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Abstract

In this paper, we initiate a systematic investigation of differentially private algorithms for convex
empirical risk minimization. Various instantiations of this problem have been studied before. We pro-
vide new algorithms and matching lower bounds for private ERM assuming only that each data point’s
contribution to the loss function is Lipschitz bounded and that the domain of optimization is bounded.
We provide a separate set of algorithms and matching lower bounds for the setting in which the loss
functions are known to also be strongly convex.

Our algorithms run in polynomial time, and in some cases even match the optimal nonprivate running
time (as measured by oracle complexity). We give separate algorithms (and lower bounds) for (ε, 0)- and
(ε, δ)-differential privacy; perhaps surprisingly, the techniques used for designing optimal algorithms in
the two cases are completely different.

Our lower bounds apply even to very simple, smooth function families, such as linear and quadratic
functions. This implies that algorithms from previous work can be used to obtain optimal error rates,
under the additional assumption that the contributions of each data point to the loss function is smooth.
We show that simple approaches to smoothing arbitrary loss functions (in order to apply previous tech-
niques) do not yield optimal error rates. In particular, optimal algorithms were not previously known for
problems such as training support vector machines and the high-dimensional median.
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1 Introduction

Convex optimization is one of the most basic and powerful computational tools in statistics and machine
learning. It is most commonly used for empirical risk minimization (ERM): the data set D = {d1, ..., dn}
defines a convex loss function L(·) which is minimized over a convex set C. When run on sensitive data,
however, the results of convex ERM can leak sensitive information. For example, medians and support
vector machine parameters can, in many cases, leak entire records in the clear (see “Motivation”, below).

In this paper, we initiate a systematic investigation of differentially private algorithms for convex em-
pirical risk minimization. Various instantiations of this problem have been studied before. We provide new
algorithms and matching lower bounds for private ERM assuming only that each data point’s contribution
to the loss function is Lipschitz bounded and that the domain of optimization is bounded. We provide a
separate set of algorithms and matching lower bounds for the setting in which the loss functions are known
to also be strongly convex.

Our algorithms run in polynomial time, and in some cases even match the optimal nonprivate running
time (as measured by “oracle complexity”). We give separate algorithms (and lower bounds) for (ε, 0)- and
(ε, δ)-differential privacy; perhaps surprisingly, the techniques used for designing optimal algorithms in the
two cases are completely different.

Our lower bounds apply even to very simple, smooth function families, such as linear and quadratic
functions. This implies that algorithms from previous work can be used to obtain optimal error rates, under
the additional assumption that the contributions of each data point to the loss function is smooth. We show
that simple approaches to smoothing arbitrary loss functions (in order to apply previous techniques) do not
yield optimal error rates. In particular, optimal algorithms were not previously known for problems such as
training support vector machines and the high-dimensional median.

Problem formulation. Given a data set D = {d1, ..., dn} drawn from a universe X , and a closed, convex
set C, our goal is

minimize L(θ;D) =
n∑
i=1

`(θ; di) over θ ∈ C

The map ` defines, for each data point d, a loss function `(·; d) on C. We will generally assume that `(·; d)
is convex and L-Lipschitz for all d ∈ X . One obtains variants on this basic problem by assuming additional
restrictions, such as (i) that `(·; d) is ∆-strongly convex for all d ∈ X , and/or (ii) that `(·; d) is β-smooth
for all d ∈ X . Definitions of Lipschitz, strong convexity and smoothness are provided at the end of the
introduction.

For example, given a collection of data points in Rp, the Euclidean 1-median is a point in Rp that
minimizes the sum of the Euclidean distances to the data points. That is, `(θ; di) = ‖θ − di‖2, which is
1-Lipschitz in θ for any choice of di. Another common example is the support vector machine (SVM): given
a data point di = (xi, yi) ∈ Rp × {−1, 1}, one defines a loss function `(θ; di) = hinge(yi · 〈θ, xi〉), where
hinge(z) = (1− z)+ (here (1− z)+ equals 1− z for z ≤ 1 and 0, otherwise). The loss is L-Lipshitz in θ
when ‖xi‖2 ≤ L.

Our formulation also captures regularized ERM, in which an additional (convex) function r(θ) is added
to the loss function to penalize certain types of solutions; the loss function is then r(θ) +

∑n
i=1 `(θ; di).

One can fold the regularizer r(·) into the data-dependent functions by replacing `(θ; di) with ˜̀(θ; di) =
`(θ; di) + 1

nr(θ), so that L(θ;D) =
∑

i
˜̀(θ; di). This folding comes at some loss of generality (since it

may increase the Lipschitz constant), but it does not affect asymptotic results. Note that if r is ∆n-strongly
convex, then every ˜̀ is ∆-strongly convex.
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We measure the success of our algorithms by the worst-case (over inputs) expected excess risk, namely

E(L(θ̂;D)− L(θ∗;D)), (1)

where θ̂ is the output of the algorithm, θ∗ = arg minθ∈C L(θ;D) is the true minimizer, and the expectation
is over the coins of the algorithm. Expected risk guarantees can be converted to high-probability guarantees
using standard techniques (Appendix C).

We will aim to quantify the role of several basic parameters on the excess risk of differentially private
algorithms: the size of the data set n, the dimension p of the parameter space C, the Lipschitz constant L of
the loss functions, the diameter ‖C‖2 of the constraint set and, when applicable, the strong convexity ∆.

Note that we can always set L = ‖C‖2 = 1 by rescaling the set C and the loss functions; in that case, we
always have ∆ ≤ 2 (since strong convexity implies that the size of the gradient changes at a rate of ∆ over
the diameter of the set). To convert excess risk bounds for L = ‖C‖2 = 1 to the general setting, multiply
the risk bounds by L‖C‖2, and replace ∆ by ∆‖C‖2

L .

Motivation. Convex ERM is used for fitting models from simple least-squares regression to support vector
machines, and their use may have significant implications to privacy. As a simple example, note that the
Euclidean 1-median of a data set will typically be an actual data point, since the gradient of the loss function
has discontinuities at each of the di. (Thinking about the one-dimensional median, where there is always a
data point that minimizes the loss, is helpful.) Thus, releasing the median may well reveal one of the data
points in the clear. A more subtle example is the support vector machine (SVM). The solution to an SVM
program is often presented in its dual form, whose coefficients typically consist of a set of p+ 1 exact data
points. Kasiviswanathan et al. [28] show how the results of many convex ERM problems can be combined
to carry out reconstruction attacks in the spirit of Dinur and Nissim [9].

Differential privacy is a rigorous notion of privacy that emerged from a line of work in theoretical computer
science and cryptography [10, 13, 3, 15]. We say two data sets D and D′ of size n are neighbors if they
differ in one entry (that is, D4D′ = 2). A randomized algorithm A is (ε, δ)-differentially private (Dwork
et al. [15, 14]) if, for all neighboring data sets D and D′ and for all events s in the output space of A, we
have

Pr(A(D) ∈ S) ≤ eε Pr(A(D′) ∈ S) + δ .

Algorithms that satisfy differential privacy for ε < 1 and δ � 1/n provide meaningful privacy guarantees,
even in the presence of side information. In particular, they avoid the problems mentioned in “Motivation”
above. See Dwork [12], Kasiviswanathan and Smith [26], Kifer and Machanavajjhala [29] for discussion of
the “semantics” of differential privacy.

1.1 Contributions

We give algorithms that significantly improve on the state of the art for optimizing non-smooth loss functions
— for both the general case and strongly convex functions, we improve the excess risk bounds by a factor
of
√
n, asymptotically. The algorithms we give for (ε, 0)- and (ε, δ)-differential privacy work on very

different principles. We group the algorithms below by technique: gradient descent, exponential sampling,
and localization.

For the purposes of this section, Õ(·) notation hides factors polynomial in log n and log(1/δ). Detailed
bounds are stated in Table 1.

Gradient descent-based algorithms. For (ε, δ)-differential privacy, we give an algorithm based on stochas-
tic gradient descent that achieves excess risk Õ(

√
p/ε). This matches our lower bound, Ω(min(n,

√
p/ε)),
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(ε, 0)-DP (ε, δ)-DP
Previous [7] This work Previous [30] This work

Assumptions Upper Bd Upper Bd Lower Bd Upper Bd Upper Bd Lower Bd

1-Lipschitz .........
and ‖C‖2 = 1

p
√
n

ε

p log(n/r)

ε

p

ε

√
p · n log(1/δ)

ε

√
p log2(1/δ)

ε

√
p

ε

... andO(p)-smooth
p

ε

p

ε

√
p log(1/δ)

ε

√
p

ε

1-Lipschitz and ..
∆-strongly convex
and ‖C‖2 = 1 ..
(implies ∆ ≤ 2)

p2

√
n∆ε2

log2(n/r)

∆
· p

2

nε2
p2

nε2
p log(1/δ)√

n∆ε2
log3(1/δ)

∆
· p

nε2
p

nε2

... andO(p)-smooth
p2

n∆ε2
p2

n∆ε2
p log(1/δ)

n∆ε2
p

nε2

Table 1: Upper and lower bounds for excess risk of differentially-private convex ERM. Bounds ignore
leading multiplicative constants, and the values in the table give the bound when it is below n. That is,
upper bounds should be read as O(min(n, ...)) and lower bounds, as Ω(min(n, ...))). Here ‖C‖2 is the
diameter of C and r > 0 satisfies rB ⊆ C where B is the unit ball. The bounds are stated for the setting
where L = ‖C‖2 = 1, which can be enforced by rescaling; to get general statements, multiply the risk
bounds by L‖C‖2, and replace ∆ by ∆‖C‖2

L . We also assume δ < 1/n to simplify the bounds.

up to logarithmic factors. (Note that every θ ∈ C has excess risk at most n, so a lower bound of n can always
be matched.) For ∆-strongly convex functions, a variant of our algorithm has risk Õ( p

∆nε2
), which matches

the lower bound Ω( p
nε2

) when ∆ is bounded below by a constant (recall that ∆ ≤ 2 since L = ‖C‖2 = 1).
Previously, the best known risk bounds were Ω(

√
pn/ε) for general convex functions and Ω( p√

n∆ε2
) for

∆-strongly convex functions (achievable via several different techniques (Chaudhuri et al. [7], Kifer et al.
[30], Jain et al. [24], Duchi et al. [11])). Under the restriction that each data point’s contribution to the loss
function is sufficiently smooth, objective perturbation [7, 30] also has risk Õ(

√
p/ε) (which is tight, since

the lower bounds apply to smooth functions). However, smooth functions do not include important special
cases such as medians and support vector machines. Chaudhuri et al. [7] suggest applying their technique to
support vector machines by smoothing (“huberizing”) the loss function. As we show in Appendix E, though,
this approach still yields expected excess risk Ω(

√
pn/ε).

The algorithm’s structure is very simple: At each step t, the algorithm samples a random point di from
the data set, computes a noisy version of di’s contribution to the gradient of L at the current estimate θ̃t,
and then uses that estimate to update. The algorithm is similar to algorithms that have appeared previously
(Williams and McSherry [41] first investigated gradient descent with noisy updates; stochastic variants were
studied by Jain et al. [24], Duchi et al. [11], Song et al. [39]). The novelty of our analysis lies in taking
advantage of the randomness in the choice of di (following Kasiviswanathan et al. [27]) to run the algorithm
for many steps without a significant cost to privacy. Running the algorithm for T = n2 steps, gives the
desired expected excess risk bound. We note that even nonprivate first-order algorithms (i.e., those based on
gradient measurements) must learn information about the gradient at Ω(n2) points to get risk bounds that
are independent of n (this follows from “oracle complexity” bounds showing that 1/

√
T convergence rate is

optimal [33, 1]). Thus, the running time (more precisely, query complexity) of our algorithm is also optimal.
The gradient descent approach does not, to our knowledge, allow one to get optimal excess risk bounds
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for (ε, 0)-differential privacy. The main obstacle is that “strong composition” of (ε, δ)-privacyDwork et al.
[16] appears necessary to allow a first-order method to run for sufficiently many steps.

Exponential Sampling-based Algorithms. For (ε, 0)-differential privacy, we observe that a straightforward
use of the exponential mechanism — sampling from an appropriately-sized net of points in C, where each
point θ has probability proportional to exp(−εL(θ;D)) — has excess risk Õ(p/ε) on general Lipschitz
functions, nearly matching the lower bound of Ω(p/ε). (The bound would not be optimal for (ε, δ)-privacy
because it scales as p, not

√
p). This mechanism is inefficient in general since it requires construction of a

net and an appropriate sampling mechanism.
We give a polynomial time algorithm that has an additional factor of log(1/r) in the risk guarantee,

where r is the radius of the largest ball contained in C. The idea is to sample from the continuous distribution
on all points in C with density P(θ) ∝ e−εL(θ). (It is the utility analysis of this algorithm introduces a
dependency on r.) Although the distribution we hope to sample from is log-concave, standard techniques
do not work for our purposes: existing methods converge only in statistical difference, whereas we require
a multiplicative convergence guarantee to provide (ε, 0)-differential privacy. Previous solutions to this issue
(Hardt and Talwar [20]) worked for the uniform distribution, but not for log-concave distributions.

The problem comes from the combination of an arbitrary convex set and an arbitrary (Lipschitz) loss
function defining P . We circumvent this issue by giving an algorithm that samples from an appropriately
defined distribution P̃ on a cube containing C, such that P̃ (i) outputs a point in C with constant probability,
and (ii) conditioned on sampling from C, is within multiplicative distanceO(ε) from the correct distribution.
We use, as a subroutine, the random walk on grid points of the cube of Applegate and Kannan [2]. Along the
way, we give several technical results of possibly independent interest. For example, we show that (roughly)
every efficiently computable, convex Lipschitz function on a convex set C can be extended to a efficiently
computable, convex Lipschitz function on all of Rp.
Localization: Optimal Algorithms for Strongly Convex Functions. The exponential-sampling-based
technique discussed above does not take advantage of strong convexity of the loss function. We show,
however, that a novel combination of two standard techniques—the exponential mechanism and Laplace-
noise-based output perturbation—does yield an optimal algorithm. Chaudhuri et al. [7] and [35] showed
that strongly convex functions have low-sensitivity minimizers, and hence that one can release the minimum
of a strongly convex function with Laplace noise (with total Euclidean length about ρ = p

∆εn , with ∆-strong
convexity of each loss function). Simply using this first estimate as a candidate output does not yield optimal
utility in general; instead it gives a risk bound of roughly p

∆ε .
The main insight is that this first estimate defines us a small neighborhood C0 ⊆ C, of radius about ρ,

that contains the true minimizer. Running the exponential mechanism in this small set improves the excess
risk bound by a factor of about ρ over running the same mechanism on all of C. The final risk bound is then
Õ(ρ p

εn) = Õ( p2

∆ε2n
), which matches the lower bound of Ω( p

2

ε2n
) when ∆ = Ω(1). This simple “localization”

idea is not needed for (ε, δ)-privacy, since the gradient descent method can already take advantage of strong
convexity to converge more quickly.

Lower bounds. We use techniques developed to lower bound the accuracy of 1-way marginals (due to
Hardt and Talwar [20] for (ε, 0)− and Bun et al. [5] for (ε, δ)-privacy) to show that our algorithms have
essentially optimal risk bounds. For each of the categories of functions we consider (with and without
strong convexity), we construct very simple instances in the lower bound: the functions can be linear or
quadratic (for the case of strong convexity), and optimization can be performed either over the unit ball
or the hypercube. In particular, our lower bounds apply to the problem of optimizing smooth functions,
demonstrating the optimality of objective perturbation [7, 30] in that setting. The reduction to lower-bounds
for 1-way marginals is not black-box; our lower bounds start from the instances used by Hardt and Talwar
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[20], Bun et al. [5], but require specific properties from their analysis.

1.2 Other Related Work

In addition to the previous work mentioned above, we mention several closely related works. Jain and
Thakurta [23] gave dimension-independent expected excess risk bounds for the special case of “generalized
linear models” with a strongly convex regularizer, assuming that C = Rp (that is, unconstrained optimiza-
tion). Kifer et al. [30], Smith and Thakurta [38] considered parameter convergence for high-dimensional
sparse regression (where p� n). The settings of all those papers are orthogonal to the one considered here,
though it would be interesting to find a useful common generalization.

Efficient implementations of the exponential mechanism over infinite domains were discussed by Hardt
and Talwar [20], Chaudhuri et al. [8] and Kapralov and Talwar [25]. The latter two works were specific to
sampling (approximately) singular vectors of a matrix, and their techniques do not obviously apply here.

Differentially private convex learning in different models (other than ERM) has also been studied: for
example, Jain et al. [24], Duchi et al. [11], Smith and Thakurta [37] study online optimization, Jain and
Thakurta [22] study an interactive model tailored to high-dimensional kernel learning. Convex optimization
techniques have also played an important role in the development of algorithms for “simultaneous query
release” (e.g., the line of work emerging from Hardt and Rothblum [19]). We do not know of a direct
connection between those works and our setting.

1.3 Additional Definitions

For completeness, we state a few additional definitions related to convex sets and functions.

• ` : C → R is L-Lipschitz (in the Euclidean norm) if, for all pairs x, y ∈ C, we have |`(x) − `(y)| ≤
L‖x− y‖2. A subgradient of a convex ` function at x, denoted ∂`(x), is the set of vectors z such that
for all y ∈ C, `(y) ≥ `(x) + 〈z, y − x〉.

• ` is ∆-strongly convex on C if, for all x ∈ C, for all subgradients z at x, and for all y ∈ C, we have
`(y) ≥ `(x) + 〈z, y−x〉+ ∆

2 ‖y−x‖22 (i.e., ` is bounded below by a quadratic function tangent at x).

• ` is β-smooth on C if, for all x ∈ C, for all subgradients z at x and for all y ∈ C, we have `(y) ≤
`(x) + 〈z, y − x〉 + β

2 ‖y − x‖22 (i.e., ` is bounded above by a quadratic function tangent at x).
Smoothness implies differentiability, so the subgradient at x, in this case, is unique.

• Given a convex set C, we denote its diameter by ‖C‖2. We denote the projection of any vector θ ∈ Rp
to the convex set C by ΠC(θ) = arg minx∈C ‖θ − x‖2.

2 Gradient Descent and Optimal (ε, δ)-differentially private Optimization

In this section we provide an algorithmANoise−GD (Algorithm 1) for computing θpriv using a noisy stochas-
tic variant of the classic gradient descent algorithm from the optimization literature [4]. Our algorithm (and
the utility analysis) was inspired by the approach of Williams and McSherry [41] for logistic regression.

All the excess risk bounds (1) in this section and the rest of this paper, are presented in expectation over
the randomness of the algorithm. In Section C we provide a generic tool to translate the expectation bounds
into high probability bound albeit a loss of extra logarithmic factor in the inverse of the failure probability.
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Note: The results in this section do not require the loss function ` to be differentiable. Although we present
Algorithm ANoise−GD (and its analysis) using the gradient of the loss function `(θ; d) at θ, the same guaran-
tees hold if instead of the gradient, the algorithm is run with any sub-gradient of ` at θ.

Algorithm 1 ANoise−GD: Differentially Private Gradient Descent
Input: Data set: D = {d1, · · · , dn}, loss function ` (with Lipschitz constant L), privacy parameters (ε, δ),

convex set C, and the learning rate function η : [n2]→ R.
1: Set noise variance σ2 ← O

(
L2n2 log(n/δ) log(1/δ)

ε2

)
.

2: θ̃1 : Choose any point from C.
3: for t = 1 to n2 − 1 do
4: Pick d ∼u D with replacement.
5: θ̃t+1 = ΠC

(
θ̃t − η(t)

[
n5 `(θ̃t; d) + bt

])
, bt ∼ N

(
0, Ipσ2

)
.

6: Output θpriv = θ̃n2 .

Theorem 2.1 (Privacy guarantee). Algorithm ANoise−GD (Algorithm 1) is (ε, δ)-differentially private.

Proof. At any time step t ∈ [n2] in Algorithm ANoise−GD, fix the randomness due to sampling in Line 4.
Let Xt(D) = n 5 `(θ̃t; d) + bt be a random variable defined over the randomness of bt and conditioned
on θ̃t (see Line 5 for a definition), where d ∈ D is the data point picked in Line 4. Denote µtD(y) to be
the measure of the random variable Xt(D) for given y ∈ R. For any two neighboring data sets D and D′
define the privacy loss random variable [16] to be Wt =

∣∣∣log µD(Xt(D))
µD′ (Xt(D))

∣∣∣. Standard differential privacy

arguments with Gaussian noise (see [30, 34]) will ensure that with probability 1 − δ
2 (over the randomness

of the random variables bt’s), Wt ≤ ε

2
√

log(1/δ)
for all t ∈ [n2]. Now using the following lemma (Lemma

2.2) we ensure that over the randomness of bt’s and the randomness due to sampling in Line 4 , w.p. at least
1 − δ

2 , Wt ≤ ε

n
√

log(1/δ)
for all t ∈ [n2]. (Notice the randomness of the random variable Xt(D) is now

both over bt and the sampling.) While using Lemma 2.2, we set γ = 1/n in the lemma and ensure that the
condition ε

2
√

log(1/δ)
≤ 1 is true.

Lemma 2.2 (Privacy amplification via sampling [27]). Over a domain of data sets T n, if an algorithm A is
ε ≤ 1 differentially private, then for any data set D ∈ T n, executing A on uniformly random γn entries of
D ensures 2γε-differential privacy.

To conclude the proof, we apply “strong composition” (Lemma 2.3) from [16]. With probability at least

1− δ, the privacy loss W =
n2∑
t=1

Wt is at most ε. This concludes the proof.

Lemma 2.3 (Strong composition [16]). Let ε, δ′ ≥ 0. The class of ε-differentially private algorithms satisfies
(ε′, δ′)-differential privacy under T -fold adaptive composition for ε′ =

√
2T ln(1/δ′)ε+ Tε(eε − 1).

In the following we provide the utility guarantees for AlgorithmANoise−GD under two different settings,
namely, when the function ` is Lipschitz, and when the function ` is Lipschitz and strongly convex. In
Section 5 we argue that these excess risk bounds are essentially tight.
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Theorem 2.4 (Utility guarantee). Let σ2 = O
(
L2n2 log(n/δ) log(1/δ)

ε2

)
. For θpriv output by Algorithm

ANoise−GD we have the following. (The expectation is over the randomness of the algorithm.)

1. Lipschitz functions: If we set the learning rate function ηt(t) = ‖C‖2√
t(n2L2+pσ2)

, then we have the

following excess risk bound. Here L is the Lipscthiz constant of the loss function `.

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L‖C‖2 log3/2(n/δ)

√
p log(1/δ)

ε

)
.

2. Lipschitz and strongly convex functions: If we set the learning rate function ηt(t) = 1
∆nt , then we

have the following excess risk bound. Here L is the Lipscthiz constant of the loss function ` and ∆ is
the strong convexity parameter.

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L2 log2(n/δ)p log(1/δ)

n∆ε2

)
.

Proof. Let Gt = n5 `(θ̃t; d) + bt in Line 5 of Algorithm 1. First notice that over the randomness of the
sampling of the data entry d from D, and the randomness of bt, E [Gt] = 5L(θ̃t;D). Additionally, we have
the following bound on E[‖Gt‖22].

E[‖Gt‖22] = n2E[‖ 5 `(θ̃t; d)‖22] + 2nE[〈5`(θ̃t; d), bt〉] + E[‖bt‖22]

≤ n2L2 + pσ2 [Here σ2 is the variance of bt in Line 5] (2)

In the above expression we have used the fact that since θ̃t is independent of bt, so E[〈5`(θ̃t; d), bt〉] = 0.
Also, we have E[‖bt‖22] = pσ2. We can now directly use Theorem 2.5 to obtain the required error guarantee
for Lipschitz convex functions, and Theorem 2.6 for Lipschitz and strongly convex functions.

Lemma 2.5 (Theorem 2 from [36]). Let F (θ) (for θ ∈ C) be a convex function and let θ∗ = arg min
θ∈C

F (θ).

Let θ1 be any arbitrary point from C. Consider the stochastic gradient descent algorithm θt+1 = ΠC [θt − η(t)Gt(θt)],
where E[Gt(θt)] = 5F (θt), E[‖Gt‖22] ≤ G2 and the learning rate function η(t) = ‖C‖2

G
√
t
. Then for any

T > 1, the following is true.

E [F (θT )− F (θ∗)] = O

(‖C‖2G log T√
T

)
.

Using the bound from (2) in Lemma 2.5 (i.e., set G =
√
n2L2 + pσ2), and setting T = n2 and the

learning rate function ηt(t) as in Lemma 2.5, gives us the required excess risk bound for Lipschitz convex
functions. For Lipschitz and strongly convex functions we use the following theorem by [36].

Lemma 2.6 (Theorem 1 from [36]). Let F (θ) (for θ ∈ C) be a λ-strongly convex function and let θ∗ =
arg min

θ∈C
F (θ). Let θ1 be any arbitrary point from C. Consider the stochastic gradient descent algorithm

θt+1 = ΠC [θt − η(t)Gt(θt)], where E[Gt(θt)] = 5F (θt), E[‖Gt‖22] ≤ G2 and the learning rate function
η(t) = 1

λt . Then for any T > 1, the following is true.

E [F (θT )− F (θ∗)] = O

(
G2 log T

λT

)
.
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Using the bound from (2) in Theorem 2.6 (i.e., set G =
√
n2L2 + pσ2), λ = n∆, and setting T = n2

and the learning rate function ηt(t) as in Theorem 2.6, gives us the required excess risk bound for Lipschitz
and strongly convex convex functions.

Note: Algorithm ANoise−GD has a running time of O(pn2), assuming that the gradient computation for `
takes time O(p). Variants of Algorithm ANoise−GD have appeared in [41, 24, 11, 40]. The most relevant
work in our current context is that of [40]. The main idea in [40] is to run stochastic gradient descent
with gradients computed over small batches of disjoint samples from the data set (as opposed to one single
sample used in Algorithm ANoise−GD). The issue with the algorithm is that it cannot provide excess risk
guarantee which is o(

√
n), where n is the number of data samples. One observation that we make is that

if one removes the constraint of disjointness and use the amplification lemma (Lemma 2.2), then one can
ensure a much tighter privacy guarantees for the same setting of parameters used in the paper.

3 Exponential Sampling and Optimal (ε, 0)-private Optimization

In the previous section we provided gradient descent based algorithms for both Lipschitz and, Lipschitz and
strongly convex functions which are optimal for (ε, δ)-differential privacy. In this section we concentrate
on the pure ε-differential privacy case, and provide optimal algorithms for the settings of the loss functions
mentioned above. The key building block for our algorithms in this section is the well-known exponential
mechanism [31].

For the Lipschitz case (Section 3.1), we show that a variant of the exponential mechanism is optimal. A
major technical contribution of this section is to make the exponential mechanism computationally efficient.
We borrow tools from rapidly mixing random walk theory to obtain a computationally efficient variant of
the exponential mechanism. Our analysis is based on the grid random walk of [2], and a discussion with the
second author of this paper.

3.1 Exponential Mechanism for Lipschitz Convex Loss

In this section we only deal with loss functions which are Lipschitz. We provide an ε-differentially private
algorithm (Algorithm 2) which achieves the optimal excess risk for convex sets which are in isotropic posi-
tions. For non-isotropic convex sets C, via fairly generic transformations (see [18] for a reference) one can
place C in a isotropic position with an increase in the Lipschitz constant of the loss function ` by a factor of
L‖C‖2 and increase in the diameter of the set C by a factor of p. Hence, the excess risk bound in Algorithm
2 is off by a factor of p for arbitrary convex sets. However, in Appendix A (Algorithm 6) we provide a
different exponential mechanism which achieves the optimal excess risk bound for arbitrary convex sets,
however, algorithm is computationally inefficient.

Algorithm 2 Aexp−samp: Exponential sampling based convex optimization
Input: Data set of size n: D, loss function `, privacy parameter ε and convex set C.

1: L(θ;D) =
n∑
i=1

`(θ; di).

2: Sample a point θpriv from the convex set C w.p. proportional to exp
(
− ε
L‖C‖2L(θ;D)

)
and output.

Theorem 3.1 (Privacy guarantee). Algorithm 2 is 2ε-differentially private.
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θ̂

Ball of radius r centered at origin

Ball of radius γ

Radius≤ ‖C‖2

Figure 1: Geometry of convex set C

Proof. First, notice that the distribution induced by the exponential weight function in step 2 of Algorithm 2
is the same if we used exp

(
− ε
L‖C‖2 (L(θ;D)− L(θ0;D))

)
for some arbitrary point θ0 ∈ C. Since ` is

L-Lipschitz, the sensitivity of L(θ;D)− L(θ0;D) is at most L‖C‖2. The proof then follows directly from
the analysis of exponential mechanism by [31].

In the following we first prove the utility guarantee for a special class of convex sets C which contain
ball of radius r < ‖C‖2. Later we extend this guarantee to arbitrary convex sets via isotropic transformation.

Theorem 3.2 (Utility guarantee). Let rB ⊆ C ⊂ Rp, where B is the p-dimensional unit ball. For θpriv

output by Aexp−samp (Algorithm 2) we have the following. (The expectation is over the randomness of the
algorithm.)

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
pL‖C‖2

ε
log

(
εn‖C‖2
r

))
.

Proof. First, we provide the following lemma which will be useful for the rest of the analysis.

Lemma 3.3. Let C ⊂ Rp be a convex set. Suppose there exists r > 0 such that rB ⊆ C where B is a
p-dimensional ball of unit radius. Let θ̂ be any point in C. Then, for every γ such that 0 < γ ≤ r, there
exists a ball G ⊆ C of radius γ such that for all θ ∈ G, ‖θ − θ̂‖2 ≤ γ

r ‖C‖2.

The proof of the lemma follows immediately using similarity of triangles property. (See Figure 1.)
By Lemma 3.3, there is a ball of radius G of radius γ = r

εn contained in C such that for all θ ∈ G,
‖θ − θ∗‖2 ≤ ‖C‖2εn . Hence,for all θ ∈ G, L(θ;D)− L(θ∗;D) ≤ L‖C‖2

ε .
Now, for any t > 0, we have

Pr

[
L(θpriv;D)− L(θ∗;D) ≥ (1 + t)

L‖C‖2
ε

]
≤ Vol(C)

Vol(G)
e−t =

(‖C‖2/2
γ

)p
e−t = e

p log
(
εn‖C‖2

2r

)
−t

where the second equality above follows from the standard expression of the volume of p-dimensional L2

balls. Setting t = 2p log
(
εn‖C‖2

2r

)
completes the proof.
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3.2 Efficient Implementation of Algorithm Aexp−samp (Algorithm 2)

In this section, we give a high-level description of a computationally efficient version of Algorithm 2. Our
efficient algorithm, denoted as Aeff−exp−samp, outputs a sample θ ∈ C from a distribution that is arbitrarily
close (with respect to L∞ distance) to a distribution that has the same form of the distribution in Algorithm

Aexp−samp (i.e., a distribution proportional to e−
ε̃

L‖C‖2
L(θ;D)), where ε̃ is within some constant factor of ε).

(See definition Dist∞ below.) The running time of Aeff−exp−samp is polynomial in n, p.
In [20], a computationally efficient implementation of the exponential mechanism based on efficient

sampling was given for a specific problem setting. In particular, in [20], it sufficed for their result to imple-
ment an efficient uniform sampling from a bounded convex set. To do this, Hardt and Talwar [20] used the
grid-walk algorithm of [17] as the main block of their algorithm. However, in this section, what we want to
achieve is more general than this. Namely, our goal is to sample efficiently from a logconcave distribution

(i.e., the distribution proportional to e−
ε̃

L‖C‖2
L(θ;D)) defined over an arbitrary bounded convex set C. Hence,

the same approach that is based on the algorithm of [17] is not applicable in our setting.
Our construction relies on a set of tools provided in [2]. Since our construction requires extending

some ideas from previous work on efficient sampling from log-concave distribution over convex sets, in this
section, we give some preliminary discussion of our tools and describe our approach. We defer the details
of our construction and the proof of our main result in this section (Theorem thm:eff-samp-guarantees
below) to Section 6. We show that our efficient algorithm yields the same privacy and utility guarantees of
Theorems 3.1 and 3.2. This is formally stated in the following theorem.

Theorem 3.4. There is an efficient version of Algorithm 2 (Algorithm 5 in Section 6) that has the following
guarantees.

1. Privacy: Aeff−exp−samp is ε -differentially private.

2. Utility: If rB ⊆ C ⊂ Rp, where B is the p-dimensional unit ball, then the output θpriv ∈ C of
Aeff−exp−samp satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
pL‖C‖2

ε
log

(
εn‖C‖2
r

))
.

3. Running time: Aeff−exp−samp runs in time1

O
(
‖C‖22p3n3 max {p log(‖C‖2pn), ε‖C‖2n}

)
.

Before describing our approach, we first introduce some useful notation. For any two probability mea-
sures µ, ν defined with respect to the same sample space Q ⊆ Rp, the relative L∞ distance between µ and
ν, denoted as Dist∞(µ, ν) is defined as2

Dist∞(µ, ν) = log

(
max

(
sup
q∈Q

dµ(q)

dν(q)
, sup
q∈Q

dν(q)

dµ(q)

))
.

1The expression of the running time assumes C to be in isotropic position. Otherwise, we replace ‖C‖2 by p‖C‖2
2 in the running

time where we pay an extra factor of p‖C‖2 since the diameter of C is inflated by at most a factor of p and the Lipschitz constant is
amplified by a factor of ‖C‖2 when C is placed in isotropic position.

2Note that this definition is slightly weaker than the standard definition, but it suffices for our analysis in this section.
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where dµ(q)
dν(q) (resp., dν(q)

dµ(q) ) denotes the ratio of densities (Radon-Nikodym derivative) when both µ and ν are
absolutely continuous, and denotes the ratio of the probability mass functions if both µ and ν are discrete
probability measures.

In the following (as well as in the detailed analysis in Section 6), we will assume that the convex set C
is in isotropic position. This assumption requires no loss of generality since one can always carry out an
efficient transformation of C into a convex set C′ such that C′ is in isotropic position (see [18] for a reference),
apply the efficient sampling algorithm on C′, then apply the inverse transformation to the output to obtain a
sample from the desired distribution over the original set C. This would only cost an extra polynomial factor
in the running time required to perform these transformations.

Let τ denote the L∞ diameter of C. That is, τ = ‖C‖∞ ≤ ‖C‖2. In fact, the running time of our
algorithm depends on τ rather than ‖C‖2. Namely, all the ‖C‖2 terms in the running time in Theorem 3.4
can be replaced with τ , however, we chose to write it in this less conservative way since all the bounds in
this paper are expressed in terms of ‖C‖2.

Minkowski’s norm of θ ∈ Rp with respect to C, denoted as ψ(θ), is defined as ψ(θ) = inf{r > 0 : θ ∈
rC}. We define ψ̄α(θ) , α ·max{0, ψ(θ)− 1} for some α > 0 (to be specified later). Note that ψ̄α(θ) > 0
if and only if θ /∈ C since 0p ∈ C (as C is assumed to be in isotropic position) and C is convex. Moreover, it
is not hard to verify that ψ̄α is α-Lipschitz when C is in isotropic position.

Our approach: We use the grid-walk algorithm of [2] for sampling from a logconcave distribution defined
over a cube as a building block. To extend this algorithm to the case of an arbitrary convex set (in isotropic
position and with finite L∞ diameter), we do the following. First, we enclose the set C with a cube A whose
edges are of length τ (the L∞ diameter of C). We find a convex Lipschitz extension L̄(.;D) of our loss
function L(.;D) over A. Since we want the weight attributed to the region A \ C to be as small as possible,
we modulate our logconcave distribution by a gauge function which is a standard trick in literature. Namely,

we set our weight function3 over A to be F (θ) , e
− ε̃
L‖C‖2

L̄(θ;D)−ψ̄α(θ) for some choice of ε̃ (See Section 6).
Note that we use ψ̄α(θ) as a gauge function to put far less weight on the points outside C. Moreover, F (θ)
is logconcave and its exponent (i.e., log(F (θ))) is ( nε̃

‖C‖2 + α)-Lipschitz. Next, we use the grid-walk of
[2] to generate a sample û (one of the grid points) whose distribution is close, with respect to Dist∞, to the
discrete distribution

(
F (û)∑
v̂∈S F (v̂) : û ∈ S

)
where S is the set of grid points insideA. Then, we transform the

resulting discrete distribution into a continuous distribution by sampling a point uniformly at random from
the grid cell whose center is û. The induced distribution (overA) of the output of this procedure is close with
respect to Dist∞ to the continuous distribution whose density is F (u)∫

v∈A
F (v)dv

, u ∈ A. This is guaranteed by a

proper choice of the cell size of the grid and by the fact that logF is ( nε̃
‖C‖2 +α)- Lipschitz overA. Now, note

that what we have so far is an efficient algorithm (let’s denote it by Asamp−A) that outputs a sample from a
distribution over A which close, with respect to Dist∞, to the continuous distribution F (u)∫

v∈A
F (v)dv

, u ∈ A. In

fact, if our set C was a cube to begin with, then we would be already done. However, in general this is not
the case and we need to do more. Namely, we construct an algorithm (which we denote by Aeff−exp−samp)
that outputs a sample from a distribution that is close to the desired distribution over C by making black-box
calls to Asamp−A multiple times (say, at most k times where k = poly(p, n)) where fresh random coins
are used by Asamp−A at each time it is called. If, in any of such calls, Asamp−A returns a sample θ ∈ C,
then Aeff−exp−samp terminates outputting θpriv = θ. Otherwise, Aeff−exp−samp outputs some random point
θpriv ∈ C. The use of the gauge function ψ̄α is, in fact, what makes this algorithm works for arbitrary

3The weight function is the function that induces the desired distribution over a given set.
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bounded convex sets. By appropriately choosing the parameter α, we can ensure that, with high probability,
the output θpriv of Aeff−exp−samp is drawn from a distribution (over C) that is close, with respect to Dist∞,

to the desired continuous distribution F (θpriv)∫
θ∈C

F (θ)dθ
.

Remark: In our efficient sampling algorithm, we assume that we can efficiently test whether a given point
θ ∈ Rp lies in C using a membership oracle. We also assume that we can efficienly optimize an efficiently
computable convex function over a convex set. To do this, it suffices to have a projection oracle. We do not
take into account the extra polynomial factor in running time required to perform such operations since this
factor is highly dependent on the specific structure of the set C.

We discuss the details of the implementation of our algorithm Aeff−exp−samp and the proof of Theo-
rem 3.4 in Section 6.

4 Localization and Optimal Private Algorithms for Strongly Convex Loss

It is unclear how to get a direct variant of Algorithm 2 in Section 3 for Lipschitz and strongly convex losses
that can achieve optimal excess risk guarantees. The issue in extending Algorithm 2 directly is that the
convex set C over which the exponential mechanism is defined is “too large” to provide tight guarantees.

We show a generic ε-differentially private algorithm for minimizing Lipschitz strongly convex loss func-
tions based on a combination of a simple pre-processing step (called the localization step) and any generic
ε-differentially private algorithm for Lipschitz convex loss functions. We carry out the localization step us-
ing a simple output perturbation algorithm which ensures that the convex set over which the ε-differentially
private algorithm (in the second step) is run has diameter Õ(p/n).

Next, we instantiate the generic ε-differentially private algorithm in the second step with our efficient
exponential mechanism of Section3.1 (Algorithm 2) to obtain an algorithm with optimal excess risk bound
(Theorem 4.3).

Note: The localization technique is not specific to pure ε-differential privacy, and extends naturally to (ε, δ)
case. Although it is not relevant in our current context, since we already have gradient descent based
algorithm which achieves optimal excess risk bound. We defer the details for the (ε, δ) case to Appendix
B.2.

Details of the generic algorithm: We first give a simple algorithm that carries out the desired localization
step. The crux of the algorithm is the same as to that of the output perturbation algorithm of [6, 7]. The
high-level idea is to first compute θ∗ = arg min

θ∈C
L(θ;D) and add noise according to the sensitivity of θ∗.

The details of the algorithm are given in Algorithm 3.

Algorithm 3 Aεout−pert: Output Perturbation for Strongly Convex Loss
Input: data set of size n: D, loss function `, strong convexity parameter ∆, privacy parameter ε and convex

set C.
1: L(θ;D) =

n∑
i=1

`(θ; di).

2: Find θ∗ = arg min
θ∈C
L(θ;D).

3: θ0 = ΠC (θ∗ + b), where b is random noise vector with density 1
αe
−n∆ε

2L
‖b‖2 (where α is a normalizing

constant) and ΠC is the projection on to the convex set C.
4: Output C0 = {θ ∈ C : ‖θ − θ0‖2 ≤ ζ 2Lp

∆εn} for some ζ > 1 (possibly a fixed function of p and n).
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Having Algorithm 3 in hand, we now give a generic ε-differentially private algorithm for minimizing
L over C. Let Aεgen−Lip denote any generic ε-differentially private algorithm for optimizing L over some
arbitrary convex set C̃ ⊆ C. Algorithm 5 of Section 3.2 is an example ofAεgen−Lip. The algorithm we present

here (Algorithm 4 below) makes a black-box call in its first step to A
ε
2
out−pert (Algorithm 3 shown above),

then, in the second step, it feeds the output of A
ε
2
out−pert into A

ε
2
gen−Lip and ouptut.

Algorithm 4 Output-perturbation-based Generic Algorithm
Input: data set of size n: D, loss function `, strong convexity parameter ∆, privacy parameter ε and convex

set C.
1: Run A

ε
2
out−pert (Algorithm 3) with input privacy parameter ε/2 and output C0.

2: Run A
ε
2
gen−Lip on inputs n,D, `, privacy parameter ε/2, and convex set C0, and output θpriv.

Lemma 4.1 (Privacy guarantee). Algorithm 4 is ε-differentially private.

Proof. The privacy guarantee follows directly from the composition theorem together with the fact that
A

ε
2
out−pert is ε

2 -differentially private (see [7]) and thatA
ε
2
gen−Lip is ε

2 -differentially private by assumption.

In the following theorem, we provide a generic expression for the excess risk of Algorithm 4 in terms of
the expected excess risk of any given algorithm Agen−Lip.

Lemma 4.2 (Generic utility guarantee). Let θ̃ denote the output of AlgorithmAεgen−Lip on inputs n,D, `, ε, C̃
(for an arbitrary convex set C̃ ⊆ C). Let θ̂ denote the minimizer of L(.;D) over C̃. If

E
[
L(θ̃;D)− L(θ̂;D)

]
≤ F

(
p, n, ε, L, ‖C̃‖2

)
for some function F , then the output θpriv of Algorithm 4 satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
F

(
p, n, ε, L,O

(
Lp log(n)

∆εn

)))
,

where θ∗ = arg min
θ∈C
L(θ;D).

Proof. The proof follows from the fact that, in Algorithm A
ε
2
out−pert, the norm of the noise vector ‖b‖2 is

distributed according to Gamma distribution Γ(p, 4L
∆εn) and hence satisfies

Pr

(
‖b‖2 ≤ ζ

4Lp

∆εn

)
≥ 1− e−ζ

(see, for example, [7]). Now, set ζ = 3 log(n). Hence, with probability 1− 1
n3 , C0 (the output of A

ε
2
out−pert)

contains θ∗. Hence, by setting C̃ in the statement of the lemma to C0 (and noting that ‖C0‖2 = O
(
Lp log(n)

∆εn

)
),

then conditioned on the event that C0 contains θ∗, we have θ̂ = θ∗ and hence

E
[
L(θpriv;D)− L(θ∗;D) |θ∗ ∈ C0

]
≤ F

(
p, n, ε, L,O

(
Lp log(n)

∆εn

))
13



Thus,

E
[
L(θpriv;D)− L(θ∗;D)

]
≤ F

(
p, n, ε, L,O

(
Lp log(n)

∆εn

))
(1− 1

n3
) + nL‖C‖2

1

n3

Note that the second term on the right-hand side above becomes O( 1
n2 ). From our lower bound (Section 5.2

below), F (., n, ., ., .) must be at least Ω( 1
n). Hence, we have

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
F

(
p, n, ε, L,O

(
Lp log(n)

∆εn

)))
which completes the proof of the theorem.

Instantiation of Algorithm A
ε
2
gen−Lip with the exponential sampling Algorithm 5 (See Section 3.2): Next,

we give our optimal ε-differentially private algorithm for Lipschitz strongly convex loss functions. To do
this, we instantiate the generic Algorithm Agen−Lip in Algorithm 4 with our exponential mechanism from
Section 3.1 (Algorithm 2), or its efficient version Algorithm 5 (See Theorem 3.4 in Section 3.2) to obtain
the optimal excess risk bound. We formally state the bound in Theorem 4.3) below. The proof of Theorem
4.3 follows from Theorem 3.4, Lemma 3.3, and Lemma 4.2 above. (See Appendix B.1 for details.)

Theorem 4.3 (Utility guarantee with Algorithm 5 as an instantiation ofAgen−Lip). Let rB ⊆ C ⊂ Rp, where

B is a p-dimensional ball of unit radius. Suppose we replaceA
ε
2
gen−Lip in Algorithm 4 with Algorithm 5 (See

Theorem 3.4 and Section 6 below for details). Then, the output θpriv satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
p2L2

n∆ε2
log(n) log

(
εn‖C‖2
r

))
where θ∗ = arg min

θ∈C
L(θ;D).

5 Lower Bounds on Excess Risk

In this section, we complete the picture by deriving lower bounds on the excess risk caused by differentially
private algorithm for risk minimization. As before, for a dataset D = {d1, . . . , dn}, our decomposable loss

function is expressed as L(θ;D) =
n∑
i=1

`(θ; di), θ ∈ C for some convex set C ⊂ Rp. In Section 5.1, we

consider the case of convex Lipschitz loss functions, whereas in Section 5.2, we consider the case of strongly
convex and Lipschitz loss functions.

In our lower bounds, we consider the convex set C to be the p-dimensional unit ball B. In our lower
bounds for Lipschitz convex functions (Section 5.1), we consider a loss function ` that is 1-Lipschitz. On
the other hand, in our lower bounds for Lipschitz and strongly convex functions (Section 5.2), we consider
a loss function ` that is ‖C‖22 -Lipschitz (where ‖C‖2=2 since C = B). Hence, without loss of generality,
L‖C‖2 = 2 in all our bounds. That is, for a general setting of ‖C‖2 and L, one can think of our lower
bounds as being normalized (i.e., divided by) L‖C‖2. Hence, one can see, given our results in Sections 2
and 3.1, that our lower bounds in Section 5.1 are tight (up to logarithmic factors).

In our lower bounds in Section 5.2, the loss function ` that we consider is 1-strongly convex (i.e., ∆ = 1).
Although we can always set ∆ to any arbitrary value by rescaling the loss function, such rescaling will also
affect its Lipschitz constant L. This is due to the fact that our choice of the loss function `(θ; d) is the
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squared L2 distance between θ and d. Hence, one can easily show that for any arbitrary vlaues of ‖C‖2, L,
and ∆, our lower bounds in Section 5.2 are a factor of L

∆‖C‖2 smaller than the corresponding upper bounds

in Sections 2 and 4 (ignoring the logarithmic factors in the upper bounds). Thus, if L
∆‖C‖2 = O(1), then our

lower bounds in Section 5.2 are tight (up to logarithmic factors).

5.1 Lower bounds for Lipschitz Convex Functions

In this section, we give lower bounds for both ε and (ε, δ) differentially private algorithms for minimizing
any convex Lipschitz loss function L(θ;D). We consider the following loss function. Define `(θ; d) =
−〈θ, d〉, θ ∈ B, d ∈ {− 1√

p ,
1√
p}p. For any dataset D = {d1, . . . , dn} with data points drawn from

{− 1√
p ,

1√
p}p, and any θ ∈ B, define L(θ;D) =

∑n
i=1 `(θ; di). Clearly, L is linear and, hence, Lipschitz and

convex. Note that θ∗ =
∑n
i=1 di

‖
∑n
i=1 di‖2

is the minimizer of L(.;D) over B. Next, we show lower bounds on the

excess risk incurred by any ε and (ε, δ) differentially private algorithm with output θpriv ∈ B.
Before we state and prove our lower bounds, we first give the following useful lemma.

Lemma 5.1 (Lower bounds for 1-way marginals). The statements below follow from the results of [20] and
[5], respectively.

1. ε-differential private algorithms: Let ε = O(1). There is a datasetD = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p

with ‖∑n
i=1 di‖2 = Ω (min (n, p/ε)) such that for any ε-differentially private algorithm (whose out-

put is denoted by θpriv) for answering 1-way marginals qD , 1
n

∑n
i=1 di, there exists a subset S ⊆ [p]

with |S| = Ω(p) such that, with a positive constant probability (taken over the algorithm random
coins), we have

|θprivj − qDj | ≥ Ω

(
min

(
1√
p
,

√
p

εn

))
∀j ∈ S

where θprivj and qDj denote the jth coordinate of θpriv and qD, respectively.

2. (ε, δ)-differential private algorithms: Let ε = O(1) and δ = o( 1
n). There is a dataset D =

{d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p with ‖∑n

i=1 di‖2 = Ω
(
min

(
n,
√
p/ε
))

such that for any (ε, δ)-

differentially private algorithm (whose output is denoted by θpriv) for answering 1-way marginals
qD , 1

n

∑n
i=1 di, there exists a subset S ⊆ [p] with |S| = Ω(p) such that, with a positive constant

probability (taken over the algorithm random coins), we have

|θprivj − qDj | ≥ Ω

(
min

(
1√
p
,

1

εn

))
∀j ∈ S

where θprivj and qDj denote the jth coordinate of θpriv and qD, respectively.

Theorem 5.2 (Lower bound for ε-differentially private algorithms). Let ε = O(1). There is a dataset
D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p such that for any ε-differentially private algorithm (whose output is

denoted by θpriv), with positive constant ptobability, we must have

L(θ;D)− L(θ∗;D) ≥ Ω (min (n, p/ε))

where θ∗ =
∑n
i=1 di

‖
∑n
i=1 di‖2

is the minimizer of L(.;D) over B.
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Proof. First, observe that for any θ ∈ B and any datasetD, L(θ;D)−L(θ∗;D) = ‖∑n
i=1 di‖2 (1− 〈θ, θ∗〉).

Define E = 1
‖
∑n
i=1 di‖2

(
L(θpriv;D)− L(θ∗;D)

)
. It is easy to see that E ≥ 1

2‖θpriv − θ∗‖22 since ‖θpriv −
θ∗‖22 = ‖θ∗‖22 + ‖θpriv‖22 − 2〈θpriv, θ∗〉 and θ∗, θpriv ∈ B. Part 1 of Lemma 5.1 implies that there is a
dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p and a set S with |S| = Ω(p) such that, with positive constant

probability, |θprivj − ‖
∑n
i=1 di‖2
n θ∗j | ≥ Ω

(
min

(
1√
p ,
√
p

εn

))
∀j ∈ S where ‖∑n

i=1 di‖2 = Ω (min(n, p/ε)).

Hence, we have (with positive constant probability) |θprivj − θ∗j | ≥ Ω
(

1√
p

)
∀j ∈ S. This implies that, with

constant positive probability, ‖θpriv − θ∗‖22 ≥ Ω(1). Hence, from the observation we made above, we get(
L(θpriv;D)− L(θ∗;D)

)
= Ω (min (n, p/ε)) · E ≥ Ω (min (n, p/ε)) ‖θpriv − θ∗‖22 ≥ Ω (min (n, p/ε)) .

Theorem 5.3 (Lower bound for (ε, δ)-differentially private algorithms). Let ε = O(1) and δ = o( 1
n). There

is a dataset D = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p such that for any ε-differentially private algorithm (whose

output is denoted by θpriv), with positive constant ptobability, we must have

L(θ;D)− L(θ∗;D) ≥ Ω (min (n,
√
p/ε))

where θ∗ =
∑n
i=1 di

‖
∑n
i=1 di‖2

is the minimizer of L(.;D) over B.

Proof. We use Part 2 of Lemma 5.1 and follow the same lines of the proof of Theorem 5.2.

5.2 Lower bounds for Strongly Convex Functions

We give here lower bounds on the excess error of ε and (ε, δ) differentially private optimization algorithms
for the class of strongly convex decomposable loss function L(θ;D). Let `(θ; d) be half the squared L2-
distance between θ ∈ B and d ∈ {− 1√

p ,
1√
p}p, that is, `(θ; d) = 1

2‖θ − d‖22. Note that `, as defined, is

1-Lipschitz and 1-strongly convex. For a dataset D = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p, the decomposable

loss function L(θ;D) =
∑n

i=1 `(θ; di) is thus n-Lipschitz and n-strongly convex. Notice that the mini-
mizer of L(.;D) over B is θ∗ = 1

n

∑
di and that the excess error L(θpriv;D) − L(θ∗) can be written as

n
2 ‖θpriv − 1

n

∑n
i=1 di‖22.

Theorem 5.4 (Lower bound for ε-differentially private algorithms). Let ε = O(1). Let θpriv ∈ B be the
output of any ε-differentially private algorithm for minimizing L (as a function of θ) over B. Then there
exists a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p such that with constant positive probability over the

algorithm random coins, we must have

L(θpriv;D)− L(θ∗;D) ≥ Ω

(
min

(
n,

p2

ε2n

))

Proof. From Part 1 of Lemma 5.1, we know that there is a dataset D = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p

and a set S ⊆ [p] whose size |S| = Ω(p) such that with a positive constant probability |θprivj − θ∗j | ≥
Ω
(

min
(

1√
p ,
√
p

εn

))
∀j ∈ S. Hence, with a positive constant probability, we have

L(θpriv;D)− L(θ∗) ≥ n

2

∑
j∈S
|θprivj − θ∗j |2 ≥ Ω

(
min

(
n,

p2

ε2n

))
.
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Theorem 5.5 (Lower bound for (ε, δ)-differentially private algorithms). Let ε = O(1) and δ = o( 1
n). Let

θpriv ∈ B be the output of any (ε, δ)-differentially private algorithm for minimizing L (as a function of θ)
over B. Then there exists a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p such that with constant positive

probability over the algorithm random coins, we must have

L(θpriv;D)− L(θ∗;D) ≥ Ω
(

min
(
n,

p

ε2n

))

Proof. We use Part 2 of Lemma 5.1 and follow the same lines of the proof of Theorem 5.4.

6 Efficient Sampling from Logconcave Distributions over Convex Sets and
The Proof of Theorem 3.4

In this section, we discuss the details of our efficient construction described in Section 3.2 and prove Theo-
rem thm:eff-samp-guarantees which will involve the ability to carry out efficient sampling from logconcave
distributions over arbitrary convex bounded sets. Towards the goal of proving Theorem 3.4, we start by
giving the following lemma which describes Algorithm Asamp−A for sampling from a logconcave weight
function F defined over a hypercube A.

Lemma 6.1. LetA ⊂ Rp be a p-dimensional hypercube with edge length τ . Let F be a logconcave function
that is strictly positive over A where logF is η-Lipschitz. Let µA be the probability measure induced by
the density F∫

u∈A
F (u)du

. Let ε̃ > 0. There is an algorithm Asamp−A that takes A, F, and ε̃ as inputs, and

outputs a sample θ̃ ∈ A that is drawn from a continuous distribution µ̂A over A with the property that
Dist∞(µ̂A, µA) ≤ ε̃. Moreover, the running time of Asamp−A is

O

(
η2τ2

ε̃2
p3 max

(
p log

(ητp
ε̃

)
, ητ
))

.

Proof. Let γ = ε̃
2η
√
p . We construct a grid Gγ , {u ∈ Rp : uj + γ

2 is integer multiple of γ, 1 ≤ j ≤ p}.
Next, we run the grid-walk algorithm of [2] with the logconcave weight functionF onA∩Gγ . It follows from
the results of [2] that (i) the grid-walk is a lazy, time-reversible Markov chain, (ii) the stationary distribution
of such grid-walk is π = F∑

u∈A∩Gγ F (u) , and (iii) the grid-walk has conductance φ ≥ ε̃

8ητp
3
2 e

ε̃
2

. We run the

grid-walk for t∞ steps (namely, the L∞ mixing time of the walk) and output a sample û ∈ A∩Gγ . Then, we
uniformly sample a point θ from the grid cell whose center is û. Let π̂ denote the distribution of the output
û of the grid-walk after t∞ steps. Let µ̂A, as in the statement of the lemma, denote the distribution of θ that
is uniformly sampled from the grid cell whose center is û. Now, suppose that after t∞ steps it is guaranteed
to have Dist∞(π̂, π) ≤ ε̃

2 . Then, since logF is η-Lipschitz and γ = ε̃
2η
√
p (where, as defined above, γ is

the edge length of every cell of Gγ), it is easy to show that Dist∞(µ̂A, µA) ≤ ε̃. Hence, it remains to show
a bound on t∞, the L∞ mixing time of the Markov chain given by the grid-walk. Specifically, t∞ is the
number of the steps on the grid-walk required to have Dist∞(π̂, π) ≤ ε̃

2 . Towards this end, we use the result
of [32] on the rapid mixing of lazy Markov chains with countable state space. We formally restate this result
in the following lemma.
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Lemma 6.2 (Theorem 1 in [32]). Let P be a lazy, time reversible Markov chain over a countable state
space Γ. Then, the time t∞ reuired for relative L∞ convergence of ε′ is at most 1 +

∫ 4/ε′

4π∗
4dx

xΦ2(x)
. Here,

Φ(x) = inf{φS : π(S) ≤ x} where φS denotes the conductance of the set S ⊆ Γ and π∗ is the minimum
probability assigned by the stationary distribution.

Now, setting ε′ = ε̃
2 in the above lemma and using the fact that Φ(x) ≥ φ ≥ ε̃

8ητp
3
2 e

ε̃
2

for all x, we get

t∞ = O

(
η2τ2p3

ε̃2
log

(
1

ε̃π∗

))
.

Observe that

π(u) =
F (u)∑

v∈A∩Gγ F (v)
≥ e−ητ(

τ
γ

)p
where the last inequality follows from the fact that logF is η-Lipschitz. Plugging the value we set for γ, we
get t∞ = O

(
η2τ2

ε̃2
p3 max

(
p log

(ητp
ε̃

)
, ητ
))

. This completes the proof.

Having Lemma 6.1 in hand, we now discuss our construction of Algorithm Aeff−exp−samp (Algorithm 5
below) that we informally described in Section 3.2. Our algorithm starts by finding a cube A that contains C
and then, with an overwhelming fixed probability (in n), it runs Asamp−A multiple times with such A as an
input as will be described shortly. With the remainder probability (which is negligible in n), Aeff−exp−samp

just outputs a random point in C and aborts.

Remark: Although we give our construction for the specific case of F above, one can easily generalize this
construction to any logconcave weight function F using the same gauge-function trick.

Fix a dataset D of size n. In the remainder of this section, we set the logconcave weight function F in

Lemma 6.1 to be e−
ε̃

L‖C‖2
L̄(θ;D)−ψ̄α(θ) where ε̃ = ε

20 , L̄(.;D) is a convex Lipschitz extension of L(.;D) to
the cube A, and ψ̄α is the gauge function described earlier. Note that L(.;D) may not be defined outside
C and thus we define an extension for it over the set A \ C such that the new function remains convex
and nL-Lipschitz over A. McShane-Whitney extension theorem [21] gives an explicit construction of an
extension for any Lipschitz function defined over an arbitrary set to a Lipschitz function (with the same
Lipschitz constant) defined over Rp. The following lemma asserts that if the original Lipschitz function
is also convex and defined over a convex set C, then the same construction of McShane-Whitney (i) is
efficiently computable and (ii) yields a function that is Lipschitz and also convex.

Lemma 6.3 (Convex Lipschitz extension). Let f be an efficiently computable, η-Lipschitz, convex function
defined on a convex bounded set C ⊂ Rp. Then there exists an efficiently computable, η-Lipschitz convex
function F defined over Rp such that F , restricted to C, is equal to f . The efficient computation of F is
based on the assumption of the existence of a projection oracle.

Proof. For the sake of simplicity, let’s assume that C is closed. Actually, this is no loss of generality since
we can always redefine f such that it is defined on the closure of C which is possible because f is continuous
on C. We use the same extension in the proof McShane-Whitney theorem [21]. Namely, define

gy(x) , f(y) + η‖x− y‖2, y ∈ C, x ∈ Rp

F (x) = min
y∈C

gy(x), x ∈ Rp.
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By McShane-Whitney theorem, we know that the function F on Rp is η-Lipschitz extension of f . Moreover,
since f is convex and C is a convex set, then for every x ∈ Rp, the computation of F (x) is a convex program
which can beimplemented efficiently using a linear optimization oracle. In particular, a projection oracle
would suffice and hence F is efficiently computable. It remains to show that F is convex. Let x1, x2 ∈ Rp.
Let y1 and y2 denote the minimizers of gy(x1) and gy(x2) over y ∈ C, respectively. Let 0 ≤ λ ≤ 1. Define
xλ = λx1 + (1− λ)x2 and let yλ denote the minimzer of gy(xλ) over y ∈ C. Now, observe that

F (xλ) = gyλ(xλ) ≤ gλy1+(1−λ)y2
(xλ)

= f(λy1 + (1− λ)y2) + η‖λ(y1 − x1) + (1− λ).(y2 − x2)‖2
≤ λ (f(y1) + η‖y1 − x1‖2) + (1− λ) (f(y2) + η‖y2 − x2‖2)

= λF (x1) + (1− λ)F (x2)

where the inequality in the first line follows from the fact that yλ is the minimzer (w.r.t. y) of gy(xλ) and
the inequality in the third line follows from the convexity of f and the L2-norm. This completes the proof
of the lemma.

Now, we construct the extension of our loss L(.;D) over the cube A in the same fashion described in
Lemma 6.3. Namely, we define our Lipscitz extension L̄(.;D) as

L̄(θ;D) = min
u∈C

(L(u;D) + nL‖θ − u‖2) , θ ∈ A.

By Lemma 6.3, for every θ ∈ A, L̄(θ;D) is efficiently computable, convex, and nL-Lipschitz.

Algorithm 5 Aeff−exp−samp: Efficient Log-Concave Sampling over Convex Set C
Input: data set D of size n, convex set C, loss function `, Lipschitz constant L of `, privacy parameter ε.

1: Find a cube A ⊇ C with edge length τ = ‖C‖∞.

2: L(θ;D) =
n∑
i=1

`(θ; di).

3: Find a convex Lipschitz extension L̄(θ;D) = min
u∈C

(L(u;D) + nL‖θ − u‖2).

4: ψ̄α(θ) = α · max{0, ψ(θ) − 1} with α = 3
20e

2ε
5 (εn + p), where ψ(θ) is the Minkowski’s norm of θ

w.r.t. C as defined above.
5: F (θ) = e

− ε
20L‖C‖2

L̄(θ;D)−ψ̄α(θ).
6: With probability 1

ε2n : Output θpriv = θ0 ∈ C and abort (where θ0 is an arbitrary fixed4 point in C);
otherwise, continue.

7: for 1 ≤ i ≤ n do
8: θi = Asamp−A(A,F, ε5).
9: if θi ∈ C then

10: Output θpriv = θi and abort.
11: Output θpriv = θ0.

Now, we analyze our algorithm and prove Theorem 3.4. Let Bad denote the event that Aeff−exp−samp

does not abort during the for loop, i.e., Bad is the event that Aeff−exp−samp outputs an arbitrary fixed data-
independent point θ0 ∈ C which happens either in step 6 or in step 11. Let Good denote the complement of
Bad, that is, the event that one of the n calls toAsamp−A returns a sample θi inside C. The next lemma bounds
the probability of Bad and characterizes the distribution of θpriv (the output of Aeff−exp−samp) conditioned
on the event Good.
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Lemma 6.4. The probability of the event Bad defined above satisfies Pr [Bad] ∈ [ 1
ε2n ,

1
ε2n + 1

2n ). Let µ̂Good

denote the conditional distribution of θpriv (the output of Aeff−exp−samp) conditioned on the event Good.

Then, we have Dist∞

(
µ̂Good,

F∫
u∈C

F (u)du

)
≤ 2ε

5 .

Proof. For simplicity of notation, since the datasetD is fixed, we will dropD from L̄(θ;D) and denote it by
just L̄(θ). We start by proving that Pr [Bad] ∈ [ 1

ε2n ,
1
ε2n + 1

2n ). To do this, it suffices to prove the following
claim.

Claim 6.5. For the given function F and the given setting of α, Asamp−A outputs θ /∈ C with probability at
most 1

2 .

Proof. By Lemma 6.1, we know that θ (the output of Asamp−A) has a distribution µ̂A with the property that
Dist∞(µ̂A, µA) ≤ ε

5 where µA(u) = F (u)∫
v∈A

F (v)dv
, u ∈ A. We will show that

∫
θ∈A\C

µ̂A(θ)dθ ≤
∫
θ∈C

µ̂A(θ)dθ.

In particular, it suffices to show that
∫

θ∈A\C
F (θ)dθ ≤ e−

2ε
5

∫
θ∈C

F (θ)dθ. Towards this end, consider a dif-

ferential (p-dimensional) cone with a differential angle dω at its vertex which is located at the origin (i.e.,
inside C since C is in isotropic position). Let θ̃ be the point where the axis of the cone intersects with the
boundary of C. The set C divides the cone into two regions; one inside C and the other is outside C. We now
show that, for any such cone, the integral of F over its region outside C, denoted by Iout, is less than the
integral of e−

2ε
5 F over the region inside C which is denoted by Iin. Let ε̃ = ε

20 . First, observe that

Iin = dω p‖θ̃‖p2
∫ 1

0
e
− ε̃
L‖C‖2

L̄(rθ̃)
rp−1dr ≥ dω p‖θ̃‖p2e

− ε̃
L‖C‖2

L̄(θ̃)
∫ 1

0
e−ε̃n(1−r)rp−1dr

= dω p‖θ̃‖p2e
− ε̃
L‖C‖2

L̄(θ̃)
∫ 1

0
e−ε̃nr(1− r)p−1dr ≥ dω p‖θ̃‖p2e

− ε̃
L‖C‖2

L̄(θ̃)
∫ 1

ε̃n+p

0
(1− ε̃nr)(1− pr)dr

≥ dω p‖θ̃‖p2e
− ε̃
L‖C‖2

L̄(θ̃)
∫ 1

ε̃n+p

0
(1− (ε̃n+ p) r) dr = dω p‖θ̃‖p2e

− ε̃
L‖C‖2

L̄(θ̃) 1

2(ε̃n+ p)

where the second inequality in the first line follows from the Lipschitz property of L̄ and the second inequal-
ity in the second line follows from the fact that e−x ≥ 1− x and (1− x)p−1 ≥ 1− px. On the other hand,
we can upper bound Iout as follows.

Iout ≤ dω p‖θ̃‖p2
∫ ∞

1
e
− ε̃
L‖C‖2

L̄(rθ̃)
e−α(r−1)rp−1dr ≤ dω p‖θ̃‖p2e

− ε̃
L‖C‖2

L̄(θ̃)
∫ ∞

1
eε̃n(r−1)e−α(r−1)rp−1dr

≤ 2(ε̃n+ p)Iin

∫ ∞
0

e−(α−(ε̃n+p))r ≤ e− 2ε
5 Iin (3)

where the last inequality follows from the setting of α we made in Algorithm 5. Since this is true for any
differential cone as described above, the proof of the claim is now complete.

The previous claim together with the definition of the event Bad above concludes the proof of the first
part of Lemma 6.4.

Next, let µC denote the distribution induced by F on C, that is, F∫
θ∈C F (θ)dθ

. We show that the conditional

distribution µ̂Good of θpriv (the output ofAeff−exp−samp) conditioned on the event Good (the complement of
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Bad) satisfies Dist∞(µ̂Good, µC) ≤ 2ε
5 . Suppose that the event Good occurs. Let i∗ ∈ [n] denote the iteration

in which Asamp−A outputs a sample θi∗ ∈ C. Note that i∗ is a random variable. Moreover, observe that

Good ⇐⇒ i∗ ∈ [n] ⇐⇒ i∗ ∈ [n] ∧ θi∗ ∈ C ⇐⇒ i∗ ∈ [n] ∧ θi∗ ∈ C ∧ θpriv = θi∗

Thus, for any measurable subset U ⊆ C, we have

µ̂Good(U) = Pr
[
θpriv ∈ U | Good

]
= Pr [θi∗ ∈ U | θi∗ ∈ C ∧ i∗ ∈ [n]]

=

n∑
j=1

Pr [θi∗ ∈ U | θi∗ ∈ C ∧ i∗ = j] Pr[i∗ = j|i∗ ∈ [n]]

=

n∑
j=1

Pr [θj ∈ U | θj ∈ C] Pr[i∗ = j|i∗ ∈ [n]]

=
µ̂A(U)

µ̂A(C)
n∑
j=1

Pr[i∗ = j|i∗ ∈ [n]] =
µ̂A(U)

µ̂A(C)

Now, since µC(U) = µA(U)
µA(C) , by Lemma 6.1, we have Dist∞

(
µ̂A

µ̂A(C) , µC

)
≤ 2ε

5 which completes the proof of
the second part of the lemma.

Lemma 6.4 constitutes the central part of the proof of Theorem 3.4. The following lemma (from [20])
will be useful in finalizing the proof.

Lemma 6.6 (follows from Lemma A.1 in [20]). Let ε, ε̃ > 0. Let Q ⊆ Rp. For every dataset D, let µD

denote the distribution (over Q) of the output of an ε-differentially private algorithm A1 when run on the
input dataset D, and µ̂D be the distribution (over Q) of the output of some algorithm A2 when run on D.
Suppose that Dist∞(µ̂D, µD) ≤ ε̃ for all D. Then, A2 is (2ε̃+ ε)-differentially private.

Proof of Theorem 3.4: We start by proving differential privacy of Algorithm 5. Fix any two neighboring
datasets D and D′. Let µ̂D and µ̂D

′
be the distributions of the output θpriv of Algorithm 5 when the input

datasets are D and D′, respectively. Let GoodD,GoodD
′

be the events analogous to the event Good of
Lemma 6.4 when the input datasets are D and D′, respectively. Similarly, we let BadD and BadD

′
be the

events corresponding to Bad of Lemma 6.4. We denote the conditional distributions of the output θpriv

conditioned on the event GoodD and GoodD
′

by µ̂DGood and µ̂D
′

Good, respectively. Note that, on the other
hand, the conditional distribution of θpriv conditioned on the Bad event of Lemma 6.4 is the same on C
irrespective of the input dataset (namely, it is a degenrate distribution whose mass is located at θpriv = θ0).
Let’s denote it by µ̂Bad. Now, observe that for any θpriv ∈ C

dµ̂D(θ) = dµ̂DGood Pr[GoodD] + dµ̂Bad Pr[BadD]

It follows from the first part of Lemma 6.4 that

e−ε ≤ (1 + ε)−1 ≤ Pr[BadD]

Pr[BadD′ ]
≤ 1 + ε ≤ eε

Thus, we also have

e−
ε
10 ≤ 1− εPr[BadD]

1− (1− ε) Pr[BadD]
≤ Pr[GoodD]

Pr[GoodD′ ]
≤ εPr[BadD

′
]

1− Pr[BadD′ ]
≤ e ε

10
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where the first and last inequalities follow from the fact that Pr[BadD] (resp., Pr[BadD
′
]) can be made suffi-

ciently small. Moreover, from the second part of Lemma 6.4 and Lemma 6.6, it follows that Dist∞(µ̂DGood, µ̂
D′
Good) ≤

9ε
10 . Putting these together, we get Dist∞(µ̂D, µ̂D

′
) ≤ ε. Hence, Algorithm 5 is ε-differentially private.

To show the utility guarantee of Algorithm 5, we first observe that except for an event that occurs with
negligible probability, namely the event Bad of Lemma 6.4, the output θpriv has distribution that is close
with respect to Dist∞ to (i.e., within a constant factor of) the distribution of the output of Algorithm 2, and
hence, the utility analysis follows the same lines of Theorem 3.2.

Finally, observe that the running time is at most O
(
nTAsamp−A

)
where TAsamp−A

is the running time of
Asamp−A. The running time ofAsamp−A is given by Lemma 6.1 after substituting η with εn

20‖C‖2 +α = O(εn)

(where α = O(εn)5 is the gauge function parameter in Algorithm 5) and τ with ‖C‖2. This completes the
proof of Theorem 3.4.
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A Inefficient Exponential Mechanism for Arbitrary Convex Bodies

In Algorithm 6 below we provide a computationally inefficient procedure to achieve an error of Õ(p/ε) for
arbitrary convex sets. We only provide utility analysis for this algorithm, since the proof that this algorithm
is ε-differentially private follows directly from the analysis of Theorem 3.1.

Algorithm 6 Anet−samp: Convex optimization via sampling from a γ-net
Input: data set of size n: D, loss function `, privacy parameter ε and convex set C.

1: Define a netM that covers C with balls of radius ‖C‖2pεn and with Θ
(

( εnp )p
)

net points

2: L(θ;D) =
n∑
i=1

`(θ; di).

3: Sample a point θpriv fromM w.p. proportional to exp
(
− ε
L‖C‖2L(θ;D)

)
and output.

Theorem A.1 (Utility guarantee). For θpriv output byAnet−samp (Algorithm 6) we have the following. (The
expectation is over the randomness of the algorithm.)

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
pL‖C‖2

ε
log(

εn

p
)

)
.

Proof. First, since ` is L-Lipschitz, L is nL-Lipschitz. Thus, there exist a net point θ̂ such that L(θ̂;D) −
L(θ∗;D) = nL · ‖C‖2pεn = L‖C‖2p/ε. A standard analysis of the exponential mechanism (McSherry and
Talwar [31]) shows that the additional expected loss due to sampling is at most O(1

ε ) times the sensitivity of
the loss function (here at most L‖C‖2) times the logarithm of the size of the set being sampled from (here
O( εnp )p)). Thus the final expected excess risk is L‖C‖2p

ε +O(L‖C‖2ε · log(( εnp )p)) = O(L‖C‖2pε · log( εnp )).

B Missing Details from Section 4 (Localization and Exponential Mecha-
nism)

B.1 Proof of Theorem 4.3

Proof. With Theorem 4.2 in hand, it suffices to show that Algorithm 2 (from Section 3.1) , when given the
convex set C0 (the output of A

ε
2
out−pert) as input, it yields an output θ̃ that satisfies

E
[
L(θ̃;D)− L(θ̂;D)

]
≤ O

(
pL‖C0‖2

ε
log

(
εn‖C‖2
r

))
where θ̂ = arg min

θ∈C0
L(θ;D). The rest of the proof will follow directly from Theorem 4.2.

By Lemma 3.3, there exists a ball G ⊆ C of radius r0 = r
‖C‖2 ‖C0‖2 ≤ r

‖C‖2
4ζLp
∆εn such that for all θ ∈ G,

we have ‖θ − θ0‖2 ≤ 4ζLp
∆εn where θ0 ∈ C0 is the perturbed minimizer generated by Algorithm A

ε
2
out−pert.

Hence, by definition of C0, we must have G ⊆ C0. Thus, Algorithm 2 (from Section 3.1) is given a convex

25



set C0 that contains a ball of radius r0. Since θ̂ is the minimizer of L(.;D) in C0, then Theorem 3.4 implies
that Algorithm 5 (from Section 6) outputs θ̃ that satisfies

E
[
L(θ̃;D)− L(θ̂;D)

]
≤ O

(
pL‖C0‖2

ε
log

(
εn‖C0‖2
r0

))
= O

(
pL‖C0‖2

ε
log

(
εn‖C‖2
r

))
as desired.

B.2 Localization and (ε, δ)-Differentially Private Algorithms for Lipschitz, Strongly Convex
Loss

We use slightly different version of Aεout−pert (Algorithm 3) which we denote by A(ε,δ)
out−pert where the algo-

rithm takes as input an extra privacy parameter δ, it samples the noise vector b from the Gaussian distribution

N
(
0, Ipσ2

0

)
where σ2

0 = 4
L2 log( 1

δ )
∆2ε2n2 , and outputs C0 = {θ ∈ C : ‖θ − θ0‖2 ≤ ζσ0

√
p}.

Let A(ε,δ)
gen−Lip denote any generic (ε, δ)-differentially private algorithm for optimizing a decomposable

loss of convex Lipschitz functions over some arbitrary convex set C̃ ⊆ C. Algorithm 1 from Section 2 is
an example of A(ε,δ)

gen−Lip. Now, we construct an algorithm A(ε,δ)
gen−str−convex which is the (ε, δ) analog of

Aεgen−str−convex (Algorithm 4). Namely, A(ε,δ)
gen−str−convex runs in similar fashion to Aεgen−str−convex where

the only difference is that it takes an extra privacy parameter δ as input and calls algorithms A( ε
2
, δ
2

)
out−pert and

A( ε
2
, δ
2

)

gen−Lip instead of A
ε
2
out−pert and A

ε
2
gen−Lip, respectively.

Theorem B.1 (Privacy guarantee). Algorithm A(ε,δ)
gen−str−convex is (ε, δ)-differentially private.

Proof. The privacy guarantee follows directly from the composition theorem together with the fact that

A( ε
2
, δ
2

)
out−pert is ( ε2 ,

δ
2)-differentially private and thatA( ε

2
, δ
2

)

gen−Lip is ( ε2 ,
δ
2)-differentially private by assumption.

Theorem B.2 (Generic utility guarantee). Let θ̃ denote the output of AlgorithmA(ε,δ)
gen−Lip on inputs n,D, `, ε, δ, C̃

(for an arbitrary convex set C̃ ⊆ C). Let θ̂ denote the minimizer of L(.;D) over C̃. If

E
[
L(θ̃;D)− L(θ̂;D)

]
≤ F

(
p, n, ε, δ, L, ‖C̃‖2

)
for some function F , then the output θpriv of A(ε,δ)

gen−str−convex satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
≤ O

F
p, n, ε, δ, L,O

L
√
p log

(
1
δ

)
log(n)

∆εn

 .

Proof. The proof follows the same lines of the proof of Theorem 4.2 except for the fact that, in Algorithm

A( ε
2
, δ
2

)
out−pert, the noise vector b is Gaussian and hence using the standard bounds on the norm of an i.i.d.

Gaussian vector, we have

Pr

[
‖b‖2 ≤ ζσ0

√
p

]
= Pr

‖b‖2 ≤ ζ 4L
√

log
(

2
δ

)
∆εn

 ≥ 1− e−Ω(ζ2)
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We set ζ =
√

3 log(n) and the rest of the proof follows in the same way as the proof of Theorem 4.2.

C Converting Excess Risk Bounds in Expectation to High-probability Bounds

In this paper all of our utility guarantees are in terms of the expectation over the randomness of the al-
gorithm. Although all the utility analysis except for the gradient descent based algorithm (Algorithm 1)
provide high-probability guarantees directly, in this section we provide a generic approach for obtaining
high-probability guarantee based on the expected risk bounds. The idea is to run the underlying differen-
tially private algorithm k-times, with the privacy parameters ε/k and δ/k for each run. Let θpriv1 , · · · θprivk be
the vectors output by the k-runs. First notice that the vector θpriv1 , · · · , θprivk is (ε, δ)-differentially private.
Moreover if the algorithm has expected excess risk of F (ε, δ) (where F is the specific excess risk function
of ε and δ), then by Markov’s inequality there exist an execution of the algorithm i ∈ [k] for which the
excess risk is 2F (ε/k, δ/k) with probability at least 1− 1/2k.

One can now use the exponential mechanism from Algorithm 2, to pick the best θprivi from the list.
By the same analysis of Theorem 3.2, one can show that with probability at least 1 − ρ/2, the exponential
mechanism will output a vector θpriv that has excess risk of max

i
Excess risk(θprivi )−O

(
L‖C‖2
ε log(k/ρ)

)
.

Setting k = log(2/ρ), we have that with probability at lest 1 − ρ, the excess risk for θpriv is at most
O(F ( ε

log(1/ρ) ,
δ

log(1/ρ))). Placing this bound in context of the paper, the high probability bounds are only a
poly log(1/ρ) factor off from the expectation bounds.

D Excess Risk Bounds for Smooth Functions

In this section we present the scenario where each of the loss function `(θ; d) (for all d in the domain) is
β-smooth in addition to being L-Lipschitz (for θ ∈ C). It turns out that both for ε and (ε, δ)-differential
privacy, objective perturbation algorithm (see (4)) [7, 30] achieves the best possible error guarantees, where

the random variable b is either sampled i) from the Gamma distribution with the kernel∝ e−
ε‖b‖2

2L . or ii) from
the Normal distribution N

(
0, Ip 8L2 log(1/δ)

ε2

)
. In terms of privacy, when the noise vector b is from Gamma

distribution, the algorithm is ε-differentially private. And when the noise is from Normal distribution, it is
(ε, δ)-differentially private. For completeness purposes, we also state the error bounds from [30] (translated
to the context of this paper).

θpriv = arg min
θ∈C
L(θ;D) +

∆

2
‖θ‖22 + 〈b, θ〉 (4)

Theorem D.1 (Lipschitz and smooth function). The excess risk bounds are as follows:

1. [7] With Gamma density ν1, setting ∆ = Θ
(

Lp
ε‖C‖2

)
and assuming ∆ ≥ β

2ε , we have

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L‖C‖2p

ε

)
.

2. [30] With Gaussian density, setting ∆ = Θ

(√
L2p log(1/δ)

ε‖C‖2

)
and assuming ∆ ≥ β

2ε , we have

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L‖C‖2

√
p ln(1/δ)

ε

)
.
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Additionally when the loss function `(θ; d) is ∆-strongly convex (for θ ∈ C) for all d in the domain with
the condition that ∆ ≥ β

2ε , one can essentially recover the tight error guarantees for the ε and (ε, δ) case
of differential privacy respectively. The main observation is that for the privacy guarantee to be achieved
one need not add the additional regularizer. Although not in its explicit form, a variant of this observation
appears in the work of [30]. We state the error guarantee from [30, Theorem 31] translated to our setting.
Notice that unlike Theorem D.1, the error guarantee in Theorem D.2 does not depend on the diameter of the
convex set C.

Theorem D.2 (Lipschitz, smooth and strongly convex function). The excess risk bounds are as follows:

1. With Gamma density ν1, if ∆ ≥ β
2ε , we have E

[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L2p2

n∆ε2

)
.

2. With Gaussian density, if ∆ ≥ β
2ε , we have E

[
L(θpriv;D)− L(θ∗;D)

]
= O

(
L2p ln(1/δ)
n∆ε2

)
.

E Straightforward Smoothing Does Not Yield Optimal Algorithms

In Section D we saw that the objective perturbation algorithm (4) of [7, 30] already matches the optimal
excess risk bounds for Lipschitz, and Lipschitz and strongly convex functions when the loss function ` is
twice-continuously differentiable with a bounded double derivative β. A natural question that arises, is it
possible to smoothen out a non-smooth loss function by convolving with a smooth kernel (like the Gaussian
kernel) or by Huberization, and still achieve the optimal excess risk bound? In this section we look at a
simple loss functions (the hinge loss) and a very popular Huberization method (quadratic smoothing) argue
that there is an inherent cost due to smoothing which will not allow one to get the optimal excess risk bounds.

Consider the loss function `(θ; d) = (y − xθ)+, where the data point d = (x, y), and x, y ∈ [−1, 1] and
θ ∈ R. Here the function f(z) = (z)+ is equal to z when z > 0 and zero otherwise. Clearly f(z) has a
point of non-differentiability at zero. We can modify the function f , in the following way, to ensure that the
resulting function f̂ is smooth (or twice-continuously differentiable). Define f̂(z) = f(z), when z < −h or
when z > h. In the range [−h, h], we set f̂(z) = z2

4h + z
2 + h

4 . It is not hard to verify that the function f̂(z)
is twice-continuously differentiable everywhere. This form of smoothing is commonly called Huberization.
Let the smoothed version of `(θ; d) be defined as ˆ̀(θ; d) = f̂((y − xθ)) for d = (x, y).

With the choice of loss function ˆ̀, the objective perturbation algorithm is as below. (The regularization
coefficient is chosen to ensure that it is at least β

2ε , where β is the smoothness parameter of ˆ̀.):

θpriv = arg min
θ∈[−2,2]

n∑
i=1

ˆ̀(θ; di) +
θ2

8εh
+ bθ (5)

In (5) the noise b ∼ N (0, 8 log(1/δ)
ε2

). In the results to follow, we show that for any choice of the Huberization
parameter h, there exists data sets of size n from the domain above where the excess risk for objective
perturbation will be provably worse than our results in this paper. We present the results for the (ε, δ)-
differential privacy case, but the same conclusions hold for the pure ε-differential privacy case.

Theorem E.1. For every h > 0, there exists D such the excess risk for the objective perturbation algorithm
in (5) satisfies:

E
[
L(θpriv;D)− L(θ∗;D)

]
= Ω

(
min

{
n,max{nh, 1

h}
})

= Ω(
√
n) .

Here the loss function L(θ;D) =
n∑
i=1

`(θ; di) (where D = {d1, · · · , dn}) and θ∗ = arg min
θ∈[−2,2]

n∑
i=1

`(θ; di).
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Proof. Consider the data set D1 with n
3 entries being (x = −1, y = 1) and 2n

3 entries being (x = 1, y =
−1). In the following lemma we lower bound the excess risk on D1 for a given huberization parameter h.

Lemma E.2. Let ε, δ be the privacy parameters with ε being a constant (< 1) and δ = Ω
(

1
n4

)
. For the data

set D1 mentioned above, the excess risk for objective perturbation (5) is as follows. For all h > 0, we have

E
[
L(θpriv;D1)− L(θ;D1)

]
= Ω (n ·min{1, h}) .

Here the loss functionL(θ;D1) =
n∑
i=1

`(θ; di) (whereD1 = {d1, · · · , dn}) and θ∗ = arg min
θ∈[−2,2]

n∑
i=1

`(θ; di).

Proof. For the ease of notation, let L̂(θ;D1) =
n∑
i=1

ˆ̀(θ; di). First notice two properties of L̂: i) the minimizer

(call it θ̂ within the set [−2, 2] is at max {−2, 1− h}, and ii) L̂ is quadratic within the range [1− h, 1 + h]

with strong convexity parameter at least n
6h . Additionally notice that θ∗ = 1 and the regularizer θ2

8εh in (5)

is centered at zero. Also by Markov’s inequality, w.p. ≥ 2/3, we have |b| ≤ 8
√

log(1/δ)

ε . Now to satisfy

optimality, n|θ
priv−θ̂|
3h ≤ |b|. This suggests that |θpriv − θ̂| ≤ 3h|b|

n .Therefore, the difference
(
θ∗ − θpriv

)
is

at least min
{

1, h
(

1− 3|b|
n

)}
. Therefore the excess risk with probability at least 2/3 is Ω (n ·min{1, h}),

which concludes the proof.

Consider a data set D2 which has exactly max{n2 − 1
32h , 0} entries with (x = −1, y = 1) and min{n2 +

1
32h , n} entries with (x = 1, y = 1). In the following lemma we lower bound the excess risk on D2 for a
given huberization parameter h.

Lemma E.3. Let ε, δ be the privacy parameters with ε being a constant (< 1) and δ = Ω
(

1
n4

)
. Let h < 1

logn
be a fixed Huberization parameter. Then for the data set D2 mentioned above, the excess risk for objective
perturbation (5) is as follows.

E
[
L(θpriv;D2)− L(θ∗;D2)

]
= Ω

(
min

{
1

h
, n

})
.

Here the loss function L(θ;D2) =
n∑
i=1

`(θ; di) and θ∗ = arg min
θ∈[−2,2]

n∑
i=1

`(θ; di).

Proof. For the ease of notation, let L̂(θ;D2) =
n∑
i=1

ˆ̀(θ; di). Notice that within the range [−1 + h, 1 − h],

the slope of L̂(θ;D2) is max{ −1
16h ,−n}. By the optimality condition of θpriv, we have the following.

θpriv

4εh
+ b−min{ 1

16h
, n} = 0 (6)

Solving for θpriv, we have θpriv = min
{
ε
4 , 4εnh

}
+ 4bεh. By assumption h < 1/ log n and w.p. ≥ 2/3 we

have |b| ≤ 8
√

log(1/δ)

ε . Therefore, w.p. ≥ 2/3, we have θpriv ≤ ε.
Now notice that with the original loss function `, arg min

θ∈[−2,2]

n∑
i=1

`(θ; di) = 1. Since the loss function

L(θ;D2) has a slope of max{ −1
16h ,−n} in the range [−1, 1], the excess risk is Ω((1− ε) min

{
1
h , n

}
) which

concludes the proof.
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Finally combining Lemmas E.3 and E.2 completes the proof of Theorem E.1.
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