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Abstract

For every p ∈ (0, 1/2), we give an explicit construction of binary codes of rate approaching “capac-
ity” 1−H(p) that enable reliable communication in the presence of worst-case additive errors, caused
by a channel oblivious to the codeword (but not necessarily the message). Formally, we give an efficient
“stochastic” encoding E(·, ·) of messages combined with a small number of auxiliary random bits, such
that for every message m and every error vector e (that could depend on m) that contains at most a frac-
tion p of ones, w.h.p over the random bits r chosen by the encoder, m can be efficiently recovered from
the corrupted codeword E(m, r) + e by a decoder without knowledge of the encoder’s randomness r.

Our construction for additive errors also yields explicit deterministic codes of rate approaching 1 −
H(p) for the “average error” criterion: for every error vector e of at most p fraction 1’s, most messages
m can be efficiently (uniquely) decoded from the corrupted codeword C(m) + e. Note that such codes
cannot be linear, as the bad error patterns for all messages are the same in a linear code. We also give
a new proof of the existence of such codes based on list decoding and certain algebraic manipulation
detection codes. Our proof is simpler than the previous proofs from the literature on arbitrarily varying
channels.
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1 Introduction

By Shannon’s seminal work [23], we know that for the binary symmetric channel BSCp which flips each
transmitted bit independently with probability p, there exist binary codes of rate 1 −H(p) − ε that enable
reliable information transmission with exponentially small probability of miscommunication. Here ε > 0 is
arbitrary and H(·) is the binary entropy function. The quantity 1−H(p) is called the (Shannon) capacity of
the BSCp channel. But what if the errors are adversarial and not randomly distributed? For the adversarial
channel ADVp where the channel can corrupt up to a fraction p of symbols in an arbitrary manner, it is
known that for error-free communication to be possible, the rate has to be much smaller than the Shannon
capacity 1 − H(p). The best rate known to date, even by non-constructive methods, equals 1 − H(2p)
(the Gilbert-Varshamov bound). Determining the best asymptotic rate for error fraction p (equivalently,
minimum relative distance 2p) remains an important open question in combinatorial coding theory.

Shared randomness. There are some relaxations of the model, however, which enable achieving capacity
even against worst-case errors. One of these is to allow randomized coding strategies where the sender and
receiver share “secret” randomness (hidden from the channel) which is used to pick a coding scheme at
random from a family of codes (such codes were called private codes in [17]). Using such strategies, it is
easy to see that one can achieve the capacity 1−H(p) against ADVp (for example, by randomly permuting
the symbols and adding a random offset [20, 17]). Using explicit codes achieving capacity on the BSCp [9],
we can even get such randomized codes of rate approaching 1−H(p) explicitly.

The amount of shared randomness in the above setting can be reduced if we make computational assump-
tions on the channel [20, 6] — the encoder and decoder only need to share a private seed for a pseudorandom
generator. For channels which distribute errors “evenly” (that is, without significant bursts), this seed can be
communicated over the channel in a separate “setup” round by encoding it in a highly redundant code of very
small rate [10]. One can also reduce the shared randomness without computational assumptions by using
“list-decodable” codes together with standard message authentication techniques [17, 24]. It was also shown
that one can eliminate the shared randomness and instead require that the sender know a public key (which
the channel may also know) for which the receiver has the secret key [21]. To achieve capacity, however,
the last two approaches require list-decodable codes of optimal rate, for which no explicit constructions are
known.

List decoding. List decoding is another relaxation of the basic coding model that enables one to commu-
nicate on the adversarial channel ADVp at rates close to capacity 1 −H(p). List decoding was introduced
in the late 1950s [7, 26] and has witnessed a lot of recent algorithmic work (cf. the survey [12]). With
list decoding, the decoder outputs a small list of messages that must include the correct message. Random
coding arguments assert the existence of binary codes of rate 1−H(p)−ε for which error-correction against
ADVp is possible if the decoder is allowed to output a list of sizeO(1/ε) [8, 27, 13]. However, there are two
significant drawbacks to list decoding as it currently stands. First, in the worst case, one has to be content
with pinning down the message to a small list of possibilities. (If a small amount of auxiliary information
can be communicated on a noiseless side channel or shared ahead of time, then it becomes possible to pick
the correct element from the list with high probability [11, 17], but again this requires extra setup) Second,
explicit constructions of binary list-decodable codes with rate close to capacity are not known; whether an
explicit construction is possible remains a major open question.1

Assuming shared randomness, a separate setup round, or side information all go beyond the basic model
1For list decoding over large alphabets, capacity achieving codes were constructed in [14], but the binary case remains wide

open. The constructions with the best currently known rate are given in [15], but these are still quite far from capacity.
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of one-shot communication of a message from a sender to a receiver (over a noisy channel). Our motivation
is to avoid shared randomness, ambiguous list output, a setup stage, etc. and construct a block code of rate
close to capacity that can be used to recover the correct message from a broad class of errors (in particular,
a class that siginificantly generalizes BSCp but remains weaker than the fully adversarial channel ADVp).

Arbitrarily varying channels (AVCs) are used to model channel uncertainty and they bridge between
worst-case and random error models. AVCs are extremely well studied in the information theory literature
(see [19] for a nice survey), but have not received much algorithmic attention. An AVC is specified by a finite
state space S and the channel’s behavior varies according to its state. For the case of binary-input binary-
output channels, the channel noise when in state s ∈ S is given by a 2×2 stochastic matrixWs s.t. W (y | x)
is the probability that y is output on input x. The goal is to achieve reliable comcommunication when the
AVC state changes arbitrarily (hence the name) for each codeword bit — for an arbitrary state sequence
(s1, s2, . . . , sn) ∈ Sn, the i’th bit is affected by Wsi . In a state-constrained AVC, the state sequence
(s1, . . . , sn) is limited to a subset of possible vectors in Sn. A simple AVC is the “additive channel” where
S = {0, 1} and, when in state s, the channel adds smod 2 to the input bit. If we constrain the state sequence
(s1, s2, . . . , sn) so that

∑n
i=1 si 6 pn, we can model the setting where an arbitrary error vector e with at

most p fraction 1’s is added (xor’d) to the codeword by the channel; the important restriction here is that the
error pattern is chosen independently of the codeword.

Oblivious Additive Errors. Csiszár and Narayan determine the capacity of an AVC with state constraints
for the “average error criterion” [4]. A special case of their result is the following surprising claim for the
binary additive AVC channel: There exist binary codes E : {0, 1}k → {0, 1}n of rate approaching 1−H(p)
with a deterministic decoding rule D such that for every error vector e of Hamming weight at most pn, for
most (all but a exp(−Ω(k)) fraction) of messages m, D correctly recovers m from E(m) + e. Note that
codes providing this guarantee cannot be linear, since the bad error vectors for all codewords are the same
in a linear code. The decoding rule used in [4] to prove this claim was quite complex, and it was simplified
to the more natural closest codeword rule in [5]. Langberg [18] revisited this special case and gave another
proof of the above claim. He also coined the term oblivious channel for this noise model, to capture the fact
that the error vector is chosen without knowledge of the message. We will use the term oblivious additive
errors to refer to this model. The proofs of the existence of the above capacity-achieving codes for the
average error criterion [4, 5, 18] are quite involved; one of the contributions of this paper is an alternate,
simpler proof using list decoding.

Worst-case Additive Errors. The proof of Csiszár and Narayan [4] mentioned above in fact implies a
stronger claim (see the remark at the end of [4]): For every message and every error pattern of at most a
fraction p of errors (in particular the error can depend arbitrarily on the message), there is a “stochastic”
code of rate approaching 1−H(p) that encodes the messagem combined with a small number extra random
bits r, such that, with high probability over r, the message m as well as r can be correctly recovered by a
decoder without a priori knowledge of the encoder’s random bits r. This is stronger than the average error
criterion since we can define a deterministic code whose message consists of both m and r, and its average
error probability will be at most the maximum error probability of the stochastic code.

The ability to flip random coins at the encoder is a modest assumption that is easily met in most settings.
Also, the above stochastic codes allow the channel to pick the error vector e with full knowledge of the
message m to be transmitted, and correct communication still occurs w.h.p. (The error vector is “codeword
oblivious” but not “message oblivious.”) We call this channel model WECp (worst-case additive errors): an
adversarially picked error vector e is added to the encoding of m regardless of which of its many possible
encodings (corresponding to different random choices at the encoder) is transmitted. Note that the WECp
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model captures both random error models such as BSCp as well as some channels with memory, such as
bursty channels.

Unfortunately, the techniques of Csiszár and Narayan [4] are non-constructive, based on (non-trivial)
random coding arguments. The challenge therefore is to construct explicit stochastic codes achieving ca-
pacity on the WECp channel. Our main result is exactly such a construction; we also give a new, simpler
existential results.

2 Our Results

Existential result via list decoding. We give a novel construction of stochastic codes for the WECp chan-
nel by combining linear list-decodable codes with a certain kind of authentication code called algebraic
manipulation detection (AMD) codes (Section 5). Such AMD codes can detect additive corruption with
high probability, and were defined and constructed for a cryptographic motivation in [3]. The decoder does
not have access to the randomness r to “sign” the message m. The linearity of the list-decodable code is
therefore crucial to make the combination with AMD codes work. The linearity ensures that the spurious
messages output by the list-decoder are all additive offsets of the true message that depend only on the error
vector (and not on m, r).

By using the existence of binary linear codes that achieve list decoding capacity, one can conclude
the existence of stochastic codes of rate approaching 1 − H(p) for communication on WECp. This is a
simpler proof than the earlier ones [4, 5]. An additional positive feature of our construction is that even
when the fraction of errors exceeds p, the decoder outputs a decoding failure with high probability (rather
than decoding incorrectly)! This feature is important when using these codes as a component in our explicit
construction mentioned next.

An explicit construction achieving capacity. For list decoding, explicit binary codes of optimal rate are
not known, so one cannot use the above connection to construct explicit stochastic codes of rate ≈ 1 −
H(p) on the WECp channel. Nevertheless, using several tools and constructions from coding theory and
pseudorandomness (see Section 3 for an overview), we give an explicit construction of capacity-achieving
stochastic codes against worst-case additive errors.2

Theorem 1. For every p ∈ (0, 1/2), every ε > 0, and infinitely many n, there exists an explicit, efficiently
encodable and decodable stochastic code of block length n and rate R > 1 − H(p) − ε which corrects a
p fraction of worst-case additive errors with probability 1 − o(1), that is, for every message m and error
vector e of Hamming weight at most pn, we have

Pr
r

(DECODE(ENCODE(m, r) + e) = m) > 1− exp(−Ωp,ε(n/ log2 n)) .

Deterministic codes against oblivious errors. We also get a similar explicit construction of capacity-
achieving deterministic codes for average error criterion against oblivious additive errors.

Theorem 2. For every p ∈ (0, 1/2), and every ε > 0, and infinitely many n, there is an explicit binary code
of rate R at least 1−H(p)− ε together with deterministic polynomial time algorithms ENC and DEC such
that for every error vector e of Hamming weight at most pn, we have

Pr
m

(DEC(ENC(m) + e) = m) > 1− exp(−Ωp,ε(n/ log2 n)) ,

where the probability is over a uniform choice of message m ∈ {0, 1}Rn.
2Although we focus on the binary alphabet case in this paper, we believe, though have not verified, that our techniques will

extend to any fixed finite field.
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Figure 1: Schematic description of encoder from Algorithm 1.

3 Construction overview

Our result is obtained by combining several ingredients in pseudorandomness and coding theory. At a high
level the idea (introduced by Lipton [20] in a different context) is that if we permute the symbols of the
codewords randomly (after the error pattern is fixed), then the adversarial error pattern looks random to
the decoder. Therefore, an explicit code CBSC that can achieve capacity for the binary symmetric channel
(such as Forney’s concatenated code construction [9]) can be used to communicate on WECp (in fact even
on ADVp) after the codewords symbols are randomly permuted. This allows one to achieve capacity against
adversarial errors when the encoder and decoder share randomness that is unknown to the adversary causing
the errors. But, crucially, this requires the decoder to know the random permutation that was used at the
encoding.

Our encoder communicates the random permutation (in encoded form) also as part of the overall code-
word, without relying on any shared randomness, public key, or other “extra” information. The decoder must
be able to figure out the permutation correctly solely based on a noisy version of the overall codeword (that
encodes the permutation plus the actual data). The seed used to pick this random permutation (plus some
extra random seeds needed for the construction) is encoded by a low rate code that can correct several errors
(say a Reed-Solomon code) and this information is dispersed into randomly located blocks of the overall
codeword (see Figure 1). The random locations to place the control blocks are picked by a “sampler” — the
seed for this sampler is also part of the control information along with the seed for the random permutation.

The key challenge is to ensure that the decoder can figure out which blocks encode the control infor-
mation, and which blocks consist of “data” bits from the codeword of CBSC (the “payload” codeword) that
encodes the actual message. The control blocks (which comprise a tiny portion of the overall codeword)
are further encoded by a stochastic code (call it the control code) that can correct somewhat more than a
fraction p, say a fraction p + ε, of errors. These codes can have any constant rate — since they encode a
small portion of the message their rate is not so important, so we can use explicit sub-optimal codes for this
purpose.

Together with the random placement of the encoded control blocks, the control code ensures that a
reasonable (Ω(ε)) fraction of the control blocks (whose encodings by the control code incur fewer than
p + ε errors) will be correctly decoded. Moreover any blocks with too many errors will be flagged as
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an erasure with high probability. The fraction of correctly recovered control blocks will be large enough
that all the control information can be recovered by decoding the Reed-Solomon code used to encode the
control information into these blocks. This recovers the permutation used to scramble the symbols of the
concatenated codeword. The decoder can then unscramble the symbols in the message blocks and run the
standard algorithm for the concatenated code to recover the message.

One pitfall in the above approach is that message blocks could potentially get mistaken for corrupted
control blocks and get decoded as erroneous control information that leads the whole algorithm astray. To
prevent this, in addition to scrambling the symbols of the message blocks by a (pseudo)random permutation,
we also add a pseudorandom offset (which is nearly t-wise independent for some t much larger than the
length of the blocks). This will ensure that with high probability each message block will be very far from
every codeword and therefore will not be mistaken for a control block.

One important issue we have glossed over is that a completely random permutation of the n bits of the
payload codeword will take Ω(n log n) bits to specify. This would make the control information be too big
compared to the message length (whereas we need it to be a tiny fraction of the message length). Therefore,
we use almost t-wise independent permutations for t ≈ εn/ log n. Such permutations can be sampled
with ≈ εn random bits. We then make use of the fact that CBSC enables reliable decoding even when the
error locations have such limited independence instead of being a uniformly random subset of all possible
locations [24].

4 Some Coding Terminology

We define the relevant coding-theoretic notions.

Definition 1 (List decodable codes). For a real p, 0 < p < 1, and an integer L > 1, a code C ⊆ Σn is said
to be (p, L)-list decodable if for every y ∈ Σn there are at most L codewords of C within Hamming distance
pn from y. If for every y the list of 6 L codewords within Hamming distance pn from y can be found in
time polynomial in n, then we say C is efficiently (p, L)-list decodable. Note that (p, 1)-list decodability is
equivalent to the distance of C being greater than 2pn. 2

An efficiently (p, L)-list decodable code can be used for communication on the ADVp channel with the
guarantee that the decoder can always find a list of at most L messages that includes the correct message.

Definition 2 (Codes for average error). A code C with encoding function E : M → Σn is said to be
(efficiently) p-decodable with average error δ if there is a (polynomial time computable) decoding function
D : Σn → M ∪ {⊥} such that for every error vector e ∈ Σn, the following holds for at least a fraction
(1− δ) of messages m ∈M: D(E(m) + e) = m. 2

The following is the main property that we are interested in achieving in this work. A generalization of
this notion (see Definition 4 and Observation 3 below) is in fact stronger than the notion of codes for average
error. Also, though we do not require it in the definition, our constructions of stochastic codes will also have
the desirable property that when the number of errors exceeds pn, with high probability the decoder will
output ⊥ (a decoding failure) rather than decoding incorrectly.

Definition 3 (Stochastic codes and their decodability). A stochastic binary code of rate R and block length
n is given by an encoding function Enc : {0, 1}Rn×{0, 1}b → {0, 1}n which encodes the Rn message bits
together with some additional random bits into an n-bit codeword.

Such a code is said to be (efficiently) p-decodable with probability 1 − δ if there is a (deterministic
polynomial time computable) decoding function Dec : {0, 1}n → {0, 1}Rn ∪ {⊥} such that for every
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m ∈ {0, 1}Rn and every error vector e ∈ {0, 1}n of Hamming weight at most pn, with probability at least
1− δ over the choice of a random string ω ∈ {0, 1}b, we have Dec

(
Enc(m,ω) + e

)
= m.

In this case, we also say that the stochastic code C allows reliable communication over the worst-case
channel WECp with probability at least 1− δ. 2

Definition 4 (Strongly decodable stochastic codes). For a code as in Definition 3, if the decoding function
correctly computes in addition to the messagem also the randomness ω used at the encoder with probability
at least 1− δ, the we say that the stochastic code is strongly p-decodable with probability 1− δ. 2

Using a strongly decodable stochastic code we can get a code for average error by simply using the last
few bits of the message as the randomness of the stochastic encoder. If the number of random bits used by
the stochastic code is small compared to the message length, the rates of the codes in the two models are
almost the same.

Observation 3. A stochastic code SSC that is strongly p-decodable with probability 1− δ gives a code AVC
of the same block length that is p-decodable with average error δ. If the ratio of number of random bits to
message bits in SSC is λ, the rate of AVC is (1 + λ) times the rate of SSC.

5 List decoding implies codes for worst-case additive errors

In this section, we will demonstrate how to use good linear list-decodable codes to get good stochastic
codes. The conversion uses the list-decodable code as a black-box and loses only a negligible amount
in rate. In particular, by using binary linear codes that achieve list decoding capacity, we get stochastic
codes which achieve the capacity of WECp (note that the linearity of the code is crucial for our analysis).
The other ingredient we need for the construction is an authentication code (“MAC”) that can detect additive
corruption with high probability, which has been studied under the label of Algebraic manipulation detection
(AMD) codes [3].

5.1 Algebraic manipulation detection (AMD) codes

The following is not the most general definition of AMD codes from [3], but will suffice for our purposes
and is the one we will use.

Definition 5. Let G = (G1, G2, G3) be a triple of abelian groups (whose group operations are written
additively) and δ > 0 be a real. LetG = G1×G2×G3 be the product group (with componentwise addition).
An (G, δ)-algebraic manipulation code, or (G, δ)-AMD code for short, is given by a map f : G1×G2 → G3

with the following property:
For every x ∈ G1, and all ∆ ∈ G, Prr∈G2

[
D((x, r, f(x, r)) + ∆) /∈ {x,⊥}

]
6 δ ,

where the decoding function D : G → G1 ∪ {⊥} is given by D((x, r, s)) = x if f(x, r) = s and ⊥
otherwise. The tag size of the AMD code is defined as log |G2| + log |G3| — it is the number of bits the
AMD encoding appends to the source. 2

Intuitively, the AMD allows one to authenticate x via a signed form (x, r, f(x, r)) so that an adversary
who manipulates the signed value by adding an offset ∆ cannot cause incorrect decoding of some x′ 6= x.
The following concrete scheme from [3] achieves near optimal tag size and we will make use of it.

Theorem 4. Let F be a finite field of size q and characteristic p, and d be a positive integer such that d+ 2
is not divisible by p. Then the function f (d)

AMD : Fd × F→ F given by f (d)
AMD(x, r) = rd+2 +

∑d
i=1 xir

i is a(
G, d+1

q

)
-AMD code with tag size 2 log q where G = (Fd,F,F).3

3Here we mean the additive group of the vector space Fd.
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5.2 Combining list decodable and AMD codes

Using a (p, L)-list decodable codeC of length n, for any error pattern e of weight at most pn, we can recover
a list of L messages that includes the correct message m. We would like to use the stochastic portion of the
encoding to allow us to unambiguously pick outm from this short list. The key insight is that if C is a linear
code, then the other (less than L) messages in the list are all fixed offsets of m that depend only on the error
pattern e. So if prior to encoding by the list-decodable code C, the messages are themselves encodings as
per a good AMD code, and the tag portion of the AMD code is good for these fixed L or fewer offsets, then
we can uniquely detect m from the list using the AMD code. If the tag size of the AMD code is negligible
compared to the message length, then the overall rate is essentially the same as that of the list-decodable
code. Since there exist binary linear (p, L)-list-decodable codes of rate approaching 1 −H(p) for large L,
this gives stochastic codes (in fact, strongly decodable stochastic codes) of rate approaching 1 −H(p) for
the WECp channel.

Theorem 5 (Stochastic codes from list decoding and AMD). Let b, d be positive integers with d odd and
k = b(d+ 2). Let C : Fk2 → Fn2 be the encoding function of a binary linear (p, L)-list decodable code. Let
f

(d)
AMD be the function from Theorem 4 for the choice F = F2b . Let C ′ be the stochastic binary code with

encoding map E : {0, 1}bd × {0, 1}b → {0, 1}n given by

E(m, r) = C
(
m, r, f

(d)
AMD(m, r)

)
.

Then if d+1
2b 6 δ

L , the stochastic code C ′ is strongly p-decodable with probability 1 − δ. If C is efficiently
(p, L)-list decodable, then C ′ is efficiently (and strongly) p-decodable with probability 1− δ.

Moreover, even when e has weight greater than pn, the decoder detects this and outputs ⊥ (a decoding
failure) with probability at least 1− δ.

Note that the rate of C ′ is d
d+2 times the rate of C.

Proof. Fix an error vector e ∈ {0, 1}n and a message m ∈ {0, 1}bd. Suppose we pick a random r and
transmit E(m, r), so that y = E(m, r) + e was received.

The decoding function D, on input y, first runs the list decoding algorithm for C to find a list of
` 6 L messages m′1, . . . ,m

′
` whose encodings are within distance pn of y. It then decomposes m′i as

(mi, ri, si) in the obvious way. The decoder then checks if there is a unique index i ∈ {1, 2, . . . , `} for
which f (d)

AMD(mi, ri) = si. If so, it outputs (mi, ri), otherwise it outputs ⊥.
Let us now analyze the above decoder D. First consider the case when wt(e) 6 pn. In this case we

want to argue that the decoder correctly outputs (m, r) with probability at least 1 − δ (over the choice of
r). Note that in this case one of the m′i’s equals (m, r, f (d)

AMD(m, r)), say this happens for i = 1 w.l.o.g.
Therefore, the condition f (d)

AMD(m1, r1) = s1 will be met and we only need to worry about this happening
for some i > 1 also.

Let ei = y −C(m′i) be the associated error vectors for the messages m′i. Note that e1 = e. By linearity
of C, the ei’s only depend on e; indeed if c′1, . . . , c

′
` are all the codewords of C within distance pn from e,

then ei = c′i + e. Let ∆i be the preimage of c′i, i.e., c′i = C(∆i). Therefore we have m′i = m′1 + ∆i where
the ∆i’s only depend on e. By the AMD property, for each i > 1, the probability that f (d)

AMD(mi, ri) = si
over the choice of r is at most d+1

2b 6 δ/L. Thus with probability at least 1 − δ, none of the checks

f
(d)
AMD(mi, ri) = si for i > 1 succeed, and the decoder thus correctly outputs m1 = m.

In the case when wt(e) > pn, the same argument shows that the check f (d)
AMD(mi, ri) = si passes with
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probability at most δ/L for each i (including i = 1). So with probability at least 1 − δ none of the checks
pass, and the decoder outputs ⊥.

Plugging into the above theorem the existence of binary linear (p,O(1/ε))-list-decodable codes of rate
1−H(p)− ε/2, and picking d = 2dc0/εe+ 1 for some absolute constant c0, we can conclude the following
result on existence of stochastic codes achieving capacity for reliable communication on the WECp channel.

Corollary 6. For every p, 0 < p < 1/2 and every ε > 0, there exists a family of stochastic codes of rate at
least 1 −H(p) − ε and a deterministic (exponential time) decoder which enables reliable communication
over WECp with probability of miscommunication at most 2−Ωε,p(n), where n is the block length. Moreover,
when more than a fraction p of errors occur, the decoder is able to detect this and report a decoding failure
with probability at least 1− 2−Ωε,p(n).
If we have explicit binary codes of rate R that can be efficiently list-decoded from fraction p of errors
with list-size at most some constant L = L(p), we can construct explicit stochastic codes with the above
guarantee with rate R along with an efficient decoder.

Remark 1. Since the above stochastic codes are strongly p-decodable, by Observation 3 they also imply
capacity achieving codes for the average error criterion: for every error vector, all but an exponentially small
fraction of messages are communicated correctly.

6 Explicit Codes for Worst-case Additive Errors

6.1 Ingredients

Our construction uses a number of tools from coding theory and pseudorandomness. These are described in
detail in Appendix A. Briefly, we use:
• A constant-rate explicit stochastic code SC : {0, 1}b × {0, 1}b → {0, 1}cob, defined on blocks of

length c0b = Θ(logN), that is efficiently strongly p + O(ε) decodable with probability 1 − c1/N .
This follows from Theorem 5 above.

• A rate O(ε) Reed-Solomon code RS which encodes a message as the evaluation of a polynomial at
points α1, ..., α` in such a way that an efficient algorithm RS-DECODE can efficiently recover the
message given at most ε`/4 correct symbols and at most ε/24 incorrect ones.

• A randomness-efficient sampler Samp : {0, 1}σ → [N ]` , such that for any subset B ⊆ [N ] of size
at least µN , the output set of the sampler intersects with B in roughly a µ fraction of its size, that is
|Samp(s) ∩ B| ≈ µ|Samp(s)|, with high probability over s ∈ {0, 1}σ. We use an expander-based
construction from Vadhan [25].

• A generator KNR : {0, 1}σ → Sn for an (almost) t-wise independent family of permutations of the
set {1, ..., n}, that uses a seed of σ = O(t log n) random bits (Kaplan, Naor, and Reingold [16]).

• A generator POLYt : {0, 1}σ → {0, 1}n for a t-wise independent distribution of bit strings of length
n, that uses a seed of σ = O(t log n) random bits.

• An explicit efficiently decodable, rate R = 1 − H(p) − O(ε) code REC : {0, 1}Rn → {0, 1}n that
can correct a p fraction of t-wise independent errors, that is: for every message m ∈ {0, 1}Rn, and
every error vector e ∈ {0, 1}n of Hamming weight at most pn, we have Dec(REC(m) + π(e)) = m
with probability at least 1− 2−Ω(ε2t) over the choice of a permutation π ∈R range(KNR). (Here π(e)
denotes the permuted vector: π(e)i = eπ(i).) A standard family of concatenated codes satisfies this
property (Smith [24]).
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Algorithm 1. ENCODE: On input parameters N, p, ε (with p + ε < 1/2), and message m ∈ {0, 1}R·N , where
R = 1−H(p)−O(ε).

1: Λ← 2c0 � Here c0 = c0(p + ε) is the constant in the stochastic code from Proposi-
tion 14 that can correct a fraction p+ ε of errors.

2: n← N
Λ logN � The final codeword consists of n blocks of length Λ logN .

3: `← 24εN/ logN � The control codeword is ` blocks long.
4: n′ ← n− ` and N ′ ← n′ · (Λ logN) � The payload codeword is n′ blocks long (i.e. N ′ bits).

Phase 1: Generate control information

5: Select sπ ←R {0, 1}ε
2N . � sπ is a seed for picking a permutation of [N ′] from an almost t-wise inde-

pendent family as per Proposition 17, where t = Ω(ε2N/ logN).

6: Select s∆ ←R {0, 1}ε
2N . � s∆ is a seed for picking a t′-wise independent string ∆, where t′ =

Ω(ε2N/ logN) as per Proposition 18.

7: Select sT ←R {0, 1}ε
2N . � sT is a seed for sampling a pseudorandom subset T ⊂ [n] = [n′+ `] of size

` as per Proposition 16.
8: ω ← (sπ, s∆, sT ) � Total length |ω| = 3ε2N .

Phase 2: Encode control information

9: Let F = FN and S = (α1, . . . , α`) ⊆ F be an arbitrary subset of size `.
Compute (a1, ..., a`)← RSF,S,`,|ω|/ logN (ω).

� RS (defined in (1)) is a rate ε/8 Reed-Solomon code of length 24εN = 8
ε · |ω|

bits, i.e., ` = 24εN/ logN field symbols.
10: for i← 1 to ` do
11: Ai ← (αi, ai)

� Add location information to each RS symbol to get block Ai of 2 logN bits.
12: Set Ci ← SC(Ai, ri), where ri ←R {0, 1}2 logN .

� Here SC = SC2 logN,p+ε : {0, 1}2 logN ×{0, 1}2 logN → {0, 1}Λ logN is a stochastic code that allows
reliable communication over WECp+ε with probability 1− c1/N2 > 1−1/N as per Proposition 14.

� The control information ω is thus encoded by a concatenated code with an outer Reed-Solomon
code and inner code SC.

13: end for

Phase 3: Generate the payload codeword

14: P ← REC(m), � REC : {0, 1}R′N ′ → {0, 1}N ′
is a code that can correct a p+ 25Λε fraction of

t-wise independent errors, as per Proposition 19. Here R′ = RN
N ′ .

15: π ← KNR(sπ) � Generate permutation π : [n]→ [n] using Proposition 17.
16: ∆← POLY(s∆) � Generate random offset string ∆ ∈ {0, 1}n as guaranteed by Proposi-

tion 18.
17: π−1(P )← (bits of P permuted according to π−1)
18: Q← π−1(P )⊕∆
19: Cut Q into n′ blocks B1, ...Bn′ of length Λ logN bits. � Recall that n′ = n

Λ logN .

Phase 4: Interleave blocks of payload codeword and control codeword

20: T ← Samp(sT ) � Generate pseudorandom size-` subset of [n′ + `] as locations for control
blocks, using sampler of Proposition 16.

21: Interleave blocks C1, ..., C` with blocks B1, ..., Bn′ , using Ci blocks in positions from T and Bi blocks in positions
from T = [n′ + `] \ T .
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Algorithm 2. DECODE: On input a received word x of the length output by ENCODE.
� The decoder’s pseudocode is annotated with statements about perfor-

mance. These claims assume that x = ENCODE(m;ω, r1, . . . , r`) + e
where e contains at most a fraction p of ones and the random string
(ω; r1, r2, . . . , r`) is uniform and independent of the pair (m, e).

1: Cut x into n′ + ` blocks x1, ..., xn′+` of length Λ log(n) each.
2: for i← 1 to n′ + ` do
3: F̃i ← SC-DECODE(xi).

� Run the decoder for the stochastic code SC used to encode the symbols of the RS codeword
encoding the control blocks.

� With high prob, non-control blocks are rejected (Lemma 10), and control blocks are either cor-
rectly decoded or discarded (Lemma 9).

4: if F̃i 6=⊥ then
5: Parse F̃i as (α̃i, ãi), where α̃i, ãi ∈ FN .
6: end if
7: end for
8: (s̃T , s̃∆, s̃π)← RS-DECODE

(
pairs (α̃i, ãi) output above

)
.

� With high prob., enough control blocks are decoded correctly to recover the
control information (Lemma 11).

9: T̃ ← Samp(s̃T ),
∆̃← POLY(s̃∆)
π̃ ← KNR(s̃π)

10: Q̃← concatenation of blocks xi in [n′ + k] \ T̃
� Fraction of errors in Q̃ is at most p+O(ε).

11: P̃ ← π(Q̃⊕ ∆̃)
� If control info is correct, then errors in P̃ are almost t-wise independent.

12: m̃← REC-DECODE(P̃ )
� Run the decoder from Proposition 19.

� With high prob., m̃ = m

6.2 Main Theorem

We are now ready to prove our main result (Theorem 1), which we restate below.

Theorem 7. For every p ∈ (0, 1/2), and every ε > 0, the functions ENCODE, DECODE (Algorithms 1
and 2) form an explicit, efficiently encodable and decodable stochastic code with rate R = 1 − H(p) − ε
which allows reliable communication over WECp with probability 1 − exp(−Ω(ε2N/ log2N))), where N
is the block length of the code.

With all the ingredients described in Appendix A in place, we can describe and analyze the code of
Theorem 7. The encoding algorithm is given in Algorithm 1 (page 9). The corresponding decoder is given
in Algorithm 2 (page 10). Also, a schematic illustration of the encoding is in Figure 1. The reader might
find it useful to keep in mind the high level description from Section 3 when reading the formal description.

Proof of Theorem 7: The rate R of the overall code is almost equal to the rate R′ of the code REC used to

10



encode the actual message bits m, since the encoded control information has length O(εN) which is much
smaller than the number of message bits (by picking ε small enough). The code REC needs to correct a
fraction p + 25Λε of t-wise independent errors, so we can pick R′ > 1 − H(p) − O(ε). Now the rate
R = R′N ′

N = R′(1− 24Λε) > 1−H(p)−O(ε) (for small enough ε > 0).
We now turn to the analysis of the decoder. Fix a message m ∈ {0, 1}R·N and an error vector

e ∈ {0, 1}N with Hamming weight at most pN . Suppose that we run ENCODE on m and coins ω cho-
sen independently of the pair m, e, and let x = ENCODE(m;ω) + e. The decoder parses x into blocks
x1, ..., xn′+` of length Λ logN , corresponding to the blocks output by the encoder.

We first prove that the control information is correctly recovered with high probability. This is content of
the four lemmas below which are proved in the next section (Section 6.3). Conditioning on correct recovery
of the control information, we then use the analysis from [24] to show that the payload message is correctly
recovered.

Definition 6. A sampled set T is good for error vector e if the fraction of control blocks with relative error
rate at most p+ ε is at least ε2 . 2

Lemma 8. For any error vector e of relative weight at most p, with probability at least 1−exp(−Ω(ε3N/ logN)
over the choice of sampler seed sT , the set T is good for e.

Lemma 9. For any e, T such that T is good for e, with probability at least 1− exp(−Ω(ε3N/ logN)) over
the random coins (r1, r2, . . . , r`) used by the ` SC encodings, we have:

1. The number of control blocks correctly decoded by SC-DECODE is at least ε`4 .

2. The number of erroneously decoded control blocks is less than ε`
24 .

(By erroneously decoded, we mean that SC-DECODE outputs neither ⊥ nor the correct message.)

Lemma 10. For every m, e, sT , sπ, with probability at least 1 − exp(−Ω(ε2N/ log2N))) over the offset
seed s∆, the number of payload blocks incorrectly accepted as control blocks by SC-DECODE is less than
ε`
24 .

Lemma 11. For any m and e, with probability 1 − exp(−Ω(ε2N/ log2N)) over the choice of the control
information and the coins of SC, the control information is correctly recovered, that is r̃ = r.

We defer the proof these lemmas to the next section. First, we use them to prove that our stochastic code
corrects worst-case additive errors at rates arbitrarily close to capacity (Theorem 7).

The lemmas show that the control information r is correctly recovered with high probability. Suppose
for a moment that they are recovered correctly with probability exactly one — that is, assume that the correct
control information is magically handed directly to the decoder (we will subsequently adjust the argument
to deal with conditioning on this event).

Fix a message m, error vector e, and sampler seed sT , and let eQ be the restriction of e to the payload
codeword, i.e., blocks not in T . The relative weight of eQ is at most pNN ′ = pN

′+`Λ logN
N ′ = p(1+24εΛ N

N ′ ) 6
p(1 + 25Λε) (for sufficiently small ε).

Now since sπ is selected independently from T , and since the control information is assumed to be
correct with probability 1, the permutation π is independent of the payload error eQ. Consider the string P̃
that is input the the REC decoder. We can write P̃ = π̃(Q̃⊕ ∆̃) = π(Q⊕ eQ ⊕∆). Because a permutation
of the bit positions is a linear permutation of ZN ′2 , we get P̃ = π(Q+ ∆)⊕ π(eQ) = P ⊕ π(eQ).
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Thus the input to REC is corrupted by a fraction of at most p(1+25Λε) errors which are t-wise indepen-
dent, in the sense of Proposition 19 [24]. Thus, with probability at least 1− e−Ω(ε2t) = 1− e−Ω(ε4N/ logN),
the message m is correctly recovered by DECODE.

In the actual construction, the control information is not handed directly to the decoder. Instead, we must
condition our analysis on the control information being decoded correctly, which introduces dependencies
between e and π. Nevertheless, conditioning on an event of probability q can increase the likelihood of
any other event by a factor of at most 1/q. Hence, the probability of incorrectly decoding the message m
conditioned on the control information being correctly recovered is at most

Pr(REC decodes m incorrectly given correct r)
Pr(r is correctly recovered)

6 2 Pr(REC decodes m incorrectly given correct r) .

Overall, the error probability is exp(−Ω(ε2N/ log2N))) (the probability of incorrectly recovering r from
Lemma 11), plus exp(−Ω(ε4N/ logN)) (the probability that REC erroneously decodes m). Because ε is
a constant relative to logN , it is the former probability that dominates. This completes the analysis of the
decoder and the proof of Theorem 7.

Remark 2. It will be interesting to achieve an error probability of 2−Ωε(N), i.e., a positive “error exponent,”
in Theorem 7 instead of the 2−Ωε(N/ log2N) bound we get. A more careful analysis (perhaps one that works
with almost t′-wise independent offset ∆) can probably improve our error probability to 2−Ωε(N/ logN),
but going further using our approach seems difficult. The existential result due to Csiszár and Narayan [4]
achieves a positive error exponent for all rates less than capacity, as does our existence proof using list
decoding in Section 5.2.

6.3 Proofs of Control Information Lemmas

We now prove the lemmas that bound the probability of the control information being correctly decoded.

Proof of Lemma 8. Let B ⊂ [n] = [n′ + `] be the set of blocks that contain a (p+ ε) or smaller fraction of
errors. We first prove that B must occupy at least an ε fraction of total number of blocks: to see why, let γ
be the proportion of blocks which have error rate at most (p+ ε). The total fraction of errors in x is then at
least (1 − γ)(p + ε). Since this fraction is at most p by assumption, we must have 1 − γ 6 p/(p + ε). So
γ > ε/(p+ ε) > ε.

Next, we show that the number of control blocks that have error rate at most p + ε cannot be too
small. The error e is fixed before the encoding algorithm is run, and so the sampler seed sT is chosen
independently of the set B. Thus, the fraction of control blocks in B will be roughly ε. Specifically, we can
apply Proposition 16 with µ = ε (since B occupies at least an ε fraction of the set of blocks), θ = ε/2 and
σ = ε2N . We get that the error probability γ is exp(−Ω(θ2`)) = exp(−Ω(ε3N/ logN). (Note that for
constant ε, the seed length σ = ε2N � logN+` log(1/ε) is large enough for the proposition to apply.)

Proof of Lemma 9. Fix e and the sampled set T which is good for e. Consider a particular received block
xi that corresponds to control block j, that is, xi = Cj + ei. The key observation is that the error vector ei
depends on e and the sampler seed T , but it is independent of the randomness used by SC to generate Cj .
Given this observation, we can apply Proposition 14 directly:

(a) If block i has error rate at most p + ε, then SC-DECODE decodes correctly with probability at least
1− c1/N

2 > 1− 1/N over the coins of SC.
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(b) If block i has error rate more than p + ε, then SC-DECODE outputs ⊥ with probability at least
1− c1/N

2 > 1− 1/N over the coins of SC.

Note that in both statements (a) and (b), the probability need only be taken over the coins of SC.
Consider Y, the the number of control blocks that either (i) have “low” error rate (6 p + ε) yet are not

correctly decoded, or (ii) have high error rate, and are not decoded as ⊥. Because statements (a) and (b)
above depend only on the coins of SC, and these coins are chosen independently in each block, the variable
Y is statistically dominated by a sum of independent Bernoulli variables with probability 1/N of being 1.
Thus E[Y] 6 `/N < 1. By a standard additive Chernoff bound, the probability that Y exceeds ε`/24 is at
most exp(−Ω(ε2`)). The bound on Y implies both the bounds in the lemma.

Proof of Lemma 10. Consider a block xi that corresponds to payload block j, that is, xi = Bj + ei. Fix
e, sT , and sπ. The offset ∆ is independent of these, and so we may write xi = yi + ∆i, where yi is fixed
independently of ∆i. Since ∆ is a t′-wise independent string with t′ = Ω(ε2N/ logN) much greater than
the size Λ logN of each block, the string ∆i is uniformly random in {0, 1}Λ logN . Hence, so is xi. By
Proposition 14 we know that on input a random string, SC-DECODE outputs ⊥ with probability at least
1− c1/N

2 > 1− 1/N
Moreover, the t′-wise independence of the bits of ∆ implies t′

Λ logN -wise independence of the blocks

of ∆. Define t′blocks = min{ t′

Λ logN ,
ε`
96}. Note that Ω

(
ε2N

log2N

)
6 t′blocks 6 ε`

96 . The decisions made by
SC-DECODE on payload blocks are t′blocks-wise independent. Let Z denote the number of payload blocks
that are incorrectly accepted as control blocks by SC-DECODE. We have E[Z] 6 n′

N 6 ε`/48 (for large
enough N ).

We can apply a concentration bound of Bellare and Rompel [2, Lemma 2.3] using t = t′blocks, µ =
E[Z] 6 ε`

48 , A = ε`
48 , to obtain the bound

Pr[Z > ε`
24 ] 6 8

(
t′blocks · µ+ (t′blocks)

2

(ε`/48)2

)t′blocks/2

6 (logN)−Ω(t′blocks) 6 e−Ω(ε2N log logN/ log2N) .

This bound implies the lemma statement.

Proof of Lemma 11. Suppose the events of Lemmas 9 and 10 occur, that is, for at least ε`/4 of the control
blocks the recovered value F̃i is correct, at most ε`/24 of the control blocks are erroneously decoded, and
at most ε`/24 of the payload blocks are mistaken for control blocks.

Because the blocks of the control information come with the (possibly incorrect) evaluation points α̃i, we
are effectively given a codeword in the Reed-Solomon code defined for the related point set {α̃i}. Now, the
degree of the polynomial used for the original RS encoding is d∗ = |ω|/ log(N)−1 < 3ε2N/ logN = ε`/8.
Of the pairs (α̃i, ãi) decoded by SC-DECODE, we know at least ε`4 are correct (these pairs will be distinct),
and at most 2 · ε`24 are incorrect (some of these pairs may occur more than once, or even collide with one of
the correct). If we eliminate any duplicate pairs and then run the decoding algorithm from Proposition 15,
the control information ω will be correctly recovered as long as the number of correct symbols exceeds the
number of wrong symbols by at least d∗+1. This requirement is met if ε`4 −2× ε`

24 > d∗+1. This is indeed
the case since d∗ < ε`/8.

Taking a union bound over the events of Lemmas 9 and 10, we get that the probability that the control
information is correctly decoded is at least 1− exp(−Ω(ε2N/ log2N)), as desired.
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7 Explicit capacity-achieving codes for the average error criterion

As mentioned in the introduction, much of the research on arbitrarily varying channels has considered
the average error of deterministic codes for uniformly distributed messages. By Observation 3, we can
obtain deterministic codes with good average error by constructing strongly decodable stochastic codes
(Definition 4). Recall that the decoder of a strongly decodable code recovers both the message and the
random bits used by the encoder with high probability.

The construction of the previous section can be modified to be strongly decodable, proving Theorem 2,
which we restate below.

Theorem 12. For every p ∈ (0, 1/2), and every ε > 0, there is an explicit family of binary codes of rate at
least 1−H(p)− ε that are efficiently p-decodable with average error exp(−Ω(ε2N/ log2N)), where N is
the block length of the code.

Proof. We need to modify the stochastic code so that the decoder for the stochastic code can also recover all
the random bits used at the encoding. We already showed (Lemma 11) that the random string ω comprising
the control information is in fact correctly recovered with high probability. However, there is no hope to
recover all the random strings r1, r2, . . . , r` used by the various SC encodings, since some of these control
blocks could be completely erased.

We solve this problem by using correlated random strings ri for the ` encodings SC(Ai, ri) in Step 12.
Specifically, we generate a random string ρ of the same length as the control information ω, that is, 3ε2N
bits. We compute the strings ri by encoding ρ with (almost) the same Reed-Solomon code used to encode
ω. Because the ri’s need to be 2 logN bits long, we increase the alphabet size to N2 (from N ); this halves
the rate of the code, bringing it to ε

16 . The RS encoding provides both redundancy (so we can recover all of
the ri given only a few of them) and enough independence so that the number of incorrectly decoded control
blocks is still tightly concentrated around its mean.

Step 12 of the encoding algorithm becomes:

12 a: ρ← {0, 1}3ε2N .
12 b: (r1, ..., r`)← RSF2,S,`,|ω|/2 logN (ρ).
12 c: Set Ci ← SC(Ai, ri).

Suppose for a moment that the decoder correctly recovers enough of the pairs (Ai, ri) to compute the
control information ω correctly. Then the decoder can also compute the string ρ since the ri are encoded
using the same code. The strings ω and ρ are the only random bits used by the encoder, so the decoder’s
task is then complete.

To analyze the modified code, we can therefore mimic the analysis of the original code. Lemmas 8, 10
and 11 require no modification; their proofs do not depend on the distribution of the random bits used to
encode the control blocks. Only Lemma 9, which bounds the number of correctly and incorrectly decoded
control blocks, needs a new proof. The main idea is that the symbols of the Reed-Solomon encoding of a
random string of t symbols are t-wise independent.

Lemma 13 (Modified Lemma 9). Suppose that Step 12 of stochastic encoder is modified as above. Then
for any e, T such that T is good for e, with probability at least 1− exp(−Ω(ε2N/ logN)) over the random
coins (r1, r2, . . . , r`) used by the ` SC encodings, we have:

1. The number of control blocks correctly decoded by SC-DECODE is at least ε`4 .
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2. The number of erroneously decoded control blocks is less than ε`
24 .

(By erroneously decoded, we mean that SC-DECODE outputs neither ⊥ nor the correct message.)

Proof. Let the indicator random variable Yi be 1 if control block i either (i) has “low” error rate (at most
p+ ε) and yet is not correctly decoded or (ii) has high error rate, and is not decoded as ⊥. Let Y be the sum
of the Yi’s. As in the original proof, it suffices to bound Y by ε`

24 to imply events 1 and 2 of the statement.
Individually, the ri’s are still uniform and independent of the error pattern, so each Yi has probability at

most 1/N of being 1. The ri’s are no longer mutually independent, but they are ε`
16 -wise independent, since

the symbols of a RS codeword of rate ε
16 and length ` are ε`

16 -wise independent (they are the evaluations of
a random polynomial of degree ε`

16 − 1).
We can apply a concentration bound of Bellare and Rompel [2, Lemma 2.3] for sums of t-wise indepen-

dent variables. In turns out to be convenient to use a slightly smaller value of t than we have available, in
order to fit the form of the existing bounds. Set t = ε`

48 . Using µ = E[Y] 6 `
N and A = ε`

24 , we obtain the
bound

Pr[Y > ε`
24 ] 6

(
tµ+ t2

A2

)t/2
=

(
ε`2

48N + ε2`2

482

ε2`2

242

)ε`/96

6 exp(−Ω(ε`)) = exp(−Ω(ε2N/ logN)) .

This completes the proof of the lemma, and hence the proof of the theorem.
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A Ingredients for Main Construction

In this section, we will describe the various ingredients that we will need in our construction of capacity
achieving AVC codes.

A.1 Constant rate codes for average error

By plugging in an appropriate explicit construction of list-decodable codes (with sub-optimal rate) into The-
orem 5, we can also get the following explicit constructions of stochastic codes, albeit not at capacity. We
will make use of these codes to encode blocks of logarithmic length control information in our final capacity-
achieving explicit construction. The total number of bits in all these control blocks together will only be
a small fraction of the total message length. So the stochastic codes encoding these blocks can have any
constant rate, and this allows us to use any off-the-shelf explicit constant rate list-decodable code in Theo-
rem 5 (in particular, we do not need a brute-force search for small list-decodable codes of logarithmic block
length). We get the following claim by choosing d = 1 and picking C to be a binary linear (α, c1(α)/2)-list
decodable code in Theorem 5.

Proposition 14. For every α, 0 < α < 1/2, there exists c0 = c0(α) > 0 and c1 = c1(α) < ∞ such
that for all large enough integers b, there is an explicit stochastic code SCk,α of rate 1/c0 with encoding
E : {0, 1}b × {0, 1}b → {0, 1}c0b that is efficiently strongly α-decodable with probability 1− c12−b.

Moreover, for every message and every error pattern of more than a fraction α of errors, the decoder for
SCk,α returns ⊥ and reports a decoding failure with probability 1 − c12−b. Further, on input a uniformly
random string y from {0, 1}c0b, the decoder for SCk,α returns ⊥ with probability at least 1 − c12−b (over
the choice of y).

Proof. The claim follows by choosing d = 1 and pickingC to be a binary linear (α, c1(α)/2)-list decodable
code in Theorem 5. The claim about decoding a uniformly random input follows since the number of strings
y which differ from some valid output of the encoder E is at most a fraction α of positions is at most
22b2H(α)c0b. By standard entropy arguments, we have (1−H(α))c0b+ log(c1(α)/2) > 3b (since the code
encodes 3b bits, the capacity is 1−H(α), and at most log(c1(α)/2) additional bits of side information are
necessary to disambiguate the true message from the list). We conclude that the probability that a random
string gets accepted by the decoder is at most 2−b · 2log(c1(α)/2) 6 c12−b.

A.2 Reed-Solomon codes

If F is a finite field with at least n elements, and S = (α1, α2, . . . , αn) is a sequence of n distinct elements
from F, the Reed-Solomon encoding, RSF,S,n,k(m), or just RS(m) when the other parameters are implied,
of a message m = (m0,m1, . . . ,mk−1) ∈ Fk is given by

RSF,S,n,k(m) = (f(α1), f(α2), · · · , f(αn)) . (1)

where f(X) = m0 + m1X + ... + mk−1X
k−1. The following is a classic result on unique decoding

Reed-Solomon codes [22], stated as a noisy polynomial reconstruction algorithm.
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Proposition 15. There is an efficient algorithm with running time polynomial in n and log |F| that given n
distinct pairs (αi, ai) ∈ F2, 1 6 i 6 n, and an integer k < n, finds the unique polynomial f of degree at
most k, if any, that satisfies f(αi) = ai for more than n+k

2 values of i. Note that this condition can also be
expressed as

∣∣{i : f(αi) = ai}
∣∣− ∣∣{i : f(αi) 6= ai)}

∣∣ > k.

A.3 Pseudorandom constructs

A.3.1 Samplers

Let [N ] = {1, 2, . . . , N}. If B ⊆ [N ]→ {0, 1} has density µ (i.e., µN elements), then standard tail bounds
imply that for a random subset T ⊆ [N ] of size `, the density ofB∩T is within±θ of µ with overwhelming
probability (at least 1 − exp(−cθ`)). But picking a random subset of size ` requires ≈ ` log(N/`) random
bits. The following shows that a similar effect can be achieved by a sampling procedure that uses fewer
random bits. The idea is the well known one of using random walks of length ` in a low-degree expander on
N vertices. This could lead to repeated samples while we would like ` distinct samples. This can be achieved
by picking slightly more than ` samples and discarding the repeated ones. The result below appears in this
form as Lemma 8.2 in [25].

Proposition 16. For every N ∈ N, 0 < θ < µ < 1, γ > 0, and integer ` > `0 = Ω( 1
θ2

log(1/γ)), there
exists an explicit efficiently computable function Samp : {0, 1}σ → [N ]` where σ 6 O(logN + ` log(1/θ))
with the following property:

For every B ⊆ [N ] of size at least µN , with probability at least 1 − γ over the choice of a random
s ∈ {0, 1}σ, |Samp(s) ∩B| > (µ− θ)|Samp(s)|.

We will use the above samplers to pick the random positions in which the blocks holding encoded control
information are interspersed with the data blocks. The sampling guarantee will ensure that a reasonable
fraction of the control blocks have no more than a fraction p+ ε of errors when the total fraction of errors is
at most p.

A.3.2 Almost t-wise independent permutations

Definition 7. A distribution D on Sn (the set of permutations of {1, 2, . . . , n}) is said to almost t-wise
independent if for every 1 6 i1 < i2 < · · · < it 6 n, the distribution of (π(i1), π(i2), . . . , π(it)) for
π chosen according to D has statistical distance at most 2−t for the uniform distribution on t-tuples of t
distinct elements from {1, 2, . . . , n}. 2

A uniformly random permutation of {1, 2, . . . , n} takes log n! = Θ(n log n) bits to describe. The
following result shows that almost t-wise independent permutations can have much shorter descriptions.

Proposition 17 ([16]). For all integers 1 6 t 6 n, there exists D = O(t log n) and an explicit map
KNR : {0, 1}σ → Sn, computable in time polynomial in n, such that the distribution KNR(s) for random
s ∈ {0, 1}σ is almost t-wise independent.

A.3.3 t-wise independent bit strings

We will also need small sample spaces of binary strings in {0, 1}n which look uniform for any t positions.

Definition 8. A distribution D on {0, 1}n is said to t-wise independent if for every 1 6 i1 < i2 < · · · <
it 6 n, the distribution of (xi1 , xi2 , . . . , xit) for x = (x1, x2, . . . , xn) chosen according to D equals the
uniform distribution on {0, 1}t. 2
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Using evaluations of degree t polynomials over a field of characteristic 2, the following well known fact
can be shown. We remark that the optimal seed length is about t

2 log n and was achieved in [1], but we can
work with the weaker O(t log n) seed length.

Proposition 18. Let n be a positive integer, and let t 6 n. There exists σ 6 O(t log n) and an explicit map
POLYt : {0, 1}σ → {0, 1}n, computable in time polynomial in n, such that the distribution POLYt(s) for
random s ∈ {0, 1}σ is t-wise independent.

A.4 Capacity achieving codes for t-wise independent errors

Forney [9] constructed binary linear concatenated codes that achieve the capacity of the binary symmetric
channel BSCp. Smith [24] showed that these codes also correct patterns of at most a fraction p of errors
w.h.p. when the error locations are distributed in a t-wise independent manner for large enough t. The
precise result is the following.

Proposition 19. For every p, 0 < p < 1/2 and every ε > 0, there is an explicit family of binary linear
codes of rate R > 1−H(p)− ε such that a code REC : {0, 1}Rn → {0, 1}n of block length n in the family
provides the following guarantee. There is a polynomial time decoding algorithm Dec such that for every
message m ∈ {0, 1}Rn, every error vector e ∈ {0, 1}n of Hamming weight at most pn, and every almost
t-wise independent distribution D of permutations of {1, 2, . . . , n}, we have

Dec(REC(m) + π(e)) = m

with probability at least 1− 2−Ω(ε2t) over the choice of a permutation π ∈R D, as long as ω(log n) < t <
εn/10. (Here π(e) denotes the permuted vector: π(e)i = eπ(i).)

We will use the above codes (which we denote REC, for “random-error code”) to encode the actual data
in our stochastic code construction.
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