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Abstract

This work raises the question of approximating the compressibility of a string with respect to
a fixed compression scheme, in sublinear time. This question is studied in detail for two popular
lossless compression schemes: run-length encoding (RLE) and Lempel-Ziv (LZ). Sublinear algorithms
are presented for approximating compressibility with respect to both schemes. Several lower bounds are
also proven that show that our algorithms for both schemes cannot be improved significantly.

This investigation of LZ yields results whose interest goes beyond the initial questions it set out
to study. In particular, it leads to combinatorial structural lemmas that relate the compressibility of a
string with respect to Lempel-Ziv to the number of distinct short substrings contained in it. In addition,
it is shown that approximating the compressibility with respect to LZ is related to approximating the
support size of a distribution.

I. INTRODUCTION

Given an extremely long string, it is natural to wonder how compressible it is. This question is
fundamental to several disciplines, including computational complexity theory, machine learning,
storage systems, and communications. As massive data sets become commonplace, the ability
to estimate compressibility with extremely efficient, even sublinear time, algorithms, is gaining
importance. The most general measure of compressibility, Kolmogorov complexity, is not com-
putable (see [1] for a textbook treatment), nor even approximable. Even under restrictions which
make it computable (such as a bound on the running time of decompression), it is probably hard
to approximate in polynomial time, since an algorithm with non-trivial approximation guarantees
would allow one to distinguish random from pseudorandom strings and, hence, invert one-way
functions. Nevertheless, the question of how compressible a large string is with respect to a
specific compression scheme may be tractable, depending on the particular scheme.

We raise the question of approximating the compressibility of a string with respect to a fixed
compression scheme, in sublinear time, and give algorithms and nearly matching lower bounds
for several versions of the problem. Although this question is new, for one compression scheme,
namely Huffman coding, answers follow from previous work. Compressibility under Huffman
encoding is determined by the entropy of the symbol frequencies. Batu et al. [2] and Brautbar
and Samorodnitsky [3] study the problem of approximating the entropy of a distribution from a
small number of samples, and their results immediately imply algorithms and lower bounds for
approximating compressibility under Huffman encoding.
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In this work we study the compressibility approximation question in detail for two popular
lossless compression schemes: run-length encoding (RLE) and Lempel-Ziv (LZ) [4]. In the RLE
scheme, each run, or a sequence of consecutive occurrences of the same character, is stored as a
pair: the character, and the length of the run. Run-length encoding is used to compress black and
white images, faxes, and other simple graphic images, such as icons and line drawings, which
usually contain many long runs. In the LZ scheme1, a left-to-right pass of the input string is
performed and at each step, the longest sequence of characters that has started in the previous
portion of the string is replaced with the pointer to the previous location and the length of the
sequence (for a formal definition, see Section IV). The LZ scheme and its variants have been
studied extensively in machine learning and information theory, in part because they compress
strings generated by an ergodic source to the shortest possible representation (given by the
entropy) in the asymptotic limit (cf. [5]). Many popular archivers, such as gzip, use variations
on the LZ scheme. In this work we present sublinear algorithms and corresponding lower bounds
for approximating compressibility with respect to both schemes, RLE and LZ.

a) Motivation: Computing the compressibility of a large string with respect to specific
compression schemes may be done in order to decide whether or not to compress the file, to
choose which compression method is the most suitable, or check whether a small modification
to the file (e.g., a rotation of an image) will make it significantly more compressible2. Moreover,
compression schemes are used as tools for measuring properties of strings such as similarity
and entropy. As such, they are applied widely in data-mining, natural language processing and
genomics (see, for example, Lowenstern et al. [6], Kukushkina et al. [7], Benedetto et al. [8],
Li et al. [9] and Calibrasi and Vitányi [10], [11]). In these applications, one typically needs
only the length of the compressed version of a file, not the output itself. For example, in the
clustering algorithm of [10], the distance between two objects x and y is given by a normalized
version of the length of their compressed concatenation x‖y. The algorithm first computes all
pairwise distances, and then analyzes the resulting distance matrix. This requires Θ(t2) runs of
a compression scheme, such as gzip, to cluster t objects. Even a weak approximation algorithm
that can quickly rule out very incompressible strings would reduce the running time of the
clustering computations dramatically.

b) Multiplicative and Additive Approximations: We consider three approximation notions:
additive, multiplicative, and the combination of additive and multiplicative. On the input of length
n, the quantities we approximate range from 1 to n. An additive approximation algorithm is
allowed an additive error of εn, where ε ∈ (0, 1) is a parameter. The output of a multiplicative
approximation algorithm is within a factor A > 1 of the correct answer. The combined notion
allows both types of error: the algorithm should output an estimate Ĉ of the compression cost
C such that C

A
− εn ≤ Ĉ ≤ A · C + εn. Our algorithms are randomized, and for all inputs the

approximation guarantees hold with probability at least 2
3
.

We are interested in sublinear approximation algorithms, which read few positions of the input
strings. For the schemes we study, purely multiplicative approximation algorithms must read
almost the entire input. Nevertheless, algorithms with additive error guarantees, or a possibility

1We study the variant known as LZ77 [4], which achieves the best compressibility. There are several other variants that do
not compress some inputs as well, but can be implemented more efficiently.

2For example, a variant of the RLE scheme, typically used to compress images, runs RLE on the concatenated rows of the
image and on the concatenated columns of the image, and stores the shorter of the two compressed files.
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of both multiplicative and additive error are often sufficient for distinguishing very compressible
inputs from inputs that are not well compressible. For both the RLE and LZ schemes, we give
algorithms with combined multiplicative and additive error that make few queries to the input.
When it comes to additive approximations, however, the two schemes differ sharply: sublinear
additive approximations are possible for the RLE compressibility, but not for LZ compressibility.
We summarize our results in the next two sections.

A. Results for Run-Length Encoding
For RLE, we present sublinear algorithms for all three approximation notions defined above,

providing a trade-off between the quality of approximation and the running time. The algorithms
that allow an additive approximation run in time independent of the input size. Specifically,
an εn-additive estimate can be obtained in time3 Õ(1/ε3), and a combined estimate, with a
multiplicative error of 3 and an additive error of εn, can be obtained in time Õ(1/ε). As for a strict
multiplicative approximation, we give a simple 4-multiplicative approximation algorithmthat runs
in expected time Õ( n

Crle(w)
) where Crle(w) denotes the compression cost of the string w. For

any γ > 0, the multiplicative error can be improved to 1 + γ at the cost of multiplying the
running time by poly(1/γ). Observe that the algorithm is more efficient when the string is less
compressible, and less efficient when the string is more compressible. One of our lower bounds
justifies such a behavior and, in particular, shows that a constant factor approximation requires
linear time for strings that are very compressible. We also give a lower bound of Ω(1/ε2) for
εn-additive approximation.

B. Results for Lempel-Ziv
We prove that approximating compressibility with respect to LZ is closely related to the

following problem, which we call DISTINCT ELEMENTS (DE):

Definition 1 (DE Problem). Given access to a string τ over alphabet Ψ, approximate the number
of distinct elements (that is, symbols) in τ .

This is essentially equivalent to estimating the support size of a distribution [12]. Variants
of this problem have been considered under various guises in the literature: in databases it is
referred to as approximating distinct values (Charikar et al. [13]), in statistics as estimating the
number of species in a population (see the over 800 references maintained by Bunge [14]), and
in streaming as approximating the frequency moment F0 (Alon et al. [15], Bar-Yossef et al.
[16]).Most of these works, however, consider models different from ours. For our model, there
is an A-multiplicative approximation algorithm of [13], that runs in time O

(
n

A2

)
, matching the

lower bound in [13], [16]. There is also an almost linear lower bound for approximating DE
with additive error [12].

We give a reduction from LZ compressibility to DE and vice versa. These reductions allow us
to employ the known results on DE to give algorithms and lower bounds for this problem. Our
approximation algorithm for LZ compressibility combines a multiplicative and additive error.
The running time of the algorithm is Õ

(
n

A3ε

)
where A is the multiplicative error and εn is the

3The notation Õ(g(k)) for a function g of a parameter k means O(g(k) · polylog(g(k)) where polylog(g(k)) = logc(g(k))
for some constant c.
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additive error. In particular, this implies that for any α > 0, we can distinguish, in sublinear
time Õ(n1−α), strings compressible to O(n1−α) symbols from strings only compressible to Ω(n)
symbols.4

The main tool in the algorithm consists of two combinatorial structural lemmas that relate
compressibility of the string to the number of distinct short substrings contained in it. Roughly,
they say that a string is well compressible with respect to LZ if and only if it contains few
distinct substrings of length ` for all small ` (when considering all n−`+1 possible overlapping
substrings). The simpler of the two lemmas was inspired by a structural lemma for grammars by
Lehman and Shelat [17]. The combinatorial lemmas allow us to establish a reduction from LZ
compressibility to DE and employ a (simple) algorithm for approximating DE in our algorithm
for LZ.

Interestingly, we can show that there is also a reduction in the opposite direction: namely,
approximating DE reduces to approximating LZ compressibility. The lower bound of [12], com-
bined with the reduction from DE to LZ, implies that our algorithm for LZ cannot be improved
significantly. In particular, our lower bound implies that for any B = no(1), distinguishing strings
compressible by LZ to Õ(n/B) symbols from strings compressible to Ω̃(n) symbols requires
n1−o(1) queries.

C. Further Research
It would be interesting to extend our results for estimating the compressibility under LZ77

to other variants of LZ, such as dictionary-based LZ78 [18]. Compressibility under LZ78 can
be drastically different from compressibility under LZ77: e.g., for 0n they differ roughly by a
factor of

√
n. Another open question is approximating compressibility for schemes other than

RLE and LZ. In particular, it would be interesting to design approximation algorithms for lossy
compression schemes such as JPEG, MPEG and MP3. One lossy scheme to which our results
extend directly is a commonly used variant of RLE, where some distinct symbols, e.g., pixels
of similar color, are treated as the same character.

D. Organization
We start with establishing common notation and defining our notions of approximation in

Section II. Section III presents algorithms and lower bounds for RLE. The algorithmic results
are summarized in Theorem 1 and the lower bounds, in Theorem 2. Section IV deals with
the LZ scheme: it starts with the structural lemmas, explains the approximation algorithm for
compressibility with respect to LZ and finishes with the reduction from DE to LZ compressibility.
Subsection IV-C describes a simple algorithm for DE.

II. PRELIMINARIES

The input to our algorithms is a string w of length n over a finite alphabet Σ. Let C(w)
denote the length of the compressed version of w according to some fixed compression scheme.

4To see this, set A = o(nα/2) and ε = o(n−α/2).
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We consider estimates to C(w) that have both multiplicative and additive error. We call Ĉ an
(λ, ε)-estimate for C(w) if

C(w)

λ
− εn ≤ Ĉ ≤ λ · C(w) + εn ,

and say an algorithm (λ, ε)-estimates C (or is an (λ, ε)-approximation algorithm for C) if for
each input w it produces an (λ, ε)-estimate for C(w) with probability at least 2

3
.

When the error is purely additive or multiplicative, we use the following shorthand: εn-
additive estimate stands for (1, ε)-estimate and λ-multiplicative estimate, or λ-estimate, stands
for (λ, 0)-estimate. An algorithm computing an εn-additive estimate with probability at least 2

3
is an εn-additive approximation algorithm, and if it computes an λ-multiplicative estimate then
it is an λ-multiplicative approximation algorithm, or λ-approximation algorithm.

For some settings of parameters, obtaining a valid estimate is trivial. For a quantity in [1, n],
for example, n

2
is an n

2
-additive estimate,

√
n is a

√
n-estimate and εn is an (λ, ε)-estimate

whenever λ ≥ 1
2ε

.

III. RUN-LENGTH ENCODING

Every n-character string w over alphabet Σ can be partitioned into maximal runs of identical
characters of the form σ`, where σ is a symbol in Σ and ` is the length of the run, and consecutive
runs are composed of different symbols. In the Run-Length Encoding of w, each such run is
replaced by the pair (σ, `). The number of bits needed to represent such a pair is dlog(` + 1)e+
dlog |Σ|e plus the overhead which depends on how the separation between the characters and
the lengths is implemented. One way to implement it is to use prefix-free encoding for lengths.
For simplicity we ignore the overhead in the above expression, but our analysis can be adapted
to any implementation choice. The cost of the run-length encoding, denoted by Crle(w), is the
sum over all runs of dlog(` + 1)e+ dlog |Σ|e.

We assume that the alphabet Σ has constant size. This is a natural assumption when using
run-length encoding, but the analysis of our algorithms can be extended in a straightforward
manner to alphabets whose size is a function of n. The complexity of the algorithms will grow
polylogarithmically with |Σ|.

We first present an algorithm that, given a parameter ε, outputs an εn-additive estimate to
Crle(w) with high probability and makes Õ(1/ε3) queries. We then reduce the query complexity
to Õ(1/ε) at the cost of incurring a multiplicative approximation error in addition to additive:
the new algorithm (3, ε)-estimates Crle(w). We later discuss how to use approximation schemes
with multiplicative and additive error to get a purely multiplicative approximation, at a cost on
the query complexity that depends on n/Crle(w). That is, the more compressible the string w is,
the higher the query complexity of the algorithm. These results are summarized in Theorem 1,
stated next. The algorithms referred to by the theorem are presented in Subsections III-A–III-C.

Theorem 1. Let w ∈ Σn be a string to which we are given query access.
1) Algorithm I gives an εn-additive approximation to Crle(w) in time Õ(1/ε3).
2) Algorithm II (3, ε)-estimates Crle(w) in time Õ(1/ε).
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3) Algorithm III 4-estimates Crle(w) and runs in expected time Õ
(

n
Crle(w)

)
. A (1+γ)-estimate

of Crle(w) can be obtained in expected time Õ
(

n
Crle(w)

· poly(1/γ)
)

. The algorithm needs
no prior knowledge of Crle(w).

We also give two lower bounds, for multiplicative and additive approximation, respectively,
which establish that the running times in Items 1 and 3 of Theorem 1 are essentially tight.

Theorem 2.
1) For all A > 1, any A-approximation algorithm for Crle requires Ω

(
n

A2 log n

)
queries.

Furthermore, if the input is restricted to strings with compression cost Crle(w) ≥ C, then
Ω
(

n
CA2 log(n)

)
queries are necessary.

2) For all ε ∈
(
0, 1

2

)
, any εn-additive approximation algorithm for Crle requires Ω(1/ε2)

queries.

In the next subsections we prove Theorems 1 and 2.

A. An εn-Additive Estimate with Õ(1/ε3) Queries
Our first algorithm for approximating the cost of RLE is very simple: it samples a few positions

in the input string uniformly at random and bounds the lengths of the runs to which they belong
by looking at the positions to the left and to the right of each sample. If the corresponding run is
short, its length is established exactly; if it is long, we argue that it does not contribute much to
the encoding cost. For each index t ∈ [n], let `(t) be the length of the run to which wt belongs.
The cost contribution of index t is defined as

c(t) =
dlog(`(t) + 1)e+ dlog |Σ|e

`(t)
. (1)

By definition,
Crle(w)

n
= E

t∈[n]
[c(t)], where Et∈[n] denotes expectation over a uniformly random

choice of t. The algorithm, presented below, estimates the encoding cost by the average of the
cost contributions of the sampled short runs, multiplied by n.

ALGORITHM I: AN εn-ADDITIVE APPROXIMATION FOR Crle(w)

1) Select q = Θ
(

1
ε2

)
indices t1, . . . , tq uniformly and independently at random.

2) For each i ∈ [q] :

a) Query ti and up to `0 = 8 log(4|Σ|/ε)
ε

positions in its vicinity to bound `(ti).
b) Set ĉ(ti) = c(ti) if `(ti) < `0 and ĉ(ti) = 0 otherwise.

3) Output Ĉrle = n · E
i∈[q]

[ĉ(ti)].

Proof of Theorem 1, Item 1: We first prove that the algorithm is an εn-additive approxima-
tion algorithm. The error of the algorithm comes from two sources: from ignoring the contribution
of long runs and from sampling. The ignored indices t, for which `(t) ≥ `0, do not contribute
much to the cost. Since the cost assigned to the indices monotonically decreases with the length
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of the run to which they belong, for each such index,

c(t) ≤ dlog(`0 + 1)e+ dlog |Σ|e
`0

≤ ε

2
. (2)

Therefore,
Crle(w)

n
− ε

2
≤ 1

n
·
∑

t: `(t)<`0

c(t) ≤ Crle(w)

n
. (3)

Equivalently, Crle(w)
n

− ε
2
≤ Ei∈[n][ĉ(ti)] ≤ Crle(w)

n
.

By an additive Chernoff bound, with high constant probability, the sampling error in estimating
E[ĉ(ti)] is at most ε/2. Therefore, Ĉrle is an εn-additive estimate of Crle(w), as desired.

We now turn to the query complexity an running time, where recall that we assume that |Σ| is
constant. Since the number of queries performed for each selected ti is O(`0) = O(log(1/ε)/ε),
the total number of queries, as well as the running time, is O(log(1/ε)/ε3).

B. A (3, ε)-Estimate with Õ(1/ε) Queries
If we are willing to allow a constant multiplicative approximation error in addition to εn-

additive, we can reduce the query and time complexity to Õ(1/ε). The idea is to partition the
positions in the string into buckets according to the length of the runs they belong to. Each
bucket corresponds to runs of the same length up to a small constant factor. For the sake of
brevity of the analysis, we take this constant to be 2. A smaller constant results in a better
multiplicative factor. Given the definition of the buckets, for every two positions t1 and t2 from
the same bucket, c(t1) and c(t2) differ by at most a factor of 2. Hence, good estimates of the
sizes of all buckets would yield a good estimate of the total cost of the run-length encoding.

The algorithm and its analysis build on two additional observations: (1) Since the cost, c(t),
monotonically decreases with the length of the run to which t belongs, we can allow a less precise
approximation of the size of the buckets that correspond to longer runs. (2) A bucket containing
relatively few positions contributes little to the run-length encoding cost. Details follow.

ALGORITHM II: A (3, ε)-APPROXIMATION FOR Crle(w)

1) Select q = Θ
(

log(1/ε)·log log(1/ε)
ε

)
indices t1, . . . , tq uniformly and independently at

random.
2) For h = 1, . . . , h0 do:

a) Consider the first qh = min
{
q, q · h+s

2h−1

}
indices t1, . . . , tqh

.
b) For each i = 1, . . . , qh, set Xh,i = 1 if ti ∈ Bh and set Xh,i = 0 otherwise.

3) Output Ĉrle =

h0∑
h=1

(
n

qh

·
qh∑
i=1

Xh,i

)
· h + s

2h−1
.

Proof of Theorem 1, Item 2: Let `0 be as defined in the previous subsection, and let
h0 = dlog `0e. Thus, h0 = O(log(1/ε)). For each h ∈ [h0], let Bh = {t : 2h−1 ≤ `(t) < 2h}.
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That is, the bucket Bh contains all indices t that belong to runs of length approximately 2h. Let
s

def
= dlog |Σ|e and

Crle(w, h)
def
=
∑
t∈Bh

c(t). (4)

Then
|Bh| ·

h + s

2h
≤ Crle(w, h) ≤ |Bh| ·

h + s

2h−1
, (5)

which implies that

Crle(w, h) ≤ |Bh| ·
h + s

2h−1
≤ 2 · Crle(w, h) . (6)

Our goal is to obtain (with high probability), for every h, a relatively accurate estimate βh of
|Bh|

n
. Specifically, let

Hbig =

{
h :

|Bh|
n

≥ 1

2
· ε

h0

· 2h−1

h + s

}
and Hsmall =

{
h :

|Bh|
n

<
1

2
· ε

h0

· 2h−1

h + s

}
.

(7)
Then we would like βh to satisfy the following:

1

3
· |Bh|

n
≤ βh ≤ 3

2
· |Bh|

n
if h ∈ Hbig;

0 ≤ βh ≤ ε
h0
· 2h−1

h+s
otherwise (h ∈ Hsmall). (8)

Given such estimates β1, . . . , βh0 , approximate the encoding cost by Ĉrle =
∑h0

h=1 βh · n · h+s
2h−1 .

Then

Ĉrle =
∑

h∈Hbig

βh · n ·
h + s

2h−1
+

∑
h∈Hsmall

βh · n ·
h + s

2h−1
(9)

≤
∑

h∈Hbig

3

2
· |Bh| ·

h + s

2h−1
+ h0 ·

ε

h0

· 2h−1

h + s
· n · h + s

2h−1
(10)

≤
∑

h∈Hbig

3 · Crle(w, h) + εn < 3 · Crle(w) + εn. (11)

The last inequality uses the upper bound from Equation (6). Similarly,

Ĉrle ≥
∑

h∈Hbig

βh · n ·
h + s

2h−1
(12)

≥ 1

3
·
∑

h∈Hbig

Crle(w, h) (13)

=
1

3
·

(
Crle(w)−

∑
h∈Hsmall

Crle(w, h)

)
(14)

>
1

3
· Crle(w)− εn (15)
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Let βh be a random variable equal to 1
qh

∑qh

i=1 Xh,i. We show that with high probability, βh

satisfies Equation (8) for every h ∈ [h0]. For each fixed h we have that Pr[Xh,i = 1] = |Bh|
n

for
every i ∈ [qh]. Hence, by a multiplicative Chernoff bound,

Pr

[∣∣∣∣βh −
|Bh|
n

∣∣∣∣ ≥ 1

2

|Bh|
n

]
< exp

(
−c · |Bh|

n
· qh

)
(16)

for some constant c ∈ (0, 1). Recall that h0 = O(log(1/ε)) and that qh = Θ(q · h+s
2h−1 ) =

Ω
(
ε−1 · h0 · log(h0) · h+s

2h−1

)
. Hence, for h ∈ Hbig (and for a sufficiently large constant in the

Θ(·) notation in the definition of q), the probability in Equation (16) is at most 1
3
· 1

h0
, and

so Equation (8) holds with probability at least 1 − 1
3
· 1

h0
. On the other hand, for h ∈ Hsmall,

the probability that βh ≥ ε
h0
· 2h−1

h+s
is bounded above by the probability of this event when

|Bh|
n

= 1
2
· ε

h0
· 2h−1

h+s
. By Equation (16) this is at most 1

3
· 1

h0
, and so in this case too Equation (8)

holds with probability at least 1− 1
3
· 1

h0
. By taking a union bound over all h ∈ [h0] the analysis

is completed.
We now turn to the query complexity and running time. For a given index ti, deciding whether

ti ∈ Bh requires O(2h) queries. (More precisely, we need at most 2h−1 queries in addition to
the queries from the previous iterations.) Hence, the total number of queries is

O

(
h0∑

h=1

qh · 2h

)
= O

(
q · h2

0

)
= O

(
log3(1/ε) · log log(1/ε)

ε

)
. (17)

C. A 4-Multiplicative Estimate with Õ(n/Crle(w)) Queries
In this subsection we “get-rid” of the εn additive error by introducing a dependence on the

run-length encoding cost (which is of course unknown to the algorithm). First, assume a lower
bound Crle(w) ≥ µn for some µ > 0. Then, by running Algorithm II (the (3, ε)-approximation
algorithm) with ε set to µ/2, and outputting Ĉrle + εn, we get a 4-multiplicative estimate with
Õ(1/µ) queries.

We can search for such a lower bound µn, as follows. Suppose that Algorithm II receives,
in addition to the additive approximation parameter ε, a confidence parameter δ, and outputs
a (3, ε)-estimate with probability at least 1 − δ instead of 2/3. This can easily be achieved by
increasing the query complexity of the algorithm by a factor of log(1/δ). By performing calls
to Algorithm II with decreasing values of ε and δ, we can maintain a sequence of intervals of
decreasing size, that contain Crle(w) (with high probability). Once the ratio between the extreme
points of the interval is sufficiently small, the algorithm terminates. Details follow.

ALGORITHM III: A 4-APPROXIMATION FOR Crle(w)

1) Set j = 0, lb0 = 0 and ub0 = 1.
2) While ubj

lbj
> 16 do:

a) j = j + 1, εj = 2−j , δj = 1
3
· 2−j .

b) Call Algorithm II with ε = εj and δ = δj , and let Ĉj
rle be its output.

c) Let ubj = 3(Ĉj
rle + εjn) and lbj = 1

3
(Ĉj

rle − εjn).
3) Output

√
lbj · ubj .
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Proof of Theorem 1, Item 3: For any given j, Algorithm II outputs Ĉj
rle ∈ [1

3
Crle(w) −

εjn, 3Crle(w) + εjn], with probability at least 1 − 1
3
· δj . Equivalently, lbj ≤ Crle(w) ≤ ubj .

By the Union bound, with probability at least 2/3, lbj ≤ Crle(w) ≤ ubj for all j. Assume this
event in fact holds. Then, upon termination (when ubj/lbj ≤ 16), the output is a 4-multiplicative
estimate of Crle(w). It is not hard to verify that once εj ≤ Crle(w)

24n
, then the algorithm indeed

terminates with probability at least 1− δj .
The query complexity of the algorithm is dominated by its last iteration. As stated above, for

each εj ≤ Crle(w)
24n

, conditioned on the algorithm not terminating in iteration j− 1, the probability
that it does not terminate in iteration j is at most δj = 1

3
2−j . Since the query complexity of

Algorithm II is Õ(1/ε), the expected query complexity of Algorithm III is Õ(n/Crle(w)).
c) Improving the multiplicative approximation factor: The 4-multiplicative estimate of

Crle(w) can be improved to a (1 + γ)-multiplicative estimate for any γ > 0. This is done by
refining the buckets defined in Subsection III-B so that Bh = {t : (1+ γ

2
)h−1 ≤ `(t) < (1+ γ

2
)h}

for h = 1, . . . , log1+ γ
2
`0 (=O(log(1/ε)/γ)), and setting ε = γ · µ/8. The query complexity

remains linear in 1/µ = n/Crle(w) (up to polylogarithmic factors), and is polynomial in 1/γ.

D. A Multiplicative Lower Bound
The proof of Theorem 2, Item 1, follows from the next lemma, where we set k = C and

k′ = A2C log n.

Lemma 1. For every n ≥ 2 and every integer 1 ≤ k ≤ n/2, there exists a family of strings,
denoted Wk, for which the following holds: (1) Crle(w) = Θ

(
k log(n

k
)
)

for every w ∈ Wk; (2)
Distinguishing a uniformly random string in Wk from one in Wk′ , where k′ > k, requires Ω

(
n
k′

)
queries.

Proof: Let Σ = {0, 1} and assume for simplicity that n is divisible by k. Every string in Wk

consists of k blocks, each of length n
k

. Every odd block contains only 1s and every even block
contains a single 0. The strings in Wk differ in the locations of the 0s within the even blocks.
Every w ∈ Wk contains k/2 isolated 0s and k/2 runs of 1s, each of length Θ(n

k
). Therefore,

Crle(w) = Θ
(
k log(n

k
)
)
. To distinguish a random string in Wk from one in Wk′ with probability

2/3, one must make Ω( n
max(k,k′)

) queries since, in both cases, with asymptotically fewer queries
the algorithm sees only 1’s with high probability.

E. An Additive Lower Bound
Proof of Theorem 2, Item 1: For any p ∈ [0, 1] and sufficiently large n, let Dn,p be the

following distribution over n-bit strings. For simplicity, consider n divisible by 3. The string is
determined by n

3
independent coin flips, each with bias p. Each “heads” extends the string by

three runs of length 1, and each “tails”, by a run of length 3. Given the sequence of run lengths,
dictated by the coin flips, output the unique binary string that starts with 0 and has this sequence
of run lengths.5

Let W be a random variable drawn according to Dn,1/2 and W ′, according to Dn,1/2+ε. It is
well known that Ω(1/ε2) independent coin flips are necessary to distinguish a coin with bias 1

2
from a coin with bias 1

2
+ ε. Therefore, Ω(1/ε2) queries are necessary to distinguish w from w′.

5Let bi be a boolean variable representing the outcome of the ith coin. Then the output is 0b101b210b301b41 . . .
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We next show that with very high probability the encoding costs of w and w′ differ by Ω(εn).
Runs of length 1 contribute 1 to the encoding cost, and runs of length 3 cost dlog(3 + 1)e = 2.
Therefore, each “heads” contributes 3 ·1, while each “tails” contributes 2. Hence, if we got α · n

3
“heads”, then the encoding cost of the resulting string is n

3
· (3α + 2(1− α)) = n

3
· (2 + α). The

expected value of α is p. By an additive Chernoff bound, |α− p| ≤ ε/4 with probability at least
1 − 2 exp(−2(ε/4)2). With this probability, the encoding cost of the selected string is between
n
3
·
(
2 + p− ε

4

)
and n

3
·
(
2 + p + ε

4

)
. The theorem (for the case n mod 3 = 0) follows, since

with very high probability, Crle(w
′)− Crle(w) = Ω(εn).

If n mod 3 = b for some b > 0 then we make the following minor changes in the construction
and the analysis: (1) The first b bits in the string are always set to 0. (2) This adds b to the
encoding cost. (3) Every appearance of n

3
in the proof is replaced by

⌊
n
3

⌋
. It is easy to verify

that the lower bound holds for any sufficiently large n.

IV. LEMPEL ZIV COMPRESSION

In this section we consider a variant of Lempel and Ziv’s compression algorithm [4], which
we refer to as LZ77. In all that follows we use the shorthand [n] for {1, . . . , n}. Let w ∈ Σn be a
string over an alphabet Σ. Each symbol of the compressed representation of w, denoted LZ(w),
is either a character σ ∈ Σ or a pair (p, `) where p ∈ [n] is a pointer (index) to a location in
the string w and ` is the length of the substring of w that this symbol represents. To compress
w, the algorithm works as follows. Starting from t = 1, at each step the algorithm finds the
longest substring wt . . . wt+`−1 for which there exists an index p < t, such that wp . . . wp+`−1 =
wt . . . wt+`−1. (The substrings wp . . . wp+`−1 and wt . . . wt+`−1 may overlap.) If there is no such
substring (that is, the character wt has not appeared before) then the next symbol in LZ(w) is
wt, and t = t + 1. Otherwise, the next symbol is (p, `) and t = t + `. We refer to the substring
wt . . . wt+`−1 (or wt when wt is a new character) as a compressed segment. Clearly, compression
takes time O(n2), and decompression, time O(n).

Let CLZ(w) denote the number of symbols in the compressed string LZ(w). (We do not
distinguish between symbols that are characters in Σ, and symbols that are pairs (p, `).) Given
query access to a string w ∈ Σn, we are interested in computing an estimate ĈLZ of CLZ(w). As
we shall see, this task reduces to estimating the number of distinct substrings in w of different
lengths, which in turn reduces to estimating the number of distinct symbols in a string. The
actual length of the binary representation of the compressed substring is at most a factor of
2 log n larger than CLZ(w). This is relatively negligible given the quality of the estimates that
we can achieve in sublinear time.

Our results on approximating LZ compressibility can be summarized succinctly:

Theorem 3. For any alphabet Σ:
1) Algorithm IV (A, ε)-estimates CLZ(w) and runs in time Õ

(
n

A3ε

)
.

2) For any B = no(1), distinguishing strings with LZ compression cost Ω̃(n) from strings with
cost Õ(n/B) requires n1−o(1) queries.

The first bound states that non-trivial approximation guarantees are indeed possible. For
example, by setting A = o(nα/2) and ε = o(n−α/2, we get an algorithm which distinguishes
incompressible strings (CLZ = Ω(n)) from partly compressible strings (CLZ = O(nα)) in
sublinear time Õ(n1−α). The lower bound states that in some sense this is tight: no approximation
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algorithm with a purely additive approximation guarantee can run in time which is significantly
sublinear.

In the remainder of this section we develop the tools necessary to prove the theorem. We
begin by relating LZ compressibility to DE (Section IV-A), then use this relation to discuss
algorithms (Section IV-B) and lower bounds (Section IV-D) for compressibility.

A. Structural Lemmas
Our algorithm for approximating the compressibility of an input string with respect to LZ77

uses an approximation algorithm for DE (defined in the introduction) as a subroutine. The main
tool in the reduction from LZ77 to DE is the relation between CLZ(w) and the number of distinct
substrings in w, formalized in the two structural lemmas. In what follows, d`(w) denotes the
number of distinct substrings of length ` in w. Unlike compressed segments in w, which are
disjoint, these substrings may overlap.

Lemma 2 (Structural Lemma 1). For every ` ∈ [n], CLZ(w) ≥ d`(w)
`

.

Lemma 3 (Structural Lemma 2). Let `0 ∈ [n]. Suppose that for some integer m and for every
` ∈ [`0], d`(w) ≤ m · `. Then CLZ(w) ≤ 4(m log `0 + n/`0).

Proof of Lemma 2: This proof is similar to the proof of a related lemma concerning
grammars from [17]. First note that the lemma holds for ` = 1, since each character wt in w
that has not appeared previously (that is, wt′ 6= wt for every t′ < t) is copied by the compression
algorithm to LZ(w).

For the general case, fix ` > 1. Recall that wt . . . wt+k−1 of w is a compressed segment if it
is represented by one symbol (p, k) in LZ(w). Any substring of length ` that occurs within a
compressed segment must have occurred previously in the string. Such substrings can be ignored
for our purposes: the number of distinct length-` substrings is bounded above by the number of
length-` substrings that start inside one compressed segment and end in another. Each segment
(except the last) contributes (`− 1) such substrings. Therefore, d`(w) ≤ (CLZ(w)− 1)(`− 1) <
CLZ(w) · ` for every ` > 1.

Proof of Lemma 3: Let n`(w) denote the number of compressed segments of length ` in
w, not including the last compressed segment. We use the shorthand n` for n`(w) and d` for
d`(w). In order to prove the lemma we shall show that for every 1 ≤ ` ≤ b`0/2c,∑̀

k=1

nk ≤ 2(m + 1) ·
∑̀
k=1

1

k
. (18)

For all ` ≥ 1, since the compressed segments in w are disjoint,
n∑

k=`+1

nk ≤
n

` + 1
. (19)

If we substitute ` = b`0/2c in Equations (18) and (19), and sum the two equations, we get:

n∑
k=1

nk ≤ 2(m + 1) ·
b`0/2c∑
k=1

1

k
+

2n

`0

≤ 2(m + 1)(ln `0 + 1) +
2n

`0

. (20)
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Since CLZ(w) =
∑n

k=1 nk + 1, the lemma follows.

It remains to prove Equation (18). We do so below by induction on `, using the following
claim.

Claim 4. For every 1 ≤ ` ≤ b`0/2c ,
∑̀
k=1

k · nk ≤ 2`(m + 1) .

Proof: We show that each position j ∈ {`, . . . , n − `} that participates in a compressed
substring of length at most ` in w can be mapped to a distinct length-2` substring of w. Since
` ≤ `0/2, by the premise of the lemma, there are at most 2` · m distinct length-2` substrings.
In addition, the first ` − 1 and the last ` positions contribute less than 2` symbols. The claim
follows.

We call a substring new if no instance of it started in the previous portion of w. Namely,
wt . . . wt+`−1 is new if there is no p < t such that wt . . . wt+`−1 = wp . . . wp+`−1. Consider
a compressed substring wt . . . wt+k−1 of length k ≤ `. The substrings of length greater than
k that start at wt must be new, since LZ77 finds the longest substring that appeared before.
Furthermore, every substring that contains such a new substring is also new. That is, every
substring wt′ . . . wt+k′ where t′ ≤ t and k′ ≥ k + (t′ − t), is new.

Map each position j ∈ {`, . . . , n− `} in the compressed substring wt . . . wt+k−1 to the length-
2` substring that ends at wj+`. Then each position in {`, . . . , n−`} that appears in a compressed
substring of length at most ` is mapped to a distinct length-2` substring, as desired.

(Claim 4)
d) Establishing Equation (18): We prove Equation (18) by induction on `. Claim 4 with `

set to 1 gives the base case, i.e., n1 ≤ 2(m + 1). For the induction step, assume the induction
hypothesis for every j ∈ [` − 1]. To prove it for `, add the equation in Claim 4 to the sum of
the induction hypothesis inequalities (Equation (18)) for every j ∈ [`− 1]. The left hand side of
the resulting inequality is∑̀

k=1

k · nk +
`−1∑
j=1

j∑
k=1

nk =
∑̀
k=1

k · nk +
`−1∑
k=1

`−k∑
j=1

nk

=
∑̀
k=1

k · nk +
`−1∑
k=1

(`− k) · nk

= ` ·
∑̀
k=1

nk .
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The right hand side, divided by the factor 2(m + 1), which is common to all inequalities, is

` +
`−1∑
j=1

j∑
k=1

1

k
= ` +

`−1∑
k=1

`−k∑
j=1

1

k

= ` +
`−1∑
k=1

`− k

k

= ` + ` ·
`−1∑
k=1

1

k
− (`− 1)

= ` ·
∑̀
k=1

1

k
.

Dividing both sides by ` gives the inequality in Equation (18).
e) Tightness of Lemma 3: The following lemma shows that Lemma 3 is asymptotically

tight.

Lemma 5. For all positive integers m and `0 ≤ m, there is a string w of length n (n ≈
m(`0 + ln `0)) with O(`m) distinct substrings of length ` for each ` ∈ [`0], such that CLZ(w) =
Ω(m log `0 + n/`0).

Proof: We construct such bad strings over the alphabet [m]. A bad string is constructed in
`0 phases, where in each new phase, `, we add a substring of length between m and 2m that
might repeat substrings of length up to ` that appeared in the previous phases, but does not repeat
longer substrings. Phase 1 contributes the string ‘1 . . . m’. In phase ` > 1, we list characters 1 to
m in the increasing order, repeating all characters divisible by `− 1 twice. For example, phase
2 contributes the string ‘11 22 33 . . . mm’, phase 3 the string ‘122 344 566 . . . m’, phase 4 the
string ‘1233 4566 7899 . . . m’, etc. The spaces in the strings are introduced for clarity.

First observe that the length of the string, n, is at most 2m`0. Next, let us calculate the
number of distinct substrings of various sizes. Since the alphabet size is m, there are m length-1
substrings. There are at most 2m length-2 substrings: ‘i i’ and ‘i (i + 1)’ for every i in [m− 1],
as well as ‘m m’ and ‘m 1’. We claim that for 1 < ` ≤ `0, there are at most 3`m length-`
substrings. Specifically, for every i in [m], there are at most 3` length-` substrings that start with
i. This is because each of the first ` phases contributes at most 2 such substrings: one that starts
with ‘i (i + 1)’, and one that starts with ‘i i’. In the remaining phases a length-` substring can
have at most one repeated character, and so there are ` such substrings that start with i. Thus,
there are at most ` · 3m distinct length-` substrings in the constructed string.

Finally, let us look at the cost of LZ77 compression. It is not hard to see that `th phase
substring compresses by at most a factor of `. Since each phase introduces a substring of
length at least m, the total compressed length is at least m(1 + 1/2 + 1/3 + ... + 1/`0) =
Ω(m log `0) = Ω(m log `0 +n/`0). The last equality holds because n ≤ 2m`0 and, consequently,
n
`0

= o(m log `0).
In the proof of Lemma 5 the alphabet size is large. It can be verified that by replacing each

symbol from the large alphabet [m] with its binary representation, we obtain a binary string of
length Θ(m log m`0) with the properties stated in the lemma.
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B. An Algorithm for LZ77
This subsection describes an algorithm for approximating the compressibility of an input

string with respect to LZ77, which uses an approximation algorithm for DE (Definition 1) as
a subroutine. The main tool in the reduction from LZ77 to DE consists of structural lemmas 2
and 3, summarized in the following corollary.

Corollary 4. For any `0 ≥ 1, let m = m(`0) = max`0
`=1

d`(w)
`

. Then

m ≤ CLZ(w) ≤ 4 ·
(

m log `0 +
n

`0

)
.

The corollary allows us to approximate CLZ from estimates for d` for all ` ∈ [`0]. To obtain
these estimates, we use the algorithm for DE, described in Subsection IV-C, as a subroutine.
Recall that an algorithm for DE approximates the number of distinct symbols in an input string.
We denote the number of distinct symbols in an input string τ by CDSS(τ). To approximate d`,
the number of distinct length-` substrings in w, using an algorithm for DE, view each length-`
substring as a separate symbol. Each query of the algorithm for DE can be implemented by `
queries to w.

Let ESTIMATE(`, B, δ) be a procedure that, given access to w, an index ` ∈ [n], an
approximation parameter B = B(n, `) > 1 and a confidence parameter δ ∈ [0, 1], computes
a B-estimate for d` with probability at least 1 − δ. It can be implemented using an algorithm
for DE, as described above, and employing standard amplification techniques to boost success
probability from 2

3
to 1 − δ: running the basic algorithm Θ(log δ−1) times and outputting the

median. By Lemma 7, the query complexity of ESTIMATE(`, B, δ) is O
(

n
B2 ` log δ−1

)
. Using

ESTIMATE(`, B, δ) as a subroutine, we get the following approximation algorithm for the cost
of LZ77.

ALGORITHM IV: AN (A, ε)-APPROXIMATION FOR CLZ(w)

1) Set `0 =
⌈

2
Aε

⌉
and B = A

2
√

log(2/(Aε))
.

2) For all ` in [`0], let d̂` = ESTIMATE(`, B, 1
3`0

).

3) Combine the estimates to get an approximation of m from Corollary 4: set m̂ = max
`

d̂`

`
.

4) Output ĈLZ = m̂ · A
B

+ εn.

Lemma 6 (Theorem 3, part 1, restated). Algorithm IV (A, ε)-estimates CLZ(w). With a proper
implementation that reuses queries and an appropriate data structure, its query and time
complexity are Õ

(
n

A3ε

)
.

Proof: By the union bound, with probability ≥ 2
3
, all values d̂` computed by the algorithm

are B-estimates for the corresponding d`. When this holds, m̂ is a B-estimate for m from
Corollary 4, which implies that

m̂

B
≤ CLZ(w) ≤ 4 ·

(
m̂B log `0 +

n

`0

)
.
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Equivalently,
CLZ − 4(n/`0)

4B log `0

≤ m̂ ≤ B ·CLZ. Multiplying all three terms by A
B

and adding εn to

them, and then substituting parameter settings for `0 and B, specified in the algorithm, shows
that ĈLZ is indeed an (A, ε)-estimate for CLZ.

As explained before the algorithm statement, each call to ESTIMATE(`, B, 1
3`0

) costs
O
(

n
B2 ` log `0

)
queries. Since the subroutine is called for all ` ∈ [`0], the straightforward

implementation of the algorithm would result in O
(

n
B2 `

2
0 log `0

)
queries. Our analysis of the

algorithm, however, does not rely on independence of queries used in different calls to the
subroutine, since we employ the Union Bound to calculate the error probability. It will still
apply if we first run ESTIMATE to approximate d`0 and then reuse its queries for the remaining
calls to the subroutine, as though it requested to query only the length-` prefixes of the
length-`0 substrings queried in the first call. With this implementation, the query complexity
is O

(
n

B2 `0 log `0

)
= O

(
n

A3ε
log2 1

Aε

)
. To get the same running time, one can maintain counters

for all ` ∈ [`0] for the number of distinct length-` substrings seen so far and use a trie to keep
the information about the queried substrings. Every time a new node at some depth ` is added
to the trie, the `th counter is incremented.

C. A Simple Algorithm for DE
Here we describe a simple approximation algorithm for DE. The Guaranteed-Error estimator

of Charikar et al. has the same guarantees as our approximation algorithm. Our algorithm is
(even) simpler, and we present it here for completeness.

ALGORITHM V: A λ-APPROXIMATION FOR DE

1) Take 10n
λ2 samples from the string τ .

2) Let Ĉ be the number of distinct symbols in the sample; output Ĉ · λ.

Lemma 7. Let λ = λ(n). Algorithm V is an λ-approximation algorithm for DE whose query
complexity and running time are O

(
n
λ2

)
.

Proof: Let C be the number of distinct symbols in the string τ . We need to show that
C
λ
≤ Ĉ ·λ ≤ C ·λ, or equivalently, C

λ2 ≤ Ĉ ≤ C, with probability at least 2
3
. The sample always

contains at most as many distinct symbols as there are in τ : Ĉ ≤ C. Claim 8, stated below and
applied with s = 10n

λ2 , shows that Ĉ ≥ C
λ2 with probability ≥ 2

3
. To get the running time O

(
n
λ2

)
one can use a random 2-universal hash function.

Claim 8. Let s = s(n) ≤ n. Then s independent samples from a distribution with C = C(n)
elements, where each element has probability ≥ 1

n
, yield at least Cs

10n
distinct elements, with

probability ≥ 3
4
.

Proof: For i ∈ [C], let Xi be the indicator variable for the event that color i is selected in s
samples. Then X =

∑C
i=1 Xi is a random variable for the number of distinct colors. Since each

color is selected with probability at least 1
n

for each sample,

E[X] =
C∑

i=1

E[Xi] ≥ C

(
1−

(
1− 1

n

)s)
≥ C

(
1− e−(s/n)

)
≥ (1− e−1)

Cs

n
. (21)
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The last inequality holds because 1− e−x ≥ (1− e−1) · x for all x ∈ [0, 1].
We now use Chebyshev’s inequality to bound the probability that X is far from its expectation.

For any distinct pair of colors i, j, the covariance E(XiXj)−E(Xi) E(Xj) is negative (knowing
that one color was not selected makes it more likely for any other color to be selected). Since
X is a sum of Bernoulli variables, Var[X] ≤ E[X]. For any δ > 0,

Pr [X ≤ δ E[X]] ≤ Pr [|X − E[X]| ≥ (1− δ) E[X]] ≤ Var[X]

((1− δ) E[X])2
≤ 1

(1− δ)2 E[X]
. (22)

Set δ = 3 −
√

8. If E[X] ≥ 4
(1−δ)2

, then by Equations (22) and (21), with probability ≥ 3
4
,

variable X ≥ δ E[X] ≥ δ(1 − e−1)Cs
n

> Cs
10n

, as stated in the claim. Otherwise, that is, if
E[X] < 4

(1−δ)2
, Equation (21) implies that 4δ

(1−δ)2
> δ(1−e−1)Cs

n
. Substituting 3−

√
8 for δ gives

1 > Cs
10n

. In other words, the claim for this case is that at least one color appears among the
samples, which, clearly, always holds.

D. Lower Bounds: Reducing DE to LZ77
We have demonstrated that estimating the LZ77 compressibility of a string reduces to DE.

As shown in [12], DE is quite hard, and it is not possible to improve much on the simple
approximation algorithm in Subsection IV-C, on which we base the LZ77 approximation
algorithm in the previous subsection. A natural question is whether there is a better algorithm
for the LZ77 estimation problem. That is, is the LZ77 estimation strictly easier than DE? As
we shall see, it is not much easier in general.

Lemma 9 (Reduction from DE to LZ77). Suppose there exists an algorithm ALZ that, given
access to a string w of length n over an alphabet Σ, performs q = q(n, |Σ|, α, β) queries and
with probability at least 5/6 distinguishes between the case that CLZ(w) ≤ αn and the case that
CLZ(w) > βn, for some α < β.

Then there is an algorithm for DE taking inputs of length n′ = Θ(αn) that performs q queries
and, with probability at least 2/3, distinguishes inputs with at most α′n′ distinct symbols from
those with at least β′n′ distinct symbols, α′ = α/2 and β′ = β · 2 ·max

{
1, 4 log n′

log |Σ|

}
.

Two notes are in place regarding the reduction. The first is that the gap between the parameters
α′ and β′ that is required by the DE algorithm obtained in Lemma 9, is larger than the gap
between the parameters α and β for which the LZ-compressibility algorithm works, by a factor
of 4·max

{
1, 4 log n′

log |Σ|

}
. In particular, for binary strings β′

α′
= O

(
log n′ · β

α

)
, while if the alphabet is

large, say, of size at least n′, then β′

α′
= O

(
β
α

)
. In general, the gap increases by at most O(log n′).

The second note is that the number of queries, q, is a function of the parameters of the LZ-
compressibility problem and, in particular, of the length of the input strings, n. Hence, when
writing q as a function of the parameters of DE and, in particular, as a function of n′ = Θ(αn),
the complexity may be somewhat larger. It is an open question whether a reduction without such
increase is possible.

Prior to proving the lemma, we discuss its implications. [12] give a strong lower bound on
the sample complexity of approximation algorithms for DE. An interesting special case is that a
subpolynomial-factor approximation for DE requires many queries even with a promise that the

16



strings are only slightly compressible: for any B = no(1), distinguishing inputs with n/11 distinct
symbols from those with n/B distinct symbols requires n1−o(1) queries. Lemma 9 extends that
bound to estimating LZ compressibility, as stated in Theorem 3. In fact, the lower bound for
DE in [12] applies to a broad range of parameters, and yields the following general statement
when combined with Lemma 9:

Corollary 5 (LZ is Hard to Approximate with Few Samples). For sufficiently large n, all alpha-
bets Σ and all B ≤ n1/4/(4 log n3/2), there exist α, β ∈ (0, 1) where β = Ω

(
min

{
1, log |Σ|

4 log n

})
and α = O

(
β
B

)
, such that every algorithm that distinguishes between the case that CLZ(w) ≤ αn

and the case that CLZ(w) > βn for w ∈ Σn, must perform Ω
((

n
B′

)1− 2
k

)
queries for

B′ = Θ
(
B ·max

{
1, 4 log n

log |Σ|

})
and k = Θ

(√
log n

log B′+ 1
2

log log n

)
.

Proof of Lemma 9: Suppose we have an algorithm ALZ for LZ-compressibility as specified
in the premise of Lemma 9. Here we show how to transform a DE instance τ into an input for
ALZ, and use the output of ALZ to distinguish τ with at most α′n′ distinct symbols from τ with
at least β′n′ distinct symbols, where α′ and β′ are as specified in the lemma. We shall assume
that β′n′ is bounded below by some sufficiently large constant. Recall that in the reduction
from LZ77 to DE, we transformed substrings into single symbols. Here we perform the reverse
operation.

Given a DE instance τ of length n′, we transform it into a string of length n = n′ · k over Σ,
where k = d 1

α
e. We then run ALZ on w to obtain information about τ . We begin by replacing each

distinct symbol in τ with a uniformly selected substring in Σk. The string w is the concatenation
of the corresponding substrings (which we call blocks). We show that:

1) If τ has at most α′n′ distinct symbols, then CLZ(w) ≤ 2α′n;
2) If τ has at least β′n′ distinct symbols, then Prw[CLZ(w) ≥ 1

2
·min

{
1, log |Σ|

4 log n′

}
· β′n] ≥ 7

8
.

That is, in the first case we get an input w such that CLZ(w) ≤ αn for α = 2α′, and in the
second case, with probability at least 7/8, CLZ(w) ≥ βn for β = 1

2
·min

{
1, log |Σ|

4 log n′

}
· β′. Recall

that the gap between α′ and β′ is assumed to be sufficiently large so that α < β. To distinguish
the case that CDSS(τ) ≤ α′n′ from the case that CDSS(τ) > β′n′, we can run ALZ on w and
output its answer. Taking into account the failure probability of ALZ and the failure probability
in Item 2 above, the Lemma follows.

We prove these two claims momentarily, but first observe that in order to run the algorithm
ALZ, there is no need to generate the whole string w. Rather, upon each query of ALZ to w, if
the index of the query belongs to a block that has already been generated, the answer to ALZ is
determined. Otherwise, we query the symbol in τ that corresponds to the block. If this symbol
was not yet observed, then we set the block to a uniformly selected substring in Σk. If this
symbol was already observed in τ , then we set the block according to the substring that was
already selected for the symbol. In either case, the query to w can now be answered. Thus, each
query to w is answered by performing at most one query to τ .

It remains to prove the two items concerning the relation between the number of colors in τ
and CLZ(w). If τ has at most α′n′ distinct symbols then w contains at most α′n′ distinct blocks.
Since each block is of length k, at most k compressed segments start in each new block. By
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definition of LZ77, at most one compressed segment starts in each repeated block. Hence,

CLZ(w) ≤ α′n′ · k + (1− α′)n′ ≤ α′n + n′ ≤ 2α′n.

If τ contains β′n′ or more distinct symbols, w is generated using at least β′n′ · log(|Σ|k) =
β′n log |Σ| random bits. Hence, with high probability (e.g., at least 7/8) over the choice of
these random bits, any lossless compression algorithm (and in particular LZ77) must use at least
β′n log |Σ|−3 bits to compress w. Each symbol of the compressed version of w can be represented
by max{dlog |Σ|e, 2dlog ne} + 1 bits, since it is either an alphabet symbol or a pointer-length
pair. Since n = n′d1/α′e, and α′ > 1/n′, each symbol takes at most max{4 log n′, log |Σ|} + 2
bits to represent. This means the number of symbols in the compressed version of w is

CLZ(w) ≥ β′n log |Σ| − 3

max {4 log n′, log |Σ|}) + 2
≥ 1

2
· β′n ·min

{
1, log |Σ|

4 log n′

}
where we have used the fact that β′n′, and hence β′n, is at least some sufficiently large constant.
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[9] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity metric.” IEEE Transactions on Information Theory,

vol. 50, no. 12, pp. 3250–3264, 2004, prelim. version in SODA 2003.
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