Pinning Down "Privacy" in Statistical Databases

Adam Smith
Computer Science \& Engineering Department Penn State
http://www.cse.psu.edu/~asmith
Crypto Tutorial, August 21, 2012

Privacy in Statistical Databases

Individuals Server/agency

Users
Government, researchers, businesses (or)
Malicious adversary

Large collections of personal information

- census data
- medical/public health data
- social networks
- recommendation systems
- trace data: search records, etc

Recently:

- larger data sets
- more types of data
- intrusion-detection systems

Privacy in Statistical Databases

Privacy in Statistical Databases

- Two conflicting goals
> Utility: Users can extract "aggregate" statistics
$>$ "Privacy": Individual information stays hidden

Privacy in Statistical Databases

- Two conflicting goals
> Utility: Users can extract "aggregate" statistics
> "Privacy": Individual information stays hidden
- How can we define these precisely?
$>$ Variations on model studied in
- Statistics ("statistical disclosure control")
- Data mining / database ("privacy-preserving data mining" *)
$>$ Since ~2002: Rigorous foundations \& analysis

Privacy \& Crypto

Image: Gary Larson

Privacy \& Crypto

- No bright lines
> Crypto: psychiatrist and patient
> Data privacy: have to release some data at the expense of others

Image: Gary Larson

Privacy \& Crypto

- No bright lines
> Crypto: psychiatrist and patient
> Data privacy: have to release some data at the expense of others
- Different from secure function evaluation
$>$ SFE: how do we securely distribute a computation we've agreed on?

> Data privacy: what computation should we perform?

Privacy \& Crypto

- How can crypto contribute?
$>$ Modeling
> Attacks ("cryptanalysis")
- More hacking!
- Coherent principles
> Distributed models
- How can crypto benefit?
$>$ Theory of "moderate" security
- Applicable to areas such as anonymous communication, voting?

An overview of research on privacy?

An overview of research on privacy?

- Data privacy research is diverse
$>$ Researchers from crypto, learning, algorithms, databases, ...
$>$ Tools from lots of areas

An overview of research on privacy?

- Data privacy research is diverse
$>$ Researchers from crypto, learning, algorithms, databases, ...
$>$ Tools from lots of areas
- Great progress
$>$ We're 10 years ahead of where we were in 2002
> Area still immature

An overview of research on privacy?

- Data privacy research is diverse
$>$ Researchers from crypto, learning, algorithms, databases, ...
$>$ Tools from lots of areas
- Great progress
$>$ We're 10 years ahead of where we were in 2002
> Area still immature
- This talk
$>$ More tutorial than survey
$>$ Much has been left out
$>$ Not only my work
$>$ Sparse on references

An overview of research on privacy?

- Data privacy research is diverse
$>$ Researchers from crypto, learning, algorithms, databases, ...
$>$ Tools from lots of areas
- Great progress
$>$ We're 10 years ahead of where we were in 2002
> Area still immature
- This talk
$>$ More tutorial than survey
$>$ Much has been left out
$>$ Not only my work
$>$ Sparse on references

This talk

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
> One approach:"differential" privacy
> Variations on the theme

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
> One approach:"differential" privacy
$>$ Variations on the theme
- Act III: Algorithms
$>$ Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
$>$ Exploiting "local" sensitivity

This talk

Act I: Attacks

$>$ (Why is privacy hard?)
$>$ Reconstruction attacks

- Act II: Definitions
$>$ One approach:"differential" privacy
$>$ Variations on the theme
- Act III: Algorithms
$>$ Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
$>$ Exploiting "local" sensitivity

External Information

Individuals Server/agency

- Warm-up: fine-grained releases
$>$ Netflix
> Composition
- Reconstruction attacks
> Based on approximate linear statistics
$>$ Based on synthetic data

Netflix Data Release [Narayanan, Shmatikov 2008]

- Ratings for subset of movies and users
- Usernames replaced with random IDs
- Some additional perturbation

Netfix Data Release [Narayanan, Shmatikov 2008]

Anonymized NetFlix data

Alice Bob Charlie Danielle Erica
Frank
Public, incomplete IMDB data

Netflix Data Release [Narayanan, Shmatikov 2008]

Anonymized NetFlix data

Alice Bob Charlie Danielle Erica Frank

Public, incomplete IMDB data

Identified NetFlix Data

Netflix Data Release [Narayanan, Shmatikov 2008]

Anonymized NetFlix data

Alice Bob Charlie
Danielle Erica Frank

Public, incomplete IMDB data

On average, four movies uniquely identify user

Identified NetFlix Data

Netflix Data Release [Narayanan, Shmatikov 2008]

Anonymized NetFlix data

Public, incomplete IMDB data

Alice

Bob
Charlie
Danielle
Erica
Frank
On average, four movies uniquely identify user

Second round of Netflix competition postponed

Identified NetFlix Data

"Composition" Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals Servers

"Composition" Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals

Servers

- Example: two hospitals serve overlapping populations
$>$ What if they independently release "anonymized" statistics?

"Composition" Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals Servers

- Example: two hospitals serve overlapping populations
$>$ What if they independently release "anonymized" statistics?
- Composition attack: Combine independent releases
$>$ Popular anonymization schemes leak lots of information

"Composition" Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals

- Example: two hospitals serve overlapping populations
$>$ What if they independently release "anonymized" statistics?
- Composition attack: Combine independent releases
$>$ Popular anonymization schemes leak lots of information

Other attacks

- Reidentifying individuals based on external sources, e.g.
$>$ Social networks [Backstrom, Dwork, Kleinberg '07, NS'09]
$>$ Computer networks
[Coull,Wright, Monrose, Collins, Reiter '07, Ribeiro, Chen, Miklau, Townsley 08]
$>$ Genetic data (GWAS) [Homer et al. ${ }^{\text {'08, ...] }}$
$>$ Advertising systems [Korolova]

Is the problem granularity?

Is the problem granularity?

- Examples so far: releasing individual information

Is the problem granularity?

- Examples so far: releasing individual information
- Problems:

Is the problem granularity?

- Examples so far: releasing individual information
- Problems:
$>$ Composition
- Average salary before/after professor resigns

Is the problem granularity?

- Examples so far: releasing individual information
- Problems:

$>$ Composition

- Average salary before/after professor resigns
$>$ "Global" result can reveal specific values:
- "Support Vector Machine" output depends on only a few inputs

Is the problem granularity?

- Examples so far: releasing individual information
- Problems:

$>$ Composition

- Average salary before/after professor resigns
$>$ "Global" result can reveal specific values:
- "Support Vector Machine" output depends on only a few inputs
$>$ Statistics may together encode data
- Reconstruction attacks:

Too many, "too accurate" stats \Rightarrow reconstruct the data

- Robust even to fairly significant noise

Reconstruction Attacks [DiNio3]

Concrete setting: n users, each with secret $x(i) \in\{0,1\}$. Subset query: for $S \subseteq\{1, \ldots n\}$, let

$$
f_{S}(x)=\frac{1}{n} \sum_{i \in S} x(i)=\frac{1}{n}\left\langle\chi_{S}, \vec{x}\right\rangle
$$

Reconstruction Attacks [DiNio3]

Concrete setting: n users, each with secret $x(i) \in\{0,1\}$. Subset query: for $S \subseteq\{1, \ldots n\}$, let

$$
f_{S}(x)=\frac{1}{n} \sum_{i \in S} x(i)=\frac{1}{n}\left\langle\chi_{S}, \vec{x}\right\rangle
$$

What sets of subset queries S_{1}, \ldots, S_{m} allow reconstruction?

Reconstruction Attacks [DiNio3]

Concrete setting: n users, each with secret $x(i) \in\{0,1\}$. Subset query: for $S \subseteq\{1, \ldots n\}$, let

$$
f_{S}(x)=\frac{1}{n} \sum_{i \in S} x(i)=\frac{1}{n}\left\langle\chi_{S}, \vec{x}\right\rangle
$$

What sets of subset queries S_{1}, \ldots, S_{m} allow reconstruction?

- \# queries m
- Error $d_{\text {Hamming }}(\hat{x}, x)$, for distortion $\alpha=\max _{i}\left|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right|$
- Running time

Can we release all subset queries?

	$[\mathrm{DiNi} 03]$
$\#$ queries m	2^{n}
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$
Running time	2^{n}

Can we release all subset queries?

	[DiNi03]
$\#$ queries m	2^{n}
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$
Running time	2^{n}

Attack successful for any nontrivial error $\alpha=o(1)$.

Can we release all subset queries?

	$[$ DiNi03]
$\#$ queries m	2^{n}
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$
Running time	2^{n}

Attack successful for any nontrivial error $\alpha=o(1)$.
Algorithm:

- For $y \in\{0,1\}^{n}$, write Hamming distance in terms of subset queries:

$$
d_{\text {Hamming }}(y, x)=n \cdot f_{S_{0}}(x) \quad+\left|S_{1}\right|-n \cdot f_{S_{1}}(x)
$$

Can we release all subset queries?

	[DiNi03]
$\#$ queries m	2^{n}
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$
Running time	2^{n}

Attack successful for any nontrivial error $\alpha=o(1)$.
Algorithm:

- For $y \in\{0,1\}^{n}$, write Hamming distance in terms of subset queries:

$$
\begin{aligned}
d_{\text {Hamming }}(y, x) & =n \cdot f_{S_{0}}(x) & & +\left|S_{1}\right|-n \cdot f_{S_{1}}(x) \\
\hat{d}_{y} & =n \cdot \hat{f}_{S_{0}} & & +\left|S_{1}\right|-n \quad \hat{f}_{S_{1}}
\end{aligned}
$$

Can we release all subset queries?

	[DiNi03]
$\#$ queries m	2^{n}
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$ $4 \alpha n$ Running time $2^{n}$${ }^{2}$	

Attack successful for any nontrivial error $\alpha=o(1)$.

Algorithm:

- For $y \in\{0,1\}^{n}$, write Hamming distance in terms of subset queries:

$$
\begin{aligned}
d_{\text {Hamming }}(y, x) & =n \cdot f_{S_{0}}(x) & & +\left|S_{1}\right|-n \cdot f_{S_{1}}(x) \\
\hat{d}_{y} & =n \cdot \hat{f}_{S_{0}} & & +\left|S_{1}\right|-n \quad \hat{f}_{S_{1}}
\end{aligned}
$$

- Output $\hat{x}=\arg \min _{y \in\{0,1\}^{n}} \hat{d}_{y}$

A few subset queries? [DiNi03,DMT07,DY08]

	[DiNi03]	[DiNi03,DMT07,DY08]
$\#$ queries m	2^{n}	n
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$	$2(\alpha \sqrt{n}) n$
Running time	2^{n}	$O(n \log n)$

A few subset queries? [DiNi03,DMT07,DY08]

	[DiNi03]	[DiNi03,DMT07,DY08]
$\#$ queries m	2^{n}	n
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$	$2(\alpha \sqrt{n}) n$
Running time	2^{n}	$O(n \log n)$

Attack successful for error $\alpha=o(1 / \sqrt{n})$.

A few subset queries? [DiNi03,DMT07,DY08]

	[DiNi03]	[DiNi03,DMT07,DY08]
$\#$ queries m	2^{n}	n
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$	$2(\alpha \sqrt{n}) n$
Running time	2^{n}	$O(n \log n)$

A few subset queries? [DiNio3,DMT07,DY08]

	[DiNi03]	[DiNi03,DMT07,DY08]
$\#$ queries m	2^{n}	n
Error $d_{\text {Hamming }}(\hat{x}, x)$ $\alpha=\max _{i}\left\|\hat{f}_{S_{i}}-f_{S_{i}}(x)\right\|$	$4 \alpha n$	$2(\alpha \sqrt{n}) n$
Running time	2^{n}	$O(n \log n)$

Algorithm:

- Queries come from the rows of ± 1 Hadamard matrix:
- $H_{1}=(1) \quad H_{n}=\left(\begin{array}{cc}H_{n / 2} & H_{n / 2} \\ H_{n / 2} & -H_{n / 2}\end{array}\right)$
- H_{n} has all eigenvalues $\pm \sqrt{n}$.
- Using n subset queries (one per row), can derive

$$
z=\frac{1}{n} H_{n} x+e \text { where }\|e\|_{\infty} \leq 2 \alpha
$$

- Compute $\hat{x}^{\prime}=\left(n \cdot H_{n}^{-1}\right) z=x+e^{\prime}$ where $\left\|e^{\prime}\right\|_{2} \leq 2 \alpha n$
- Round to $\{0,1\}^{n}$ to get \hat{x}

Beyond Subset Queries

Beyond Subset Queries

- These attacks can be extended
$>$ Handle some very distorted queries
$>$ Exploit sparsity of secret vector

Beyond Subset Queries

- These attacks can be extended
$>$ Handle some very distorted queries
$>$ Exploit sparsity of secret vector
- So far: unnatural queries
$>$ Algebraically defined or uniformly random
$>$ Require "naming rows"

Beyond Subset Queries

- These attacks can be extended
$>$ Handle some very distorted queries
$>$ Exploit sparsity of secret vector
- So far: unnatural queries
> Algebraically defined or uniformly random
$>$ Require "naming rows"
- Natural, symmetric queries? Yes!
> [KRSU'IO] marginal tables
- Each person's data is a row in a table
- K-way marginal: distribution of some k attributes
$>\left[K R S^{\prime} \mid 2\right]$ regression analysis, decision tree classifiers, ...

Reconstruction from Marginals [KRSU‘10]

Reconstruction from Marginals [KRSU‘0]

- Data set: d "public" attributes per person, I "sensitive"

Reconstruction from Marginals [KRSU‘10]

- Data set: d "public" attributes per person, I "sensitive"

- Suppose release allows learning 2-way marginals
>2-way marginals are subset queries!
$>$ If a_{i} are uniformly random and $\mathrm{d}>\mathrm{n}$, then $d_{\text {Ham }}(\hat{x}, x)=o(n)$

Reconstruction from Marginals [KRSU‘10]

- Data set: d"public" attributes per person, I "sensitive"

- Suppose release allows learning 2-way marginals
>2-way marginals are subset queries!
$>$ If a_{i} are uniformly random and $\mathrm{d}>\mathrm{n}$, then $d_{\text {Ham }}(\hat{x}, x)=o(n)$
- Theorem: With k-way marginals, $d \gg n^{\frac{1}{k-1}}$ suffices

Reconstruction from Marginals [KRSU‘10]

- Data set: d "public" attributes per person, I "sensitive"

- Idea: view statistics as noisy linear encoding $M x+e$

- Signal processing: Reconstruction uses geometry of matrix M

Reconstruction from Marginals [KRSU‘10]

- Data set: d "public" attributes per person, I "sensitive"

- Idea: view statistics as noisy linear encoding $M x+e$

- Signal processing: Reconstruction uses geometry of matrix M

Reconstruction from Marginals [KRSU‘10]

- Data set: d"public" attributes per person, I "sensitive"

- Idea: view statistics as noisy linear encoding $M x+e$

- Signal processing: Reconstruction uses geometry of matrix M

Reconstruction from Marginals

Reconstruction from Marginals

- Minimize estimated error in ℓ_{p}
$>p=2$: least singular values

$>\mathrm{p}=\mathrm{I}$:"Euclidean section"

Reconstruction from Marginals

- Minimize estimated error in ℓ_{p}
$>$ p $=$ 2: least singular values
$>p=1$:"Euclidean section"

Attacks on data privacy

Attacks on data privacy

- So far:
$>$ Many ad hoc examples
- E.g., Netflix, ...
$>$ Some general principles
- E.g., Composition
$>$ Sophisticated reconstruction attacks
- Draws on theory of coding and signal processing
$>$ Lower bounds for various classes of release mechanisms
- Sometimes based on crypto objects [DNRRV, UV]

Attacks on data privacy

- So far:
$>$ Many ad hoc examples
- E.g., Netflix, ...
$>$ Some general principles
- E.g., Composition
$>$ Sophisticated reconstruction attacks
- Draws on theory of coding and signal processing
$>$ Lower bounds for various classes of release mechanisms
- Sometimes based on crypto objects [DNRRV, UV]
- Still missing:
$>$ Systematic understanding
$>$ Suite of standard attack techniques
(à la differential/linear cryptanalysis?)

Lessons

Lessons

- Even if releasing only "aggregate" statistics, we can't release everything
$>$ We release some information at the expense of other kinds
$>$ Inherent tradeoff very different from "crypto as usual"

Lessons

- Even if releasing only "aggregate" statistics, we can't release everything
$>$ We release some information at the expense of other kinds
$>$ Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about

Lessons

- Even if releasing only "aggregate" statistics, we can't release everything
$>$ We release some information at the expense of other kinds
$>$ Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about

Lessons

- Even if releasing only "aggregate" statistics, we can't release everything
$>$ We release some information at the expense of other kinds
$>$ Inherent tradeoff very different from "crypto as usual"
- Even a single "aggregate" statistic can be hard to reason about
- What does "aggregate" mean?

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks

Act II: Definitions

$>$ One approach:"differential" privacy
$>$ Variations on the theme

- Act ||I: Algorithms
> Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
> Exploiting "local" sensitivity

This talk

"Aggregate" \approx stability to small

- Act I: Attacks
$>$ (Why is privacy hard?)
> Reconstruction attacks

Act II: Definitions

 changes in input- Handles arbitrary external information
- Burgeoning field of research
> One approach:"differential" privacy
$>$ Variations on the theme
- Act III: Algorithms
> Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
> Exploiting "local" sensitivity

This talk

"Aggregate" \approx stability to small

- Act I: Attacks changes in input
$>$ (Why is privacy hard?)
$>$ Reconstruction attaclos
Act II: Definitions
> One approach:"differential" privacy
> Variations on the theme
- Act III: Algorithms
> Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
> Exploiting "local" sensitivity

Differential Privacy [DMNS2006, Dw2006]

- Intuition:
$>$ Changes to my data not noticeable by users
$>$ Output is "independent" of my data

Differential Privacy [DMNs2006, Dw2006]

- Data set $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$
$>$ Domain D can be numbers, categories, tax forms
$>$ Think of x as fixed (not random)
- $\mathrm{A}=$ randomized procedure
$\Rightarrow \mathrm{A}(\mathrm{x})$ is a random variable
$>$ Randomness might come from adding noise, resampling, etc.

Differential Privacy [DMNS2006, Dw2006]

x^{\prime} is a neighbor of x
if they differ in one data point

Differential Privacy [DMNS2006, Dw2006]

x^{\prime} is a neighbor of x
if they differ in one data point
Neighboring databases induce close distributions on outputs

Differential Privacy [DMNS2006, Dw2006]

x^{\prime} is a neighbor of x
if they differ in one data point
Neighboring databases
Definition: A is ε-differentially private if, for all neighbors x, \times, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Differential Privacy [DMNS2006, Dw2006]

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Differential Privacy [DMNS2006, Dw2006]

- This is a condition on the algorithm A
$>$ Saying a particular output is private makes no sense

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Differential Privacy [DMNS2006, Dw2006]

- This is a condition on the algorithm A
$>$ Saying a particular output is private makes no sense
- Choice of distance measure matters

Definition: A is ε-differentially private if, for all neighbors \times, \times,

Neighboring databases induce close distributions on outputs
for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Differential Privacy [DMNS2006, Dw2006]

- This is a condition on the algorithm A
$>$ Saying a particular output is private makes no sense
- Choice of distance measure matters
- What is ε ?
$>$ Measure of information leakage
$>$ Not too small (think $\frac{1}{10}$, not $\frac{1}{2^{50}}$)

Definition: A is ε-differentially private if, for all neighbors $\mathrm{x}, \mathrm{x}^{\prime}$,

Neighboring databases induce close distributions on outputs for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Differential Privacy [DMNS2006, Dw2006]

- This is a condition on the algorithm A
$>$ Saying a particular output is private makes no sense
- Choice of distance measure matters
- What is ε ?
$>$ Measure of information leakage
$>$ Not too small (think $\frac{1}{10}$, not $\frac{1}{2^{50}}$)

Definition: A is ε-differentially private if, for all neighbors $\mathrm{x}, \mathrm{x}^{\prime}$, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

$$
\begin{gathered}
f(x) \in \mathbb{R}^{p} \\
x_{i} \in\{0,1\}, f(x)=\frac{1}{n} \sum x_{i}
\end{gathered}
$$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Say we want to release a summary $f(x) \in \mathbb{R}^{p}$
$>$ e.g., proportion of diabetics: $x_{i} \in\{0,1\}, f(x)=\frac{1}{n} \sum x_{i}$

Example: Noise Addition [Dwork, Mcsherry, Nissim, S. 2006]

- Say we want to release a summary $f(x) \in \mathbb{R}^{p}$
$>$ e.g., proportion of diabetics: $x_{i} \in\{0,1\}, f(x)=\frac{1}{n} \sum x_{i}$
- Simple approach: add noise to $f(x)$
$>$ How much noise is needed?

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Say we want to release a summary $f(x) \in \mathbb{R}^{p}$
$>$ e.g., proportion of diabetics: $x_{i} \in\{0,1\}, f(x)=\frac{1}{n} \sum x_{i}$
- Simple approach: add noise to $f(x)$
> How much noise is needed?
- Intuition: $f(x)$ can be released accurately when f is insensitive to individual entries $x_{1}, x_{2}, \ldots, x_{n}$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

$$
\mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}
$$

$\mathrm{GS}_{\text {proportion }}=\frac{1}{n}$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad G S_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.

Example: Noise Addition [Dwork, Mcsherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.
$>$ Laplace distribution $\operatorname{Lap}(\lambda)$ has density

$$
h(y) \propto e^{-|y| / \lambda}
$$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.
$>$ Laplace distribution $\operatorname{Lap}(\lambda)$ has density

$$
h(y) \propto e^{-|y| / \lambda}
$$

> Changing one point translates curve

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

$$
\begin{aligned}
\mathrm{GS}_{\text {proportion }} & =\frac{1}{n} \\
\mathrm{~A}(\mathrm{x}) & =\text { proportion } \pm \frac{1}{\epsilon n}
\end{aligned}
$$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Example: proportion of diabetics
$>\mathrm{GS}_{\text {proportion }}=\frac{1}{n}$
$>$ Release $\mathrm{A}(\mathrm{x})={ }^{\mathrm{n}}$ proportion $\pm \frac{1}{\epsilon n}$

Example: Noise Addition [Dwork, Mcsherry, Nissim, S. 2006]

- Example: proportion of diabetics
$>\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
$>$ Release $\mathrm{A}(\mathrm{x})=\mathrm{proportion} \pm \frac{1}{\epsilon n}$
- Is this a lot?
$>$ If x is a random sample from a large underlying population, then sampling noise $\approx \frac{1}{\sqrt{n}}$
$\rightarrow \mathrm{A}(\mathrm{x})$ "as good as" real proportion

Using global sensitivity

$$
\mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}
$$

- Many natural functions have low sensitivity
$>$ e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded "sensitivity curve", strongly convex optimization problems
- Laplace mechanism can be a programming interface
$>$ Many algorithms can be expressed as a sequence of lowsensitivity queries [BDMN '05, FFKN'09, MW' I0]
$>$ Implemented in several systems [McSherry '09, Roy et al. ' 10 , Haeberlen et al.'II, Moharan et al.' ${ }^{\prime}$ 2]

Interpreting the definition

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

- ε cannot be negligible
$>\mathrm{A}\left(0^{\mathrm{n}}\right)$ and $\mathrm{A}\left(\mathrm{I}^{\mathrm{n}}\right)$ at distance at most $\mathrm{n} \varepsilon$
$>$ Need $\varepsilon \gg 1 / n$ to get utility

Definition: A is ε-differentially private if, for all neighbors x, x ', for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

- ε cannot be negligible
$>\mathrm{A}\left(0^{\mathrm{n}}\right)$ and $\mathrm{A}\left(\mathrm{I}^{\mathrm{n}}\right)$ at distance at most $\mathrm{n} \varepsilon$
$>$ Need $\varepsilon \gg I / n$ to get utility
- Why this distance measure?
$>$ Consider a mechanism that publishes I random person's data
- Stat. Diff. $\left(A(x), A\left(x^{\prime}\right)\right)=1 / n$
$>$ Need a "worst case" distance measure
Definition: A is ε-differentially private if, for all neighbors x, x ',

Neighboring databases

 induce close distributions on outputsfor all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

- Composition Lemma:

If A_{1} and A_{2} are ε-differentially private, then joint output $\left(A_{1}, A_{2}\right)$ is 2ε-differentially private.

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

- Composition Lemma:

If A_{1} and A_{2} are ε-differentially private, then joint output $\left(A_{1}, A_{2}\right)$ is 2ε-differentially private.

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting the definition

- Composition Lemma:

If A_{1} and A_{2} are ε-differentially private, then joint output $\left(A_{1}, A_{2}\right)$ is 2ε-differentially private.

- Meaningful in the presence of arbitrary external information

Definition: A is ε-differentially private if, for all neighbors x, x, for all subsets S of outputs

$$
\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{x}^{\prime}\right) \in \mathrm{S}\right)
$$

Interpreting Differential Privacy

Interpreting Differential Privacy

- A naïve hope:

Your beliefs about me are the same after you see the output as they were before

Interpreting Differential Privacy

- A naïve hope:

Your beliefs about me are the same after you see the output as they were before

- Suppose you know that I smoke
$>$ A public health study could teach you that I am at risk for cancer
$>$ But it didn't matter whether or not my data was part of it.

Interpreting Differential Privacy

- A naïve hope:

> Your beliefs about me are the same aftor you see the output as they were before

- Suppose you know that I smoke
$>$ A public health study could teach you that I am at risk for cancer
$>$ But it didn't matter whether or not my data was part of it.

Interpreting Differential Privacy

- A naïve hope:

> Your beliefs about me are the same aftoryou see the output as they were before

- Suppose you know that I smoke
$>$ A public health study could teach you that I am at risk for cancer
$>$ But it didn't matter whether or not my data was part of it.
- Theorem [DN'06, KM'II]: Learning things about individuals is unavoidable in the presence of external information

Interpreting Differential Privacy

- A naïve hope:

Your beliefs about me are the same aftoryou see the output as they were before

- Suppose you know that I smoke
$>$ A public health study could teach you that I am at risk for cancer
$>$ But it didn't matter whether or not my data was part of it.
- Theorem [DN'06, KM'II]: Learning things about individuals is unavoidable in the presence of external information
- Differential privacy implies:

No matter what you know ahead of time,

You learn (almost) the same things about me whether or not my data is used

$>$ This has a clean Bayesian interpretation [GKS'08]

Features or bugs?

Features or bugs?

- May not protect sensitive global information, e.g.

Features or bugs?

- May not protect sensitive global information, e.g.
$>$ Clinical data: Smoking and cancer

Features or bugs?

- May not protect sensitive global information, e.g.
$>$ Clinical data: Smoking and cancer
$>$ Financial transactions: firm-level trading strategies

Features or bugs?

- May not protect sensitive global information, e.g.
$>$ Clinical data: Smoking and cancer
$>$ Financial transactions: firm-level trading strategies
$>$ Social data: what if my presence affects everyone else? [KM'II]
- The annoying colleague example

Features or bugs?

- May not protect sensitive global information, e.g.
> Clinical data: Smoking and cancer
$>$ Financial transactions: firm-level trading strategies
> Social data: what if my presence affects everyone else? [KM'II]
- The annoying colleague example
$>$ Exact (deterministic) information about this data set
- E.g., I know the differences in population between all 50 states
- Differentially private release allows my to learn the populations exactly

Features or bugs?

- May not protect sensitive global information, e.g.
> Clinical data: Smoking and cancer
$>$ Financial transactions: firm-level trading strategies
$>$ Social data: what if my presence affects everyone else? [KM'II]
- The annoying colleague example
$>$ Exact (deterministic) information about this data set
- E.g., I know the differences in population between all 50 states
- Differentially private release allows my to learn the populations exactly
- Leakage accumulates
$>\varepsilon$ adds up with many releases
$>$ Inevitable in some form?
$>$ How do we set ε ?

Variations on the approach

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) - differential privacy
$>$ Require $\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S})+\delta$
$>$ Similar semantics to $(\varepsilon, 0)$ - diffe.p. when $\delta \ll \mathrm{I} / \mathrm{n}$

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) - differential privacy
$>$ Require $\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S})+\delta$
$>$ Similar semantics to $(\varepsilon, 0)$ - diffe.p. when $\delta \ll \mathrm{I} / \mathrm{n}$
- Computational variants [MPRV09,MMPRTVIO,GKYII]

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) - differential privacy
$>$ Require $\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S})+\delta$
$>$ Similar semantics to $(\varepsilon, 0)$ - diffe.p. when $\delta \ll \mathrm{I} / \mathrm{n}$
- Computational variants [MPRV09,MMPRTVIO,GKYII]
- Distributional variants [RHMS'09,BBGLT'II,...]
$>$ Assume something about adversary's prior distribution
> Deterministic releases
> Poor composition guarantees

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) - differential privacy
$>$ Require $\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S})+\delta$
$>$ Similar semantics to $(\varepsilon, 0)$ - diffe.p. when $\delta \ll \mathrm{I} / \mathrm{n}$
- Computational variants [MPRV09,MMPRTVIO,GKYII]
- Distributional variants [RHMS'09,BBGLT'II,...]
> Assume something about adversary's prior distribution
> Deterministic releases
$>$ Poor composition guarantees
- Generalizations
$>$ [BLR'08, GLP'II] simulation-based definitions
> [KM'I2] "Pufferfish": vast generalization, tricky to instantiate

Variations on the approach

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) - differential privacy
$>$ Require $\operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S}) \leq e^{\epsilon} \cdot \operatorname{Pr}(\mathrm{A}(\mathrm{x}) \in \mathrm{S})+\delta$
$>$ Similar semantics to $(\varepsilon, 0)$ - diffe.p. when $\delta \ll \mathrm{I} / \mathrm{n}$
- Computational variants [MPRV09,MMPRTVIO,GKYII]
- Distributional variants [RHMS'09,BBGLT'II,...]
> Assume something about adversary's prior distribution
> Deterministic releases
$>$ Poor composition guarantees
- Generalizations
$>$ [BLR'08, GLP'II] simulation-based definitions
> [KM'I2] "Pufferfish": vast generalization, tricky to instantiate
- Crowd-blending privacy [GHLP'I2]

What can we compute privately?

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

What can we compute privately?

- "Privacy" = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- General tools for reasoning about leakage
- Lots of recent work, interesting questions
> STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S\&P, Usenix Sec., NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
> One approach:"differential" privacy
> Variations on the theme
- Act III: Algorithms
$>$ Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
$>$ Exploiting "local" sensitivity

This talk

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
> One approach:"differential" privacy
> Variations on the theme

Act III: Algorithms

$>$ Basic techniques: noise addition, exponential sampling
$>$ Answering many queries
$>$ Exploiting "local" sensitivity

Differentially Private Algorithms

- Tools and Techniques
> Laplace Mechanism
> Exponential Mechanism
$>$ Algorithms for many queries
$>$ Local Sensitivity-based techniques

- Theoretical Foundations
$>$ Feasibility results: Learning, optimization, synthetic data, statistics
$>$ Connections to game theory, learning, robustness
- Domain-specific algorithms
$>$ Networking, clinical data, social networks, ...
- Systems
$>$ Programming Languages, Query Languages,Attacks

Differentially Private Algorithms

- Tools and Techniques
$>$ Laplace Mechanism
$>$ Exponential Mechanism
$>$ Algorithms for many queries
$>$ Local Sensitivity-based techniques

- Theoretical Foundations
$>$ Feasibility results: Learning, optimization, synthetic data, statistics
$>$ Connections to game theory, learning, robustness
- Domain-specific algorithms
$>$ Networking, clinical data, social networks, ...
- Systems
$>$ Programming Languages, Query Languages, Attacks

Basic Technique I: Noise Addition

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$

Example: Noise Addition [Dwork, Mcsherry, Nissim, S. 2006]

$$
\mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}
$$

$\mathrm{GS}_{\text {proportion }}=\frac{1}{n}$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad G S_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.

Example: Noise Addition [Dwork, Mcsherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.
$>$ Laplace distribution $\operatorname{Lap}(\lambda)$ has density

$$
h(y) \propto e^{-|y| / \lambda}
$$

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

- Global Sensitivity: $\quad \mathrm{GS}_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1}$
$>$ Example: $\mathrm{GS}_{\text {proportion }}=\frac{1}{\mathrm{n}}$
Theorem: If $\mathrm{A}(\mathrm{x})=f(\mathrm{x})+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\epsilon}\right)$, then A is ϵ-differentially private.
$>$ Laplace distribution $\operatorname{Lap}(\lambda)$ has density

$$
h(y) \propto e^{-|y| / \lambda}
$$

> Changing one point translates curve

Example: Histograms

$$
\mathrm{f}(\mathrm{x})=\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{d}}\right) \text { where } \mathrm{n}_{\mathrm{j}}=\#\left\{\mathrm{i}: \mathrm{x}_{\mathrm{i}} \text { in } j \text {-th bin }\right\}
$$

$$
\operatorname{Lap}(1 / \epsilon)
$$

Example: Histograms

- Say $\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ in domain D
$>$ Partition D into d disjoint bins
$>\mathrm{f}(\mathrm{x})=\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{d}}\right)$ where $\mathrm{n}_{\mathrm{j}}=\#\left\{\mathrm{i}: \mathrm{x}_{\mathrm{i}}\right.$ in j-th bin $\}$
$\Rightarrow \mathrm{GS}_{\mathrm{f}}=$ I
$>$ Sufficient to add noise $\operatorname{Lap}(1 / \epsilon)$ to each count

Example: Histograms

- Say $\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ in domain D
$>$ Partition D into d disjoint bins
$>\mathrm{f}(\mathrm{x})=\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{d}}\right)$ where $\mathrm{n}_{\mathrm{j}}=\#\left\{\mathrm{i}: \mathrm{x}_{\mathrm{i}}\right.$ in j-th bin $\}$
$\Rightarrow \mathrm{GS}_{\mathrm{f}}=$ I
$>$ Sufficient to add noise $\operatorname{Lap}(1 / \epsilon)$ to each count
- Examples
> Histogram on the line
$>$ Populations of 50 states
> Marginal tables
- bins = possible combinations of attributes

Marginal Tables

- Work horse of releases from US statistical agencies
$>$ Frequencies of combinations of set of categorical attributes
ABO and Rh Blood Type
- Treat as a "histogram"

Frequencies in the United States
$>$ Eight bins ($\mathrm{O}+, \mathrm{O}-, \ldots, \mathrm{AB}+, \mathrm{AB}-)$
$>$ Add constant noise to counts to achieve differential privacy
$>$ Change to proportions is $O\left(\frac{1}{n}\right)$

- Problems for practice:

ABO Type	Rh Type	How Many Have It	
O	positive	38%	45%
O	negative	7%	
A	positive	34%	40%
A	negative	6%	
B	positive	9%	11%
B	negative	2%	
AB	positive	3%	4%
AB	negative	1%	

(Source: American Association of Blood Banks)
$>$ Some entries may be negative. Multiple tables inconsistent.
$>$ [BCDKMT07] Multiple noisy tables can be "rounded" to a consistent set of tables corresponding to real data.

Variants in other metrics

- Consider $f: \mathcal{D}^{n} \rightarrow \mathbb{R}^{d}$
- Global Sensitivity: $G S_{f}=\max _{\text {neighbors } x, x^{\prime}}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{\neq 2}$

Theorem: If $A(x)=f(x)+\operatorname{Lap}\left(\frac{\text { Sc }}{\epsilon}\right)$, then A is $\not \subset /$ differentially private.

$$
N\left(0,\left(\frac{G S_{f} \cdot 3 \cdot \sqrt{\ln (1 / \delta)}}{\epsilon}\right)^{2}\right) \quad(\epsilon, \delta)
$$

- Example: Ask for counts of d predicates
$>f(x)=$ vector of counts.
$>G S_{f}=\sqrt{d}$
$>$ Add noise $\frac{\sqrt{d \ln (1 / \delta)}}{\epsilon}$ per entry instead of $\frac{d}{\epsilon}$

Basic Technique 2: Exponential Sampling

Exponential Sampling [McSherry-Talwar 2007]

- Sometimes noise addition makes no sense
$>$ mode of a distribution
$>$ minimum cut in a graph
$>$ classification rule
- [MT07] Motivation: auction design
> Differential privacy implies approximate truthfulness
$>$ Generated line of work on privacy and game theory
- Subsequently applied very broadly

Example:Voting

- Data: $x_{i}=\{$ websites visited by student i today $\}$
- Range: $\mathrm{Y}=$ \{website names\}
- For each name y, let $q(y ; x)=\#\left\{i: x_{i}\right.$ contains $\left.y\right\}$
- Goal: output the most frequently visited site

Mechanism: Given x ,

- Output website y_{0} with probability $r_{\mathrm{x}}(y) \propto \exp (\epsilon q(y ; \mathrm{x}))$
- Utility: Popular sites exponentially more likely than rare ones
- Privacy: One person changes websites' scores by ≤ 1

Example:Voting

Mechanism: Given x ,

- Output website y_{0} with probability $r_{\mathrm{x}}(y) \propto \exp (\epsilon q(y ; \mathrm{x}))$
- Claim: Mechanism is 2ε-differentially private
- Proof: $\frac{r_{\times}(y)}{r_{x^{\prime}}(y)}=\frac{e^{\epsilon q(y ; \times x)}}{e^{\epsilon q\left(y ; x^{\prime}\right)}} \cdot \frac{\sum_{z \in Y} e^{\epsilon q\left(z ; x^{\prime}\right)}}{\sum_{z \in Y} e^{\epsilon q(z ; \mathrm{x})}} \leq e^{2 \epsilon}$
- Claim: If most popular website has score T, then

$$
\mathbb{E}\left[q\left(y_{0} ; x\right)\right] \geq T-(\log |Y|) / \epsilon
$$

- Proof: Output y is bad if $q(y ; x)<T-k$
$>\operatorname{Pr}($ bad outputs $) \leq \frac{\operatorname{Pr}(\text { bad outputs })}{\operatorname{Pr}(\text { best output })} \leq \frac{|Y| e^{\epsilon(T-k)}}{e^{\epsilon T}} \leq e^{\log |Y|-\epsilon k}$
$>$ Get expectation bound via formula $E(Z)=\sum_{k>0} \operatorname{Pr}(Z \geq k)$

Exponential Sampling

Ingredients:

- Set of outputs Y with prior distribution $p(y)$
- Score function $q(y ; x)$ such that for all outputs y, neighbors $x, x^{\prime}:\left|q(y ; x)-q\left(y ; x^{\prime}\right)\right| \leq 1$
Mechanism: Given x,
- Output y_{0} from Y with probability $r_{\mathrm{x}}(y) \propto p(y) e^{-\epsilon q(y ; \mathrm{x})}$
- Example [KLNRS'08]:
$>Y=$ set of possible classifiers (say, discretized half-planes)
$>q(y ; x)=-(e r r o r$ rate of classifier y on data $x)$
$>$ Output a classifier with expected error rate ($\mathrm{OPT}+\log |\mathrm{Y}| / \varepsilon n$)
- Corollary: Every PAC learnable class is privately PAC learnable.

Exponential Sampling

Ingredients:

- Set of outputs Y with prior distribution $p(y)$
- Score function $q(y ; x)$ such that for all outputs y, neighbors $x, x^{\prime}:\left|q(y ; x)-q\left(y ; x^{\prime}\right)\right| \leq 1$
Mechanism: Given x,
- Output y_{0} from Y with probability $r_{\mathrm{x}}(y) \propto p(y) e^{-\epsilon q(y ; \mathrm{x})}$
- Example [KLNRS'08]:
> $Y=$ set of possible classifiers (say, discretized half-planes)

$>$ Output a classifier with expected error rate (OPT $+\log |\mathrm{Y}| / \varepsilon \mathrm{n}$)
- Corollary: Every PAC learnable class is privately PAC learnable.

Using Exponential Sampling

- Mechanism above very general
$>$ Every differentially private mechanism is an instance!
$>$ Still a useful design perspective
- Perspective used explicitly for
> Learning discrete classifiers [KLNRS'08]
$>$ Synthetic data generation [BLR'08,HLM'I0]
> Convex Optimization [CM'08,CMS'I0]
$>$ Frequent Pattern Mining [BLST'IO]
$>$ Genome-wide association studies [FUS'II]
> High-dimensional sparse regression [KST' 12]

Releasing Many Functions

Linear Queries

Data $x=$ multi-set in domain D

- Represent as vector $\vec{x} \in \mathbb{R}^{|D|}: \vec{x}(i)=\frac{\# \text { occurrences of } i \text { in } x}{n}$

Linear Queries are functions $f: D \rightarrow[0,1]$,

- Answer of f on x is $\sum_{i \in x} f(i)=\langle\vec{f}, \vec{x}\rangle$
- Special cases: Subset queries (with right representation), most low-sensitivity queries people use
Goal: given queries $f_{1}, . ., f_{m}$, release $\hat{f}_{1}, \ldots, \hat{f}_{m}$ to minimize

$$
\text { error }=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|
$$

How low can error be in terms of $m, n,|D|$?

Linear Queries

Goal: given queries $f_{1}, . ., f_{m}$, minimize error $=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|$ Laplace mechanism + composition results

- error $=O\left(\frac{m \log m}{\varepsilon n}\right.$ or $O\left(\frac{\sqrt{m \log m \log (1 / \delta)}}{\varepsilon n}\right)$
- Time $O(m n)$
- Only useful if $m \ll n^{2}$.

Linear Queries

Goal: given queries $f_{1}, . ., f_{m}$, minimize error $=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|$ Laplace mechanism + composition results

- error $=O\left(\frac{m \log m}{\varepsilon n}\right.$ or $O\left(\frac{\sqrt{m \log m \log (1 / \delta)}}{\varepsilon n}\right)$
- Time $O(m n)$
- Only useful if $m \ll n^{2}$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \geq n$, reconstruction attacks rule out error $o(1 / \sqrt{n})$.
- Randomly sampling t people from x gives error $O\left(\frac{\log m}{\sqrt{t}}\right) \ldots$

Linear Queries

Goal: given queries $f_{1}, . ., f_{m}$, minimize error $=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|$ Laplace mechanism + composition results

- error $=O\left(\frac{m \log m}{\varepsilon n}\right.$ or $O\left(\frac{\sqrt{m \log m \log (1 / \delta)}}{\varepsilon n}\right)$
- Time $O(m n)$
- Only useful if $m \ll n^{2}$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \geq n$, reconstruction attacks rule out error $o(1 / \sqrt{n})$.
- Randomly sampling t people from x gives error $O\left(\frac{\log m}{\sqrt{t}}\right) \ldots$
... but shafts t people.

Linear Queries

Goal: given queries $f_{1}, ., f_{m}$, minimize error $=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|$ Laplace mechanism + composition results

- error $=O\left(\frac{m \log m}{\varepsilon n}\right.$ or $O\left(\frac{\sqrt{m \log m \log (1 / \delta)}}{\varepsilon n}\right)$
- Time $O(m n)$
- Only useful if $m \ll n^{2}$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \geq n$, reconstruction attacks rule out error $o(1 / \sqrt{n})$.
- Randomly sampling t people from x gives error $O\left(\frac{\log m}{\sqrt{t}}\right) \ldots$
... but shafts t people.
- [BLR'08,DNNRV'09,RR'10,HR'10,HLM'11,GRU'11,JT'12]:

Error $O\left(\frac{\log m \cdot \log |D|}{(\varepsilon n)^{1 / 3}}\right)$ or $O\left(\frac{\log m \cdot \log |D| \cdot \log (1 / \delta)}{(\varepsilon n)^{1 / 4}}\right)$.

- Useful even when $m \gg n:$)
- Time $\tilde{O}(|D| m)$
- Sometimes exponential :(

Linear Queries

Goal: given queries $f_{1}, ., f_{m}$, minimize error $=\max _{j}\left|\hat{f}_{j}-\left\langle f_{j}, x\right\rangle\right|$ Laplace mechanism + composition results

- error $=O\left(\frac{m \log m}{\varepsilon n}\right.$ or $O\left(\frac{\sqrt{m \log m \log (1 / \delta)}}{\varepsilon n}\right)$
- Time $O(m n)$
- Only useful if $m \ll n^{2}$.

Is this the best possible error?

- Yes, when $n \gg m$ [KRSU10,HT10]
- For $m \geq n$, reconstruction attacks rule out error $o(1 / \sqrt{n})$.
- Randomly sampling t people from x gives error $O\left(\frac{\log m}{\sqrt{t}}\right) \ldots$
... but shafts t people.
- [BLR'08,DNNRV'09,RR'10,HR'10,HLM'11,GRU'11,JT'12]:

Error $O\left(\frac{\log m \cdot \log |D|}{(\varepsilon n)^{1 / 3}}\right)$ or $O\left(\frac{\log m \cdot \log |D| \cdot \log (1 / \delta)}{(\varepsilon n)^{1 / 4}}\right)$.

- Useful even when $m \gg n:$)
- Time $\tilde{O}(|D| m)$
- Sometimes exponential :(

Idea: Learn the Data [DNRRV'og,HR'10,...]

Release mechanism tries to "learn" x through diffe.p. interface

- Output \hat{x} to minimize $\operatorname{error}(\hat{x})=\max _{j}\left|\left\langle f_{j}, \hat{x}\right\rangle-\left\langle f_{j}, x\right\rangle\right|$. (Generally do not have $\hat{x} \approx x$.)

Traditional learning	Privacy
Parameters of linear classifier	Data x
Training data	User's Queries f_{j}
Gradient computations	Actual data access

Idea: Learn the Data [DNRRV'og,HR'10,...]

Release mechanism tries to "learn" x through diffe.p. interface

- Output \hat{x} to minimize $\operatorname{error}(\hat{x})=\max _{j}\left|\left\langle f_{j}, \hat{x}\right\rangle-\left\langle f_{j}, x\right\rangle\right|$. (Generally do not have $\hat{x} \approx x$.)

Traditional learning	Privacy
Parameters of linear classifier	Data x
Training data	User's Queries f_{j}
Gradient computations	Actual data access

- Learner computes a sequence of estimates $x_{0}, x_{1}, \ldots x_{t}, \ldots$
- Gradient: ∇ error $\left(\hat{x}_{t}\right)= \pm f_{j}$ where f_{j} maximizes error $\left|\left\langle f_{j}, \hat{x}\right\rangle-\left\langle f_{j}, x\right\rangle\right|$.

HLM Algorithm (à la "multiplicative weights")

- Start with $\hat{x}_{0}=$ uniform on D.
- Update Step for $t=0,1 \ldots, T$:
(1) EM to get $j \approx \arg \max _{j}\left|\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle\right|$
(2) Use Laplace mechanism to ask $\hat{d}_{t} \approx d_{t}=\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle$
(3) Update $\hat{x}_{t+1}(i)=\hat{x}_{t}(i) \cdot e^{d_{t} f_{j}(i) / 2}$
(1) Normalize \hat{x}_{t+1}

HLM Algorithm (à la "multiplicative weights")

- Start with $\hat{x}_{0}=$ uniform on D.
- Update Step for $t=0,1 \ldots, T$:
(1) EM to get $j \approx \arg \max _{j}\left|\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle\right|$
(2) Use Laplace mechanism to ask $\hat{d}_{t} \approx d_{t}=\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle$
(3) Update $\hat{x}_{t+1}(i)=\hat{x}_{t}(i) \cdot e^{d_{t} f_{j}(i) / 2}$
(1) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_{t} to x via $\Psi_{t}=K L\left(x \| \hat{x}_{t}\right)$.

HLM Algorithm (à la "multiplicative weights")

- Start with $\hat{x}_{0}=$ uniform on D.
- Update Step for $t=0,1 \ldots, T$:
(1) EM to get $j \approx \arg \max _{j}\left|\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle\right|$
(2) Use Laplace mechanism to ask $\hat{d}_{t} \approx d_{t}=\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle$
(3) Update $\hat{x}_{t+1}(i)=\hat{x}_{t}(i) \cdot e^{d_{t} f_{j}(i) / 2}$
(1) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_{t} to x via $\Psi_{t}=K L\left(x \| \hat{x}_{t}\right)$.
- Main utility claim: $\Psi_{t}-\Psi_{t+1} \approx \operatorname{error}\left(\hat{x}_{t}\right)^{2} / 2$.

HLM Algorithm (à la "multiplicative weights")

- Start with $\hat{x}_{0}=$ uniform on D.
- Update Step for $t=0,1 \ldots, T$:
(1) EM to get $j \approx \arg \max _{j}\left|\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle\right|$
(2) Use Laplace mechanism to ask $\hat{d}_{t} \approx d_{t}=\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle$
(3) Update $\hat{x}_{t+1}(i)=\hat{x}_{t}(i) \cdot e^{d_{t} f_{j}(i) / 2}$
(1) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_{t} to x via $\Psi_{t}=K L\left(x \| \hat{x}_{t}\right)$.
- Main utility claim: $\Psi_{t}-\Psi_{t+1} \approx \operatorname{error}\left(\hat{x}_{t}\right)^{2} / 2$.
- As long as error $\geq \alpha$, can reduce $K L$ by $\approx \alpha^{2} / 2$

HLM Algorithm (à la "multiplicative weights")

- Start with $\hat{x}_{0}=$ uniform on D.
- Update Step for $t=0,1 \ldots, T$:
(1) EM to get $j \approx \arg \max _{j}\left|\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle\right|$
(2) Use Laplace mechanism to ask $\hat{d}_{t} \approx d_{t}=\left\langle f_{j}, x\right\rangle-\left\langle f_{j}, \hat{x}_{t}\right\rangle$
(3) Update $\hat{x}_{t+1}(i)=\hat{x}_{t}(i) \cdot e^{d_{t} f_{j}(i) / 2}$
(3) Normalize \hat{x}_{t+1}

Analysis Idea (following [HR'10]):

- Measure convergence of \hat{x}_{t} to x via $\Psi_{t}=K L\left(x \| \hat{x}_{t}\right)$.
- Main utility claim: $\Psi_{t}-\Psi_{t+1} \approx \operatorname{error}\left(\hat{x}_{t}\right)^{2} / 2$.
- As long as error $\geq \alpha$, can reduce $K L$ by $\approx \alpha^{2} / 2$
- Since $K L\left(x \| \hat{x}_{0}\right) \leq \log |D|$, error drops below α after $\frac{\log |D|}{\alpha^{2}}$ updates.

Local and Smooth Sensitivity

Concrete Problem: Parametric Estimators

A statistic or estimator is a function $f:($ data sets $) \rightarrow \mathbb{R}^{p}$, e.g.
ABO and Rh Blood Type
Frequencies in the United States

ABO Type	Rh Type	How Many Have It	
0	positive	38%	45%
O	negative	7%	
A	positive	34%	40%
A	negative	6%	
B	positive	9%	11%
B	negative	2%	
AB	positive	3%	4%
AB	negative	1%	

(Source: American Association of Blood Banks)
Contingency table

Fitted parameters of mixture of gaussians

Concrete Problem: Parametric Estimators

A statistic or estimator is a function $f:($ data sets $) \rightarrow \mathbb{R}^{p}$, e.g.
ABO and Rh Blood Type
Frequencies in the United States

ABO Type	Rh Type	How Many Have It	
0	positive	38%	45%
O	negative	7%	
A	positive	34%	40%
A	negative	6%	
B	positive	9%	11%
B	negative	2%	
AB	positive	3%	4%
AB	negative	1%	

(Source: American Association of Blood Banks)
Contingency table

Fitted parameters of mixture of gaussians

Goal: differentially private approximation to f.

Use the Laplace Mechanism?

- Recall: $A(X)=f(X)+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\varepsilon}\right)$
- Global sensitivity GS_{f} measures how much f varies when one data point changes
- Works well for proportions
- Private statistic has nearly same distribution as true statistic
- For which statistics is this possible?

Asymptotically Normal Statistics

For many statistics f and distributions P, we know: If $X=X_{1}, \ldots, X_{n}$ is drawn i.i.d. from P, then

$$
f(X) \approx \text { (normal random variable) }
$$

Asymptotically Normal Statistics

For many statistics f and distributions P, we know: If $X=X_{1}, \ldots, X_{n}$ is drawn i.i.d. from P, then

$$
f(X) \approx \text { (normal random variable) }
$$

- Sums \& averages (Central Limit Theorem)

Asymptotically Normal Statistics

For many statistics f and distributions P, we know: If $X=X_{1}, \ldots, X_{n}$ is drawn i.i.d. from P, then

$$
f(X) \approx \text { (normal random variable) }
$$

- Sums \& averages (Central Limit Theorem)
- Maximum likelihood estimators
- Regression parameters: linear and logistic regression, SVM

Asymptotically Normal Statistics

For many statistics f and distributions P, we know: If $X=X_{1}, \ldots, X_{n}$ is drawn i.i.d. from P, then

$$
f(X) \approx \text { (normal random variable) }
$$

- Sums \& averages (Central Limit Theorem)
- Maximum likelihood estimators
- Regression parameters: linear and logistic regression, SVM

- "M-estimators"

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.

Consequence: estimators with optimal rate $1 / \sqrt{n}$ for

- sample mean
- sample median
- maximum likelihood estimator for nice models
- regression coefficients

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
- No need to "understand" structure of f.

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
- No need to "understand" structure of f.

Free lunch!

A General Result

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.

- The transformation from f to A is (almost) black box.
- No need to "understand" structure of f.

Free lunch!

- Caveat: Performance degrades with dimension p and privacy parameter ε.
- Result holds for $p<n^{c}$ for constant $c \approx 1 / 6$.
- Reconstruction attacks imply some degradation is necessary.

Previous Work

Theorem [S., '11]

For every $f:($ data sets $) \rightarrow \mathbb{R}^{p}$ and $\varepsilon>0$, there exists a ε-diffe.p. algorithm A such that

$$
A(X) \approx f(X) \text { as } n \text { grows }
$$

whenever* $X \sim P^{n}$ and f is asymptotically normal at P.
Relative to previous work, we contribute:

- Generality, simplicity (previous aproaches were problem-specific)
- Improved convergence guarantees for order statistics and linear regression ($O\left(n^{\frac{1}{2}}\right)$ versus $O\left(n^{\frac{1}{2}+\gamma}\right)$ [DL'09]).

Technique: Sample and aggregate

Why Not Laplace Mechanism?

Why not release

$$
A(X)=f(X)+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\varepsilon}\right) ?
$$

Why Not Laplace Mechanism?

Why not release

$$
A(X)=f(X)+\operatorname{Lap}\left(\frac{\mathrm{GS}_{f}}{\varepsilon}\right) ?
$$

- Need to understand f
- trusted code?
- new functions every day...
- Global sensitivity can be too high

High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

- If clustering is "good", means should be insensitive.

High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter of the space.

- If clustering is "good", means should be insensitive.
- [Nissim, Raskhodnikova, S'07]: add less noise to "nice" data

Getting Around High Global Sensitivity [NRs'or]

Local sensitivity of f at x : how much does f vary among neighbors of x ?

$$
\mathrm{LS}_{f}(x)=\max _{x^{\prime} \text { neighbor of } x}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{2}
$$

[NRS'07] Goal: add noise proportional to local sensitivity.

Getting Around High Global Sensitivity [NRs'or]

Local sensitivity of f at x : how much does f vary among neighbors of x ?

$$
\operatorname{LS}_{f}(x)=\max _{x^{\prime} \text { neighbor of } x}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{2}
$$

[NRS'07] Goal: add noise proportional to local sensitivity.

- Problem: Using local sensitivity is not private (noise leaks)

Getting Around High Global Sensitivity [NRs'or]

Local sensitivity of f at x : how much does f vary among neighbors of x ?

$$
\mathrm{LS}_{f}(x)=\max _{x^{\prime} \text { neighbor of } x}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{2}
$$

[NRS'07] Goal: add noise proportional to local sensitivity.

- Problem: Using local sensitivity is not private (noise leaks)
- Solution 1: Use smoothed local sensitivity
- Order statistics (median, quantiles, ...)
- Stats for social networks (MST cost, subgraph frequencies) [Karwa, Rashodnikova, Yaroslavtsev, S, '11]
- Problem: often computationally difficult

Getting Around High Global Sensitivity [NRs'or]

Local sensitivity of f at x : how much does f vary among neighbors of x ?

$$
\mathrm{LS}_{f}(x)=\max _{x^{\prime} \text { neighbor of } x}\left\|f(x)-f\left(x^{\prime}\right)\right\|_{2}
$$

[NRS'07] Goal: add noise proportional to local sensitivity.

- Problem: Using local sensitivity is not private (noise leaks)
- Solution 1: Use smoothed local sensitivity
- Order statistics (median, quantiles, ...)
- Stats for social networks (MST cost, subgraph frequencies) [Karwa, Rashodnikova, Yaroslavtsev, S, '11]
- Problem: often computationally difficult
- Solution 2: "Sample and aggregate"

Sample-and-Aggregate Framework [NRS'07]

Intuition: Replace f with a less sensitive function \tilde{f}.

- Break x into k samples of n / k points
- Compute f on each block
- Run differentially private algorithm B :

$$
\tilde{f}(x)=B\left(f\left(\text { block }_{1}\right), f\left(\text { block }_{2}\right), \ldots, f\left(\text { block }_{k}\right)\right)
$$

Sample-and-Aggregate Framework [NRS'07]

Intuition: Replace f with a less sensitive function \tilde{f}.

- Break x into k samples of n / k points
- Compute f on each block
- Run differentially private algorithm B :

$$
\tilde{f}(x)=B\left(f\left(\text { block }_{1}\right), f\left(\text { block }_{2}\right), \ldots, f\left(\text { block }_{k}\right)\right)
$$

Application 1: Normal Statistics

- Suppose f is asymptotically normal at x.
- If block length $\frac{n}{k}$ large enough, then

$$
f\left(\text { block }_{1}\right), f\left(\text { block }_{2}\right), \ldots, f\left(\text { block }_{k}\right) \approx \text { normal. }
$$

- Design aggregation B for estimating mean of approximately normal random variables.
- One aggregation works for all asymptotically normal random variables.
- Getting optimal noise requires extra insight into bias/variance tradeoff

Toy variant: Averaging

Suppose Range $(f) \subseteq[0,1]$

- Randomly break x into k samples of n / k points
- $\tilde{f}(x)=\operatorname{avg}\left(f\left(\right.\right.$ block $\left._{1}\right), f\left(\right.$ block $\left._{2}\right), \ldots, f\left(\right.$ block $\left.\left._{k}\right)\right)$
- Output $\tilde{f}(x)+\operatorname{Lap}\left(\frac{1}{k \varepsilon}\right)$.

Toy variant: Averaging

Why is this useful?

- If most samples give roughly the same answer, get

$$
\text { (that answer) } \pm \underbrace{O\left(\frac{1}{\varepsilon k}\right)}_{\text {added noise }}
$$

- Not garbage!
- But do we only get the "quality" of n / k samples?
- How to choose k ?

Toy variant: Averaging

Why is this useful?

- If most samples give roughly the same answer, get

$$
\text { (that answer) } \pm \underbrace{O\left(\frac{1}{\varepsilon k}\right)}_{\text {added noise }}
$$

- Not garbage!
- But do we only get the "quality" of n / k samples?
- How to choose k ?
- [NRS'07] Generic aggregator, works for many types of data

Toy variant: Averaging

Why is this useful?

- If most samples give roughly the same answer, get

$$
\text { (that answer) } \pm \underbrace{O\left(\frac{1}{\varepsilon k}\right)}_{\text {added noise }}
$$

- Not garbage!
- But do we only get the "quality" of n / k samples?
- How to choose k ?
- [NRS'07] Generic aggregator, works for many types of data
- [S. '11] Tighter results for normal statistics
- Take advantage of low bias of typical estimators
- Roughly: get the "quality" of all n points

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Given: $\mathbf{X}=\underbrace{\left(\begin{array}{ccc}----- & x_{1} & ----- \\ \vdots & \\ ----- & x_{i} & ----- \\ \vdots & \\ ----- & x_{n} & -----\end{array}\right)}_{p \text { "features" }}$ and $\vec{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n}\end{array}\right)$

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Given: $\mathbf{X}=\underbrace{\left(\begin{array}{ccc}----- & x_{1} & ----- \\ \vdots & \vdots & \\ ---- & x_{i} & ----- \\ \vdots & \\ ----- & x_{n} & -----\end{array}\right)}_{p \text { "features" }}$ and $\vec{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n}\end{array}\right)$
Linear Regression: find $\vec{\theta}$ such that $\mathbf{X} \vec{\theta} \approx \vec{y}$

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Given: $\mathbf{X}=\underbrace{\left(\begin{array}{rrr}----- & x_{1} & ----- \\ & \vdots & \\ ----- & x_{i} & ----- \\ \vdots & \\ ----- & x_{n} & -----\end{array}\right)}_{p \text { "features" }}$ and $\vec{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n}\end{array}\right)$
Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X} \vec{\theta} \approx \vec{y}$
and $\vec{\theta}$ has at most s nonzero entries.

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Given: $\mathbf{X}=\underbrace{\left(\begin{array}{rrr}----- & x_{1} & ----- \\ & \vdots & \\ ----- & x_{i} & ----- \\ \vdots & \\ ----- & x_{n} & -----\end{array}\right)}_{p \text { "features" }}$ and $\vec{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n}\end{array}\right)$
Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X} \vec{\theta} \approx \vec{y}$
and $\vec{\theta}$ has at most s nonzero entries.
Typical setting: $p \gg n$.

- Solvable nonprivately roughly when $n \gg s \log p$

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

Given: $\mathbf{X}=\underbrace{\left(\begin{array}{rrr}----- & x_{1} & ----- \\ \vdots & \vdots & \\ ---- & x_{i} & ----- \\ \vdots & \vdots & \\ ----x_{n} & -----\end{array}\right)}_{p \text { "features" }}$ and $\vec{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n}\end{array}\right)$
Sparse Linear Regression: find $\vec{\theta}$ such that $\mathbf{X} \vec{\theta} \approx \vec{y}$
and $\vec{\theta}$ has at most s nonzero entries.
Typical setting: $p \gg n$.

- Solvable nonprivately roughly when $n \gg s \log p$
- Private algorithm?
- Noise addition fails because of high dimension (noise p / n per coefficient)

Application 2: Sparse Regression [Kifer,S, Thakurta 12]

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

Application 2: Sparse Regression [Kifer,S, Thakurta '12]

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

In each block:

- Run nonprivate algorithm to get candidate list of s features

Aggregation: Privately choose features selected most often

Application 2: Sparse Regression [Kifer,S, Thakurta 12]

[KST'12]

- Use sample and aggegrate to find relevant features.
- Apply previous algorithms on those features

In each block:

- Run nonprivate algorithm to get candidate list of s features

Aggregation: Privately choose features selected most often

- Use "exponential sampling" [McSherry, Talwar '07, Bhaskar, Laxman, S, Thakurta '10].
Sample s features randomly, where $\operatorname{Pr}(i) \propto \exp (\varepsilon \cdot(\#$ blocks where i was selected $))$.
- Produces good estimates when $n \gg s^{2} \log p$.
- Open question: match nonprivate bound

Sample-and-aggregate

Two applications:

- Asymptotically normal statistics
- Sparse regression

Sample-and-aggregate

Two applications:

- Asymptotically normal statistics
- Sparse regression

Produces algorithms with interesting properties, regardless of privacy

- Stability: robust to small changes in input
- Guarantees good generalization error
- Deterministic stable sparse learning impossible [Xu et al.,'11]
- Streaming: algorithms require little space $(\approx \sqrt{n})$
- Useful for very large data sets

Implemented by [Moharan et al., SIGMOD 2012]

Postscript: Systems and Implementation

Differential Privacy in "Practice"

- Currently, differential private algorithms hard to use
$>$ noise
$>$ can't use out-of-the-box software
$>$ requires fresh thinking for each new problem, etc
- Several systems to make use easier
> [McSherry'09] PINQ: variation on LINQ with differential privacy enforced by query mechanism
$>$ [Haeberlen et al. ' II] Programming language with privacy enforced by type system
$>$ [Roy et al.' 10 , Moharan et al.' 12 2] Systems for restricted classes of queries, focus usability with legacy code
- Hard to get right!
$>$ [Haeberlen et al.' I I] Timing attacks
$>$ [Mironov 'I2] Leakage via numerical errors

A play in three acts

A play in three acts

- Act I: Attacks
$>$ (Why is privacy hard?)
> Reconstruction attacks

A play in three acts

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
$>$ One approach:"differential" privacy
$>$ Variations on the theme

A play in three acts

- Act I: Attacks
$>$ (Why is privacy hard?)
$>$ Reconstruction attacks
- Act II: Definitions
> One approach:"differential" privacy
> Variations on the theme
- Act III: Algorithms
$>$ Basic techniques: noise addition, exponential sampling
> Exploiting "local" sensitivity
> Answering many queries

Things I did not cover

- Multiparty models
$>$ What if data are distributed?
- Computational considerations
> "Require" distributed models to exploit
- Graph data
$>$ Hard to pin down which data are "mine"
- Information-theoretic definitions
- Lower bounds specific to differential privacy
- And More!

Conclusions

Conclusions

- Define privacy in terms of my effect on output
$>$ Meaningful despite arbitrary external information
$>$ I should participate if I get benefit

Conclusions

- Define privacy in terms of my effect on output
$>$ Meaningful despite arbitrary external information
$>$ I should participate if I get benefit
- What can we compute with rigorous guarantees?
- Basic Tools
> More advanced examples

Conclusions

- Define privacy in terms of my effect on output
$>$ Meaningful despite arbitrary external information
$>$ I should participate if I get benefit
- What can we compute with rigorous guarantees?
$>$ Basic Tools
> More advanced examples
- Future work
$>$ Other definitions: How can we exploit uncertainty?
> Applications: genetics, finance, ...
>How can we reason about privacy, more broadly?

Further resources

- Aaron Roth's lecture notes
$>$ http://www.cis.upenn.edu/~aaroth/courses/privacyFI I .html
- 2010 course by Sofya Raskhodnikova and me
> http://www.cse.psu.edu/~asmith/privacy598
- DIMACS Workshop on Data Privacy
$>$ October 24-26, 2012 (immediately after FOCS)
$>$ http://dimacs.rutgers.edu/Workshops/DifferentialPrivacy/

