}(x)|$
- Running time

	[DiNi03]
# queries m	2^n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $	
Running time	2^n

	[DiNi03]
# queries m	2^n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $	
Running time	2^n

Attack successful for any nontrivial error $\alpha = o(1)$.

	[DiNi03]
# queries m	2^n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $	
Running time	2^n

Attack successful for any nontrivial error $\alpha = o(1)$.

Algorithm:

• For $y \in \{0, 1\}^n$, write Hamming distance in terms of subset queries:

$$d_{Hamming}(y, x) = n \cdot f_{S_0}(x) + |S_1| - n \cdot f_{S_1}(x)$$

	[DiNi03]
# queries m	2^n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $	
Running time	2^n

Attack successful for any nontrivial error $\alpha = o(1)$.

Algorithm:

• For $y \in \{0, 1\}^n$, write Hamming distance in terms of subset queries:

$$d_{Hamming}(y,x) = n \cdot f_{S_0}(x) + |S_1| - n \cdot f_{S_1}(x)$$
$$\hat{d}_y = n \cdot \hat{f}_{S_0} + |S_1| - n \quad \hat{f}_{S_1}$$

	[DiNi03]
# queries m	2^n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $	
Running time	2^n

Attack successful for any nontrivial error $\alpha = o(1)$.

Algorithm:

• For $y \in \{0, 1\}^n$, write Hamming distance in terms of subset queries:

$$d_{Hamming}(y, x) = n \cdot f_{S_0}(x) + |S_1| - n \cdot f_{S_1}(x)$$
$$\hat{d}_y = n \cdot \hat{f}_{S_0} + |S_1| - n \quad \hat{f}_{S_1}$$

• Output
$$\hat{x} = \arg\min_{y \in \{0,1\}^n} \hat{d}_y$$

	[DiNi03]	[DiNi03,DMT07,DY08]
# queries m	2^n	n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$	$2(\alpha\sqrt{n})n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $		
Running time	2^n	$O(n \log n)$

	[DiNi03]	[DiNi03,DMT07,DY08]
# queries m	2^n	n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$	$2(\alpha\sqrt{n})n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $		
Running time	2^n	$O(n \log n)$

Attack successful for error $\alpha = o(1/\sqrt{n})$.

	[DiNi03]	[DiNi03,DMT07,DY08]
# queries m	2^n	n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$	$2(\alpha\sqrt{n})n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $		
Running time	2^n	$O(n \log n)$

	[DiNi03]	[DiNi03,DMT07,DY08]
# queries m	2^n	n
Error $d_{Hamming}(\hat{x}, x)$	$4\alpha n$	$2(\alpha\sqrt{n})n$
$\alpha = \max_i \hat{f}_{S_i} - f_{S_i}(x) $		
Running time	2^n	$O(n \log n)$

Algorithm:

• Queries come from the rows of ± 1 Hadamard matrix:

•
$$H_1 = (1)$$
 $H_n = \begin{pmatrix} H_{n/2} & H_{n/2} \\ H_{n/2} & -H_{n/2} \end{pmatrix}$
• H_n has all eigenvalues $\pm \sqrt{n}$.

- Using *n* subset queries (one per row), can derive $z = \frac{1}{n}H_n x + e$ where $||e||_{\infty} \le 2\alpha$
- Compute $\hat{x}' = (n \cdot H_n^{-1})z = x + e'$ where $||e'||_2 \le 2\alpha n$
- Round to $\{0,1\}^n$ to get \hat{x}

- These attacks can be extended
 - Handle some very distorted queries
 - Exploit sparsity of secret vector

- These attacks can be extended
 - Handle some very distorted queries
 - Exploit sparsity of secret vector
- So far: unnatural queries
 - > Algebraically defined or uniformly random
 - ➢ Require "naming rows"

- These attacks can be extended
 - Handle some very distorted queries
 - Exploit sparsity of secret vector
- So far: unnatural queries
 - > Algebraically defined or uniformly random
 - ➢ Require "naming rows"
- Natural, symmetric queries? Yes!

> [KRSU'10] marginal tables

- Each person's data is a row in a table
- **k-way marginal**: distribution of some k attributes

[KRS'12] regression analysis, decision tree classifiers, ...

Suppose release allows learning 2-way marginals
 ▶ 2-way marginals are subset queries!
 ▶ If a_i are uniformly random and d > n, then d_{Ham}(x̂, x) = o(n)

- Suppose release allows learning 2-way marginals
 > 2-way marginals are subset queries!
 > If a_i are uniformly random and d > n, then d_{Ham}(x̂, x) = o(n)
- **Theorem:** With k-way marginals, $d \gg n^{\frac{1}{k-1}}$ suffices

- - Idea: view statistics as noisy linear encoding Mx + e

Signal processing: Reconstruction uses geometry of matrix M

- - Idea: view statistics as noisy linear encoding Mx + e

Signal processing: Reconstruction uses geometry of matrix M

- Data set: d"public" attributes per person, I "sensitive" n people $\begin{pmatrix} a_i & x \\ d+l & attributes \end{pmatrix}$ release $\stackrel{reconstruction}{free}$ $\hat{x} \approx x$
 - Idea: view statistics as noisy linear encoding Mx + e

Signal processing: Reconstruction uses geometry of matrix M

Reconstruction from Marginals

Reconstruction from Marginals

- Minimize estimated error in ℓ_p
 ▶ p=2: least singular values
 - ➢ p=I:"Euclidean section"

Reconstruction from Marginals

Minimize estimated error in ℓ_p
 > p=2: least singular values
 > p=1:"Euclidean section"

$$\hat{x} = \operatorname{argmin}_{\times} \| \mathbb{M} \cdot \mathbb{X} - \mathbb{Z} \|_{p}$$

Attacks on data privacy

Attacks on data privacy

- So far:
 - > Many ad hoc examples
 - E.g., Netflix, ...
 - Some general principles
 - E.g., Composition
 - Sophisticated reconstruction attacks
 - Draws on theory of coding and signal processing
 - Lower bounds for various classes of release mechanisms
 - Sometimes based on crypto objects [DNRRV, UV]

Attacks on data privacy

- So far:
 - Many ad hoc examples
 - E.g., Netflix, ...
 - Some general principles
 - E.g., Composition
 - Sophisticated reconstruction attacks
 - Draws on theory of coding and signal processing
 - Lower bounds for various classes of release mechanisms
 - Sometimes based on crypto objects [DNRRV, UV]
- Still missing:
 - Systematic understanding
 - Suite of standard attack techniques
 - (à la differential/linear cryptanalysis?)

- Even if releasing only "aggregate" statistics, we can't release everything
 - \succ We release some information at the expense of other kinds
 - > Inherent tradeoff very different from "crypto as usual"

- Even if releasing only "aggregate" statistics, we can't release everything
 - > We release some information at the expense of other kinds
 - > Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about

- Even if releasing only "aggregate" statistics, we can't release everything
 - > We release some information at the expense of other kinds
 - > Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about

- Even if releasing only "aggregate" statistics, we can't release everything
 - \succ We release some information at the expense of other kinds
 - > Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about

• What does "aggregate" mean?

This talk

Act I: Attacks

- > (Why is privacy hard?)
- Reconstruction attacks

• Act II: Definitions

One approach: "differential" privacy

- Variations on the theme
- Act III: Algorithms

Basic techniques: noise addition, exponential sampling

- Answering many queries
- Exploiting "local" sensitivity

This talk

- Act I: Attacks
 - > (Why is privacy hard?)
 - Reconstruction attacks

Act II: Definitions

- "Aggregate" ≈ stability to small changes in input
- Handles arbitrary external information
- Burgeoning field of research
- One approach: "differential" privacy
- Variations on the theme
- Act III: Algorithms
 - Basic techniques: noise addition, exponential sampling
 - Answering many queries
 - Exploiting "local" sensitivity

This talk

- Act I: Attacks
 - > (Why is privacy hard?)
 - Reconstruction attacks

Act II: Definitions

- "Aggregate" \approx stability to small changes in input
- Handles arbitrary external information
- Burgeoning field of research
- One approach: "differential" privacy
- Variations on the theme
- Act III: Algorithms
 - Basic techniques: noise addition, exponential sampling
 - Answering many queries
 - Exploiting "local" sensitivity

- Intuition:
 - Changes to my data not noticeable by users
 - > Output is "independent" of my data

• Data set $\mathbf{x} = (x_1, ..., x_n) \in D^n$

Domain D can be numbers, categories, tax forms

- Think of x as **fixed** (not random)
- A = **randomized** procedure
 - > A(x) is a random variable

> Randomness might come from adding noise, resampling, etc.

x' is a neighbor of x if they differ in one data point

x' is a neighbor of x if they differ in one data point

> Neighboring databases induce **close** distributions on outputs

x' is a neighbor of x if they differ in one data point

Definition: A is *E*-differentially private if,

Neighboring databases induce **close** distributions on outputs

for all neighbors x, x',

for all subsets S of outputs

$$\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$$

Definition: A is **E-differentially private** if,

for all neighbors x, x', for all subsets S of outputs Neighboring databases induce **close** distributions on outputs

 $\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$

• This is a condition on the **algorithm** A

Saying a particular output is private makes no sense

- This is a condition on the **algorithm** A
 Saying a particular output is private makes no sense
- Choice of distance measure matters

Definition: A is ϵ -differentially private if, for all neighbors x, x', for all subsets S of outputs $Pr(A(x) \in S) \leq e^{\epsilon} \cdot Pr(A(x') \in S)$

Neighboring databases

- This is a condition on the **algorithm** A
 Saying a particular output is private makes no sense
- Choice of distance measure matters
- What is <mark></mark>?

Measure of information leakage
 Not too small (think ¹/₁₀, not ¹/₂₅₀)

Definition: A is **E-differentially private** if,

for all neighbors x, x',

for all subsets S of outputs

Neighboring databases induce **close** distributions on outputs

$$\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$$

This is a condition on the **algorithm** A
 Saying a particular output is private makes no sense

• Say we want to release a summary $f(x) \in \mathbb{R}^p$ > e.g., proportion of diabetics: $x_i \in \{0, 1\}, \ f(x) = \frac{1}{n} \sum x_i$

- Say we want to release a summary $f(x) \in \mathbb{R}^p$ \triangleright e.g., proportion of diabetics: $x_i \in \{0, 1\}, \ f(x) = \frac{1}{n} \sum x_i$
- Simple approach: add noise to f(x)
 - > How much noise is needed?

- Say we want to release a summary $f(x) \in \mathbb{R}^p$ > e.g., proportion of diabetics: $x_i \in \{0, 1\}, f(x) = \frac{1}{n} \sum x_i$
- Simple approach: add noise to f(x)
 How much noise is needed?
- Intuition: f(x) can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n

> Laplace distribution Lap(λ) has density $h(y) \propto e^{-|y|/\lambda}$

 \succ Laplace distribution Lap (λ) has density

 $h(y) \propto e^{-|y|/\lambda}$

Changing one point translates curve

$$\begin{aligned} \mathsf{GS}_{\text{proportion}} &= \frac{1}{n} \\ \mathsf{A}(\mathsf{x}) &= \mathsf{proportion} \pm \frac{1}{\epsilon n} \end{aligned}$$

• Example: proportion of diabetics

➤ GS_{proportion} =
$$\frac{1}{n}$$
 ➤ Release A(x) = proportion ± $\frac{1}{\epsilon n}$

Example: proportion of diabetics

➤ GS_{proportion} =
$$\frac{1}{n}$$
➤ Release A(x) = proportion ± $\frac{1}{\epsilon n}$

Is this a lot?

If x is a random sample from a large underlying population, then sampling noise ≈ $\frac{1}{\sqrt{n}}$ A(x) "as good as" real proportion

-0.5

0

0.5

Using global sensitivity

$$\mathsf{GS}_{f} = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_{1}$$

- Many natural functions have low sensitivity
 - e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded "sensitivity curve", strongly convex optimization problems
- Laplace mechanism can be a programming interface
 - Many algorithms can be expressed as a sequence of lowsensitivity queries [BDMN '05, FFKN'09, MW'10]
 - Implemented in several systems [McSherry '09, Roy et al. '10, Haeberlen et al. '11, Moharan et al. '12]

Definition: A is **E-differentially private** if, on

for all neighbors x, x', for all subsets S of outputs Neighboring databases induce **close** distributions on outputs

 $\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$

- ε cannot be negligible
 - $> A(0^n)$ and $A(1^n)$ at distance at most nE
 - \geq Need $\epsilon \gg 1/n$ to get utility

Neighboring databases induce **close** distributions on outputs

for all subsets S of outputs

$$\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$$

• ε cannot be negligible

 $> A(0^n)$ and $A(1^n)$ at distance at most nE

 \geq Need $\epsilon \gg 1/n$ to get utility

• Why this distance measure?

> Consider a mechanism that publishes I random person's data

Stat. Diff. (A(x),A(x')) = 1/n

➢ Need a "worst case" distance measure_□

Definition: A is **E-differentially private** if,

for all neighbors x, x',

for all subsets S of outputs

$$\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$$

Neighboring databases

on outputs

induce **close** distributions

Definition: A is ε-differentially private if, for all neighbors x, x',

for all subsets S of outputs

Neighboring databases induce **close** distributions on outputs

 $\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$

Composition Lemma:

If A_1 and A_2 are ε -differentially private, then joint output (A_1 , A_2) is 2ε -differentially private.

Definition: A is ϵ -differentially private if, for all neighbors x, x', for all subsets S of outputs $Pr(A(x) \in S) \leq e^{\epsilon} \cdot Pr(A(x') \in S)$

Composition Lemma:

If A_1 and A_2 are ε -differentially private, then joint output (A_1 , A_2) is 2ε -differentially private.

Definition: A is ϵ -differentially private if, for all neighbors x, x', for all subsets S of outputs $Pr(A(x) \in S) \leq e^{\epsilon} \cdot Pr(A(x') \in S)$

Composition Lemma:

If A_1 and A_2 are ε -differentially private, then joint output (A_1 , A_2) is 2ε -differentially private.

• Meaningful in the presence of arbitrary external information

Definition: A is E-differentially private if, for all neighbors x, x', for all subsets S of outputs $Pr(A(x) \in S) \leq e^{\epsilon} \cdot Pr(A(x') \in S)$

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

- Suppose you know that I smoke
 - > A public health study could teach you that I am at risk for cancer
 - > But it didn't matter whether or not my data was part of it.

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

- Suppose you know that I smoke
 - > A public health study could teach you that I am at risk for cancer
 - > But it didn't matter whether or not my data was part of it.

Interpreting Differential Privacy

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

- Suppose you know that I smoke
 - > A public health study could teach you that I am at risk for cancer
 - But it didn't matter whether or not my data was part of it.
- Theorem [DN'06, KM'11]: Learning things about individuals is unavoidable in the presence of external information

Interpreting Differential Privacy

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

- Suppose you know that I smoke
 - > A public health study could teach you that I am at risk for cancer
 - But it didn't matter whether or not my data was part of it.
- **Theorem** [DN'06, KM'11]: Learning things about individuals is unavoidable in the presence of external information
- Differential privacy implies: No matter what you know ahead of time,

You learn (almost) the same things about me whether or not my data is used

> This has a clean Bayesian interpretation [GKS'08]

• May not protect sensitive global information, e.g.

May not protect sensitive global information, e.g.
 Clinical data: Smoking and cancer

- May not protect sensitive global information, e.g.
 Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies

- May not protect sensitive global information, e.g.
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Social data: what if my presence affects everyone else? [KM'II]
 - The annoying colleague example

- May not protect sensitive global information, e.g.
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Social data: what if my presence affects everyone else? [KM'II]
 - The annoying colleague example
 - > Exact (deterministic) information about this data set
 - E.g., I know the differences in population between all 50 states
 - Differentially private release allows my to learn the populations exactly

- May not protect sensitive global information, e.g.
 - Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Social data: what if my presence affects everyone else? [KM'II]
 - The annoying colleague example
 - > Exact (deterministic) information about this data set
 - E.g., I know the differences in population between all 50 states
 - Differentially private release allows my to learn the populations exactly
- Leakage accumulates
 - \succ E adds up with many releases
 - Inevitable in some form?
 - \succ How do we set ϵ ?

Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ϵ, δ) differential privacy
 - ≻ Require $Pr(A(x) \in S) \le e^{\epsilon} \cdot Pr(A(x) \in S) + \delta$

> Similar semantics to (ϵ ,0)- diffe.p. when $\delta \ll 1/n$

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ϵ, δ) differential privacy
 - ≻ Require $Pr(A(x) \in S) \le e^{\epsilon} \cdot Pr(A(x) \in S) + \delta$
 - > Similar semantics to (ϵ ,0)- diffe.p. when $\delta \ll 1/n$
- Computational variants [MPRV09, MMPRTV10, GKY11]

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ϵ, δ) differential privacy
 - ≻ Require $\Pr(A(x) \in S) \le e^{\epsilon} \cdot \Pr(A(x) \in S) + \delta$
 - > Similar semantics to (ϵ ,0)- diffe.p. when $\delta \ll 1/n$
- Computational variants [MPRV09, MMPRTV10, GKY11]
- Distributional variants [RHMS'09,BBGLT'11,...]
 - > Assume something about adversary's prior distribution
 - Deterministic releases
 - Poor composition guarantees

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε,δ)- differential privacy
 - ≻ Require $Pr(A(x) \in S) \le e^{\epsilon} \cdot Pr(A(x) \in S) + \delta$
 - > Similar semantics to (ϵ ,0)- diffe.p. when $\delta \ll 1/n$
- Computational variants [MPRV09, MMPRTV10, GKY11]
- Distributional variants [RHMS'09, BBGLT' | I,...]
 - > Assume something about adversary's prior distribution
 - Deterministic releases
 - Poor composition guarantees
- Generalizations
 - [BLR'08, GLP'II] simulation-based definitions
 - [KM'12] "Pufferfish": vast generalization, tricky to instantiate

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ϵ, δ) differential privacy
 - ≻ Require $Pr(A(x) \in S) \le e^{\epsilon} \cdot Pr(A(x) \in S) + \delta$
 - > Similar semantics to (ϵ ,0)- diffe.p. when $\delta \ll 1/n$
- Computational variants [MPRV09, MMPRTV10, GKY11]
- Distributional variants [RHMS'09, BBGLT'11,...]
 - > Assume something about adversary's prior distribution
 - Deterministic releases
 - Poor composition guarantees
- Generalizations
 - [BLR'08, GLP'II] simulation-based definitions
 - [KM'12] "Pufferfish": vast generalization, tricky to instantiate
- Crowd-blending privacy [GHLP'12]

 "Privacy" = change in one input leads to small change in output distribution

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

• General tools for reasoning about leakage

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

 "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
 - STOC, FOCS, SODA, PODS, SIGMOD, VLDB, KDD, CCS, S&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

This talk

Act I: Attacks

> (Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

Act III: Algorithms

Basic techniques: noise addition, exponential sampling

Answering many queries

Exploiting "local" sensitivity

This talk

Act I: Attacks

> (Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

Act III: Algorithms

Basic techniques: noise addition, exponential sampling

- Answering many queries
- Exploiting "local" sensitivity

Differentially Private Algorithms

• Tools and Techniques

- Laplace Mechanism
- Exponential Mechanism
- > Algorithms for many queries
- Local Sensitivity-based techniques

Theoretical Foundations

- > Feasibility results: Learning, optimization, synthetic data, statistics
- Connections to game theory, learning, robustness
- Domain-specific algorithms

Networking, clinical data, social networks, ...

• Systems

Programming Languages, Query Languages, Attacks

Differentially Private Algorithms

Tools and Techniques

- Laplace Mechanism
- Exponential Mechanism
- Algorithms for many queries
- Local Sensitivity-based techniques

Theoretical Foundations

- > Feasibility results: Learning, optimization, synthetic data, statistics
- Connections to game theory, learning, robustness
- Domain-specific algorithms

Networking, clinical data, social networks, ...

• Systems

Programming Languages, Query Languages, Attacks

Basic Technique 1: Noise Addition

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

> Laplace distribution Lap(λ) has density $h(y) \propto e^{-|y|/\lambda}$

Wednesday, September 19, 2012

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

 \succ Laplace distribution Lap (λ) has density

 $h(y) \propto e^{-|y|/\lambda}$

Changing one point translates curve

$f(x)=(n_1,n_2,\ldots,n_d)$ where $n_j=\#\{i:x_i \text{ in } j\text{-th } bin\}$ $\mathsf{Lap}(1/\epsilon)$

Example: Histograms

- Say x₁,x₂,...,x_n in domain D
 ▶ Partition D into d disjoint bins
 ▶ f(x) = (n₁, n₂, ..., n_d) where n_j = #{i : x_i in j-th bin}
 ▶ GS_f = 1
 - \blacktriangleright Sufficient to add noise Lap(1/ $\epsilon)~$ to each count

Example: Histograms

- Say x₁,x₂,...,x_n in domain D
 ➢ Partition D into d disjoint bins
 ➢ f(x) = (n₁, n₂, ..., n_d) where n_j = #{i : x_i in *j*-th bin}
 ➢ GS_f = I
 - > Sufficient to add noise $Lap(1/\epsilon)$ to each count
- Examples
 - Histogram on the line
 - Populations of 50 states
 - Marginal tables
 - bins = possible combinations of attributes

Marginal Tables

- Work horse of releases from US statistical agencies
 Frequencies of combinations of set of categorical attributes
- Treat as a "histogram"

Eight bins (O+,O-,...,AB+,AB-)

- Add constant noise to counts to achieve differential privacy
 Change to proportions is O(¹/_n)
- Problems for practice:

ABO and Rh Blood Type Frequencies in the United States

ABO Type	Rh Type	How Many Have It	
0	positive	38%	45%
0	negative	7%	
Α	positive	34%	40%
Α	negative	6%	
В	positive	9%	11%
В	negative	2%	
AB	positive	3%	4%
AB	negative	1%	

(Source: American Association of Blood Banks)

- Some entries may be negative. Multiple tables inconsistent.
- [BCDKMT07] Multiple noisy tables can be "rounded" to a consistent set of tables corresponding to real data.

Variants in other metrics

- Consider $f:\mathcal{D}^n \to \mathbb{R}^d$
- Global Sensitivity: $(GS_f = \max_{\text{neighbors } x, x'} ||f(x) f(x')||_{\frac{1}{2}})$

Theorem: If $A(x) = f(x) + L_{ap}\left(\frac{CS_{1}}{\epsilon}\right)^{d}$, then A is *d* differentially private.

 (ϵ, δ)

Example: Ask for counts of d predicates

F(x) = vector of counts.
 GS_f = √d
 Add noise
$$\frac{\sqrt{d \ln(1/\delta)}}{\epsilon}$$
 per entry instead of $\frac{d}{\epsilon}$

 $N\left(0, \left(\frac{GS_f \cdot 3 \cdot \sqrt{\ln(1/\delta)}}{\epsilon}\right)^2\right)$

Basic Technique 2: Exponential Sampling

Exponential Sampling [McSherry-Talwar 2007]

- Sometimes noise addition makes no sense
 - mode of a distribution
 - ➤ minimum cut in a graph
 - classification rule
- [MT07] Motivation: auction design
 - Differential privacy implies approximate truthfulness
 - Generated line of work on privacy and game theory
- Subsequently applied very broadly

Example:Voting

- Data: x_i = {websites visited by student i today}
- Range: Y = {website names}
- For each name y, let q(y; x) = #{i : x_i contains y}
- Goal: output the most frequently visited site

Mechanism: Given x,

- Output website y_0 with probability $r_x(y) \propto \exp(\epsilon q(y; \mathbf{x}))$
- Utility: Popular sites exponentially more likely than rare ones
- Privacy: One person changes websites' scores by ≤ I

Mechanism: Given x,

- Output website y_0 with probability $r_x(y) \propto \exp(\epsilon q(y;x))$
- **Claim:** Mechanism is 2ε-differentially private
- **Proof:** $\frac{r_{\mathsf{x}}(y)}{r_{\mathsf{x}'}(y)} = \frac{e^{\epsilon q(y;\mathsf{x})}}{e^{\epsilon q(y;\mathsf{x}')}} \cdot \frac{\sum_{z \in Y} e^{\epsilon q(z;\mathsf{x}')}}{\sum_{z \in Y} e^{\epsilon q(z;\mathsf{x})}} \le e^{2\epsilon}$
- Claim: If most popular website has score T, then $\mathbb{E}[q(y_0;x)] \geq T (\log|Y|)/\epsilon$
- Proof: Output y is bad if q(y;x) < T k

$$\stackrel{\flat}{\succ} \operatorname{Pr}(\text{bad outputs}) \leq \frac{\operatorname{Pr}(\text{bad outputs})}{\operatorname{Pr}(\text{best output})} \leq \frac{|Y|e^{\epsilon(T-k)}}{e^{\epsilon T}} \leq e^{\log|Y| - \epsilon k}$$

▶ Get expectation bound via formula $E(Z) = \sum_{k>0} \Pr(Z \ge k)$

Wednesday, September 19, 2012

Exponential Sampling

Ingredients:

- Set of outputs Y with prior distribution p(y)
- Score function q(y;x) such that for all outputs y, neighbors x,x': |q(y;x) - q(y;x')| ≤ 1

Mechanism: Given x,

- Output y_0 from Y with probability $r_x(y) \propto p(y) e^{-\epsilon q(y;x)}$
- Example [KLNRS'08]:
 - > Y= set of possible classifiers (say, discretized half-planes)
 - > q(y;x) = -(error rate of classifier y on data x)
 - Output a classifier with expected error rate (OPT + log|Y| /E n)
- **Corollary**: Every PAC learnable class is privately PAC learnable.

Wednesday, September 19, 2012

Exponential Sampling

Ingredients:

- Set of outputs Y with prior distribution p(y)
- Score function q(y;x) such that for all outputs y, neighbors x,x': |q(y;x) - q(y;x')| ≤ 1

Mechanism: Given x,

- Output y_0 from Y with probability $r_x(y) \propto p(y) e^{-\epsilon q(y;x)}$
- Example [KLNRS'08]:
 - > Y= set of possible classifiers (say, discretized half-planes)

 $\bigcirc \bigcirc$

- > q(y;x) = -(error rate of classifier y on data x)
- Output a classifier with expected error rate (OPT + log|Y| /E n)
- **Corollary**: Every PAC learnable class Sis privately PAC learnable.

Using Exponential Sampling

- Mechanism above very general
 - Every differentially private mechanism is an instance!
 - > Still a useful design perspective
- Perspective used explicitly for
 - Learning discrete classifiers [KLNRS'08]
 - Synthetic data generation [BLR'08,HLM'10]
 - Convex Optimization [CM'08,CMS'10]
 - Frequent Pattern Mining [BLST'10]
 - Genome-wide association studies [FUS'11]
 - > High-dimensional sparse regression [KST'12]

Releasing Many Functions

Data x = multi-set in domain D

• Represent as vector $\vec{x} \in \mathbb{R}^{|D|}$: $\vec{x}(i) = \frac{\# \text{occurrences of } i \text{ in } x}{n}$

Linear Queries are functions $f: D \to [0, 1]$,

- Answer of f on x is $\sum_{i \in x} f(i) = \left\langle \vec{f}, \vec{x} \right\rangle$
- Special cases: Subset queries (with right representation), most low-sensitivity queries people use

Goal: given queries $f_1, ..., f_m$, release $\hat{f}_1, ..., \hat{f}_m$ to minimize

$$error = \max_{j} \left| \hat{f}_{j} - \langle f_{j}, x \rangle \right|$$

How low can *error* be in terms of m, n, |D|?

Goal: given queries $f_1, ..., f_m$, minimize $error = \max_j |\hat{f}_j - \langle f_j, x \rangle|$ Laplace mechanism + composition results

- $error = O(\frac{m \log m}{\varepsilon n} \text{ or } O(\frac{\sqrt{m \log m \log(1/\delta)}}{\varepsilon n})$
- Time O(mn)
- Only useful if $m \ll n^2$.

Goal: given queries $f_1, ..., f_m$, minimize $error = \max_j \left| \hat{f}_j - \langle f_j, x \rangle \right|$ Laplace mechanism + composition results

- $error = O(\frac{m \log m}{\varepsilon n} \text{ or } O(\frac{\sqrt{m \log m \log(1/\delta)}}{\varepsilon n})$
- Time O(mn)
- Only useful if $m \ll n^2$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \ge n$, reconstruction attacks rule out error $o(1/\sqrt{n})$.
- Randomly sampling t people from x gives error $O(\frac{\log m}{\sqrt{t}})$...

Goal: given queries $f_1, ..., f_m$, minimize $error = \max_j |\hat{f}_j - \langle f_j, x \rangle|$ Laplace mechanism + composition results

- $error = O(\frac{m \log m}{\varepsilon n} \text{ or } O(\frac{\sqrt{m \log m \log(1/\delta)}}{\varepsilon n})$
- Time O(mn)
- Only useful if $m \ll n^2$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \ge n$, reconstruction attacks rule out error $o(1/\sqrt{n})$.
- Randomly sampling t people from x gives error $O(\frac{\log m}{\sqrt{t}})...$... but shafts t people.

Goal: given queries $f_1, ..., f_m$, minimize $error = \max_j \left| \hat{f}_j - \langle f_j, x \rangle \right|$ Laplace mechanism + composition results

- $error = O(\frac{m \log m}{\varepsilon n} \text{ or } O(\frac{\sqrt{m \log m \log(1/\delta)}}{\varepsilon n})$
- Time O(mn)
- Only useful if $m \ll n^2$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \ge n$, reconstruction attacks rule out error $o(1/\sqrt{n})$.
- Randomly sampling t people from x gives error $O(\frac{\log m}{\sqrt{t}})$ but shafts t people.
- [BLR'08,DNNRV'09,RR'10,HR'10,HLM'11,GRU'11,JT'12]:

Error
$$O\left(\frac{\log m \cdot \log |D|}{(\varepsilon n)^{1/3}}\right)$$
 or $O\left(\frac{\log m \cdot \log |D| \cdot \log(1/\delta)}{(\varepsilon n)^{1/4}}\right)$.

• Useful even when $m \gg n$:)

- Time $\tilde{O}(|D|m)$
 - ► Sometimes exponential :(

Goal: given queries $f_1, ..., f_m$, minimize $error = \max_j \left| \hat{f}_j - \langle f_j, x \rangle \right|$ Laplace mechanism + composition results

- $error = O(\frac{m \log m}{\varepsilon n} \text{ or } O(\frac{\sqrt{m \log m \log(1/\delta)}}{\varepsilon n})$
- Time O(mn)
- Only useful if $m \ll n^2$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \ge n$, reconstruction attacks rule out error $o(1/\sqrt{n})$.
- Randomly sampling t people from x gives error $O(\frac{\log m}{\sqrt{t}})$ but shafts t people.
- [BLR'08,DNNRV'09,RR'10,**HR'10,HLM'11**,GRU'11,JT'12]:

Error
$$O\left(\frac{\log m \cdot \log |D|}{(\varepsilon n)^{1/3}}\right)$$
 or $O\left(\frac{\log m \cdot \log |D| \cdot \log(1/\delta)}{(\varepsilon n)^{1/4}}\right)$.

• Useful even when $m \gg n$:)

- Time $\tilde{O}(|D|m)$
 - ► Sometimes exponential :(

Idea: Learn the Data [DNRRV'09, HR'10,...]

Release mechanism tries to "learn" x through diffe.p. interface

• Output \hat{x} to minimize $error(\hat{x}) = \max_j |\langle f_j, \hat{x} \rangle - \langle f_j, x \rangle|$. (Generally do not have $\hat{x} \approx x$.)

Traditional learning	Privacy
Parameters of linear classifier	Data x
Training data	User's Queries f_j
Gradient computations	Actual data access

Idea: Learn the Data [DNRRV'09,HR'10,...]

Release mechanism tries to "learn" x through diffe.p. interface

• Output \hat{x} to minimize $error(\hat{x}) = \max_j |\langle f_j, \hat{x} \rangle - \langle f_j, x \rangle|$. (Generally do not have $\hat{x} \approx x$.)

Traditional learning	Privacy
Parameters of linear classifier	Data x
Training data	User's Queries f_j
Gradient computations	Actual data access

- Learner computes a sequence of estimates $x_0, x_1, ..., x_t, ...$
- Gradient: $\nabla error(\hat{x}_t) = \pm f_j$ where f_j maximizes error $|\langle f_j, \hat{x} \rangle \langle f_j, x \rangle|.$

- Start with $\hat{x}_0 =$ uniform on D.
- Update Step for t = 0, 1..., T:
 - **1** EM to get $j \approx \arg \max_j |\langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle|$
 - 2 Use Laplace mechanism to ask $\hat{d}_t \approx d_t = \langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle$
 - 3 Update $\hat{x}_{t+1}(i) = \hat{x}_t(i) \cdot e^{d_t f_j(i)/2}$
 - (4) Normalize \hat{x}_{t+1}

- Start with $\hat{x}_0 =$ uniform on D.
- Update Step for t = 0, 1..., T:
 - **1** EM to get $j \approx \arg \max_j |\langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle|$
 - 2 Use Laplace mechanism to ask $\hat{d}_t \approx d_t = \langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle$
 - 3 Update $\hat{x}_{t+1}(i) = \hat{x}_t(i) \cdot e^{d_t f_j(i)/2}$
 - (4) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

• Measure convergence of \hat{x}_t to x via $\Psi_t = KL(x \| \hat{x}_t)$.

- Start with $\hat{x}_0 =$ uniform on D.
- Update Step for t = 0, 1..., T:
 - **1** EM to get $j \approx \arg \max_j |\langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle|$
 - 2 Use Laplace mechanism to ask $\hat{d}_t \approx d_t = \langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle$
 - 3 Update $\hat{x}_{t+1}(i) = \hat{x}_t(i) \cdot e^{d_t f_j(i)/2}$
 - (4) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_t to x via $\Psi_t = KL(x \| \hat{x}_t)$.
- Main utility claim: $\Psi_t \Psi_{t+1} \approx error(\hat{x}_t)^2/2$.

- Start with $\hat{x}_0 =$ uniform on D.
- Update Step for t = 0, 1..., T:
 - **1** EM to get $j \approx \arg \max_j |\langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle|$
 - 2 Use Laplace mechanism to ask $\hat{d}_t \approx d_t = \langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle$
 - 3 Update $\hat{x}_{t+1}(i) = \hat{x}_t(i) \cdot e^{d_t f_j(i)/2}$
 - (4) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_t to x via $\Psi_t = KL(x \| \hat{x}_t)$.
- Main utility claim: $\Psi_t \Psi_{t+1} \approx error(\hat{x}_t)^2/2$.
- As long as $error \ge \alpha$, can reduce KL by $\approx \alpha^2/2$

- Start with $\hat{x}_0 =$ uniform on D.
- Update Step for t = 0, 1..., T:
 - **1** EM to get $j \approx \arg \max_j |\langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle|$
 - 2 Use Laplace mechanism to ask $\hat{d}_t \approx d_t = \langle f_j, x \rangle \langle f_j, \hat{x}_t \rangle$
 - 3 Update $\hat{x}_{t+1}(i) = \hat{x}_t(i) \cdot e^{d_t f_j(i)/2}$
 - (4) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_t to x via $\Psi_t = KL(x \| \hat{x}_t)$.
- Main utility claim: $\Psi_t \Psi_{t+1} \approx error(\hat{x}_t)^2/2$.
- As long as $error \ge \alpha$, can reduce KL by $\approx \alpha^2/2$
- Since $KL(x||\hat{x}_0) \leq \log |D|$, error drops below α after $\frac{\log |D|}{\alpha^2}$ updates.

Local and Smooth Sensitivity

Concrete Problem: Parametric Estimators

A statistic or estimator is a function $f : (\text{data sets}) \to \mathbb{R}^p, e.g.$

How Many Have It		Rh Type	ABO Type
45%	38%	positive	0
	7%	negative	0
40%	34%	positive	Α
	6%	negative	Α
- 11%	9%	positive	в
	2%	negative	В
4%	3%	positive	AB
	1%	negative	AB

Contingency table

Fitted parameters of mixture of gaussians

Concrete Problem: Parametric Estimators

A statistic or estimator is a function $f : (\text{data sets}) \to \mathbb{R}^p, e.g.$

AB negative 1%

(Source: American Association of Blood Banks)

Contingency table

Fitted parameters of mixture of gaussians

Goal: differentially private approximation to f.

Use the Laplace Mechanism?

• Recall:
$$A(X) = f(X) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$$

- Global sensitivity GS_f measures how much f varies when one data point changes
- Works well for proportions
 - Private statistic has nearly same distribution as true statistic
- For which statistics is this possible?

 $f(X) \approx (\text{normal random variable})$

 $f(X) \approx (\text{normal random variable})$

• Sums & averages (Central Limit Theorem)

 $f(X) \approx (\text{normal random variable})$

- Sums & averages (Central Limit Theorem)
- Maximum likelihood estimators
- Regression parameters: linear and logistic regression, SVM

 $f(X) \approx (\text{normal random variable})$

- Sums & averages (Central Limit Theorem)
- Maximum likelihood estimators
- Regression parameters: linear and logistic regression, SVM

• "M-estimators"

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p$ and $\varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p$ and $\varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever^{*} $X \sim P^n$ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p$ and $\varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply. Consequence: estimators with optimal rate $1/\sqrt{n}$ for

- sample mean
- sample median
- maximum likelihood estimator for nice models
- regression coefficients

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p$ and $\varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
 - ▶ No need to "understand" structure of f.

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p \text{ and } \varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
 - ▶ No need to "understand" structure of f.

Free lunch!

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p \text{ and } \varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
 - No need to "understand" structure of f.

Free lunch!

- Caveat: Performance degrades with dimension p and privacy parameter ε .
 - Result holds for $p < n^c$ for constant $c \approx 1/6$.
 - ▶ Reconstruction attacks imply some degradation is necessary.

Previous Work

Theorem [S., '11]

For every $f : (\text{data sets}) \to \mathbb{R}^p$ and $\varepsilon > 0$, there exists a ε -diffe.p. algorithm A such that

 $A(X) \approx f(X)$ as *n* grows

whenever* $X \sim P^n$ and f is asymptotically normal at P.

Relative to previous work, we contribute:

- Generality, simplicity (previous aproaches were problem-specific)
- Improved convergence guarantees for order statistics and linear regression $(O(n^{\frac{1}{2}})$ versus $O(n^{\frac{1}{2}+\gamma})$ [DL'09]).

Technique: Sample and aggregate

Why not release

$$A(X) = f(X) + \operatorname{Lap}\left(\frac{\mathsf{GS}_f}{\varepsilon}\right) \quad ?$$

Why not release

$$A(X) = f(X) + \operatorname{Lap}\left(\frac{\mathsf{GS}_f}{\varepsilon}\right) \quad ?$$

- $\bullet\,$ Need to understand f
 - trusted code?
 - ▶ new functions every day...
- Global sensitivity can be too high

Example: fitting a mixture of two Gaussians Database entries: points in a the plane.

Example: fitting a mixture of two Gaussians Database entries: points in a the plane.

Example: fitting a mixture of two Gaussians Database entries: points in a the plane.

Example: fitting a mixture of two Gaussians Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

• If clustering is "good", means should be insensitive.

Example: fitting a mixture of two Gaussians Database entries: points in a the plane.

- If clustering is "good", means should be insensitive.
- [Nissim, Raskhodnikova, S'07]: add less noise to "nice" data

Local sensitivity of f at x: how much does f vary among neighbors of x?

$$\mathsf{LS}_f(x) = \max_{\mathbf{x'} \text{ neighbor of } x} \|f(x) - f(\mathbf{x'})\|_2$$

[NRS'07] Goal: add noise proportional to local sensitivity.

Local sensitivity of f at x: how much does f vary among neighbors of x?

$$\mathsf{LS}_f(x) = \max_{\mathbf{x'} \text{ neighbor of } x} \|f(x) - f(\mathbf{x'})\|_2$$

[NRS'07] Goal: add noise proportional to local sensitivity.

• Problem: Using local sensitivity is not private (noise leaks)

Local sensitivity of f at x: how much does f vary among neighbors of x?

$$\mathsf{LS}_f(x) = \max_{\mathbf{x'} \text{ neighbor of } x} \|f(x) - f(\mathbf{x'})\|_2$$

[NRS'07] Goal: add noise proportional to local sensitivity.

- Problem: Using local sensitivity is not private (noise leaks)
- Solution 1: Use smoothed local sensitivity
 - ▶ Order statistics (median, quantiles, ...)
 - Stats for social networks (MST cost, subgraph frequencies) [Karwa, Rashodnikova, Yaroslavtsev, S, '11]
 - Problem: often computationally difficult

Local sensitivity of f at x: how much does f vary among neighbors of x?

$$\mathsf{LS}_f(x) = \max_{\mathbf{x'} \text{ neighbor of } x} \|f(x) - f(\mathbf{x'})\|_2$$

[NRS'07] Goal: add noise proportional to local sensitivity.

- Problem: Using local sensitivity is not private (noise leaks)
- Solution 1: Use smoothed local sensitivity
 - ▶ Order statistics (median, quantiles, ...)
 - Stats for social networks (MST cost, subgraph frequencies) [Karwa, Rashodnikova, Yaroslavtsev, S, '11]
 - Problem: often computationally difficult
- Solution 2: "Sample and aggregate"

Sample-and-Aggregate Framework [NRS'07]

Intuition: Replace f with a less sensitive function \tilde{f} .

- Break x into k samples of n/k points
- Compute f on each block
- Run differentially private algorithm B:

$$\tilde{f}(x) = B(f(block_1), f(block_2), \dots, f(block_k))$$

Sample-and-Aggregate Framework [NRS'07]

Intuition: Replace f with a less sensitive function \tilde{f} .

- Break x into k samples of n/k points
- Compute f on each block
- Run differentially private algorithm B:

$$\tilde{f}(x) = B(f(block_1), f(block_2), \dots, f(block_k))$$

- Suppose f is asymptotically normal at x.
- If block length $\frac{n}{k}$ large enough, then

 $f(block_1), f(block_2), \ldots, f(block_k) \approx$ normal.

- Design aggregation *B* for estimating mean of approximately normal random variables.
 - One aggregation works for all asymptotically normal random variables.
 - Getting optimal noise requires extra insight into bias/variance tradeoff

Suppose $Range(f) \subseteq [0, 1]$

- Randomly break x into k samples of n/k points
- $\tilde{f}(x) = \operatorname{avg}(f(block_1), f(block_2), \dots, f(block_k))$
- Output $\tilde{f}(x) + \operatorname{Lap}(\frac{1}{k\varepsilon})$.

Why is this useful?

• If most samples give roughly the same answer, get

(that answer)
$$\pm \underbrace{O\left(\frac{1}{\varepsilon k}\right)}_{\text{added noise}}$$

- Not garbage!
- But do we only get the "quality" of n/k samples?
- ► How to choose k?

Why is this useful?

• If most samples give roughly the same answer, get

(that answer)
$$\pm \underbrace{O\left(\frac{1}{\varepsilon k}\right)}_{\text{added noise}}$$

- ► Not garbage!
- But do we only get the "quality" of n/k samples?
- ► How to choose k?
- [NRS'07] Generic aggregator, works for many types of data

Why is this useful?

• If most samples give roughly the same answer, get

(that answer)
$$\pm O\left(\frac{1}{\varepsilon k}\right)$$

- Not garbage!
- But do we only get the "quality" of n/k samples?
- ▶ How to choose k?
- [NRS'07] Generic aggregator, works for many types of data
- [S. '11] Tighter results for normal statistics
 - ► Take advantage of low bias of typical estimators
 - ▶ Roughly: get the "quality" of all *n* points

Linear Regression: find $\vec{\theta}$ such that $\mathbf{X}\vec{\theta} \approx \vec{y}$

Wednesday, September 19, 2012

Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X} \vec{\theta} \approx \vec{y}$ and $\vec{\theta}$ has at most *s* nonzero entries.

Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X}\vec{\theta} \approx \vec{y}$ and $\vec{\theta}$ has at most *s* nonzero entries.

Typical setting: $p \gg n$.

• Solvable nonprivately roughly when $n \gg s \log p$

Given: $\mathbf{X} = \begin{pmatrix} - - - - - x_1 & - - - - \\ \vdots & \vdots & \\ - - - - x_i & - - - - \\ \vdots & \vdots & \\ - - - - x_n & - - - - \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}$

Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X}\vec{\theta} \approx \vec{y}$ and $\vec{\theta}$ has at most *s* nonzero entries.

Typical setting: $p \gg n$.

- Solvable nonprivately roughly when $n \gg s \log p$
- Private algorithm?
 - Noise addition fails because of high dimension (noise p/n per coefficient)

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

In each block:

- Run nonprivate algorithm to get candidate list of s features
- Aggregation: Privately choose features selected most often

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

In each block:

- Run nonprivate algorithm to get candidate list of s features
- Aggregation: Privately choose features selected most often
 - Use "exponential sampling" [McSherry, Talwar '07,

Bhaskar, Laxman, S, Thakurta '10].

Sample s features randomly, where

 $\Pr(i) \propto \exp(\varepsilon \cdot (\# \text{ blocks where } i \text{ was selected})).$

- Produces good estimates when $n \gg s^2 \log p$.
- Open question: match nonprivate bound

Two applications:

- Asymptotically normal statistics
- Sparse regression

Two applications:

- Asymptotically normal statistics
- Sparse regression

Produces algorithms with interesting properties, regardless of privacy

- Stability: robust to small changes in input
 - Guarantees good generalization error
 - ▶ Deterministic stable sparse learning impossible [Xu *et al.*,'11]
- Streaming: algorithms require little space ($\approx \sqrt{n}$)
 - ► Useful for very large data sets

Implemented by [Moharan et al., SIGMOD 2012]

Postscript: Systems and Implementation

Differential Privacy in "Practice"

• Currently, differential private algorithms hard to use

noise

- can't use out-of-the-box software
- > requires fresh thinking for each new problem, etc
- Several systems to make use easier
 - [McSherry'09] PINQ: variation on LINQ with differential privacy enforced by query mechanism
 - [Haeberlen et al.'II] Programming language with privacy enforced by type system
 - [Roy et al. '10, Moharan et al. '12] Systems for restricted classes of queries, focus usability with legacy code
- Hard to get right!
 - [Haeberlen et al. 'II] Timing attacks
 - [Mironov '12] Leakage via numerical errors

Act I: Attacks

(Why is privacy hard?)

Reconstruction attacks

• Act I: Attacks

(Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

• Act I: Attacks

> (Why is privacy hard?)

Reconstruction attacks

Act II: Definitions

One approach: "differential" privacy

Variations on the theme

Act III: Algorithms

Basic techniques: noise addition, exponential sampling

Exploiting "local" sensitivity

Answering many queries

Things I did not cover

- Multiparty models
 What if data are distributed?
- Computational considerations
 > "Require" distributed models to exploit
- Graph data
 - > Hard to pin down which data are "mine"
- Information-theoretic definitions
- Lower bounds specific to differential privacy
- And More!

- Define privacy in terms of my effect on output
 - > Meaningful despite arbitrary external information
 - > I should participate if I get benefit

• Define privacy in terms of my effect on output

> Meaningful despite arbitrary external information

I should participate if I get benefit

- What can we compute with rigorous guarantees?
 - Basic Tools

More advanced examples

• Define privacy in terms of my effect on output

> Meaningful despite arbitrary external information

I should participate if I get benefit

• What can we compute with rigorous guarantees?

Basic Tools

More advanced examples

- Future work
 - > Other definitions: How can we exploit uncertainty?
 - > Applications: genetics, finance, ...
 - > How can we reason about privacy, more broadly?

Further resources

- Aaron Roth's lecture notes
 http://www.cis.upenn.edu/~aaroth/courses/privacyFII.html
- 2010 course by Sofya Raskhodnikova and me http://www.cse.psu.edu/~asmith/privacy598
- DIMACS Workshop on Data Privacy
 October 24-26, 2012 (immediately after FOCS)
 <u>http://dimacs.rutgers.edu/Workshops/DifferentialPrivacy/</u>