
Defending Against Attacks on Main Memory Persistence∗

William Enck, Kevin Butler, Thomas Richardson, Patrick McDaniel, and Adam Smith
Systems and Internet Infrastructure Security (SIIS) Laboratory,

Department of Computer Science and Engineering, The Pennsylvania State University
{enck,butler,trichard,mcdaniel,asmith}@cse.psu.edu

Abstract
Main memory contains transient information for all res-

ident applications. However, if memory chip contents sur-
vives power-off, e.g., via freezing DRAM chips, sensitive
data such as passwords and keys can be extracted. Main
memory persistence will soon be the norm as recent ad-
vancements in MRAM and FeRAM position non-volatile
memory technologies for widespread deployment in lap-
top, desktop, and embedded system main memory. Unfor-
tunately, the same properties that provide energy efficiency,
tolerance against power failure, and “instant-on” power-
up also subject systems to offline memory scanning. In
this paper, we propose a Memory Encryption Control Unit
(MECU) that provides memory confidentiality during sys-
tem suspend and across reboots. The MECU encrypts all
memory transfers between the processor-local level 2 cache
and main memory to ensure plaintext data is never writ-
ten to the persistent medium. The MECU design is out-
lined and performance and security trade-offs considered.
We evaluate a MECU-enhanced architecture using the Sim-
pleScalar hardware simulation framework on several hard-
ware benchmarks. This analysis shows the majority of mem-
ory accesses are delayed by less than 1 ns, with higher ac-
cess latencies (caused by resume state reconstruction) sub-
siding within 0.25 seconds of a system resume. In effect,
the MECU provides zero-cost steady state memory confi-
dentiality for non-volatile main memory.

1 Introduction
Main memory containing sensitive information persists

for indefinite periods during system uptime [6]. Recently,
Halderman et al. [15] demonstrated how to extend main
memory persistence by “freezing” DRAM chips to main-
tain memory cell state after the system is powered off, al-
lowing an adversary to retrieve any passwords or crypto-
graphic keys that were not overwritten before system shut-

∗This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0621429, CNS-0627551, and CNS-
0643907. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

down. While this attack provides an effective vector for key
retrieval, the adversary must have physical access before the
system is shut down. This precondition becomes unneces-
sary as new non-volatile memory technologies emerge.

Non-volatile memories such as MRAM (magnetic
RAM) and FeRAM (ferro-electric RAM) [20] provide en-
ergy efficiency, tolerance of power failure, and “instant-
on” power-up. These technologies are reaching maturity
and manufacturers are already selling chips with up to 4-
Mbit of storage [11, 12] to replace battery-backed SRAM
in embedded systems. Recent advancements in speed [9]
and capacity [21] make these technologies appropriate for
main memory in laptops, desktops, and embedded systems.
Because systems that use non-volatile main memory retain
all state across reboots and suspends, users need not en-
dure long boot cycles or memory restoration from slow sec-
ondary storage during resumption.

The characteristics of non-volatile main memory
(NVMM) that provide these advantages also introduce new
vulnerabilities–sensitive data can be extracted or modified
by an adversary who gains access to the memory while the
computer is not turned on or after reboot. Unlike the attack
described by Halderman et al., no freezing is required, and
the memory chips can be retrieved at any time. This work
seeks to mitigate the vulnerabilities of persistent main mem-
ory while retaining the advantages of non-volatile memory.
Note that these techniques are also effective against frozen
volatile memory chips.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 defines the problem
and threat model. Section 4 describes our solution. Sec-
tion 5 evaluates the performance impact of the MECU us-
ing SimpleScalar. Section 6 considers a number of practical
issues in the use of the MECU and its application to next
generation processors. Section 7 concludes.

2 Secure Memory Systems
Operating systems and applications assume memory

does not survive across reboots. Sensitive information
such as passwords and cryptographic keys commonly re-
side in main memory [6]. If this data is written to mag-
netic media (e.g., via swap operations), it may persist even

longer [14]. Therefore, best practice recommends ensuring
memory plaintext never reaches disk. While data can be se-
curely deallocated [7] and crash reports can be cleansed [3],
encrypted swap [23] is still required for reused data.

The introduction of NVMM invalidates a basic assump-
tion upon which operating system and application security
is based. Therefore, it is imperative that the underlying
architecture transparently preserve the security guarantees
upon which the systems where built, i.e., mechanisms must
be implemented within the hardware and BIOS. Our ap-
proach is unique in that it considers full memory encryption
without OS interaction and provides optimizations specific
to systems with NVMM. Many previous memory encryp-
tion architectures [8,17–19,22,31] were designed for a ver-
tical set of applications, e.g., Digital Rights Management
(DRM) and tamperproof computation for grid processing.
As such, only the memory segments of “protected” applica-
tions are encrypted. This DRM model has two significant
disadvantages: it often requires changes to the processor
instruction set, operating system, and/or applications, and
significant performance degradation results from processor
stalls necessary for protection against online attacks. A sim-
ilar side effect exists in architectures providing protection
against bus sniffing [10]. Securing NVMM need not nec-
essarily require protection against online attacks, therefore
the associated performance penalty is avoidable.

While many previous systems do not directly provide
full memory encryption appropriate for efficiently protect-
ing systems with NVMM, lessons can be learned from their
evolution. Execute Only Memory (XOM) [19], an early ar-
chitecture designed to protect DRM applications, encrypted
data directly, resulting in significant performance degrada-
tion. Suh et al. [31] improved performance by applying a
variant of counter mode encryption to generate one time
pads in parallel with memory lookups. However, in order
to protect against online attacks, the secure processor must
store one four-byte sequence counter for every protected 64-
bytes of memory (for systems with 64-byte cache lines).
The counters must be stored within the secure processor to
avoid the overhead of performing two memory accesses per
cache miss. As these storage requirements are often im-
practical, subsequent architectures minimized on-chip stor-
age using caches [33] and prediction algorithms [25, 28].
Unfortunately, these techniques still result in a significant
memory bottleneck throughout system run time. Further,
storing counters in memory is insecure, therefore Yan et
al. [32] ensure counter integrity using hash trees similar to
architectures designed by Suh et al. [13, 31]. In addition to
ensuring counter integrity, Yan et al. also split the counter
into major and minor portions, thereby further decreasing
storage size. While their architecture provides improved
performance, the overhead due to processor stalls is con-
stant throughout the system operation. Additionally, an ar-

chitecture designed to protect the entire main memory must
be careful when storing counters to memory, otherwise the
counters may become inaccessible.

These preceding approaches fail to preserve the secu-
rity guarantees that modern operating systems will place
on NVMM. These operating systems require that the mem-
ory architecture defend against offline physical attacks and
avoid run-time processor stalls–a unique combination of
feature and performance that no memory system has pre-
viously achieved. Furthermore, the architecture must sup-
port all legacy software and hardware interfaces, including
DMA and multiprocessors [24,29], and do so within a mod-
est component footprint. We explore how these features
are simultaneously achieved within our MECU-enhanced
architecture in the following sections.

3 Non-Volatile Main Memory
Consider a commodity desktop machine with power

management capabilities. During normal operation, the sys-
tem is active, i.e., usable for processing data, performing
reads and writes from memory, etc. When the system is
not in use, it can move into a state of low power consump-
tion, either automatically or through user invoked suspen-
sion. There are two different suspend modes: powered sus-
pend and unpowered suspend (commonly known as hiber-
nate). When a volatile memory system enters powered sus-
pend mode, power-intensive components (e.g., displays and
disk drives) are turned off, while reduced power is applied
to others (e.g., main memory). Importantly, memory con-
tents persists while in the low power state. When a sys-
tem with volatile memory is placed into hibernate mode,
main memory is transferred to secondary storage (e.g., disk)
and power cut off, effectively zeroing the physical memory.
When the system is resumed, the memory is restored from
secondary storage. Conversely, architectures with NVMM
need not provide any facilities to retain memory state within
power management services, as contents remain indefinitely
(even across system reboots).

Two attack vectors are enabled by the introduction of
NVMM into current architectures—an online attack where
a booted operating system accesses a previously booted op-
erating system’s memory, and an offline attack where the
physical memory is probed by an adversary while the sys-
tem is powered off, e.g., through regular read-out ports or
via more sophisticated techniques such as optical probing of
the memory with a laser and electromagnetic analysis [26].
We do not seek to protect main memory in normal oper-
ation, as solutions already exist [1]. Additionally, we do
not consider hibernation as solutions such as encrypt-on-
hibernate and modifying file caches [5] address these issues.
For clarity in distinguishing between a reboot and suspend,
we introduce the concept of an OS instance. We assume that
the system has the ability to suspend operations as it tran-
sitions into suspend mode and to subsequently resume its

previous state. The system thus has the same OS instance
before the system is suspended and after it resumes, but a
different instance after it reboots.

An OS may reboot systematically or abruptly. In an on-
line attack, the new OS instance attempts to access the pre-
vious instance’s memory. Traditional OS security models
assume volatile main memory not survive across a reboot
(while undesirable, this is not always the case [7, 15]). We
require that this characteristic also hold for non-volatile sys-
tems. The potential for abrupt power loss mandates that the
system always remain in a protected state: any attempt to
provide protection solely at suspend or shutdown could be
trivially circumvented by an adversary who cuts power be-
fore the security mechanisms are applied.

The vulnerabilities introduced by the use of NVMM lead
to the following informal design goals for the MECU. First,
a MECU-enhanced system must be resilient to physical at-
tacks on suspended memory. In particular, we principally
desire to protect confidentiality of the memory: an adver-
sary must not be able to derive the content of main memory
when the system is suspended or powered off. We defer is-
sues of integrity in the initial MECU design and analysis,
but sketch possible solutions in Section 6. Second, no op-
erating system state should be retrievable after shutdown or
reboot. Third, protections must be maintained without sup-
port from, or trust in, the operating systems running on the
host. Fourth, the protections must require little change to
the hardware architecture and operate virtually invisibly to
the rest of the system architecture. We term these latter two
goals transparency. Finally, the solution must induce little
overhead on memory accesses. Note that this work is re-
stricted to the security of main memory only. Systems that
expose sensitive data on disk will still be vulnerable. For ex-
ample, past systems have shown that virtual memory paged
to disk can expose a significant amount of sensitive infor-
mation [23]. Other system artifacts such as network traffic
can similarly expose information [2]. Such vulnerabilities
are outside the scope of the current work.

4 MECU Design

The threat model outlined above requires that data can
never be present in main memory in the clear: an adver-
sary able to abruptly cut power could thereafter read any
plaintext data present in memory. Therefore, we adopt an
approach in which data is encrypted when written by the
processor to main memory and decrypted when read, i.e.,
all memory operations are mediated by the MECU. This
has the advantage of transparency, where no changes to ei-
ther the processor or memory organization are necessary to
achieve the desired security. To be more precise, we intro-
duce a MECU on the memory bus between the processor-
local layer 2 memory cache and NVMM. Figure 1 depicts
the MECU’s placement in the architecture.

Rdata

Wdata

Addr

Rdata

Wdata

Addr

L1/L2
Cache

Main
Memory

Rdata

Wdata

Addr

Processorsa

a

key k Smartcard
counter s

MECU State
Lookup

Buffer

Figure 1. A MECU-enhanced architecture

The central design challenge of this approach is to en-
sure that the mediation of memory operations is both secure
and efficient. The naive implementation of processor writes
through the MECU encrypt data directly using a suitable
encryption algorithm (e.g., DES, AES) then write the re-
sulting ciphertext to memory. Read operations reverse this
operation, decrypting the ciphertext before use. Because
writes and reads would be delayed by cryptographic opera-
tions, unacceptable delays would be introduced. These de-
lays would ultimately lead to processor stalls (idle periods
where processor waits for memory operations to complete).

Encryption overhead can be mitigated by creating pads
that are XORed with plaintext to perform encryption. Here,
the creation of the pad is the computationally expensive
(and potentially offline) operation. Also illustrated in Fig-
ure 1, we apply this approach in the MECU, where we
mask the pad computation costs in read operations by par-
allelizing the memory fetch operation and pad creation.
The MECU computes the pad while the cache line is be-
ing fetched from memory.1 Because the pad can be created
faster than the fetch delay, the pad is ready when the data
arrives on the bus from main memory. Therefore, the ob-
servable overhead for each memory access is only the one
or two gate delays (depending on the fabrication technol-
ogy) needed to XOR the data with the pad.

Memory writes are similar to reads. The MECU gener-
ates and applies the pad for each memory write as described
above. In this case there is no latency to mask the pad cre-
ation overhead. The MECU uses a write buffer to mask both
the encryption and memory delay, similar to methods of re-
ducing write latencies in write-through caches. Instead of
waiting for the pad creation operation to complete before
writing, the data is written into a MECU internal buffer.
When the pad is created (some cycles later), the data is
XORed and written to main memory.

While this high-level approach of XORing pads gener-
ated in parallel to memory access exists in previous sys-
tems [28, 31, 33], pad generation techniques vary. Se-
curely and efficiently storing and accessing seed informa-

1For simplicity, we refer to cache line sized blocks in main memory as
a cache line. We assume a 64 byte cache line size in all discussions and
experiments below, but all results remain valid for any cache line size.

tion presents a nontrivial architectural challenge, and previ-
ous systems incur significant performance or storage penal-
ties. As described below, characteristics specific to NVMM
systems allow optimizations to provide memory confiden-
tiality with nominal overhead.
4.1 Pad Generation

As mentioned above, we assume that the adversary can
read the entire contents of main memory (and the memory
on the MECU) each time the computer is suspended. Let
Mt denote the unencrypted, logical contents of the mem-
ory at time t, and let Ct be the real contents seen by the
adversary who can access the raw NVMM (Ct consists
of one ciphertext for each cache-line-sized block of main
memory, plus an array of “state counters” stored on the
MECU – see below). The standard notion of confidential-
ity in cryptography is semantic security: namely, for any
two sequences of logical memory contents M0,M1,M2, ...
and M ′0,M

′
1,M

′
2, ..., the adversary should not be able to

tell which of the two sequences of plaintexts was actually
encrypted. The scheme described here achieves a slight
variant: as cache lines are only re-encrypted upon re-write,
the adversary may learn that certain portions of the memory
were not written to during a particular resume cycle.

We first outline the scheme, then discuss the notion of
security and implementation. The main components are:
(a) A master key k. This key is refreshed (i.e., generated

at random) when the system is rebooted.
(b) A state counter s (16 bits will typically suffice). This

counter is reset to 0 on reboot, and incremented by 1
on each resume. (Thus, it counts the number of resume
cycles since the last reboot).

(c) An array of 16-bit timestamps, one per memory block
(for now, think of blocks as cache lines). The entry sa

records the value held by the state counter the last time
block a of the memory was written to (i.e., sa is the
number of the last resume cycle during which the pro-
cessor wrote to block a). To be clear: timestamps do
not record physical time, only the state counter value.

The array of timestamps (c) is stored on the MECU itself.
The master key (a) and state counter (b) are stored on a
removable device such as a smart card (see below). This
device is assumed to be removed on suspend.

The pads used for encryption are created by applying
a pseudorandom function Fk(·) to the pair (a, sa). Intu-
itively, this ensures that each pad is indistinguishable from a
uniformly random string, even given all the other pads used
in the system (even on different suspends). It also ensures
that a given pad is never used to encrypt different messages
on different suspends.

Blocks are only re-encrypted when written to by the pro-
cessor. Therefore, an adversary who observes the memory
on successive suspends can learn that whether a particular
block was overwritten. To specify the security properties

AES AES AES AESk k k k

Memory Block Pad (512 bits)

a . s . 00 . 0...0 a. s . 01 . 0...0 a . s . 10 . 0...0 a . s . 11 . 0...0

Figure 2. A simple pseudorandom function
Fk(a, s) implemented using AES.

more precisely, we define the write footprint of a particu-
lar sequence of resume/suspend cycles to be a sequence of
sets of memory blocks S0, S1, S2, ..., where Si is the set of
memory blocks written to during the ith resume cycle. In
our scheme, a passive adversary learns the write sequence
but nothing else. More specifically, the scheme maintains
completeness: assuming that the adversary is passive and
does not modify any information stored in the MECU or
main memory, the system behaves as expected. It also main-
tains security, as described below.

Let A be a passive adversary who observes the main
memory and MECU contents on every suspend cycle (over
multiple reboots), and does not have direct access to the key
k. Consider choosing at random between two runs of the
system with identical write footprints, and giving A access
to one of the two runs. The probability that the adversary
can guess which of the two runs she is observing is at most
1
2 + O(ε), where ε is the advantage a related adversary A′

would have at distinguishingFk(·) from a random function.
The adversary A′ simply simulates the system (that is, en-
cryption plus the adversary A), making appropriate queries
to Fk. The running time of A′ is the running time of the OS
plus that of A. Hence, if the pseudorandom function fam-
ily F·(·) is secure against a polynomially-bounded adver-
sary, then the MECU prevents leakage of any information
beyond the write footprint of a particular run.

As described above, any secure pseudorandom function
F from a large enough input space (enough to contain the
address of a memory block and a state counter) to a large
enough output space (the size of a memory block) will suf-
fice for generating pads. The main efficiency requirement is
that the PRF be fast enough for the pad to be generated in
the difference between the round-trip time from the MECU
to the main memory and the time necessary to fetch the
timestamp sa from the MECU’s memory. This ensures the
pad will be ready before main memory responds and mini-
mizes the delay observed by the CPU.

A particular PRF, based on AES, is described in Fig-
ure 2. To evaluate Fk(a, s), one calls AES with key k
on several inputs constructed from (a, s) by appending ex-
tra digits. For example, in an architecture with 64-byte
memory blocks as in Figure 2, F makes 4 parallel calls
to AES. If εPRP (q) is the probability that the adversary A
can distinguish AESk from a truly random family of per-
mutations using q queries, then the probability that A can
distinguish AESk from a random family of functions is at
most εPRP (q) +

(
q
2

)
· 2−128 (extra term due to the birth-

day paradox). This implementation is convenient since fast
hardware implementations of AES exist and their timings
are well-studied. To understand the speed disparity be-
tween memory access times and in-hardware AES, consider
the high-speed Rambus DRAM (RDRAM). Access time re-
quirements for a 64-byte cache line are 131.25 ns, based on
a 3.75 ns clock cycle for the memory bus [16]. Given a low-
end desktop machine with a 1 GHz processor, an AES en-
cryption will require 44 cycles, or 44 ns, far below the mem-
ory access speed [28, 31, 33]. That said, our simulations
indicate that the PRF evaluation is not an efficiency bottle-
neck in our proposed MECU architecture, so it is likely that
other PRF implementations would work equally well.

As mentioned above, we propose using a 16-bit state
counter to prevent pads being reused to encrypt different
data. The state counter size has an effect on the maximum
uptime for an OS instance. For example, a two-byte state
counter supports up to 65,536 separate suspend/resume cy-
cles before an OS reboot must be forced. In this case, the
OS could be suspended and resumed an average of 179
times a day, or 7.5 times an hour, every hour for a year be-
fore requiring a OS reboot. For all practical purposes, this
is an infinite number of suspensions,2 and thus the counters
are at least as large as needed for these systems. Smaller
state counters may be more desirable, but we defer consid-
eration to future work. We adopt conservatively large 16-bit
state counters in all experiments discussed below.

The security of the encryption scheme relies on keep-
ing k secret. Storing k on the MECU is problematic since
we assume the adversary has access to the MECU contents
during suspends. After considering several alternatives, we
decided to place k on a removable smart card (or similar re-
movable storage directly connected to and controlled by the
MECU firmware). This ensures that the system is resilient
to an offline physical attack as long as (i) the smart card is
removed during suspends and (ii) the circuitry which uses
k when the system is live bears no memory once power has
been suspended. We consider the practical use and implica-
tions of the smart card in latter sections of this paper.

4.2 Storage Optimization

For many architectures, the burden of providing a state
counter for every cache line may be unmanageable. To
illustrate, a system with a 4 gigabyte RAM memory re-
quires 128 megabytes of non-volatile state counters inter-
nal to the MECU—a considerable design and manufactur-
ing challenge. These costs can be mitigated by sharing a
state counter between multiple cache lines. Here the MECU
organizes contiguous cache lines into memory blocks shar-
ing a single state counter. Figure 3 juxtaposes the individual
and shared counter strategies. The cost savings can be sub-

2The probability any current system survives 65,000 suspends without
software or hardware failure requiring OS reboot is very, very low.

16 bits64 bytes
00...0000

Address Cache Line State

00...0040
00...0080
00...00C0
00...0100
00...0140
00...0180
00...01C0
00...0200
00...0240
00...0280
00...02C0
00...0300
00...0340
00...0380
00...03C0
00...0400

FF...FFC0

(a) Per cache line state counters.

16 bits64 bytes
00...0000

Address Cache Line State

00...0040
00...0080
00...00C0
00...0100
00...0140
00...0180
00...01C0
00...0200
00...0240

FF...FD00
FF...FD40
FF...FD80

FF...FFC0

FF...FDC0
FF...FF00
FF...FF40
FF...FF80

(b) Shared cache line state counters.

Figure 3. Optimizing storage via shared state
counters (in-MECU storage shown in gray).

stantial: in the above example, sharing a counter among 64
lines drops the requirements from 128MB to 2MB.

Shared state counters require further changes to the
MECU design and operation. When a counter is updated
for one cache line, all other cache lines within that block
must be encrypted with a pad based on the new state counter
value. Hence, the MECU must retrieve, re-encrypt, and
write back to main memory each associated cache line fol-
lowing a counter update. Fortunately, because counters are
only updated after the system is resumed, each memory
block must only be re-encrypted once per system resume.

Shared state counters exhibit subtle trade-offs between
performance and storage costs. In the degenerate case, all
of physical memory would map to a single state counter. In
this case, as soon as one cache line is written to memory af-
ter a resume, all of memory must be re-encrypted. However,
this is a one-time cost (per resume). By grouping cache
lines into smaller blocks, we allow for lazy re-encryption,
wherein only the cache lines spatially close to accessed
memory must be re-encrypted. As the breadth of memory
access increases, more blocks will be re-encrypted, effec-
tively diffusing the one-time cost into a series of smaller
costs. Section 5 empirically explores these trade-offs.

The optimized state counter storage can thus be com-
puted using the following equation:

Size =
Smem · log2(Nstate)

Sline ·Nlines

where Smem is size of the byte-addressable physical ad-
dress space (232 for a 32-bit processor)3, Sline is the size
of a cache line in bytes (typically 64), Nstate is the num-
ber of states supported, and Nlines is the number of cache
lines in a memory block. Modifying the number of states
only logarithmically affects in-MECU storage, while an in-
verse linear relationship exists between the number of cache
lines per memory block and storage size. Thus, storage re-
quirements are better decreased by increasing the number
of cache lines per memory block, rather than reducing the
number of states.

3Note that this only needs to be equivalent to the maximum memory
size supported by the system (e.g., an embedded system may be designed
to support 256 MB of physical memory, so an Smem of 228 is sufficient).

4.3 Active Attacks
The MECU provides protections against a limited active

adversary. Because the key and global state counter are
stored on the removable smart card (Figure 1), an adversary
with access to a machine during suspends cannot change
either the key k or the global state counter s. In particu-
lar, this prevents forced re-use of a one-time pad. However,
it does not prevent chosen-ciphertext attacks, which subtly
use auxiliary information that the adversary has about the
information stored in memory and the way in which it is
processed. Preventing general active attacks requires a sig-
nificantly more involved and time-intensive solution.

The MECU’s ability to preserve confidentiality is pred-
icated somewhat on the integrity of its internal state. An
adversary manipulating an unprotected MECU could decre-
ment the global state counter s while the system is of-
fline, thereby forcing the system to regenerate a previ-
ously used pad on subsequent writes of the same cache
lines. This would lead to the exposure of multiple cache
lines encrypted under the same pad. The adversary could
then use information about one plaintext to expose the
other–thus nullifying confidentiality. Storing s on the re-
movable device prevents this. A more subtle attack is
possible, however, by modifying the memory and then
observing the behavior of the system. Assume the ad-
versary knows that either a “sell” or “buy” order for
a stock is encoded in a cache line. The adversary can
then apply “sell” ⊕ “buy” to change the order from
“sell” to “buy” or vice-versa. If Mt = “buy” in the
cache line, the adversary modifies the cache line as such:
Fk(a, sa)⊕M1⊕ (“sell”⊕ “buy”) = Fk(a, sa)⊕ “sell”
The adversary does not know the original value or how it
changed, but the user’s behavior will change depending on
the original value. If the adversary can observe the system
behavior at run time, they may use that side-channel to com-
promise the confidentiality of the original value, such as lis-
tening to a broker calling to stop a “sell” order, or capturing
network packets associated with the order. Alternatively, no
side-channel is necessary if the change in the user’s behav-
ior is reflected in the memory locations to which he writes
(e.g. he sends email to either his broker or his system ad-
ministrator, resulting in writes to mail archives stored in dif-
ferent known memory blocks). The adversary may observe
the user’s behavior by looking at the memory contents the
memory on consecutive suspends (in other words, the write
footprint itself may form a useful side-channel). Avoid-
ing this chosen-ciphertext attack requires adding integrity
checking to the critical path from the main memory to the
CPU. We consider this in greater detail in Section 6.1.

5 Performance Evaluation
This section explores the performance of the MECU and

considers the performance trade-offs and costs of its realiza-
tion in hardware. We begin in the next section by describing

Table 1. Simulation parameters. Cache laten-
cies in parentheses.

Parameter Value
L1 D-Cache 32KB, 8-way with 64B block (1)
L1 I-Cache 32KB, 8-way with 64B block (1)
L2 Unified Cache 256KB, 4-way with 64B block (6)
L2 Write buffer 16 lines
Memory Bus Width 8B
Memory Latency 80 cycles with 2 cycle inter-chunk latency
AES Latency 44 cycles
State Lookup 3 cycles
XOR Latency 1 cycle

our SimpleScalar simulation of an MECU-enhanced archi-
tecture. The simulation environment is then used to empiri-
cally measure the overheads of the MECU and to character-
ize the design trade-offs of our approach.
5.1 SimpleScalar Simulation

The SimpleScalar simulation framework [4] is widely
used to study the complexity and performance of mi-
croarchitecture designs. The platform supports SPEC
CPU2000 [30] benchmarks designed to evaluate designs
by exercising the memory hierarchy. We used Sim-
pleScalar/PISA to analyze the impact of the MECU on sys-
tem performance, and updated the architectural component
influencing the L2 cache miss latency to model MECU-
related delays, defining a fixed write buffer size. We then
added tunable parameters to allow a wide range of simula-
tions for calculating the MECU delay.

Memory block re-encryption was modeled by keeping
track of the number of resumes since reboot. We refer
to the number of resumes as the simulation state; a sus-
pend/resume cycle is simulated by incrementing a state it-
erator. The simulator begins in state zero, and all memory
blocks therefore also have an initial state of zero. The first
time a memory block is written after system resume, the
processor stalls as the block is re-encrypted. We model this
stall in the simulation. The memory block state is then im-
mediately updated to the current simulation state, indicating
subsequent writes in this state do not require re-encryption.
5.2 Performance

The SPEC integer benchmarks explore system perfor-
mance by exercising memory in diverse ways. We chose
a subset of the SPEC benchmarks representing a diversity
of application types: bzip2, gcc, parser, twolf, and vpr. The
bzip2 benchmark consistently uses a large amount of mem-
ory, while the gcc benchmark’s memory use is more spo-
radic. The parser, twolf, and vpr benchmarks have lower
consumption, but introduce vastly different access mem-
ory workloads. We measure the performance of the system
by observing the number of instructions per cycle (IPC).
This metric is the processor’s instruction throughput that
varies slightly depending on the types of instructions exe-
cuted. However, for the purposes of our analysis, IPC is an

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1 2 3 4 5 6 7 8 9 10

IP
C

Resume (100,000,000 cycles between suspends)

IPC

(a) IPC for no MECU

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1 2 3 4 5 6 7 8 9 10

IP
C

Resume (100,000,000 cycles between suspends)

IPC

(b) IPC for a MECU with a memory block size of 256 cache lines

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1 2 3 4 5 6 7 8 9 10

IP
C

Resume (100,000,000 cycles between suspends)

IPC

(c) IPC for a MECU with a memory block size of 65,536 cache lines. For
suspend cycles 3 through 7, the stall averages 45,480,000 processor cy-
cles. For suspend cycles 8 and 9, the stall is 25,000,000 processor cycles.

Figure 4. IPC with and without a MECU (bzip2)

accurate metric for measuring processing throughput. The
MECU does not impede memory throughput, as pad gen-
eration occurs in parallel with memory access; rather, we
consider latency due to re-encryption. Table 1 overviews
parameters common to all experiments.

5.2.1 Analysis of Processor Overhead
Our first set of experiments attempted to characterize the
processor performance as a function of the state counter
block size. Figure 4 shows simulation runs of 1 billion
cycles for systems running the bzip2 benchmark with no
MECU, a MECU with a block size of 256 cache lines, and
a MECU with a block size of 65,536 cache lines. Each sub-
figure shows the IPC over time, with a simulated system
suspend and resume every 100 million cycles (marked with
the integer 1-10 on the x-axis time scale). The sample rate
was 100,000 cycles. The y-axis shows the instructions per
cycle, where the theoretical maximum is 1.

Visual inspection of the traces shows the impact of pro-
cessor stalls caused by re-encryption following system re-
sumes. The initial performance of the system is largely sta-
ble in all three traces for the first 200 million cycles. This is
because few memory writes occur in initial process setup.
The traces diverge significantly after the second suspend.
The non-MECU and 256 cache line sized block traces show

similar behavior, with the latter exhibiting prominent but
brief processor stalls immediately after resumes 2, 3, and 4.
The 65,536 cache line sized block MECU shows consider-
able processing oscillation, where long periods of stalling
occur following every resume. This observation is not en-
tirely surprising, as immense block size requires 4 MB of
memory be processed for each re-encryption. The impact
of memory block size on performance is more readily ob-
served when IPC is averaged over the suspend cycle. We
ran a second series of tests for all benchmarks under various
cache line sizes. Figures 5 and 6 show the percent decrease
in IPC compared to a baseline system with no MECU in two
of these tests. Similar performance costs as reported above
are observable, with the decreases in IPC becoming more
pronounced as the block size increases. One interesting el-
ement is the apparent performance increase in later resume
cycles of the bzip2 experiments, caused by increased mem-
ory address locality in this phase of the process—with fewer
used addresses, less re-encryption is needed.

Block sizes of 256 and smaller perform similarly in the
bzip2, with a maximum overhead of approximately 9%
IPC reduction observed in the seventh resume cycle. The
gcc benchmark is representative of the other benchmarks
(hence discussion of other benchmark results is omitted for
brevity). Block sizes of 4,096 cache lines and smaller in the
gcc experiment all produced similar performance results.
The maximum overhead was observed in the sixth resume
cycle, with a block size of 4,096 incurring a 4.4% overhead
and a block size of 256 incurring only a 2.1% overhead.

Based on these results, we assert that for systems run-
ning a wide range of applications, including those with in-
tensive memory requirements, a memory block size of 256
cache lines provides a good balance of storage requirements
versus incurred overhead. If demanding and wide-ranging
memory requirements are only rarely encountered, storage
requirements can be further minimized by using blocks of
4,096, with only minimal additional overhead.

5.2.2 Time to Quiescence
The reduced IPC is a direct effect of processor stalls due
to memory block re-encryption. Our simulations showed
that after some period of time, all memory blocks were re-
encrypted with new state counters and no further encryption
operations were necessary. We term this the time to quies-
cence. This duration bounds impact of the MECU; once the
system reaches steady state, the overhead is negligible.

To more fully observe quiescence, we increased the time
period between suspends to 1 billion processor cycles and
simulated 5 suspend/resume cycles. This was long enough
for each benchmark to access its full range of memory
blocks. The first cycle is discounted as no re-encryptions
occur; memory is initially seeded at this stage. Figure 7
summarizes the time to quiescence as indicated by proces-
sor cycles, averaged over the 4 remaining cycles.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t D

ec
re

as
e

in
 IP

C

Resume (100,000,000 cycles between suspends)

Seg Size = 1
Seg Size = 16

Seg Size = 256
Seg Size = 4096

Seg Size = 65536

Figure 5. Percent Decrease in IPC per
power cycle in bzip2 benchmark

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t D

ec
re

as
e

in
 IP

C

Resume (100,000,000 cycles between suspends)

Seg Size = 1
Seg Size = 16

Seg Size = 256
Seg Size = 4096

Seg Size = 65536

Figure 6. Percent Decrease in IPC per
power cycle in gcc benchmark

 0

 200

 400

 600

 800

 1000

1 16 256 4096 65536

M
ill

io
ns

 o
f C

yc
le

s t
o

Q
ui

es
ce

nc
e

Block Size (cache lines)

bzip2
gcc

parser
twolf

vpr

Figure 7. Average Time to Quiescence

In general, increasing the memory block size reduces the
time to quiescence, as larger blocks contain a larger pro-
portion of the address space, and accessing any address
within that block causes the entire block to be re-encrypted.
This time to quiescence is highly dependent on the breadth
of memory access; for example, a memory block size of
65,536 under the bzip2 benchmark takes almost twice as
long to quiesce as a block size of 4,096 under the parser
benchmark. Additionally, for a given memory space, not all
memory is necessarily re-encrypted; there could be mem-
ory in a system that is accessed once and subsequently left
unused for large lengths of time, potentially the duration of
the system’s operation before resetting. Quiescence merely
indicates for how long an application will be subject to the
effects of memory re-encryption. If a system can tolerate
short stalls, larger memory block sizes may be appropriate.

5.2.3 System Level Costs

Each memory segment is re-encrypted with a new pad at
most once per system resume. There is generally a high de-
gree of spatial locality to an application’s memory accesses;
thus, only a small set of memory blocks tends to be used.
Because of our lazy re-encryption optimization, blocks are
only re-encrypted when first accessed after resume. Once
the initial segment re-encryption has been performed, sub-
sequent reads and writes to memory incur an overhead of
only one or two gate delays, less than 200 ps. Hence, from

a system perspective, the impact of a MECU is minimal.
Consider again the degenerate case, where one memory

block comprises the entire memory space. When the system
resumes from a suspend state, all of system memory is then
re-encrypted. Because encryption of the memory can occur
in parallel to its access, the delay is equivalent to accessing
the entire memory space twice, once to read and once to
write back the encrypted memory. This latency is similar to
that caused by the Power On Self Test (POST) system RAM
check performed by many PC BIOSes.4 While noticeable
as a delay, even under this extreme case the delays are not
onerous to the point of making the system unusable.

In practice, the delays will be minimal. As previously
discussed, the time to quiescence is a function of proces-
sor cycles, and is thus dependent on the processor’s clock
frequency for real time values. Table 2 shows the time
to quiescence with the bzip2 benchmark by processor fre-
quency. The 10 MHz column represents an embedded sys-
tem with a very slow clock, while the 100 MHz column
represents an embedded system with medium power. The
1,000 MHz column represents a low-end desktop computer
and the 3,000 MHz column is representative of the typi-
cal processor speed of a moderately-specified desktop ma-
chine (e.g., a Dell Dimension E520). These experiments
are reasonably predicated on the assumption that the speed
of memory scales proportionally to processor speed, i.e., it
is not the source of latency. These experiments centrally
show that the time to quiescence in all environments will
increase as the ratio of processor speed to memory band-
width increases. Furthermore, there is a trade-off between
shorter times to quiescence and instantaneous process stalls:
because the stall time per memory block is directly propor-
tional to block size, a shorter time to quiesence will cause a
greater instanteneous processor stalling cost.

Of all simulated sizes, a memory block of 256 cache
lines offers a good trade-off btetween storage requirements,

4Note that the “Quick Boot” feature provided by some manufacturers
does not perform this RAM check.

Table 2. System Level MECU Impact (bzip2)
Block State Time to Quiescence∗

Size Storage 10 MHz 100 MHz 1,000 MHz 3000 MHz
1 128 MB 79.50 s 7.950 s 0.7950 s 0.2650 s

16 8 MB 79.43 s 7.943 s 0.7943 s 0.2648 s
256 512 KB 70.03 s 7.003 s 0.7003 s 0.2333 s

4096 32 KB 55.05 s 5.505 s 0.5505 s 0.1835 s
65536 2 KB 35.53 s 3.553 s 0.3553 s 0.1184 s
∗Assuming a constant memory to processor speed ratio

IPC impact, and time to quiescence, the latter achieved after
only 0.23 seconds on a moderately-specified desktop ma-
chine. Embedded systems are often more resource con-
strained, therefore sacrificing performance after resume is
likely to be desirable.5 High-end system with high perfor-
mance requirements would likely be designed with more
MECU-internal storage.

6 MECU Extensions
6.1 Main Memory Integrity

Our initial design and simulation did not preserve the
integrity of main memory. If the adversary knows the
plaintext corresponding to a memory address, the ciphertext
can be replaced without detection while the system is sus-
pended. This integrity attack does not result in a loss of con-
fidentiality, but results from a previous loss of memory con-
fidentiality, at which point in the system is already compro-
mised. To illustrate, recall that a ciphertext cai (as written to
main memory) for address ai is computed from the plaintext
pai

, state counter si and key k as cai
= Fk(ai, si) ⊕ pai

.
Now assume the adversary knows the underlying plaintext
of the cache line (pai) and wants to replace it with malicious
datam. She computes cai⊕pai⊕m and writes that value to
the cache line. When the system resumes and the cache line
is read, the MECU will recover the plaintext by computing
pai

= Fk(ai, si)⊕cai
to recover the plaintext. Substituting

the malicious cache line value and original cai
gives

pai = Fk(ai, si)⊕ ((Fk(ai, si)⊕ pai)⊕ pai ⊕m) = m
Because the pads and original plaintext cancel out, we
are left with the malicious cache line value. Note again
that this attack is contingent on the adversary having al-
ready breached the memory’s confidentiality. Additionally,
the scope of the attack is limited to the memory locations
known to the adversary. Other memory locations, even
within the same cache line, remain integrity-protected.

Integrity verification has been long studied within the
context of general main memory protections. Proposals in-
clude hashing over cache lines and storing values in separate
or statically-allocted memory [18], creating a Merkle hash
tree of memory segments and caching the results [13, 31],
and using GCM encryption to simultaneously encrypt and
hash memory blocks [24]. Adapting these solutions to our
architecture requires a careful analysis of the performance

5Embedded systems with a 10 MHz clock traditionally have a 16-bit
address space. This greatly lowers MECU storage requirements.

and storage tradeoffs, and we defer further consideration of
these issues for future work.

6.2 Moving to 64-bit Processors
The storage calculations to this point have assumed that

the system has a 32-bit processor. As 64-bit processors are
deployed, their addressable memory space expands to as
much as 264 bytes, or 16 exabytes (16.8 million TB). En-
crypting this entire memory space enormously increases the
MECU’s storage requirements. Current transitional archi-
tectures only support a subset of the 64-bit physical address
space, e.g., Intel EM64T 64-bit processor extensions cur-
rently support 1 TB (240 bytes) of physical memory, 256
times as large as the 32-bit address space. A MECU oper-
ating under the same assumptions given in Section 5 would
require 8 MB of internal storage. However, if the system
uses a cache line of 128 bytes already existing in some In-
tel Pentium 4s, this reduces to 4 MB, a reasonable amount
given the 1 TB protected. As architectures scale to support
larger addressable memory sizes, the MECU will scale with
the support of larger available cache lines.

6.3 Direct Memory Access
Many hardware architectures allow for I/O transfers di-

rectly between main memory and devices such as disk drive
controllers or graphics cards, a process called direct mem-
ory access (DMA). With the MECU solution of memory
encryption, memory would require decryption before being
transferred on the DMA bus, while main memory could not
be accessed by the processor during an I/O transfer due to
the MECU decrypting to the cache. This renders DMA in-
feasible. We propose implementation of a second MECU
for architectures that support DMA that resides between the
main memory and the DMA bus, which would then be able
to decrypt and encrypt data going to and from the I/O de-
vices while the processor would be free to access memory
without being hampered. This solution requires state coun-
ters to be shared between MECUs, which conserves stor-
age. While the shared table will not allow simultaneous
access, the blocking caused by table locks would be min-
imal in comparison to the overhead induced by coherency
protocols. Furthermore, this approach can be extended to
an arbitrary number of MECUs, thereby supporting multi-
processor and multi-core architectures.

6.4 Power Failures
While non-volatile memory systems are attractive due to

their resilience to power failure, memory consistency could
still be affected if a power failure occurs while the MECU
is encrypting a memory block. Therefore, capacitors must
be present for the MECU to provide the power necessary
for the memory block encryption to be completed. These
considerations are not limited to the MECU: for a sys-
tem to provide resilience against power failure, all compo-
nents must respond gracefully, such as hard disks parking

their drive heads to avoid crashing them into disk platters if
power is lost [27].

7 Conclusion
We have designed an efficient MECU to achieve the

same level of security provided by traditional volatile main
memory systems, and evaluated the performance impact us-
ing the SimpleScalar framework. Introducing the MECU
into a system’s architecture introduces overhead of only 9%
in the worst case and less than 2% for average workloads
for a period of less than 0.25 s after system resumption,
based on a moderately-specified desktop. During regular
operation, the costs of encryption and decryption are less
than 1 ns. In effect, the MECU provides zero-cost steady
state encryption of main memory. As non-volatile memory
technologies emerge, systems can reap the benefits of non-
volatility while maintaining security.

References
[1] Advanced Micro Devices, Inc. AMD I/O virtualiza-

tion technology (IOMMU) specification, rev 1.00, Feb.
2006. http://www.amd.com/us-en/assets/content_
type/white_papers_and_tech_docs/34434.pdf.

[2] S. Bellovin. Security problems in the TCP/IP protocol suite.
Computer Communications Review, 2(19), Apr. 1989.

[3] P. Broadwell, M. H. N., and Sastry. Scrash: A System for
Generating Secure Crash Information. In Proceedings of the
12th USENIX Security Symposium, pages 273–284, 2003.

[4] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future
Microprocessors: The SimpleScalar Tool Set. Technical Re-
port CS-TR-1996-1308, 1996.

[5] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio File Cache: Surviving Operating
System Crashes. In ASPLOS, 1996.

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In USENIX Security Symposium, 2004.

[7] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shred-
ding Your Garbage: Reducing Data Lifetime Through Se-
cure Deallocation. In USENIX Security Symposium, 2005.

[8] G. Duc and R. Keryell. CryptoPage: an Efficient Secure
Architecture with Memory Encryption, Integrity and Infor-
mation Leakage Protection. In ACSAC, 2006.

[9] EE Times. NEC claims world’s fastest MRAM.
http://www.eetimes.com/showArticle.jhtml?

articleID=204400328, November 30, 2007.
[10] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, C. Anguille,

C. Buatois, and J. Rigaud. Hardware Engines for Bus En-
cryption: a Survey of Existing Techniques. In DATE, 2005.

[11] Freescale Semiconductor. Fast Non-Volatile RAM Prod-
ucts. http://www.freescale.com/files/memory/

doc/fact_sheet/BRMRAMSLSCLTRL.pdf, 2007.
[12] Fujitsu. Fujitsu Starts Volume Production of 2 Mbit

FRAM Chips. http://www.fujitsu.com/emea/
news/pr/fme_20070418.html, April 18, 2007.

[13] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. De-
vadas. Caches and hash trees for efficient memory integrity
verification. In HPCA-9, 2003.

[14] P. Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In USENIX Security Symposium, 1996.

[15] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten. Lest We Remember: Cold Boot Attacks
on Encryption Keys. In USENIX Security Symposium, 2008.

[16] C. Hampel. High-Speed DRAMs keep pace with high-speed
systems. http://www.dewassoc.com/performance/

memory/hampel-rambus.htm. Accessed Jan. 2006.
[17] T. Kgil, L. Falk, and T. Mudge. ChipLock: Support for Se-

cure Microarchitectures. ACM SIGARCH Computer Archi-
tecture News, 33(1):134–143, Apr. 2005.

[18] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and
Z. Wang. Architecture for Protecting Critical Secrets in Mi-
croprocessors. In ISCA, 2005.

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In ISCA, 2000.

[20] G. Muller, N. Nagel, C.-U. Pinnow, and T. Rohr. Emerging
Non-Volatile Memory Technologies. In ESSDERC, 2003.

[21] Physorg. Toshiba develops new MRAM device which opens
the way to giga-bits capacity. http://www.physorg.
com/news113591322.html, November 6, 2007.

[22] J. Platte and E. Naroska. A Combined Hardware and Soft-
ware Architecture for Secure Computing. In Proceedings of
the 2nd Conference on Computing frontiers, May 2005.

[23] N. Provos. Encrypting Virtual Memory. In Proceedings of
the 9th USENIX Security Symposium, Aug. 2000.

[24] B. Rogers, M. Prvulovic, and Y. Solihin. Efficient data pro-
tection for distributed shared memory multiprocessors. In
PACT, 2006.

[25] B. Rogers, Y. Solihin, and M. Prvulovic. Memory Pre-
decryption: Hiding the Latency Overhead of Memory En-
cryption. ACM SIGARCH Computer Architecture News,
33(1):27–33, Mar. 2005.

[26] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J.
Quisquater. On a New Way to Read Data from Memory. In
Proceedings of IEEE Security in Storage Workshop, 2003.

[27] W. Sereinig. Motion-Control: the Power Side of Disk
Drives. In ICCD, 2001.

[28] W. Shi, H.-H. S. L, M. Ghosh, C. Lu, and A. Boldyreva.
High Efficiency Counter Mode Security Architecture via
Prediction and Precomputation. In ISCA, 2005.

[29] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu. Architectural
support for high speed protection of memory integrity and
confidentiality in multiprocessor systems. In PACT, 2004.

[30] Standard Performance Evaluation Corp. SPEC CPU2000
V1.3. http://www.spec.org/cpu2000/, 2000.

[31] G. E. Suh, D. Clarke, B. Gassend, M. van Gijk, and S. De-
vadas. Efficient memory integrity verification and encryp-
tion for secure processors. In MICRO-36, 2003.

[32] C. Yan, B. Rogers, D. Englender, Y. Solihin, and
M. Prvulovic. Improving cost, performance, and security
of memory encryption and authentication. In ISCA, 2006.

[33] J. Yang, L. Gao, and Y. Zhang. Improving Memory Encryp-
tion Performance in Secure Processors. IEEE Trans. Comp.,
54(5):630–640, May 2005.

