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ABSTRACT
Consider an analyst who wants to release aggregate statistics
about a data set containing sensitive information. Using
differentially private algorithms guarantees that the released
statistics reveal very little about any particular record in the
data set. In this paper we study the asymptotic properties
of differentially private algorithms for statistical inference.

We show that for a large class of statistical estimators T
and input distributions P , there is a differentially private
estimator AT with the same asymptotic distribution as T .
That is, the random variables AT (X) and T (X) converge
in distribution when X consists of an i.i.d. sample from P
of increasing size. This implies that AT (X) is essentially as
good as the original statistic T (X) for statistical inference,
for sufficiently large samples. Our technique applies to (al-
most) any pair T, P such that T is asymptotically normal
on i.i.d. samples from P—in particular, to parametric max-
imum likelihood estimators and estimators for logistic and
linear regression under standard regularity conditions.

A consequence of our techniques is the existence of low-
space streaming algorithms whose output converges to the
same asymptotic distribution as a given estimator T (for the
same class of estimators and input distributions as above).
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1. INTRODUCTION
Private data analysis has recently emerged as a fascinating

field at the interface of algorithms, statistical learning, com-
plexity theory and geometry. One specific notion of privacy,
differential privacy [DMNS06, Dwo06] has received signifi-
cant attention, largely because it is conceptual simple and
yet offers meaningful guarantees in the presence of arbitrary
external information.

In this paper we consider the following basic problem:
given a data set of sensitive information, what kinds of sta-
tistical inference and learning can we carry out without the
results leaking sensitive information? For example, when
can we guarantee that the published analysis of a clinical
study’s outcomes will not leak details of an individual pa-
tient’s treatment?

We provide, in some sense, a“free lunch”for data analysts:
we show that given a statistical estimator T that returns
a relatively low-dimensional real vector, one can design a
differentially private algorithm AT with the following rough
guarantee:

If the input X1, X2, ..., Xn is drawn i.i.d. (ac-
cording to distribution that need not be known
to AT ), and if T (X1, ..., Xn), appropriately
rescaled, converges to a normal distribution as
n grows, then AT (X1, ..., Xn) converges to the
same distribution.

Differential privacy is parameterized by a number ε > 0
(Definition 1). Our guarantee works even as ε tends to 0; we
require only that 1

ε
be bounded above by a small polynomial

in the sample size n.
Our analysis requires additional conditions on the conver-

gence of T ; these are met by essentially all the “asymptotic
normality” results from classical statistical theory. Estima-
tors which fit our assumptions include the maximum like-
lihood estimator for “nice” parametric families of distribu-
tions; maximum-likelihood estimators for a host of regres-
sion problems, including linear regression and logistic re-
gression; estimators for the parameters of low-dimensional
mixture-models with a fixed number of components, and, in
general, estimators for which T , viewed as a functional on
the space of distributions, is Fréchet differentiable and has



a non-zero derivative at the distribution P from which the
Xi are drawn.

In several cases, notably for parametric estimation and
regression, the estimators to which our result applies are
known to have minimum possible variance among a large
class of estimators. In those cases, we give differentially
private estimators whose variance is within a 1+ o(1) factor
of optimal. In that sense, we provide a free lunch for private
statistical inference: optimal accuracy (the same as the best
nonprivate estimators) and strong guarantees of privacy.

Our algorithms also provide one-pass, space-efficient algo-
rithms that compute an asymptotically similar statistic to a
given statistic T . These algorithms use space Õ(

√
n) when

T itself can be computed in quasilinear space. To the best of
our knowledge, previously studied estimators require linear
space to achieve the same guarantee. For a discussion of pre-
vious work on streaming algorithms for i.i.d. and randomly-
ordered data, see Chien, Ligett and McGregor [CLM10].

Previous Work.
The general question of the design of differentially private

algorithms has received much recent attention, too much
to survey here. We focus on work directly relevant to our
concerns. Blum et al. [BDMN05] considered a simple mech-
anism which expresses a learning or estimation algorithm
in terms of a sequence of “statistical queries” (in the sense
of Kearns [Kea98]) to the data, and adds noise the result
of each query. In most cases, it is difficult to see how this
reformulation and noise addition will affect the quality of
the final answer. For the class of exponential families of
probability distributions, the sufficient statistics for a fam-
ily can be directly computed via statistical queries, and so
the results of Blum et al. [BDMN05] (and follow-up work by
Dwork et al. [DMNS06]) would apply. Unfortunately, many
probability models, e.g. mixture models, do not have such
simple sufficient statistics.

Kasiviswanathan et al. [KLN+08] gave general inefficient
algorithms with PAC learning guarantees for binary classifi-
cation problems. They show, roughly, that the private and
nonprivate sample complexities of PAC learning problems
are polynomially related. The algorithms of [KLN+08] run
in exponential time, in general, though which makes them
difficult to apply. In contrast, our algorithm AT runs in time
essentially proportional to the time needed to compute the
original statistic T .

Most relevant to our work is the paper of Dwork and
Lei [DL09], which drew inspiration from robust statistics to
give differentially private estimators for scale, location and
regression problems. Their estimators converge at a rate of
n−1/2+c (where c > 0 is a small constant) to the underlying
true parameters they were trying to recover. In contrast, our
estimators converge at the optimal rate of n−1/2 in distribu-
tions similar to the ones they analyzed; our convergence rate
even recovers the correct leading constant. Our techniques
have a similar flavor to those of [DL09]. In particular, we
modify a robust estimator of location, the Winsorized mean,
to get an efficient1 differentially private estimator for esti-
mating the mean of a Gaussian distribution. Our analysis

1In statistical theory, an estimator is called efficient if it has
the best possible convergence rate (among an appropriate
class of estimators); that is, if it is efficient in its use of
data. In this paper we have tried to carefully distinguish
this meaning of “efficient” from the notion of computational

sheds some light on the relationship between robustness and
differential privacy. Another similarity between this work
and [DL09] is the use of the subsample-and-aggregate tech-
nique of Nissim, Raskhodnikova and Smith [NRS07] as a
basic building block.

Wasserman and Zhou [WZ10] consider differentially pri-
vate versions of several nonparametric density estimators.
In general, the convergence rates they obtain are subopti-
mal and the algorithms they describe take exponential time
to run. However, the problem they tackle is essentially in-
finite dimensional; it is unclear if the techniques we discuss
here can be applied in their setting.

Finally, Chaudhuri, Monteleoni and Sarwate [CMS11] and
Rubinstein et al. [RBHT] consider differentially private al-
gorithms tailored to algorithms that minimize a convex loss
function. Their convergence guarantees are incomparable to
ours, although it seems likely that their techniques outper-
form ours in the specific settings for which they were de-
signed. In particular, the dependency on the dimension of
the problem is probably much better with their techniques
(our results require the dimension to be bounded above by
a small polynomial in n, whereas their techniques may work
for dimensions up to

√
n).

Basic Tools.
We design our differentially private algorithms by compos-

ing a number of existing tools from the literature, namely
the Laplace mechanism of Dwork, McSherry, Nissim and
Smith [DMNS06], the exponential mechanism of McSherry
and Talwar [MT07] and the subsample-and-aggregate frame-
work of Nissim, Raskhodnikova and Smith [NRS07]. See
Section 2.1 for further discussion.

Preliminaries.
Given a random variable X, we denote its cumulative dis-

tribution function FX . Similarly, given a probability mea-
sure P we use FP for the corresonding c.d.f. We sometimes
abuse notation and equate a random variable X with the
corresponding probability distribution.

To compare probability distributions, we use two metrics.
First, given two distributions P, Q defined on the same un-
derlying space of measurable sets, consider the statistical
difference (or total variation distance)

SD(P, Q) = sup
measurable S

|P (S)−Q(S)| .

One often thinks of the sets S as possible tests for distin-
guishing P from Q. The definition states that no such set
can distinguish between (draws from) P and Q with proba-
bility better than 1

2
+ SD(P, Q).

Second, for probability distributions on R
d, we will use the

Kolmogorov-Smirnov distance, which can be thought of as
a relaxed version of the statistical difference that considers
only axis-parallel rectangles as possible distinguishers:

KS(P, Q) = sup
rectanglesR

|P (R)−Q(R)| .

For one-dimensional distributions, this is supa,b∈R
|P [a, b]−

Q[a, b]|. Note that the KS distance, as defined here, is closely
related to the L∞ norm on the cumulative distribution func-

efficiency, but we apologize in advance if some ambiguities
remain.



tions of P and Q. Namely, ‖FP − FQ‖∞ ≤ KS(P, Q) ≤
2d‖FP − FQ‖∞ where d is the dimension.

Recally that a sequence of distributions Q1, Q2, ... on

R
d converges in distribution to Q, denoted Qn

D−→Q if
FQn(x)→ FQ(x) as n→∞, for all points x at which FQ is
continuous (this has several equivalent definitions in terms
of expectations of continuous functions). If FQ is continuous
everywhere, then convergence in distribution is equivalent to
the condition that KS(Qn, Q)→ 0 as n→∞. We occasion-

ally abuse notation and write Pn
D−→Qn if all the Qn’s have

continuous c.d.f.’s and KS(Pn, Qn) tends to 0 as n grows.
We extend the notions of statistical difference, KS dis-

tance and convergence in distribution to random variables

in the natural way. For example, we say Xn
D−→Yn if Yn has

a continuous c.d.f. for all n and the KS distance between
the distributions of Xn and Yn tends to 0.

Differential Privacy.
In the sequel, D will denote a generic domain in which

data points lie. D∗ is the set of all finite-length sequences of
elements in D. Because order will generally not matter, we
will sometimes think of the elements in D∗ as multisets.

We say two finite multisets (alternatively, sequences)
x, x′ ⊆ D are neighbors if they differ in a single element:
x	x′ = 1. Differential privacy requires that inserting or
removing one input tuple should change the distribution of
inputs very little, as measured by parameters ε and δ.

Definition 1 ([DMNS06, DKM
+
06]). Algorithm A

is (ε, δ)-differentially private if for all neighboring data sets
x, x′ ⊆ D and for all events E,

Pr(A(x) ∈ E) ≤ eε Pr(A(x′) ∈ E) + δ .

We write ε-differential privacy as shorthand for (ε, 0)-
differential privacy.

Most of the algorithms in this paper are ε-differentially
private (that is, they satisfy the definition above with δ = 0).

For simplicity, in most of the paper we will assume that
the size n of the data set is publicly known. This assumption
can be removed at the expense of some technical complica-
tion by using a differentially private approximation to n; see
Section 2.4.1.

We consider statistics T : D∗ → R
d that return a vector

of d real numbers. Our main algorithm assumes that T in
fact takes values only in a bounded cube [−Λ

2
, Λ

2
]d, where

Λ > 0 is known to the algorithm. This assumption can be
removed at the price achieving only (ε, δ) differential privacy.
See Section 2.4.1 for details.

Asymptotic Normality.
The central limit theorem provides the best known exam-

ple of asymptotically normal statistics: any statistic which
is a sum of h(Xi) for some function h will converge to a
normal distribution as long as h(Xi) has finite expectation
and variance. Many other statistics also exhibit this type
of convergence, however. Typically, a careful inspection of
the convergence theorems reveals additional properties: the
standard deviation of these statistics usually scales as n−1/2;
the bias of these statistics, surprisingly, shrinks more quickly,
usually at a rate of 1/n; finally, additional moments of the
asymptotic distribution can usually be bounded under mild

assumptions. We dub statistics that exhibit these additional
properties generically asymptotically normal.

Definition 2 (Generic Normality). A statistic T :
D∗ → R is generically asymptotically normal at distribution
P if there exists a “true value” T (P ) and constant σ2

P > 0
such that if X1, . . . , Xn ∼ P i.i.d., then

1. (Normality)
T (X)− T (P )

σP /
√

n

D−→ N(0, 1) as n→∞,

2. (Linear Bias) E[T (X)]− T (P ) = O(1/n), and

3. (Bounded third moment) E( |T (X)−T (P )|
σP /

√
n

)3 = O(1). �
This definition generalizes to d > 1 by replacing σp with

a symmetric positive definite matrix ΣP ∈ R
d×d: we require

that Z(n) =
√

nΣ−1
P (T (X) − T (P )) converges to N(0d, I)

and that the third moment condition holds for the projections
along any given direction (that is, for any unit vector u we
should have E[|u�Z(n)|3] = O(1)).

The second and third condition are necessary because
asymptotic normality alone doesn’t imply that functionals
of T (X), such as its expectation and variance, also converge
to the values one naturally expects. Asymptotic normality
implies only that the c.d.f. of T (X) is close, point-wise, to a
Gaussian’s. However, because the range can be very large,
it could be that natural functionals of the distribution differ
wildly from those of the Gaussian. For example, consider
a distribution Q which is a mixture of N(0, 1) with weight
1− ρ, and N(1/ρ2, 1) with weight ρ. The distance between
Q and N(0, 1) is ρ, but the expectation of Q goes to ∞ as
ρ goes to 0.

The thin tails condition implies that this sort of strange
behavior does not occur: for “nicely behaved” functions f ,
one gets that E(f(T (X))) ≈ E(f(Z)), where Z ∼ N(T (P ),
σ2

P
n

).
For examples of asymptotically normal distributions, we

refer to the textbook of Schervish [Sch96]. Some examples:

• Given a family of distributions parametrized by a fi-
nite number of real numbers, {Pθ |θ ∈ Θ ⊆ R

d}. Under
mild regularity conditions, the maximum likelihood es-
timator is g.a.n. and has asymptotically optimal vari-
ance among all (asymptotically) unbiased estimators.
See, for example, [Sch96, §7.3.5]. This includes as a
special case mixture models with a fixed number of
components which are described by a finite number of
parameters but typically do not have sufficient statis-
tics that are any less compact than the original data
set.

• The estimators for common regression problems are
also generically asymptotically normal under mild con-
ditions (for example, the data matrix in linear and lo-
gistic regression problems should not have very small
eigenvalues). In particular, we get estimators for linear

and logistic regression coefficients with rate O(n−1/2),

improving the n−1/2+γ (for a small constant γ >
0) convergence rate of the estimators of Dwork and
Lei [DL09].

• More generally, many statistics T can be viewed as
functionals mapping the space of distributions (data



sets are just distributions with finite support and ra-
tional probability masses) to R

d. With an appropriate
topology on the space of distributions, one can define
the differentiability of T at a particular distribution
T . Differentiable statistics with non-zero derivative at
P and satisfying mild moment conditions are generi-
cally asymptotically normal. See Fernholz [Fer83] for
a compact exposition of the theory.

One striking example where our framework does not ap-
ply is the differentially private evaluation of fit of various
models. Many statistics used to evaluate goodness of fit do
not have asymptotically normal behavior.

1.1 Main Theorem

Theorem 3 (Main Theorem, Unbounded Range).

Given a statistic T : Dn → R
d, there exists a (ε, δ)-

differentially private algorithm A = AT,ε,δ such that if T
is generically asymptotically normal at distribution P , the
random variables A(X) and T (X) converge in distribution
when X is an i.i.d. sample of size n from P , that is,

KS(A(X), T (X))→ 0 as n→∞ .

Moreover, there is a constant c > 0 such that convergence
continues to hold even if d, ε, Λ change with n as long as d, 1

ε

and log( 1
δ
) are all at most nc.

This theorem in fact follows from a slightly different result,
which assumes a known bound on the range of T but achieves
a stronger privacy guarantee. The reduction from one form
to the other of the main theorem is given in Section 2.4.1.

Theorem 4 (Main Theorem, Bounded Range).

Given a statistic T : Dn → [−Λ
2
, Λ

2
]d, there exists a

(ε, 0)-differentially private algorithm A = AT,ε,Λ such that
if T is generically asymptotically normal at distribution
P , the random variables A(X) and T (X) converge in
distribution when X is an i.i.d. sample from P , that is,

KS(A(X), T (X))→ 0 as n→∞ .

Moreover, there is a constant c > 0 such that convergence
continues to hold even if d, ε, δ change with n as long as d, 1

ε
and log(Λ) are all at most nc.

Because the KS distance bounds the difference between
the cumulative distribution functions of two random vari-
ables, the theorem implies that A(X) and T (X) converge in
distribution: ‖FA(X) − FT (X)‖∞ → 0 as n → ∞, where FY

denotes the c.d.f. of random variable Y .
Note that we provide no bound on the rate at which the

KS distance converges to 0 in the theorems above. Such a
bound would require further assumptions about T (namely,
about how quickly T itself converges to the normal distribu-
tion).

We focus here simply on establishing convergence. Note
that the theorem is meaningful even with a very slow conver-
gence rate. Once the KS distance is below a small constant,
say 1/20, the median error of A in estimating T (P ) is at
most 1.05 times greater than the median error of the non-
private estimator T .

2. THE ESTIMATORS
In this section we explain the estimator we use and state

the main claims about their behavior. Proofs and more de-
tailed analysis are deferred to the next section.
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Figure 1: Subample-and-aggregate with a generic
aggregation algorithm B. We analyze two specific
candidates for B: the sample average and the noisy
“widened Winsorized mean”.

2.1 Subsample and Aggregate
Nissim et al. [NRS07] introduced the subsample-and-

aggregate framework for “smoothing” a function f , defined
on D∗, to obtain a randomized algorithm which is differ-
entially private. When f is sufficiently well-behaved, the
resulting algorithm outputs a value close to that of f with
high-probability.

The idea is to randomly partition the input x ∈ Dn into
k blocks of size roughly n/k each. The function f is ap-
plied to each block to obtain k estimates z1, ..., zk. Finally,
these estimates are aggregated using a differentially private
function B:

SAf,B,k(x) = B(f(x1, ..., x n
k
), ...., f(x(k−1) n

k
+1, ..., xn)) ,

as depicted in Figure 1. Nissim et al. observed that this
construction is always differentially private, regardless of the
structure of f :

Lemma 5 (Privacy of SA [NRS07]). Let f be an ar-
bitrary (possibly randomized) function with inputs in D∗

f and
taking values in a domain DB. If B is ε-differentially private
for inputs in D∗

B, then SAf,B,k is ε-differentially private for
inputs in D∗

f .

The intuition behind the framework is the following: if f
gives reasonably consistent answers on data sets of size n/k,
then the aggregation function can return a value close to
the expected value of f on a random subset of x of size n/k.
Roughly: SAf should obtain the same accuracy as the best
nonprivate algorithm could obtain on data sets of a smaller
size, n/k.

What we show in this paper is that a careful application
of the framework gives answers that are as good — up to
a 1 + o(1) factor — as the best nonprivate algorithm can
obtain on datasets of the same size.

2.2 A Nonprivate Estimator: Aggregation via
Averaging

If we replace the aggregation algorithm B in the
subsample-and-aggregate algorithm with a simple average,
that is, if we output z̄ = 1

k

Pk
i=1 zi, then we get an estima-

tor that is not differentially private (in particular, it may be
deterministic) but which is asymptotically identical to T (X)
when T is asymptotically normal. Because we assume our



data is drawn i.i.d., the partitioning into blocks need not
be random. We use the natural, consecutive partition for
simplicity. We denote the estimator

Avek,T (x1, ..., xn) = z̄ =
1

k

kX
i=1

T (x(i−1) n
k

+1, ..., xi n
k
) .

Lemma 6 (Convergence of Averaging). Suppose
that T is generically asymptotically normal at P . If k =
o(
√

n), d is bounded above by a sufficiently small polynomial
in n and X1, ..., Xn are drawn i.i.d. from P , then

√
n · Avek,T (X)

D−→N(T (P ), σ2
P ) as n→∞ .

Proof Idea: Separating Bias and Variance.
The basic intuition for the analysis is that the averaging

step reduces the variance drastically, but does not reduce
bias. As long as the bias of the individual estimators is
sufficiently low, however, we can still get convergence to the
right distribution.

First, since the sample X is i.i.d. from P , the Zi terms
are themselves i.i.d. and (by asymptotic normality) each Zi

is close in distribution to N(T (P ),
kσ2

P
n

).
Crudely, one would expect then that the average of the

Zi’s would be also close to Gaussian with the same mean

T (P ) and bias reduced by a factor of k down to
σ2

P
n

.
This doesn’t quite work, but it comes close. The variance

calculation is essentially correct. One can show that the

variance of each Zi is close to
kσ2

P
n

. Since the Zi’s are in-

dependent, the variance of the average Z̄ is exactly 1
k

times
the variance of each of the terms, which gives

V ar(Z̄) ≈ 1

k
· kσ2

P

n
=

σ2
P

n
.

On the other hand, the expectation of Z̄ is exactly the
expectation of the Zi’s, without division by k. The linear
bias condition of generic asymptotic normality ensures that
E(Zi) = T (P )±O(k/n). When k is asymptotically smaller
than

√
n, we get

E(Z̄) = T (P )± o(n−1/2) .

This is not exactly the right expectation, but the o(n−1/2)
bias term is swamped by the variance and so we get Z̄ ≈
N(T (P ),

σ2
P
n

).
To make this argument formal, we use the bound on

the third moment of the Zi’s to convert between expecta-
tion/variance calculations and convergence in distribution.
The details are explained in Section 3.1.

Relation to the Bootstrap and Jackknife.
The “subsample-and-average” technique above belongs to

a family of resampling techniques (of which popular mem-
bers are the bootstrap and jackknife estimators) used in
statistics to estimate the sampling distribution of a statis-
tic. The textbook of Politis, Romano and Wolf [PRW99]
describes the general theory of these techniques (see Chap-
ter 2, for example, for the treatment of the i.i.d. setting).
The specific variant we use here, in which each observation
gets used in exactly one subsample, is not standard. More
importantly, to our knowledge our analysis of the bias of the

estimator, and the extrapolation to asymptotic convergence,
is novel.

2.3 Corollary: Streaming Estimators
Note that Avek,T can be evaluated in a single pass over the

data set using memory at most n/k plus whatever memory
requirements are needed to evaluate T on inputs of size n/k:
one need only remember the values xj for the current block
and a running sum of the zi’s computed so far. Setting k to
be slightly smaller than

√
n, we obtain:

Theorem 7 (Streaming statistical estimators).

Let T : D∗ → R
d be a statistic that is computable in linear

space and polynomial time. T̃ (X) = Ave √
n

log n
,T

(x) can be

computed in one pass with Õ(
√

n) space. If T is g.a.n.
at P and X is an i.i.d. sample from P of size n, then

T̃ (X)
D−→T (X) as n→∞.

To get some idea of the meaning of this result, consider
the naive low-space estimator which estimates T (P ) by com-
puting T on a single subsample of size

√
n from the data set.

The standard deviation of this estimator will be on the order
of n−1/4. In contrast, Theorem 7 gives an estimator with
standard deviation O(n−1/2).

This result has a quite different flavor from existing work
on low-space statistical estimators, since it aims for opti-
mal error and allows for a polynomial amount of space.
As mentioned in the introduction, previous work [GM07,
CK09, CLM10] focused on regimes with higher error and
lower (generally polylogarithmic in n) space. An interesting
direction, which we leave to future work, is understanding
whether our analysis and techniques could also lead to im-
provements in lower space regimes.

2.4 Making the Estimator Private: Widened
Winsorized Mean

We can make the estimator above differentially private
by replacing the empirical average with a differentially pri-
vate aggregate W (z1, ..., zn) which closely approximates the
average as long as its input z is an i.i.d. sample from a
distribution close to the normal distribution with bounded
third moment.

A Winsorized mean rounds outliers to in a data set to
lie within a fixed interval, usually defined in terms of some
quantiles of the data set. An α-Winsorized mean rounds the
αk smallest values up to Z(αk) and rounds the αk largest
values down to Z((1−α)k). For example, when α = 1

4
one

“squeezes” the data set to lie in its own interquartile range.
In order to get both differential privacy and statistical

efficiency, we adapt this idea in two key ways:
First, we replace the true quartiles with differentially pri-

vate estimates. There are several ways to estimate quar-
tiles; we found an “exponential-mechanism”-based method
due to McSherry and Talwar [MT07] as well as personal
communication) to be most amenable to our analysis (the
“smoothed sensitivity”approach of Nissim et al. [NRS07] and
the“propose-test-release”approach of Dwork and Lei [DL09]
also work here but make for messier theorem statements).
For completeness, PrivateQuantile is described in Algo-
rithm 2.

Second, we widen the Winsorization interval: we scale the
interval up by a factor rad (a parameter we set to be roughly
3
√

k). This scaling allows us to capture enough values in the



tail to get optimal variance but confines the data to a small
enough interval that we can add a relatively small amount
of noise and still get differential privacy.

The resulting algorithm W is described in Algorithm 1.
Note that the privacy guarantee does not make any distri-
butional assumptions about the input.

2.4.1 Simplifying Assumptions
In the remainder of the analysis, we make two simplifying

assumptions.
First, we assume that the size of the database, n, is a

publicly known value. In general, though, it may not be de-
sirable to release n; we can instead first estimate n using the
Laplace mechanism [DMNS06] and then use that estimate
in place of n in the remaining algorithms. The data set can
be made to have length n′ �= n either by inserting a small
number of default values or removing a small number of val-
ues. This will not change the asymptotics of the estimators
analyzed here.

Second, we assume that the estimator T always takes val-
ues in a known range [−Λ

2
, Λ

2
]d. One can circumvent this in

at least two ways. The first is to monotonically rescale each
of the real axes to take only values in (−1/2, 1/2) (say via
the map x �→ 1

π
arctan(x)). However, this has the net effect

of drastically increasing the error for parameter values that
are far away from the origin. Another approach is to use the
differentially private estimators of scale and location due to
Dwork and Lei [DL09] inside W to obtain a crude interval
that contains a (1− o(1)) fraction of the data set and which
is not too much larger than σP . Because the final error de-
pends only logarithmically on the radius Λ of the interval,
even a significant overestimate of the range of the data will
not affect the final answer significantly. We defer the details
to the full version of the paper.

Analysis of WWM.

Lemma 8. The algorithm W is ε-differentially private.

Proof. The algorithm is a composition of three
differentially-private mechanisms: two calls to PrivateQuan-
tile (with parameter ε/4 each) and one application of the
Laplace mechanism (with parameter ε/2). Overall, the al-
gorithm is ε-differentially private by the triangle inequal-
ity.

We now turn to the more involved analysis of the efficiency
W (Z) as an estimator of the mean.

Lemma 9. Let W be the noisy widened Winsorized mean
described in Algorithm 1. Let μ̂(Z) be the initial estimate
of Z̄ that is computed by the algorithm, and let Y be the
Laplace noise that is added to μ̂(Z). There exists a con-
stant β > 0 such that for every random variable Z such that

KS(Z, N(μ, σ2)) ≤ 1
20

and E( |Z−μ|
σ

)3 ≤ C, if Z1, ..., Zk are
i.i.d. copies of Z, then the following holds:

There exists an event E of probability at least 1−Ck−β −
Λe−Ω(εk) such that conditioned on E:

1. μ̂(Z) = Z̄, and

2. V ar(Y ) ≤ V ar(Z̄) · k−β .

The event E in the preceding lemma is roughly that the
quantile estimates obtained in the first part of W are accu-
rate. In that case, the interval [
, u] into which observations

are projected is likely to contain all the points in Z; this
latter event implies μ̂(Z) = Z̄.

Since μ̂(Z) = Z̄ are actually equal with high probabil-
ity, their distributions are close in statistical difference. We
immediately get that KS(μ̂, Z̄) is small since statistical dif-
ference upper bounds KS distance. Second, since under the
same conditions, we know that Z̄ is close to normal, adding
noise Y with variance much smaller than that of Z will not
change the distribution significantly. We obtain the follow-
ing key corollary:

Corollary 10 (Accuracy of WWM). Let W be the
noisy widened Winsorized mean described in Algorithm 1.
There exists a constant β > 0 such that for every random

variable Z such that KS(Z, N(μ, σ2)) ≤ 1
20

and E( |Z−μ|
σ

)3 ≤
C, if Z1, ..., Zk are i.i.d. copies of Z, then

KS(W (Z), Z̄) ≤ Ck−β + Λe−Ω(εk) .

In particular, if k goes to infinity and C, 1
ε

and log(Λ) are
bounded above by sufficiently small polynomials in k, then
KS(Z, N(μ, σ2)) goes to 0.

2.5 Putting the Pieces Together
We can combine the guarantees on W together with the

fact, shown above, that Z̄ = Avek,T (X) is asymptotically
equivalent to T (X) (when T is generically asymptotically
normal at the distribution of X). The overall estimator AT

is described in Algorithm 3.
To get the final result, we must set k carefully in AT to

balance two factors: if k is too large, then the bias of the
estimators on the individual subsamples becomes too big
and dominates the variance of the estimator. If k is too
small, however, the noise added to ensure the privacy of W
becomes too large, and again the overall error becomes too
large. We set k = n1/2−η where η > 0 is a small constant.
This allows us to prove the bounded-range version of the
main result.

Proof of Theorem 4. We have set k = n1/2−η so that
the analysis of the convergence of simple averaging applies.
We get that KS(Z̄, N(T (P ), σP

n
)) tends to 0 (by Lemma 6)

and that KS(W (Z), Z̄) tends to 0 (by Lemma 9). Since
the the KS distance satisfies the triangle inequality, we
have that KS(W (Z),N(T (P ), σP

n
) ≤ KS(N(T (P ), σP

n
), Z̄)+

KS(Z̄, W (Z)) tends to 0 as n grows to ∞. The same argu-
ment works in higher dimensions by a straightforward hybrid
argument, although the distance bounds degrade by a factor
of d.

As mentioned earlier, the unbounded range version of the
result follows by first obtaining a crude estimate of Λ using
the technique of Dwork and Lei [DL09].

3. DETAILED ANALYSIS

3.1 Analysis of Simple Averaging

Proof of Lemma 6. Consider first what happens when
d = 1. Let ρn = KS(T (X),N(T (P ), σ2

P /n)). By the nor-
mality assumption, ρn → 0.

By the linear bias assumption, E(Z̄) = E(Z1) = T (P ) +
O(k/n).



Algorithm 1: Widened Winsorized Mean W

Input: Z = (Z1, . . . , Zk) ∈ R
k, parameter ε > 0, bounding parameter Λ > 0

Output: Estimate μ̂ = W (Z)

Set the parameter rad = k
1
3 +η, where η = 1/10.

/* First, estimate the range of Z with [
, u]. */

/* Use the exponential mechanism to estimate quantiles. */

â← PrivateQuantile(Z, 1
4
, ε

4
, Λ);

b̂← PrivateQuantile(Z, 3
4
, ε

4
, Λ);

μcrude ← â+b̂
2

;

iqrcrude ← |̂b − â| ;
u← μcrude + 4 · rad · iqrcrude;

← μcrude − 4 · rad · iqrcrude;

/* Now compute Winsorized mean for range [
, u]. */

Define Π[�,u](x)←

8><
>:


 if x ≤ 


x if 
 < x < u

u if x > u

;

Let μ̂← 1

k

kX
i=1

Π[�,u](Zi) ;

Sample Y ∼ Lap( |u−�|
2εk

) where Lap(λ) is a Laplace distribution with scale parameter λ;
Output W (Z) = μ̂ + Y

Algorithm 2: PrivateQuantile(Z, α, ε)

Input: List of real numbers Z = (Z1, ..., Zk), quantile α ∈ (0, 1), privacy parameter ε > 0, bounding parameter Λ > 0
Output: A real number x ∈ [0, Λ] drawn according to the distribution with density proportional to

exp(− ε
2
|αk −#{i : Zi ≤ x}|).

Sort Zi in ascending order;
Replace Zi < 0 with 0 and Zi > Λ with Λ;
Define Z0 = 0 and Zk+1 = Λ;
For i = 0, ..., k, set yi = (Zi+1 − Zi) exp(−ε|i− αk|).
Sample an integer i ∈ {0, ..., k} with probability yi/(

Pk
i=0 yi);

Output a uniform draw from Zi+1 − Zi.

Computing the variance is slightly more delicate since,

even though the Zi’s are close to N(T (P ),
kσ2

P
n

), the vari-

ance of Zi may differ from
kσ2

P
n

. Nevertheless, the bound
on the third moment of the Zi’s (which is ensured by
generic asymptotic normality assumption) allows us to con-
clude that the variance is indeed close to what we expect.
Lemma 14 in Appendix A implies that

V ar(Z̄) =
1

k
V ar(Z1)

≤ 1

k
(

σ2
P

n/k
)(1 + O(ρ

1/3
n/k)) =

σ2
P

n
(1 + o(1)) .

Now Z̄ is a sum of i.i.d. random variables. The central limit
theorem states that such sums converge to a normal distri-
bution. The difficulty here is that we are taking two limits
at the same time: the distribution of the Zi’s also changes
with k. Fortunately, the Berry-Esseen theorem gives a uni-
form bound on the convergence rate in terms of the third
moment of the Zi’s (which are bounded by the conditions
of generic asymptotic normality). The following statement
is paraphrased from Feller [Fel71, §16.5]:

Theorem 11 (Berry-Esséen). Let A1, ..., Ak be i.i.d.

realizations of a random variable A with mean 0, variance 1
and third absolute moment c = E[|A|3] < ∞ and let G be a
N(0, 1) Gaussian random variable. Then KS(

√
n · Ā, G) ≤

9c/
√

n.

Applying the Berry-Esséen theorem to Zi−E(Z)
V ar(Z)

, we get

that Yn = Z̄−E(Z1)

V ar(Z1)/
√

n/k
= Z̄−E(Z1)

(1+o(1))σP /
√

n

D−→N(0, 1).

Dropping the 1+o(1) term in the denominator, we get that

Y ′
n = Z̄−E(Z1)

σP /
√

n
converges to N(0, 1) (since Y ′

n = (1+o(1))Yn,

we get that for any real value y, Pr(Yn ≤ y) = Pr(Y ′
n ≤ y(1+

o(1))); this value converges to Pr(Y ′
n ≤ y) since Yn converges

to a continuous distribution). Finally, we can replace E(Z1)
with T (P )±O(k/n):

Y ′
n =

Z̄ − T (P )±O(k/n)

σP /
√

n
=

Z̄ − T (P )

σP /
√

n
(1 + O(

k√
n

))

Since k = o(
√

n), the factor (1 + O( k√
n
)) is (1 + o(1)).

Hence, Z̄−T (P )

σP /
√

n

D−→N(0, 1), as desired.

The proof extends directly to higher d using higher-
dimensional analogues of the central limit theorems and
Berry-Esséen bounds.



Algorithm 3: AT : Subsample-and-aggregate using Widened Winsorized mean

Input: X = (X1, . . . , Xn) in domain D. Description of T : Dn → R
d

Output: Estimate A(X) to T (X)

Set k = n
1
2−η where η = 1/10.

Randomly divide X into k blocks X(1), . . . , X(k) of size n/k each;

Compute Zi = T (X(i)) for each block i = 1, 2, . . . , k.
for each dimension j = 1, . . . , d do

/* Run noisy Widened Winsorized Mean in dimension j */

Z|j ← projection of Z = (Z1, . . . , Zk) in dimension j;
Aj ←W (Z|j , ε

d
);

Output (A1, . . . , Ad).

3.2 Analysis of Widened Winsorized Mean
The analysis of W hinges on getting good estimates of

the quartiles. The following lemma shows the estimates are
accurate enough (that is, the interquartile range is correct
within a constant factor) with high probability:

Lemma 12. Let Z = (Z1, ..., Zk) be i.i.d. draws from dis-
tribution Q. If Q is within KS distance 1

20
of N(μ, σ), then,

with probability 1− Λ
σ

e−Ω(εk) over the choice of Z, both μ− â

and b̂− μ are in the interval [ 1
8
σ, 2σ].

This lemma is proved in the next section. For now, we
need only the following corollary:

Corollary 13. If we define 
, u as μcrude± 4(b̂− â)rad,
then the probability over the choice of Z that both [
, u] con-

tains μ± σrad and |u− 
| < 16σrad is 1− Λ
σ
e−Ω(εk).

We can now prove the main lemma on the accuracy of the
noisy widened Winsorized mean.

Proof of Lemma 9. Let E1 be the event described in
Corollary 13. Conditioned on E1, the standard deviation
of Y is O(σrad

εk
). Since we set rad = k1/3 + η, the standard

deviation of Y is O(σk− 2
3 +η), which is much smaller thanp

V ar(Z̄) = σ√
k
(1 + o(1)) (see the analysis of the simple

averaging estimator for the bound on the variance of Z̄).
Let E2 be the event that all the points in Z lie in the

interval μ ± σrad. The bound on the third moment of Z
implies that

Pr( |Z1−μ|
σ
≤ rad) =

R
|w|>rad

dQ(μ + σw)

≤ rad−3

Z
|w|>rad

|w|3dQ(μ + σw) = C · rad−3 .

hence the probability of E2 is at most kC/rad3 = Ck−3η .
To complete the proof of the lemma, let E = E1∩E2. The

probability of E is close to 1 since each of E1 and E2 occurs
with probability close to 1. Moreover, E2 and E1 together
imply that all the points in Z lie in [
, u], and so μ̂(Z) = Z̄.
The event E1 alone implies that the Laplace noise added to
the estimate is not too large, as desired.

3.3 Analysis of PrivateQuantile

Proof of Lemma 12. The constants 1/8 and 2 are cho-
sen to be less than F−1(11/20) ≈ 0.126 and more than
F−1(19/20) ≈ 1.65, respectively, where F is the c.d.f. of
N(0, 1).

We analyze here the case of the upper estiamte b̂; the case
of the lower estimate â is symmetric.

First, we can assume that μ = 0 and σ = 1 by rescaling
the interval [0, Λ] to [−μ

σ
, μ+Λ

σ
].

Second, we can assume that the empirical c.d.f. of
Z1, ..., Zk, denoted F̂z, follows FZ closely. By the
Dvoretsky-Kifer-Wolfowitz theorem, the probability that
||F̂Z − FZ ||∞ > β is exponentially small in β2k. We’ll as-
sume the c.d.f.’s differ by at most β = 1/1000; this occurs
with probability 1 − exp(Ω(k)). Thus, the overall distance

between F̂Z and F is at most ρ + β.
Our argument follows the by-now standard outline of anal-

yses of the exponential mechanism [MT07].
Divide the real line into segments delim-

ited by F−1(11/20), F−1(14/20), F−1(16/20), and
F−1(19/20). Let BAD be the set of points outside of
[F−1(11/20), F−1(19/20)] and let GOOD be the set of
points inside [F−1(14/20), F−1(16/20)].

Consider the distribution sampled from by PrivateQuan-
tile. Note that points in BAD have density in the dis-
tribution at most exp(− ε

2
( 4k

20
− ρ − β))/M where M is a

normalizing constant. Points in GOOD have mass at least
exp(− ε

2
( 1k

20
+ ρ + β))/M . Moreover, the measure of BAD

is at most Λ/σ; the measure of GOOD is F−1(16/20) −
F−1(14/20). Thus, the probability of a point in BAD being
sampled by PrivateQuantile is at most

(Λ/σ) exp(− ε
2
( 4k

20
− ρ− β))

(F−1(16/20) − F−1(14/20)) exp(− ε
2
( 1k

20
+ ρ + β))

= O(
Λ

σ
) · exp(− ε

2
(
3k

20
− 2ρ− 2β)) .

Recalling that ρ < 1/20 and β < 1/1000, we get the desired
bound.
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APPENDIX

A. VARIANCE BOUNDS

Lemma 14. Let Z be drawn from a distribution within KS

distance ρ of N(μ, σ) and such that E( |Z−μ|
σ

)s ≤ C for some

s > 2 and C ≥ 2
√

2π. Then V ar(Z) = σ2(1±6C
2
s ρ

s−2
s ). In

particular, when s = 3 and C is constant, we get V ar(Z) =

σ2(1±O(ρ1/3)).

Proof. Let Q be the distribution of Z. Without loss
of generality, we can assume μ = 0 and sigma = 1; the
general result follows by rescaling. V ar(Z) ≤ EQ(Z)2 =R ∞

z=−∞(z)2dQ(z). We can break this interval into two pieces

and write it as
R ∞

w=0
w2dQ(−w) +

R ∞
w=0

w2dQ(w). We will

show that each of these is pieces very close to σ2/2, which
is the value of the analogous integral for a N(0, 1) standard
Gaussian random variable. Consider the component w > 0;
the corresponding argument for w < 0 is symmetric. Let N
be the distribution of the Gaussian:

Z ∞

w=0

w2dQ(w)− σ2 =

Z ∞

w=0

w2dQ(w)−
Z ∞

w=0

w2dN(w)

Given a bound T > 0, which we will set later, we can
break both integrals into two pieces, one for w < T and the
other for w ≥ T . We bound the contributions of“small”w by
rewriting the integral in terms of the c.d.f., using Lemma 15
(stated below).

Z T

w=0

w2dQ(w)−
Z T

w=0

w2dN(w)

=

Z T

t=0

2tQ(Z ≥ t)dt−
Z T

t=0

2tN(Z ≥ t)dt

By the assumption that Q is close to N in KS distance, we
have |Q(Z ≥ t) − N(Z ≥ t)| ≤ ρ, and so the expression

above is within ± R T

t=0
2tρdt = ρT 2.

The contribution of “large” w (that is, w > T ) is bounded
using the moment condition:Z ∞

w=T

w2dQ(w) ≤ T s−2

Z ∞

w=T

wsdQ(w) = CT s−2 .

Finally, the same bound applies to the analogous integral
for the normal, as long as C at least as large as the third
(absolute) moment of the normal, which is 2

√
2π.

Putting the pieces together, and multiplying by two to
account for the contribution of w < 0, we get

|V ar(Z)− σ2| ≤ 2(ρT 2 + 2CT s−2) .

Setting T = ( ρ
C

)−1/s, we get that |V ar(Z) − σ2| ≤
6C

2
s ρ

s−2
s , as desired.

Lemma 15 (Writing expectations using CDFs).

Let f : R→ R be differentiable on [0,∞] such that f(0) = 0
and let Z be a nonnegative random variable. Then

EQ(f(Z)) =

Z ∞

t=0

f ′(t)Q(Z ≥ t)dt ,

as long as the integral on the right converges absolutely (that
is, as long as

R ∞
t=0
|f ′(t)|Q(Z ≥ t)dt <∞).

Note that if Q has bounded support and f is bounded on
the support of Q, then the integral on the right-hand side
will always converge absolutely.
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