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Abstract

We consider differentially private algorithms for convex empirical risk minimization
(ERM). Differential privacy (Dwork et al., 2006b) is a recently introduced notion of privacy
which guarantees that an algorithm’s output does not depend on the data of any individual
in the dataset. This is crucial in fields that handle sensitive data, such as genomics,
collaborative filtering, and economics. Our motivation is the design of private algorithms for
sparse learning problems, in which one aims to find solutions (e.g., regression parameters)
with few non-zero coefficients. To this end:

(a) We significantly extend the analysis of the “objective perturbation” algorithm of
Chaudhuri et al. (2011) for convex ERM problems. We show that their method can be
modified to use less noise (be more accurate), and to apply to problems with hard con-
straints and non-differentiable regularizers. We also give a tighter, data-dependent analysis
of the additional error introduced by their method.

A key tool in our analysis is a new nontrivial limit theorem for differential privacy which
is of independent interest: if a sequence of differentially private algorithms converges, in a
weak sense, then the limit algorithm is also differentially private.

In particular, our methods give the best known algorithms for differentially private
linear regression. These methods work in settings where the number of parameters p is less
than the number of samples n.

(b) We give the first two private algorithms for sparse regression problems in high-
dimensional settings, where p is much larger than n. We analyze their performance for
linear regression: under standard assumptions on the data, our algorithms have vanishing
empirical risk for n = poly(s, log p) when there exists a good regression vector with s
nonzero coefficients. Our algorithms demonstrate that randomized algorithms for sparse
regression problems can be both stable and accurate – a combination which is impossible
for deterministic algorithms.

1. Introduction

Problem Setting Given a data set (d1, ..., dn) of n individuals, where each observation di
lies in a fixed domain T , consider the following p-dimensional convex optimization problem:

θ̂ ∈ arg minθ∈F
1
n(
∑n

i=1 `(θ; di) + r(θ)) , (1)
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where `(θ; di) is a real-valued function that is convex in the first parameter θ ∈ Rp for every
d ∈ T , the regularizer r is an arbitrary convex function and the constraint F ⊆ Rp is a
closed convex set.

This type of program captures a variety of empirical risk minimization (ERM ) problems.
For example, when r = 0, it can describe the MLE’s for linear regression (where `(θ; d) =
(y − 〈x, θ〉)2 and d = (x, y))) and logistic regression (where `(θ; d) = log(1 + exp(y〈x, θ〉))).
In the Lasso, widely used for selecting a sparse estimator for linear regression, one adds the
regularizer r(θ) = Λ‖θ‖1 or constrains the solution to F = {θ : ‖θ‖1 ≤ t}; here Λ and t are
fixed real numbers.

The regression literature distinguishes two settings depending on the relationship be-
tween n (the number of records) and p (the dimension). In the classical low-dimensional
setting, p is constant or grows polynomially slower than n. In the high-dimensional set-
ting, p grows much faster than n. In order for ERM solutions to be meaningful in the
high-dimensional setting, one typically has to look for solutions θ with some additional
structure, such as sparsity (for vectors) or low rank (for matrices). To make the corre-
sponding optimization problem tractable, the structural constraint is often replaced with a
convex regularizer or constraint, such as the `1 or nuclear norms. This is a prolific area of
research; see Negahban et al. (2010) for a brief survey.

Differential privacy Learning algorithms are frequently run on sensitive data (say, ge-
nomic data or email transcripts). Although there is substantial social benefit to publishing
the results of an analysis over such data, there is a significant risk of inadvertently leaking
information about the entries in the data set.

A recent line of work seeks to place private data analysis on rigorous, principled founda-
tions. Our algorithms satisfy differential privacy (Dwork et al., 2006b; Dwork, 2006), which
emerged from this line of work and is now widely studied in computer science and statistics.
See Raskhodnikova and Smith (2010); Roth (2011) for links to papers and surveys. Intu-
itively, differential privacy requires that datasets differing in only one entry induce similar
distributions on the output of a (randomized) algorithm. This implies that an attacker will
draw essentially the same conclusions about an individual whether or not that individual’s
data was used – even if many records are known a priori to the attacker. See Dwork (2006);
Ganta et al. (2008); Dwork and Naor (2010); Kifer and Machanavajjhala (2011) for further
discussion of the implications of differential privacy.

Definition 1 (Differential privacy Dwork et al. (2006b,a)) A randomized algorithm
A is (ε, δ)-differentially private if for any two datasets D and D′ drawn from a domain T
with |D∆D′| = 1 (∆ being the symmetric difference), and for all (Borel) sets O ⊆ Range(A)
the following holds: Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ.

Differentially private algorithms cannot be deterministic and in particular cannot always
output the exact minimizer from (1). Our goal is to find algorithms that solve convex ERM
with as little additional empirical risk as possible.

Related Work The convex ERM setting considered here was explicitly studied by Chaud-
huri et al. (2011); Rubinstein et al. (2009), though variants and special cases had been con-
sidered previously. They considered two basic techniques: output perturbation (studied by
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both papers), where one releases the output θ̂ with additive noise, and objective perturbation
(introduced by Chaudhuri et al. (2011) and further studied by Dwork et al. (2009)), where
one releases the (exact) minimizer of a perturbed version of the objective function.

There also exist other techniques for specific convex optimization problems such as order
statistics (Nissim et al., 2007; Dwork and Lei, 2009) and linear regression (Dwork and Lei,
2009). The sample-and-aggregate framework (Nissim et al., 2007) is a generic technique
for designing private algorithms, which can be instantiated in many different ways. Smith
(2011) applied it to a class of statistical problems that includes low-dimensional ERM.

The existing analysis of output perturbation requires fewer assumptions than that of
objective perturbation. Under the minimal set of assumptions that allow both techniques
to apply, the worst-case theoretical guarantees on the two techniques’ performance are
very similar (Chaudhuri et al., 2011), and are better than the guarantees one gets for the
techniques of Dwork and Lei (2009); Smith (2011). However, in experiments objective
perturbation performed much better than objective perturbation. This phenomenon was
partly explained by Dwork et al. (2009), who showed that in logistic regression, objective
perturbation distorts the minimizer much less than output perturbation on “nice” data.

All the previous techniques work in the low-dimensional regime. When p� n, they fail
to provide consistent error estimates.

1.1. Our Contributions

Our two main contributions are improving the objective perturbation technique, and provid-
ing the first algorithms for private high-dimensional sparse regression and feature selection.

1.1.1. Improving Objective Perturbation

With the objective perturbation technique, instead of minimizing the empirical loss Ĵ(θ;D) =
1
n(
∑

i `(θ; di) + r(θ)), one considers a linear perturbation Jpriv(θ;D) = Ĵ(θ;D) + 〈B, θ〉,
where B is a random vector drawn according to a gamma distribution. The output of the
algorithm is the minimizer of Jpriv(·;D). We improve the treatment of Chaudhuri et al.
(2011) in several respects:

More Accurate Objective Perturbation We show that drawing the perturbation B
from a Gaussian (instead of gamma) distribution, leads to a Ω̃(

√
p) improvement in the util-

ity guarantees of the objective algorithm, at the cost of relaxing the privacy guarantee from
(ε, 0)- to (ε, δ)-differential privacy for negligible δ. When δ < 1/n2, the relaxed guarantee
has very similar semantics to the original (Ganta et al., 2008). This result parallels a simi-
lar improvement that is possible for output perturbation (see, e.g., Dwork et al. (2006a)),
though the privacy and utility proofs are quite different.

Generalized Privacy Analysis and a Limit Theorem for Differential Privacy
We also show that objective perturbation (with either Gaussian or gamma perturbation)
continues to be private even when the convex regularizer r is nondifferentiable and when
the parameter vector θ is constrained to a closed convex set F. As mentioned above, the
privacy proof of CMS required that r be differentiable and θ be unconstrained.

Our analysis greatly extends the range of problems to which objective perturbation
applies. For example, it allows one to use objective perturbation for convex programs like the
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Lasso (where the regularizer r is the L1 norm) and nuclear norm regularized minimization
(Negahban et al., 2010), which was earlier not possible. The extension is also critical for
applying the objective perturbation technique to linear regression.

The main tool we use in the above analysis is a limit theorem for differential privacy. The
theorem states that if a sequence of (ε, δ)-differentially private algorithms A1,A2, . . . con-
verges in a weak sense, then the limiting algorithm A = limi→∞Ai is also (ε, δ)-differentially
private. Note that the probabilistic behavior of A can be very different from any of the Ai
(see Example 1). We feel this tool is likely to have other applications.

The idea behind our generalized analysis of objective perturbation is to approximate
the constrained, nondifferentiable problem in (1) with a sequence of unconstrained, differ-
entiable problems, and apply our limit theorem to the resulting sequence of algorithms.
The difficulty is in ensuring that the resulting problems are all convex (so that the previous
analysis applies) and converge in an appropriate sense to the original problem.

Data-dependent Utility Analysis Finally, we provide an improved, data-dependent
utility analysis. Our approach is inspired by the analysis of Dwork et al. (2009), which was
specific to logistic regression. We show that for “nice” data, namely, data sets for which the
loss function is strongly convex in a neighborhood of its minimizer, objective perturbation
has much better error guarantees than in the worst case (roughly, a factor of

√
p lower or

a typical setting of parameters). The assumption of strong convexity is common in the
optimization literature (e.g., Nocedal and Wright, 2000; Negahban et al., 2010).

Case Study: Linear Regression We illustrate our results with an application to low-
dimensional linear regression. For a typical setting of parameters, we obtain a factor of p
improvement in the expected additional risk compared to previous approaches.

1.1.2. Sparse Regression

The second part of our paper initiates the study of private algorithms for high-dimensional
learning with structural constraints. Specifically, we consider algorithms for linear regres-
sion that seek a sparse vector of regression coefficients. As mentioned above, this is a
well-studied problem (without privacy considerations) and a popular approach is to reg-
ularize the standard ERM with the `1 norm of θ (the “Lasso”). The resulting program
is convex (making it computationally tractable) and produces sparse solutions with good
generalization error in a variety of settings. Roughly, the Lasso performs well when there
is an s-sparse vector θsp that labels the data well and n = ω(s log p).

Unfortunately, none of the existing approaches to private convex ERM (including our
variant of objective perturbation) perform well on the Lasso when p � n, never mind
when n grows as log p. Nevertheless, we give two algorithms that produce consistent,
sparse estimates θsp when n is a least a polynomial in s and log p. The algorithms are
not specific to linear regression, but we analyze them in that setting for convenience. We
take a two stage approach: we first privately select a support set of small size and then
run the objective perturbation algorithm to select a parameter vector with support on this
set. We provide two algorithms for the first stage: 1. Superpolynomial time, via exponential
sampling : We apply the exponential mechanism (McSherry and Talwar, 2007) to sample a
good support set of size s. To instantiate the mechanism, we define the “score” of a set of
features Γ to be the empirical loss of the best parameter vector with support in Γ. This
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algorithm is roughly the nonprivate analogue of exhaustive search over all subsets (“L0

minimization” (Wipf and Rao, 2005)). The algorithm is inefficient but provides a baseline
for comparison. 2. Polynomial time, via sample-and-aggregate: Following the sample and
aggregate framework (Nissim et al., 2007), the algorithm splits the data set into disjoint
blocks, selects a support set for each block and then aggregates the results via a novel
“voting” aggregation algorithm. The algorithm works under the assumption that many
random sub-samples of the data generate the same support set.

In the context of linear regression (and under typical assumptions), the algorithms
produce consistent estimates of the support of θsp when n = ω(s3 log p) and n = ω(s2 log2 p),
respectively. Designing algorithms that match the performance of the best nonprivate
algorithms, even asymptotically, remains an interesting open problem.

Structure of this paper Section 2 details our results on objective perturbation, while
Section 3 discusses sparse regression. A summary of notation is included in Appendix A
for convenience. The remaining appendices provide omitted details and proofs.

2. Differentially Private Convex Optimization

2.1. Tool: A limit theorem for differentially private algorithms

Establishing that an algorithm A satisfies differential privacy is often a difficult task. In
this section we present a new proof technique for deriving the privacy properties of A from
a sequence of differentially private algorithms Ai. The power of this technique is that we
only require a very weak form of convergence; in fact, the limiting probabilistic behavior of
the Ai can be quite different from the behavior of A. Our results are summarized in the
following theorem (see Appendix B for proof).

Theorem 1 (Successive Approximation) Let b be a Rp-valued random variable. Let A
be a randomized algorithm induced by the random variable b and some deterministic function
φ – that is, A(D) ≡ φ(D, b). Let A1,A2, . . . be a sequence of randomized algorithms, where
each Ai is induced by b and some deterministic function φi (i.e. Ai(D) ≡ φi(D, b)). If
A1,A2, ... are all (ε, δ)-differentially private and limi→∞ φ

i(D, b) = φ(D, b) (i.e. pointwise
convergence for all D and realized values of b), then A is also (ε, δ)-differentially private.

It is important to note that differential privacy is a condition on Pr[φi(D, b) ∈ O] (which
is the same as P (Ai(D) ∈ O)) yet the pointwise convergence limi→∞ φ

i(D, b) → φ(D, b)
required by Theorem 1 is too weak to guarantee that Pr[φi(D, b) ∈ O] → Pr[φ(D, b) ∈ O].
In fact, the limiting probabilistic behavior (if it exists) of φi(D, b) can be quite different
from the probabilistic behavior of φ(D, b). Nevertheless, Theorem 1 establishes that A still
inherits differential privacy properties from the Ai’s. Consider the following example:

Example 1 Let θ ∈ Rp be a parameter vector and let L̂(θ;D) be a strongly convex, twice
continuously differentiable loss function. Let φ(D, b) ≡ argminθ L̂(θ;D) + 1

n(bT θ + ‖θ‖1),
which is an L1-regularized minimization problem (with random perturbation bT θ). We can
approximate it (see Appendix C.2) with a sequence φi(D, b) ≡ argminθ L̂(θ;D) + 1

n(bT θ +
ri(θ)) where ri is an infinitely differentiable regularizer. If b has a continuous probability
distribution, then for each fixed D the distribution of φi(D, b) has a density (Chaudhuri et al.
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Algorithm 1 Generalized Objective Perturbation Mechanism ( Obj-Pert )

Require: dataset D = {d1, . . . , dn}, privacy parameters ε and δ ( δ = 0 for ε-differential
privacy), convex regularizer r, a convex domain F ⊆ Rp, convex loss function L̂(θ;D) =
1
n

∑n
i=1 `(θ; di) with continuous Hessian, ‖ 5 `(θ; d)‖2 ≤ ζ (for all d ∈ P and θ ∈ F),

and upper bound λ on the eigenvalues of 52`(θ; d) (for all d and for all θ ∈ F).
1: Set ∆ ≥ 2λ

ε .
2: if require ε-differential privacy then

3: sample b ∈ Rp from the Gamma distribution with density ν1(b; ε, ζ) ∝ e−ε
‖b‖2
2ζ

4: else if require (ε, δ)-differential privacy then

5: sample b ∈ Rp from ν2(b; ε, δ, ζ) = N
(

0,
ζ2(8 log 2

δ
+4ε)

ε2
Ip×p

)
.

6: end if
7: return θpriv ≡ arg minθ∈F L̂(θ;D) + 1

nr(θ) + ∆
2n‖θ‖

2
2 + bT θ

n .

(2011)) but φ(D, b) does not. In fact, the subdifferentials of the L1 regularizer ensure that
for each D, φ(D, b) can take values in a lower-dimensional submanifold of Rp with positive
probability (which is not possible for the φi(D, b) because of their densities).

2.2. Application: Private Constrained Optimization

We use Theorem 1 to extend the applicability of the differentially private empirical risk
minimization framework of Chaudhuri et al. (2011) to allow hard convex constraints and
non-differentiable regularizers. Consider the convex program: argminθ∈F L̂(θ;D) + 1

nr(θ),

where F ⊆ Rp is a closed convex set, D = {d1, . . . , dn} is a dataset, L̂ is a twice-continuously
differentiable convex loss function of the form L̂(θ;D) = 1

n

∑n
i=1 `(θ; di) and r is any (pos-

sibly non-differentiable) convex regularizer. When the objective function is γ/n-strongly

convex (γ ≥ 0) for all datasets of size n, one adds a quadratic term (∆−γ)+

2n ‖θ‖22, where ∆
depends on the largest possible eigenvalue of the Hessian of `(θ, di). This ensures that the
objective function is ∆/n-strongly convex and reduces the influence of any single data point.

For privacy, a random linear perturbation term bT θ
n is then added to the objective function.

The full mechanism is described in Algorithm 1. Note that to simplify the discussion, we
can w.l.o.g. assume γ = 0 (i.e., the initial objective function is not strongly convex).

Theorem 2 (Private Convex Optimization via Objective Perturbation) Let F be
a closed convex subset of Rp. Let D = {d1, . . . , dn} be a dataset, let L̂(θ;D) = 1

n

∑n
i=1 `(θ; di)

be a convex loss function with continuous Hessian, let ζ be the upper bound on ‖5 `(θ; d)‖2
and let λ be an upper bound on the eigenvalues of 52`(θ; d) (for all d and for all θ ∈ F),
and let r be a convex function. Assume that for all θ ∈ F and for all d the rank of 52`(θ; d)
is at most one.

Then Algorithm 1 is (ε, 0)-differentially private when b has gamma density ν1 and (ε, δ)-
differentially private when b has Gaussian density ν2.

See Appendix C for the proof. The main idea is to use Theorem 1 twice. We first consider
unconstrained optimization and convolve the regularizer r with a sequence K1,K2, . . . of
infinitely differentiable kernels. This results in a sequence of smooth optimization problems
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that can be solved differentially privately by the results of Chaudhuri et al. (2011). We prove
pointwise convergence of their differentially private solutions and then invoke Theorem 1.
For constrained optimization, we replace the hard constraint θ ∈ F with a sequence of soft
constraints by adding penalties for θ /∈ F that depend on the distance from θ to F. We
again show pointwise convergence and invoke Theorem 1.

2.2.1. Utility Analysis

The following lemma bounds the empirical risk (i.e., Ĵ(θpriv;D)− Ĵ(θ̂;D)) of Algorithm 1
(Algorithm Obj-Pert ).

Lemma 3 (Empirical risk) Let θ̂ be the minimizer of the empirical objective function
Ĵ(θ;D) over the closed convex set F and let θpriv be the output of Algorithm 1. We have

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤ 2‖b‖22
∆n + ∆

2n‖θ̂‖
2
2.

The proof of this lemma can be found in Appendix D.1.1. Using the tail bounds for the noise
distributions used in Algorithm Obj-Pert , we obtain the following theorem as a corollary of
the above lemma. A detailed proof of this theorem is given Appendix D.1.2.

Theorem 4 (Theorem 26, special case) Assume that ‖ 5 `(θ; d)‖2 ≤ ζ (for all θ ∈ F
and for all d ∈ P). Let λ be the maximum eigenvalue bound on 52`.

1. (Chaudhuri et al., 2011) With Gamma density ν1, setting ∆ = Θ
(
ζp log p

ε‖θ̂‖2

)
and as-

suming ∆ ≥ λ
2ε , we have E

[
Ĵ(θpriv;D)− Ĵ(θ̂;D)

]
= O

(
ζ‖θ̂‖2p log p

εn

)
.

2. (This paper) With Gaussian density ν2, setting ∆ = Θ

(√
ζ2p log(1/δ)

ε‖θ̂‖2

)
and assuming

∆ ≥ λ
2ε , we have E

[
Ĵ(θpriv;D)− Ĵ(θ̂;D)

]
= O

(
ζ‖θ̂‖2
√
p log(1/δ)

εn

)
.

Note that the empirical risk bounds in Theorem 4 are for the ideal choices of ∆. Optimal
∆ depends on the L2 norm of the true minimizer (θ̂) of Ĵ . In practice, if the exact bound
on ‖θ̂‖2 is not known, then one can replace it with a loose upper bound, e.g., a bound on
the diameter of the convex set F.

The main takeaway from Theorem 4 is that, ignoring the privacy parameters (ε, δ), the
empirical risk bound for the Gamma distribution (ν1) is at least

√
p times higher than

for Gaussian distribution (ν2). Intuitively, this gap arises from the fact that the vectors
drawn from ν2 are more tightly concentrated around the mean as compared to ν1. For an
application of the above theorem to linear regression, see Section 2.2.3.

For Generalized Linear Models (GLM), using a generic conversion theorem from empir-
ical risk to generalization error (Shalev-Shwartz et al., 2009, Theorem 2), one can directly
obtain a bound on the generalization error (J̄(θpriv;P)− J̄(θ̄;P)). (See Appendix D.2).

In all utility guarantees in this paper, using the Gamma noise distribution results in
an
√
p increase in the error. So in the rest of our discussion, we will only concentrate on

Gaussian noise distribution and hence guarantee (ε, δ)-differential privacy with δ > 0.
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2.2.2. Refined utility guarantees under stronger assumptions

In this section, we provide refined utility guarantees for Algorithm Obj-Pert (Algorithm 1)
based on stronger assumptions on the underlying dataset. Our analysis is inspired by the
work of Dwork et al. (2009) which specifically analyzes logistic regression under such a
setting.

For the simplicity of exposition, assume the empirical objective function Ĵ(θ;D) equals
the empirical loss function L̂(θ;D), i.e., the regularizer r(θ) is set to zero. Suppose the
empirical loss function L̂ is (η/n)-strongly convex (for some constant η) within a ball of
radius ψ (which will be fixed later) around θ̂, where θ̂ is the minimizer of L̂.

Theorem 5 bounds the empirical risk based on this stronger assumption on the loss
function . In order to make the result more informative, we state a special case of Theorem
31 (Appendix E.2) below. In the following theorem we have assumed the following.

Assumption 1 Assume: i)η = Ω(λn/p), ii) ψ ≥ p3/2ζ
√

log(1/δ)

λnε2
+
√

p
n‖θ̂‖2, iii) n ≥ p2.

Intuitively, the assumption on η makes sense because if each of 52`(θ; di) is a rank-one
matrix with an eigenvalue λ > 0 and the eigenvalues of 52L̂ are spread out across all
dimensions, then we would expect

∑n
i=1 `(θ; di) to have minimum eigenvalue of Σ to be

Ω(λn/p) (since there are p dimensions).

Theorem 5 (Theorem 31, special case) Let ∆ = 2λ/ε (where λ is the bound on the
maximum eigenvalue of 52`). Under Assumption 1, using Gaussian density ν2, we have

E
[
L̂(θpriv;D)− L̂(θ̂;D)

]
= O

(
1
nε

(
p2ζ2 log(1/δ)

λnε + λ‖θ̂‖22
))

.

The proof is given in Appendix E.2. We now apply this theorem to linear regression to
reduce the error bound by a factor of

√
p.

2.2.3. Case Study: Linear Regression

Consider the linear regression problem y = Xθ∗+w, where the design matrix X is in Rn×p,
output vector y is in Rn×1, parameter vector θ∗ is in Rp, and w ∈ Rn×1 is a noise vector.
We define the loss function for any given θ as L̂(θ;D) = 1

2n

∑n
i=1(yi − 〈Xi, θ〉)2, where yi is

the i-th entry in the vector y and Xi is the i-th row of the matrix X. The setting we are
interested in is where each row of the design matrix X has L2 norm at most

√
p and the

parameter vector θ∗ has L2 norm at most
√
p. Under this setting we obtain the following

empirical risk bounds (Table 1). (For a detailed discussion on the setting of parameters
that lead to the following bounds, see Section H.)

Section Theorem Empirical risk (ignoring privacy parameters)

Section 2.2.1 Theorem 4 (Part 1) Õ(p3/n)

Section 2.2.1 Theorem 4 (Part 2) Õ(p5/2/n)

Section 2.2.2 Theorem 5 Õ(p2/n)

Table 1: Empirical risk bounds for linear regression in the “small p, large n” regime.
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3. Privacy preserving sparse regression

In sparse regression, we try to estimate θsp ∈ arg minθ∈F,‖θ‖0≤s L̂(θ;D), where F is a convex
set and s is the sparsity parameter. We are typically interested in the setting where s < n
and n � p. In order to obtain a private estimate for θsp, we use the following two stage
approach (Algorithm 2):

Algorithm 2 Meta-algorithm for sparse linear regression

1: Output Γ̂, an estimate of the support for the parameter vector θsp.
2: Privately minimize the loss function L̂(θ;D) over the convex set F restricted to support

Γ̂ using Algorithm Obj-Pert (Algorithm 1).

We propose two algorithms which allow us to obtain good estimate for the support of the
parameter vector θsp. The first algorithm (Algorithm Exp-mech ) is based on the Exponential
Mechanism by McSherry and Talwar (2007). The second algorithm (Algorithm Samp-Agg )
is based on the Sample and Aggregate Framework by Nissim et al. (2007).

These algorithms work under incomparable sets of assumptions. Roughly, Algorithm
Exp-mech requires a bounded loss function, while Algorithm Samp-Aggworks assuming that
most random sub-samples of the dataset will be correctly labeled by parameter vectors that
share a common small support.

To provide a comparison, we analyze the performance of these two algorithms on a class
of widely studied linear regression problems (described in Section 3.1), which satisfy all
these sets of assumptions. The algorithms and their performance guarantees are given in
Sections 3.2 and 3.3. We often mention restricting the convex set F to some support Γ
(which we represent by FΓ). By restriction we mean the set θ ∈ F whose support lie in Γ:
{θ ∈ F : supp(θ) ⊆ Γ}.

3.1. Case Study: Sparse Linear Regression

To compare the performance of our two algorithms, we consider their performance on a
class of “well-behaved” linear regression instances. This class is very similar to those used
in the literature to analyze the LASSO and related non-private approaches to the sparse
regression (see, e.g., Negahban et al. (2010)).

We look at the following linear system: y = Xθ∗ + w, where the design matrix X is in
Rn×p, output vector y is in Rn×1, s-sparse parameter vector θ∗ is in Rp, and w ∈ Rn×1 is a
noise vector. We define the loss function for any given θ as L̂(θ;D) = 1

2n‖y −Xθ‖
2
2.

In the following, we define what it means to be a “well-behaved” dataset. We use this
definition to precisely state the assumptions on the problem.

Definition 2 ((s, σ, Ψ)-well behaved) A pair (M,w), where M is a n′ × p design ma-
trix and w is a n′-dimensional vector, is (s, σ,Ψ)-well behaved if:

1. ∀i, ‖ Mi|s ‖2 ≤
√
s, where Mi|s denotes the largest s entries of the i-th row of M .

2. ∀j, ‖cj‖2 ≤
√
n′, where cj is the j-th column of M .

3. ‖MTw‖∞ ≤ 2σ
√
n′ log p.
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4. Restricted Strong Convexity (RSC): Given a set of indices Γ ⊂ [p], let C(Γ) =
{θ ∈ Rp : ‖θΓc‖1 ≤ 3‖θΓ‖1}. Here θΓ (respectively, θΓc) denotes θ restricted to entries
in Γ (respectively, Γc = [p] \ Γ). We require that for all Γ of size |Γ| = s and for all
θ ∈ C(Γ): ‖Mθ‖22 ≥ n′Ψ‖θ‖22.

Remark: If w is i.i.d. sub-gaussian with mean zero and variance σ2 and if the design ma-
trix Xn×p is generated by sampling the rows i.i.d. from a Gaussian ensemble N (0,Σ), then
under reasonable assumptions on n, s, p and Σ, the tuple (X,w) is (s, σ,Ψ)-well-behaved
with high probability. (Roughly, a sufficient condition is that the eigenvalues of Σ lie strictly
between 0 and 1 and that n grows at least as fast as s log p.) See Negahban et al. (2010)
for discussion and references.

The analysis of both our algorithms require the following assumption on the instance
(X, y) of the linear regression problem:

Assumption 2 (Sparse-Linear ) We can write y = Mθ∗ + w where

1. ‖θ∗‖∞ ≤ 1 and ‖θ∗‖0 ≤ s.
2. All nonzero entries of θ∗ have absolute value at least Φ.

3. The response vector y ∈ [−s, s]n.

4. (X,w) is (s, σ,Ψ)-well behaved.

The analysis of our second, efficient algorithm requires a slightly stronger requirement
on the design matrix and noise. Specifically, our algorithm will partition the dataset into
(roughly)

√
n subsets of

√
n points. We require that the design matrices and noise vectors

for each of these sub-instances be well-behaved. Specifically:

Assumption 3 (Sparse-Linear’ ) In addition to Assumption 2 (Assumption Sparse-Linear),

3’. All pairs (X1, w1), ..., (X√n, w
√
n) are (s, σ,Ψ)-well-behaved, where (Xi, wi) are formed

by partitioning the rows of (X,w) into d
√
ne disjoint blocks of

√
n± 1 points.

Note that the assumptions on θ∗ are identical in Assumptions Sparse-Linear and Sparse-
Linear’ , and that the Assumption Sparse-Linear’ is strictly stronger than Sparse-Linear .

From the above assumptions one can easily conclude that |〈x, θ∗〉| ≤ s, where x is any
row of the design matrix X. This means, if we truncate the responses y1, · · · yn (in the
dataset D) to have values in [−s, s], then the utility of the algorithm will not worsen.
Therefore, w.l.o.g. we assume that y1, · · · , yn lie in [−s, s].

In order to compare the two support estimation algorithms, we compare the bounds on
the dataset size n such that there are consistent estimates for the empirical risk L̂(θpriv;D)−
L̂(θ∗;D) as n→∞. These bounds are shown in Table 2.

We chose sparse linear regression as a case study because of the following two reasons.
First, it demonstrates the use of our successive approximation tool which allows us to
guarantee privacy for constrained optimization. In our privacy analysis we assumed that
the convex set F is bounded in order to show that the minimizer of the regression problem
does not change by much due to addition or removal of one data entry. Second, sparse linear
regression demonstrates the effectiveness of our tighter utility analysis (Section 2.2.2). Using
the tighter analysis, we obtained an

√
s improvement in the utility guarantees.
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Section Algorithm Bound on n Running time poly(s, n, p)

Section 3.2 Exp-mech ω(s3 log p) no

Section 3.3 Samp-Agg ω(s2 log2 p) yes

Table 2: Bound on the dataset size n for consistent estimate of empirical risk.

3.2. Inefficient Feature Selection via Exponential Sampling

At a high level, the algorithm (Algorithm Exp-mech in Appendix F.1) finds a support Γ̂
of size s such that restricted to this support, the minimum (non-private) loss is close the
empirical loss incurred by the true minimizer θ∗. In order to find Γ̂ privately, Algorithm Exp-
mech uses the exponential mechanism by McSherry and Talwar (2007). Broadly speaking,
the exponential mechanism first defines a score (or quality) function q for all possible outputs
of the algorithm in the range space. (Algorithm Exp-mech defines the score function for any
support Γ of size s as q(Γ;D) = minθ∈FΓ

∑n
i=1 `(θ; di) and the range space as all possible

supports of size s.) It then picks a support Γ of size s with probability proportional to
exp (−εq(Γ;D)α), where α is an upper bound on |`(θ; d)| for all d in domain T and for all
θ ∈ F restricted to a support of size at most s. It is important to realize that Algorithm
Exp-mechmay not be computationally efficient.

From the privacy analysis of exponential mechanism, it follows that Algorithm Exp-
mech is ε-differentially private. The main step in the utility analysis of Algorithm Exp-
mech is that a “good” support has high weight in the exponential sampling. Also the
utility guarantee relies on the parameter α which essentially bounds the change in the score
function for any support Γ when one entry is added or removed from the dataset D. The
following utility guarantee is proven in Appendix F.2.

Theorem 6 (Theorem 34, special case) Assume that |`(θ; d)| ≤ α (for all θ ∈ FΓ, for

all d ∈ T and for all support Γ of size at most s). We have E
[
L̂(φ;D)− L̂(θsp;D)

]
=

O
(
αs log p
εn

)
. Here φ = arg minθ∈FΓ̂

L̂(θ;D) and Γ̂ is the output of Algorithm Exp-mech .

For linear regression, if we instantiate the first step of Algorithm 2 (Algorithm Meta-Alg )
with the exponential sampling described above, for outputting support Γ̂ while preserving
ε/2-differential privacy, and execute Algorithm Obj-Pert (Algorithm 1) in the second step
with privacy parameters (ε/2, δ), then we obtain an (ε, δ)-differentially private algorithm.

From Theorems 4 and 6, we directly obtain the utility guarantee for the current instan-
tiation of Meta Algorithm 2. See Appendix F.3 for a detailed proof.

Theorem 7 (Theorem 35, special case) Under Assumption 2 (Assumption Sparse-Linear ),

if we set ∆ = Θ (s/ε), then we have E
[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
1
nε

(
s log(1/δ)
nεΨ + s3 log p

))
.

Assuming ε, δ and Ψ to be constants, empirical risk goes to zero as n → ∞ as long as
n = ω(s3 log p).

3.3. Efficient Feature Selection via Sample and Aggregate Framework

The efficient version of the feature selection algorithm (Algorithm Samp-Agg (Algorithm 5))
uses the Sample and Aggregate framework (SAF ) by Nissim et al. (2007). At a high-level, in

11
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stage one SAFpartitions the dataset into blocks D1, · · · ,Dk and executes some non-private
algorithm B on each Di. In the second stage, it uses a private aggregation function to
combine the output of all the k executions of the algorithm B.

In the context of current discussion, SAFworks as follows. First, the dataset D is
partitioned into k blocks D1, · · · ,Dk. Then a feature selection algorithm Asupp is run on
each data block Di. Each execution of Algorithm Asupp is guaranteed to produce a vector
Vi in {0, 1}p (where ones in the vector represent the elements in the support). In the second
part, given V1, · · · , Vk, the aggregation function of SAF picks the top-s coordinates in terms
of the average number of votes they received from V1, · · · , Vk. Since, this choice of top s
coordinates cannot be private, controlled amount of noise is added to the average number
of votes for each coordinate before selecting the top s (call this set Γ̂).

The resulting algorithm (Samp-Agg ) is ε-differentially private (see Appendix G.2).

Theorem 8 Assume that all k executions of Asupp identify an underlying correct support
Γ̂∗ for each data block Di. With probability ≥ 1− p exp(− εk

4s), the output set Γ̂ equals Γ̂∗.

A proof of the above theorem can be found in Appendix G.3. In the context of sparse
linear regression, Algorithm Samp-Agg yields Algorithm 3 as an instantiation of Algorithm
Meta-Alg (Algorithm 2). See Appendix G.4 for the detailed algorithm.

Algorithm 3 Sparse linear regression via Sample and Aggregate framework

1: Let θ̂ ∈ arg min
θ∈Rp

1
2n‖y−Xθ‖

2
2 + Λ

n‖θ‖1. Define Algorithm Asupp as the algorithm which

returns the top s coordinates of θ̂ (based on absolute value).
2: Run Algorithm Samp-Aggwith privacy parameter ε/2 and number of data blocks k =√

n to return support Γ̂.
3: Normalize the design matrix Xn×p such that a vector of any s elements from each row

has norm at most
√
s and make sure the response vector y is in [−s, s]n.

4: Set F = {θ ∈ Rp : ‖θ‖∞ ≤ 1}. Using Algorithm Obj-Pert (Algorithm 1), minimize the
loss function L̂(θ;D) over the convex set FΓ̂ with privacy parameters (ε/2, δ).

The above instantiation of Algorithm Meta-Alg is (ε, δ)-differentially private (see Theo-
rem 38 in Appendix G.4). The proof of this follows directly from the privacy guarantees of
Algorithms Obj-Pert and Samp-Agg . For utility, we get the following:

Theorem 9 (Theorem 44, special case) Let Λ = Θ
(
σn1/4

√
log p

)
and ∆ = Θ (s/ε).

Under Assumption 3 (Assumption Sparse-Linear’ ), if n ≥ (16σ
ΨΦ )4s2 log2 p, then with proba-

bility ≥ 1−
(
p exp

(
− ε
√
n

8s

))
over the randomization of the support selection step,

Eb
[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
s2

nε

(
s2 log(1/δ)

nεΨ
+ 1

))
Here b is the noise vector in Algorithm Obj-Pert (Algorithm 1).

It is interesting to note that the convergence rate does not have any dependence on the
dimensionality p. From the failure probability it can be seen that one needs n = ω(s2 log2 p)
to obtain failure probability that goes down to zero as n → ∞. Hence, it suffices to have
n = ω(s2 log2 p) for consistent empirical risk.
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Appendix A. Notation

Let D = 〈d1, · · · , dn〉 be a dataset drawn from a domain of tuples T . Let P be a distribution
over the domain T . Let L̂ be an empirical loss defined as L̂(θ;D) = 1

n

∑n
i=1 `(θ; di), where

`(θ; di) is a positive real valued function which is convex in the first parameter θ ∈ Rp.
We define the stochastic loss for a parameter vector θ over the distribution P as follows:
L̄(θ;P) = Ed∼P [`(θ; d)]. Let r : Rp → R+ be a convex regularizer. We define the empirical
objective function as Ĵ(θ;D) = L̂(θ;D)+ 1

nr(θ). Similarly, we define the stochastic objective
function as J̄(θ;P) = L̄(θ;P)+ 1

nr(θ). To obtain differential privacy, we add a “noisy” term
bT θ
n (where b is a noise vector drawn from some appropriate distribution) and an L2 penalty

∆
2n‖θ‖

2
2 to the objective function Ĵ(θ;D) (see Algorithm 1).

We denote such an objective function as Jpriv(θ, b;D) = Ĵ(θ;D) + ∆
2n‖θ‖

2
2 + 1

nb
T θ.

Since the term ∆
2n‖θ‖

2
2 becomes useful in our utility analysis too, we define J#(θ;D) =

Ĵ(θ;D) + ∆
2n‖θ‖

2
2 to segregate the noise term. See Table 3 for a summary.

Appendix B. Differential Privacy via Successive Approximation

Theorem 1 directly follows from the following lemma. In the following, we use the notation
φD and φiD in place of φ(D, ·) and φi(D, ·), respectively.
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Description Objective Function Minimizer

Sparse minimizer for θ ∈ F and ‖θ‖0 ≤ s L̂(θ;D) θsp

Empirical loss + regularizer 1
nr Ĵ(θ;D) θ̂

Expected empirical loss + regularizer 1
nr J̄(θ;P) θ̄

Private objective function (Ĵ(θ;D) + ∆
2n‖θ‖

2
2 + bT θ

n ) Jpriv(θ, b;D) θpriv

Ĵ(θ;D) + ∆
2n‖θ‖

2
2 J#(θ;D) θ#

Table 3: Various objective functions and their corresponding minimizers over F

Lemma 10 Let D and D′ be two datasets. Let b be a random variable. Let φ1
D, φ

2
D, . . . be a

sequence of functions that converge pointwise to some function φD ( i.e., lim
i→∞

φiD(b) = φD(b)

for all values of b). Similarly, let φ1
D′ , φ2

D′ , . . . be a sequence of functions that converge
pointwise to some function φD′. Let µiD be the probability measure defined as µiD(E) ≡
Pr[φiD(b) ∈ E] and define µiD′, µD, and µD′ similarly. Fix ε, δ ≥ 0. If µiD(E) ≤ eεµiD′(E)+δ
for all i, then µD(E) ≤ eεµD′(E) + δ.

Lemma 10 follows immediately from Claims 11, 12, and 13.

Claim 11 Consider the σ-algebra of Borel subsets of Rp. For any Borel set E, probability
measure µ, and ξ > 0, there exists an open set A and a closed set B such that: B ⊆ E ⊆ A
and

• µ(E) ≤ µ(A) ≤ µ(E) + ξ

• µ(B) ≤ µ(E) ≤ µ(B) + ξ

Proof We first prove the first condition relating E and A for the cases when E is closed
and then when E is a Borel set (the case when E is open is trivial). Then we prove the
condition relating E and B by reducing it to previous results.

Part 1: Closed sets E.
Suppose E is a closed subset of Rp. For each i = 1, 2, . . . , define A(i) = {y : inf

x∈E
‖x− y‖2 <

1/i}. Each A(i) is open since it is the union of open balls of radius 1/i around each point

of E. Clearly, E ⊆ A(i) and for all i and A(1) ⊇ A(2) ⊇ . . . . Also E =
∞⋂
i=1

A(i) because if a

point x /∈ E then, since E is closed, the distance between x and E is non-zero and so one
of the A(i) does not contain x. The downward continuity property (Billingsley, 1995) of
probability measures now ensures that lim

i→∞
µ(A(i)) = µ(E). Thus given ξ > 0, there exists

an i such that µ(A(i)) ≤ µ(E) + ξ and µ(A(i)) ≥ µ(E) because E ⊆ A(i).

Part 2: Borel sets E. Consider the algebra G consisting of all subsets of Rp that are (1)
open, or (2) closed, or (3) the intersection of an open and a closed set, or (4) the union of
an open and closed set. Note that Rp ∈ G and that G is closed under complementation,
finite union, and finite intersection. Given the values of µ(C) for all C ∈ G, we can define
the outer measure (Billingsley, 1995) µ∗ on all subsets F ⊆ Rp as follows:

µ∗(F ) = inf
{C1,C2,... }⊆G

F⊆
⋃
Ci

∑
i

µ(Ci)
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where the infimum is taken over all finite and countable collections of sets from G whose
union contains F . Caratheodory’s Extension Theorem (Billingsley, 1995) guarantees that
µ(E) = µ∗(E) for all Borel sets E. Thus for any ξ > 0, there exists a finite or countable
collection C1, C2, . . . of sets in G such that E ⊆

⋃
i
Ci and µ(E) ≤

∑
i
µ(Ci) ≤ µ(E) + ξ/2.

We now replace the Ci with slightly bigger open sets Ai. If Ci is open, then set Ai =
Ci. If Ci is closed, then use the previous result to find an open set Ai ⊃ Ci such that
µ(Ai) ≤ µ(Ci) + ξ/2i+1. If Ci is the intersection of an open set O and a closed set H,
then replace H with an open set H ′ ⊃ H such that µ(H ′) ≤ µ(H) + ξ/2i+1 and set
Ai = O ∩H ′. Note that Ci ⊂ Ai and µ(Ai) ≤ µ(Ci ∪ (H ′ \H)) ≤ µ(Ci) + ξ/2i+1. Finally,
if Ci is the union of an open set O and a close set H, then replace H with an open set
H ′ ⊃ H such that µ(H ′) ≤ µ(H) + ξ/2i+1 and set Ai = O ∪ H ′. Note that Ci ⊂ Ai and
µ(Ai) ≤ µ(Ci ∪ (H ′ \H)) ≤ µ(Ci) + ξ/2i+1.

Set A =
⋃
i
Ai. Note that A is open. Then, since E ⊆ A,

µ(E) ≤ µ(A) ≤
∑
i

µ(Ai) ≤
∑
i

(µ(Ci) + ξ2−i−1)

≤ ξ/2 +
∑
i

µ(Ci) ≤ ξ/2 + µ(E) + ξ/2

= µ(E) + ξ

Part 3: Approximating E from below.
To prove the second part of the theorem, pick an ξ > 0 and choose an open set A ⊇ Ec (the
complement of E) such that µ(Ec) ≤ µ(A) ≤ µ(Ec) + ξ. Set B = Ac. Then B is closed,
B ⊆ E, and

µ(Ec) ≤ µ(Bc) ≤ µ(Ec) + ξ

⇒ 1− µ(E) ≤ 1− µ(B) ≤ 1− µ(E) + ξ

⇒ µ(B) ≤ µ(E) ≤ µ(B) + ξ

The next result shows that pointwise convergence of the φiD allows us to upper bound
Pr[φD(b) ∈ O] when O is open and lower bound it when O is closed.

Claim 12 Under the assumptions of Lemma 10, for every open set A ⊆ Rp,

µD(A) ≤ lim
i→∞

inf µiD(A) .

For every closed set B ⊆ Rp,

µD(B) ≥ lim
i→∞

supµiD(B)

Proof For any set C, we use the notation 1{φD(b)∈C}(b) to be the indicator function that
is 1 when φD(b) ∈ C and 0 otherwise, and similarly for 1{φiD(b)∈C}(b). Let A be any open
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set. For any b such that φD(b) ∈ A, there is a bounded open set O so that φD(b) ∈ O ⊆ A.
Since φiD(b) converges to φD(b), this means that eventually φiD(b) ∈ O and so φiD(b) ∈ A.
This means that for any b such that φD(b) ∈ A, the indicators 1{φiD(b)∈A}(b) converge to

1{φD(b)∈A} as i → ∞. For b such that φD(b) /∈ A, 1{φiD(b)∈A}(b) ≥ 0 = 1{φD(b)∈A}(b). Thus

for all b, lim
i→∞

inf 1{φiD(b)∈A}(b) ≥ 1{φD(b)∈A}(b). By Fatou’s Lemma (Billingsley, 1995),

µD(A) =

∫
1{φD(b)∈A}(b) dµ(b)

≤
∫

lim
i→∞

inf 1{φiD(b)∈A}(b) dµ(b)

≤ lim
i→∞

inf

∫
1{φiD(b)∈A}(b) dµ(b)

= lim
i→∞

inf µiD(A)

To show the second part, let B be a closed set. Consider its complement Bc, which is
an open set. Using the previous result,

µD(Bc) ≤ lim
i→∞

inf µiD(Bc)

⇒ 1− µD(B) ≤ lim
i→∞

inf(1− µiD(B))

⇒ µD(B) ≥ − lim
i→∞

inf −µiD(B)

⇒ µD(B) ≥ lim
i→∞

supµiD(B)

The final result states that the upper bound and lower bound results of Claim 12 are
all that we need.

Claim 13 Let E be a Borel set and let µD, µD′, µiD, and µiD′ (for all i) be probability
measures such that:

1. µD(A) ≤ limi→∞ inf µiD(A) for all open sets A ⊆ Rp and µD(B) ≥ limi→∞ supµiD(B)
for all closed sets B ⊆ Rp.

2. µD′(A) ≤ limi→∞ inf µiD′(A) for all open sets A ⊆ Rp and µD′(B) ≥ limi→∞ supµiD′(B)
for all closed sets B ⊆ Rp.

For all ε, δ ≥ 0, if µiD(E) ≤ eεµiD′(E) + δ for all i, then µD(E) ≤ eεµD′(E) + δ.

Proof

Part 1: Reduction to open sets.
Let E be a Borel set and let D and D′ be two datasets that differ by the addition or deletion
of one tuple. Assume, by way of contradiction, that the (ε, δ)-differential privacy conditions
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do not hold so that µD(E) ≥ eεµD′(E) + δ + α for some α > 0. Using Claim 11, choose an
open set O ⊇ E such that:

µD′(E) ≤ µD′(O) ≤ µD′(E) +
α

2eε

Therefore

µD(O) ≥ µD(E) ≥ eεµD′(E) + δ + α

≥ eε
(
µD′(O)− α

2eε

)
+ δ + α

= eεµD′(O) + δ + α/2

and so O also violates the (ε, δ)-differential privacy constraints. Therefore, without loss of
generality, we can assume that E is actually an open set.

Part 2: Proof for open sets. Let E be an open set that violates the (ε, δ)-differential
privacy conditions such that µD(E) ≥ eεµD′(E)+δ+α for some α > 0. We will approximate
E from below using both open sets and closed sets as follows. First, note that E 6= ∅ because
the set ∅ can never violate the differential privacy conditions. Consider the open sets Ai
and closed set Bi defined as follows:

Ai = {θ′ : inf
θ∈Ec

‖θ − θ′‖2 < 1/i}

Bi = {θ′ : inf
θ∈Ec

‖θ − θ′‖2 ≤ 1/i}

Note that Bi = Ai (Bi is the closure of Ai) and Ec is a subset of Ai and Bi for all i ≥ 1.
Now define the open set Oi ≡ Bc

i and note that Oi = Aci and that Oi and Oi are subsets of
E. Finally, note that O1 ⊆ O2 ⊆ . . . and O1 ⊆ O2 ⊆ . . . and

∞⋃
i=1

Oi = E =
∞⋃
i=1

Oi

Now, by the upward continuity property of probability measures (Billingsley, 1995),
there exists an i0 such that for all i ≥ io

µD(Oi) ≤ µD(E) ≤ µD(Oi) +
α

3
µD′(Oi) ≤ µD′(E)

Thus

µD(E) ≥ eεµD′(E) + δ + α

⇒ µD(Oi) +
α

3
≥ eεµD′(Oi) + δ + α

⇒ µD(Oi) ≥ eεµD′(Oi) + δ +
2α

3
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Then, using the lim inf conditions on open sets and lim sup conditions on closed sets,

lim
j→∞

inf µjD(Oi) ≥ µD(Oi)

≥ eεµD′(Oi) + δ +
2α

3

≥ lim
j→∞

sup eεµjD′(Oi) + δ +
2α

3

Now, since µjD(Oi) ≤ µjD(Oi):

lim
j→∞

inf µjD(Oi) ≥ lim
j→∞

sup eεµjD′(Oi) + δ +
2α

3

and so for some j

µjD(Oi) ≥ eεµjD′(Oi) + δ +
α

3

However, this contradicts the fact that the pair of measures µjD, µjD′ satisfy the (ε, δ)-

differential privacy conditions (µjD(Oi) ≤ eεµjD′(Oi) + δ). Therefore E cannot violate the
(ε, δ)-differential privacy conditions for the measures µD and µD′ .

Appendix C. Appendix: Differential Privacy and Convex Optimization

In order to prove Theorem 2, the starting point is Lemma 14 (Section C.1) which proves
differential privacy for the special cases of Algorithm 1 where the regularizer r is twice
continuously differentiable and the convex set F over which we optimize is the entire real
space Rp. Afterwards, we will use our successive approximation technique to remove these
assumptions one-by-one (Sections C.2 and C.3).

C.1. Private Smooth Unconstrained Optimization

Lemma 14 (Differentially Private Smooth Unconstrained Objective Perturbation)
Under the conditions of Theorem 2, if we assume that the convex regularizer r is twice-
continuously differentiable, the convex set F is the entire real space Rp, then

1. (Chaudhuri et al., 2011)with Gamma density ν1 in Algorithm 1 (Algorithm Obj-Pert )
guarantees ε-differential privacy.

2. (This paper) with Gaussian density ν2 in Algorithm 1 (Algorithm Obj-Pert ) guarantees
(ε, δ)-differential privacy.
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Proof The first part of Lemma 14 follows directly from Chaudhuri et al. (2011) and hence
omitted here. The proof of the second part of Lemma 14 is as follows.

If we want to prove that Algorithm 1 satisfies (ε, δ)-privacy, it suffices to show that for
all α ∈ Rp the following is true.

e−ε(pdf(θpriv = α;D′)− δ) ≤ pdf(θpriv = α;D) ≤ eεpdf(θpriv = α;D′) + δ (2)

First consider an α ∈ Rp. If we have θpriv = α, then it means that α = arg minθ∈Rp nL̂(θ;D)+
r(θ) + ∆

2 ‖θ‖
2
2 + bT θ. Setting the gradient of the objective function to zero we get the fol-

lowing.

b(α;D) = −
(
n5 L̂(α;D) +5r(α) + ∆α

)
(3)

We have pdfD(θpriv=α)
pdfD′ (θpriv=α)

= ν2(b(α;D);ε,δ,ζ)
ν2(b(α;D′);ε,δ,ζ)

| det(5b(α;D′))|
| det(5b(α;D))| . We bound the ratios of the densities

ν2 and the determinants separately.

First, we show that for all α ∈ Rp, e−ε ≤ | det(5b(α;D′))|
| det(5b(α;D))| ≤ eε. The following lemma

would be helpful in bounding the ratio.

Lemma 15 (Chaudhuri et al. (2011)) If A is a full-rank matrix and if E is matrix with
rank at most 2, then,

det(A+ E)− det(A)

det(A)
= λ1(A−1E) + λ2(A−1E) + λ1(A−1E)λ2(A−1E)

where λi(Z) is the i-th highest eigenvalue of matrix Z.

Let A = 5b(α;D) = −(n 52 L̂(α;D) + 52r(α) + ∆Ip), where Ip is an identity matrix
of p × p dimensions. W.l.o.g. assume that D′ has one entry more as compared to D,
and D has n entries. Let E = 52`(α; dn+1). Therefore, |det(5b(α;D′))| = det(A + E).
Since n 52 L̂(α;D) + 52r(α) is positive semi-definite (as both L̂ and r are convex), the
smallest eigenvalue of A is ∆. Since E is a positive semi-definite matrix of rank at most one,
A−1E has at most one non-zero eigenvalue. Additionally, it follows that λ1(A−1E) ≤ λ1(E)

∆ .

Applying Lemma 15, we have det(A+E)
det(A) ≤ 1+ ψ

∆ , since λ1(E) ≤ ψ by assumption. Replacing

the value of ∆ we get | det(5b(α;D′))|
| det(5b(α;D))| ≤ e

ε
2 .

To bound ν2(b(α;D);ε,δ,ζ)
ν2(b(α;D′);ε,δ,ζ) , recall that the noise vector b is drawn from the Gaussian

distribution N (0, β2Ip), where β =
ζ
√

8 log 2
δ

+4ε

ε is the standard deviation. Let us assume
Γ = b(α;D)− b(α;D′). With this we have the following:

ν2(b(α;D); ε, δ, ζ)

ν2(b(α;D′); ε, δ, ζ)
=
e
− ‖b(α;D)‖2

2
2β2

e
−

‖b(α;D′)‖2
2

2β2

= e
1

2β2 |‖b(α;D)‖22−‖b(α;D′)‖22|

= e
1

2β2 |‖b(α;D)‖22−‖b(α;D)−Γ‖22|

= e
1

2β2 |2〈b(α;D),Γ〉−‖Γ‖22|
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Since ‖ 5 `(θ; ).‖2 ≤ ζ for all θ ∈ Rp and for all d ∈ T , therefore ‖Γ‖2 ≤ ζ. Hence the
following is true.

e
1

2β2 |2〈b(α;D),Γ〉−‖Γ‖22| ≤ e
1

2β2 (|2〈b(α;D),Γ〉|+‖Γ‖22) ≤ e
1

2β2 (|2〈b(α;D),Γ〉|+ζ2)
(4)

The following two lemmas will be useful in bounding |〈b(α;D),Γ〉|. Both of them follow
from basic probability theory and hence we skip their proofs.

Lemma 16 Let Z ∼ N (0, Ip) and v ∈ Rp be a fixed vector. Then

〈Z, v〉 ∼ N (0, ‖v‖22)

Note that Γ is independent of the noise vector. Therefore using Lemma 16, we get
〈b(α;D),Γ〉 ∼ N (, ‖Γ‖22β2). The following lemma provides a tail bound for normal distri-
bution which we use to bound the probability that the noise vector b(α;D) is not in the set
GOOD .

Lemma 17 Let Z ∼ N (0, 1), then for all t > 1, we have

Pr[|Z| > t] ≤ e−t2/2

Using this lemma and the fact that ‖Γ‖2 ≤ ζ, we get Pr[|〈b(α;D),Γ〉| ≥ ζβt] ≤ e−
t2

2 , where
t > 1. Let GOOD be the set {a ∈ Rp|〈a,Γ〉| ≥ ζβt}. We want the noise vector b(α;D) to

be in the set GOOD w.p. at least 1 − δ. Setting t =
√

2 log 2
δ implies that 2e−

t2

2 = δ. To

make sure t ≥ 1, we need to have δ ≤ 2√
e
. This always true for any non trivial δ. Replacing

t =
√

2 log 2
δ in ζβt, we get from Equation 4 that ν2(b(α;D);ε,δ,ζ)

ν2(b(α;D′);ε,δ,ζ) ≤ e
1

2β2

(
βζ
√

8 log 2
δ

+ζ2
)
.

Solving for β we get β ≥
ζ
√

8 log 2
δ

+4ε

ε . To complete the argument, we show the following:

pdf(θpriv = α;D) = Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D)

+ Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D)

≤ Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D) + δ

≤ eε Pr[b ∈ GOOD ]pdf(θpriv = α|b ∈ GOOD ;D′) + δ

≤ eεpdf(θpriv = α;D′) + δ

where b is the noise vector in Algorithm 1. This concludes the proof of Lemma 14.
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C.2. Extension to non-differentiable regularizers via Successive Approximation

Our first goal is to remove the differentiability assumptions on the regularizer r. To do
this, we use the bump function (Zemanian, 1987) Ψ(x) : R → R and a sequence of kernel
functions Ki(θ) : Rp → R (for i = 1, 2, . . . ) defined as:

Ψ(x) =

{
exp(− 1

1−x2 ) if |x| < 1

0 if |x| ≥ 1

Ki(θ) =
Ψ(i‖θ‖22)∫

θ′∈Rp
Ψ(i‖θ′‖22) dθ′

(5)

The bump function Ψ is infinitely differentiable and all of its derivatives vanish outside
the interval (−1, 1) (Zemanian, 1987). Therefore the kernels Ki are also infinitely differ-
entiable and their support (and that of their derivatives) is

{
θ : ‖θ‖22 < 1/i

}
. Now, if r

is a convex regularizer (but not necessarily differentiable), then consider the regularizer ri
defined as the convolution of r and Ki:

ri(θ) = [r ∗Ki](θ) ≡
∫

y∈Rp

r(θ − y)Ki(y)dy

By the elementary properties of convolution and the smoothness of Ki, the regularizer ri
is infinitely differentiable. Since convolution with Ki is the same as an (infinite) positive
linear combination of translations of r, the regularizer ri is also convex. Thus we will
approximate the objective function Jpriv(θ, b;D) = L̂(θ;D) + ∆

2n‖θ‖
2
2 + 1

n(bT θ + r(θ)) with

Jprivi(θ, b;D) = L̂(θ;D) + ∆
2n‖θ‖

2
2 + 1

n(bT θ + ri(θ)), which has a smooth regularizer and to
which Lemma 14 can be applied. In the next lemma we show that the minimizers of Jpriv

and Jprivi converge pointwise. This will enable us to invoke the successive approximations
proof technique for guaranteeing privacy via Lemma 10.

Lemma 18 (Unconstrained Pointwise Convergence) Let L̂ be a convex function and
r a convex regularizer. Define the kernel function Ki as in Equation 5 and let ri(θ) =
[r∗Ki](θ) be the convolution between r and Ki. Define the objective function Jpriv(θ, b;D) =

L̂(θ;D) + ∆
2n‖θ‖

2
2 + 1

n(bT θ + r(θ)) and Jprivi(θ, b;D) = L̂(θ;D) + ∆
2n‖θ‖

2
2 + 1

n(bT θ + ri(θ)).
Define the unconstrained minimizers, for each b, as φD(b) = argmin

θ∈Rp
Jpriv(θ, b;D) and

φiD(b) = argminθ∈Rp J
privi(θ, b;D). Then for every b ∈ Rp, lim

i→∞
φiD(b) = φD(b).

Proof In order to prove the pointwise convergence of the sequence of functions φiD to φD,
we first prove the following claim.

Claim 19 Let I ⊆ Rp be a bounded set and let B ⊆ Rp be any set. The functions n · Jprivi

converge uniformly to n · Jpriv on I ×B as i→∞.

Proof Choose a ξ > 0. Let I ′ = {y : inf
x∈I
||y − x||2 ≤ 1} be the set of all points whose

distance to I is at most 1. Note that I ′ is closed, bounded, and hence compact. Since r(θ)
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is a continuous function defined over the compact set I ′, it is then also uniformly continuous
on I ′. This means that there exists an η (depending only on ξ) such that |r(θ1)− r(θ2)| ≤ ξ
whenever θ1, θ2 ∈ I ′ and ||θ1 − θ2||2 ≤ η. Now, for any i > 1/ξ and any θ ∈ I and b ∈ B,

n|Jprivi(θ, b;D)− Jpriv(θ, b;D)| = |ri(θ)− r(θ)|

=

∣∣∣∣∫ r(θ − y)Ki(y) dy − r(θ)
∣∣∣∣

=

∣∣∣∣∫ [r(θ − y)− r(θ)]Ki(y) dy

∣∣∣∣ (Since the integral of Ki is 1)

≤
∫ ∣∣∣∣r(θ − y)− r(θ)

∣∣∣∣Ki(y) dy

=

∫
{y : ||y||22≤1/i}

∣∣∣∣r(θ − y)− r(θ)
∣∣∣∣Ki(y) dy (The support of Ki)

≤
∫
{y : ||y||22≤1/i}

ξKi(y) dy (Since θ ∈ I, θ − y ∈ I ′, and ||y||2 ≤ 1/i ≤ ξ)

= ξ (Integral of Ki over its support is 1)

Thus n · Jprivi converge uniformly to n · Jpriv on I ×B.

Now with the uniform conververgence of the objective function in hand we use the following
steps to complete the proof for Lemma 18.
Step 1: Properties of Jpriv

In order to prove pointwise convergence, we first establish some simple properties of Jpriv(θ, b;D),
which is ∆

n -strongly convex in θ for each fixed b. Recall that for each b, φD(b) returns the
unique θ that minimizes Jpriv(θ, b;D) over Rp (uniqueness is guaranteed by strong convex-
ity). By definition of ∆-strong convexity,

Jpriv(tθ1 + (1− t)θ2, b;D) ≤ tJpriv(θ1, b;D) + (1− t)Jpriv(θ2, b;D)− ∆

2n
t(1− t)‖θ1 − θ2‖22

So for all θ and t ∈ (0, 1), recalling that φD(b) is the minimizer of Jpriv(·, b;D) over Rp,

Jpriv(φD(b), b;D) ≤ Jpriv(tφD(b) + (1− t)θ, b;D)

≤ tJpriv(φD(b), b;D) + (1− t)Jpriv(θ, b;D)− ∆

2n
t(1− t)‖φD(b)− θ‖22

(1− t)Jpriv(φD(b), b;D) ≤ (1− t)Jpriv(θ, b;D)− ∆

2n
t(1− t)‖φD(b)− θ‖22

∆

2n
t‖φD(b)− θ‖22 ≤ Jpriv(θ, b;D)− Jpriv(φD(b), b;D)

∆

2n
‖φD(b)− θ‖22 ≤ Jpriv(θ, b;D)− Jpriv(φD(b), b;D) (6)

Where the last inequality follows by taking limits as t→ 1.

Step 2: Choosing Parameters
Choose any b. Now choose a small ξ such that ∆/2 > ξ > 0. Define I = {θ : ‖θ−φD(b)‖2 ≤
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1} and the corresponding set B = {b′ : φD(b′) ∈ I}. Since I is bounded, we can use the

uniform convergence of the n · Jprivi to n · Jpriv over I × B (from Claim 19). Choose
an iξ depending only on ξ such that for all i ≥ iξ, θ ∈ I, and b′ ∈ B the inequality

n|Jpriv(θ, b′;D)− Jprivi(θ, b′;D)| ≤ ξ
3 holds.

Step 3: Pointwise Convergence
We now show that ‖φiD(b) − φD(b)‖2 ≤

√
4ξ/∆ for all i ≥ iξ. Assume, by way of contra-

diction, that ‖φiD(b) − φD(b)‖2 >
√

4ξ/∆ for some i ≥ iξ and b ∈ B. Then, by the strong

convexity of Jprivi (in terms of the parameter θ), there is a θ′ along the line from φiD(b) to
φD(b) such that

Jprivi(φiD(b), b;D) < Jprivi(θ′, b;D) < Jprivi(φD(b), b;D) (7)

and ‖θ′ − φD(b)‖2 =
√

2ξ/∆ < 1 (since we chose ξ < ∆/2) (8)

Since θ′ ∈ Rp, so by Equation 8, θ′ ∈ I. Now, by Equation 6,

ξ =
∆

2
‖φD(b)− θ′‖22 ≤ n|Jpriv

D(θ′, b)− Jpriv
D(φD(b), b)|

≤ n · Jprivi
D(θ′, b) +

ξ

3
− n · Jprivi

D(φD(b), b) +
ξ

3
(By uniform convergence on I ×B)

⇒ n · Jprivi(θ′, b;D) ≥ n · Jprivi(φD(b), b;D) +
ξ

3

This contradicts the fact that θ′ was chosen to satisfy Jprivi(θ′, b;D) < Jprivi(φD(b), b;D).
Thus ‖φiD(b)− φD(b)‖2 ≤

√
4ξ/∆ for all i ≥ iξ and therefore φiD(b)→ φD(b) as i→∞.

Now invoking Lemmas 10 and 14 we directly get the following.

Lemma 20 (Differentially Private Unconstrained Objective Perturbation) Under
the conditions of Theorem 2, if we assume that the convex set F is the entire real space Rp,
then

• using Gamma density ν1, Algorithm 1 (Algorithm Obj-Pert ) guarantees ε-differential
privacy.

• using Gaussian density ν2, Algorithm 1 (Algorithm Obj-Pert ) guarantees (ε, δ)-differential
privacy.

C.3. Extension to Hard Convex Constraints via Successive Approximation.

In order to extend Lemma 20 to Theorem 2, we need to show the same (as in Lemma 20)
when F is a closed convex subset of Rp. To show this we will again invoke our successive
approximations technique.

Consider the function f(θ) = miny∈F ‖θ − y‖2. This function is zero if θ ∈ F and is
increasing as θ goes farther away from F. Also notice that f is a convex function. Now,
consider the following unconstrained optimization problem.

φiD(b) = arg min
θ∈Rp

Jprivi(θ, b;D) = L̂(θ;D) +
∆

2n
‖θ‖22 +

1

n
(r(θ) + bT θ + if(θ)) (9)
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Correspondingly consider the following optimization problem whose privacy we care about.

φD(b) = arg min
θ∈F

Jpriv(θ, b;D) = L̂(θ;D) +
∆

2n
‖θ‖22 +

1

n
(r(θ) + bT θ) (10)

Similar to Lemma 18, the following Lemma shows the pointwise convergence of φiD and φD.

Lemma 21 (Constrained Pointwise Convergence) Let L̂ be a convex function and r
a convex regularizer. For a given closed convex set F ⊂ Rp, define the function f(θ) =

miny∈F ‖θ − y‖2. Define the objective function Jpriv(θ, b;D) and Jprivi(θ, b;D) as in Equa-
tions 9 and 10. Define the minimizers, for each b, as φD(b) = argmin

θ∈F
Jpriv(θ, b;D) and

φiD(b) = argminθ∈Rp J
privi(θ, b;D). Then for every b ∈ Rp, lim

i→∞
φiD(b) = φD(b).

Proof Before we prove Lemma 21, we will state some simple properties about strongly
convex functions. These properties will be needed in the argument of the proof of Lemma
21.

Claim 22 Let g be a ∆-strongly convex function and let θ̂ be the minimizer of g over a
convex set M . Then g(θ)− g(θ̂) ≥ ∆

2 ‖θ − θ̂‖2 for all θ ∈M .

Claim 23 Let g be a convex function and let θ1, θ2 ∈ Rp and let s ≥ 1. Then

g(θ1 + sθ2)− g(θ1)

‖sθ2‖2
≥ g(θ1 + θ2)− g(θ1)

‖θ2‖2

With these two claims in hand we complete the proof of Lemma 21.
In the following set of arguments we will show that for any b ∈ Rp, there exists an i0

s.t. ∀i > i0, φiD(b) = φD(b). This will then directly imply that φi converges pointwise to
φD. Consider any b ∈ Rp. First note that φ0

D(b) is the unconstrained minimizer. By strong
convexity, the unconstrained minimizer φ0

D(b) exists and the constrained minimizer φD(b)
also exists since F is closed and convex. If φ0

D(b) = φD(b), then we are done. If φ0
D(b) ∈ F,

then φ0
D(b) = φD(b) by strong convexity (since φD(b) is a minimizer over F) and we are also

done. Thus, we may assume φ0
D(b) 6= φD(b) and φ0

D(b) /∈ F.
For any θ, let θF be the point in F that is closest to θ (existence is guaranteed because

F is closed and uniqueness is guaranteed because F is convex) so that ‖θ − θF‖2 = f(θ).
Now consider the set of points H ≡ {θ : J(θ, b;D) ≤ Jpriv(φD(b), b;D)}. Clearly

φiD(b) ∈ H for all i. Let d =
√
n · Jpriv(φD(b), b;D)− n · Jpriv(φ0

D(b), b;D). By Claim 22,

H lies in the closed ball B with center φ0
D(b) and radius d. Since φD(b) ∈ H ⊆ B, the

farthest distance from any point θ ∈ B to F is ‖θ − θF ‖2 ≤ ‖θ − φD(b)‖2 ≤ 2d.

Consider the function κ : B×{v ∈ Rp : ‖v‖2 = 2d} defined as κ(θ, v) = n·Jpriv(θ+v,b;D)−n·Jpriv(θ,b;D)
‖v‖2 .

Let m be the supremum of κ (it is finite since κ is a continuous function over a compact
set). Then for any θ ∈ H, using Claim 23 (with θ1 ≡ θ, θ2 ≡ θF − θ, and s ≡ 2d

‖θF−θ‖2 ), we

have n·Jpriv(θF,b;D)−f(θ)
‖θF−θ‖2 ≤ m.
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Now set α = 2m. Then for any θ ∈ H ⊆ B with θ /∈ F,

n · Jpriv(θ, b;D) + if(θ) = n · Jpriv(θF, b;D) + if(θ)− n · Jpriv(θF, b;D)− n · Jpriv(θ, b;D)

‖θF − θ‖2
‖θF − θ‖2

≥ n · Jpriv(θF, b;D) + if(θ)−m‖θF − θ‖2
= n · Jpriv(θF, b;D) + 2mf(θ)−mf(θ)

≥ n · Jpriv(φD(b), b;D) +mf(θ)

> n · Jpriv(φD(b), b;D) (since θ /∈ F and F is closed)

Since φiD(b) ∈ H, this means φiD(b) = φD(b), contradicting the assumption that φiD(b) /∈ F.
This completes the proof of Lemma 21.

Using the results of Lemmas 20 and 21, and invoking Lemma 10, we complete the proof
of Private Convex Optimization theorem, i.e., Theorem 2.

Appendix D. Estimating Empirical Risk and Generalization Error

D.1. Estimating Empirical Risk

To bound the empirical risk mentioned in Section 2.2.1, we need the following helper lemma.

Lemma 24 Let D = {d1, . . . , dn} be a dataset, and let Ĵ(θ;D) = 1
n

n∑
i=1

`(θ; di) + r(θ)
n . Let

θ# = arg minθ∈F Ĵ(θ;D) + ∆
2n‖θ‖

2
2 and let θpriv be the output of Algorithm 1 (Algorithm

Obj-Pert ), where F ⊆ Rp is a closed convex set. Then

‖θ# − θpriv‖2 ≤
2‖b‖2

∆

where b is the noise vector in Algorithm 1.

Proof We have θpriv = arg minθ∈F J
#(θ;D) +

bT θ

n︸ ︷︷ ︸
Jpriv(θ;D)

, where J#(θ;D) = Ĵ(θ;D) + ∆
2n‖θ‖

2
2.

Similarly, θ# = arg minθ∈F J
#(θ;D).

Since θpriv is the minimizer of Jpriv(θ;D) and Jpriv is ∆
n strongly convex in θ, we have

the following (from Claim 22):

Jpriv(θ#;D) ≥ Jpriv(θpriv;D) +
∆

2n
‖θ# − θpriv‖22 (11)

⇒ J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆

2n
‖θ# − θpriv‖22 (12)
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Notice that J#(θ#;D) ≤ J#(θpriv;D), since θ# is the minimizer of J#(θ;D). Therefore,
we have the following:

bT θ# ≥ bT θpriv +
∆

2
‖θ# − θpriv‖22

⇒ bT (θ# − θpriv) ≥ ∆

2
‖θ# − θpriv‖22

⇒ ‖b‖2‖θ# − θpriv‖2 ≥
∆

2
‖θ# − θpriv‖22

⇒ ‖θ# − θpriv‖2 ≤
2‖b‖2

∆

Hence proved.

The following corollary bounds the difference in the values of the objective function J#

at θpriv and θ#. The gap is due to the noise variable b.

Corollary 25 Let θ# = arg minθ∈F Ĵ(θ;D)+ ∆
2n‖θ‖

2
2 and let θpriv be the output of Algorithm

1 (Algorithm Obj-Pert ), where F ⊆ Rp is a closed convex set. Then

J#(θpriv;D)− J#(θ#;D) ≤ 2‖b‖22
∆n

where b is the noise vector in Algorithm 1.

Proof From Equation 12 of the previous lemma, we have

J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆

2n
‖θ# − θpriv‖22

⇒ J#(θpriv;D)− J#(θ#;D) ≤ bT (θ# − θpriv)

n
− ∆

2n
‖θ# − θpriv‖22

⇒ J#(θpriv;D)− J#(θ#;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

⇒ J#(θpriv;D)− J#(θ#;D) ≤ 2‖b‖22
n∆

The last inequality follows from Lemma 24. This completes the proof.

D.1.1. Proof of Lemma 3

Proof We have

Ĵ(θpriv;D)−Ĵ(θ̂;D) = (J#(θpriv;D)−J#(θ#;D))+(J#(θ#;D)−J#(θ̂;D))+
∆

2n
‖θ̂‖22−

∆

2n
‖θpriv‖22

Notice that (J#(θ#;D)−J#(θ̂;D)) ≤ 0. Also from Corollary 25 we have (J#(θpriv;D)−
J#(θ#;D)) ≤ 2‖b‖22

n∆ . Hence, we have

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤ 2‖b‖22
n∆

+
∆

2n
‖θ̂‖22
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This completes the proof.

D.1.2. Proof of Theorem 4

In order to prove Theorem 4, we prove the following which is a slightly generalized version.

Replacing ∆ = Θ
(
ζp log p

ε‖θ̂‖2

)
in the first part of Theorem 26 and ∆ = Θ

(√
ζ2p log 1

δ

ε‖θ̂‖2

)
in the

second part of Theorem 26, we obtain Theorem 4. Since, we are looking at expected error
in Theorem 4, we ignore the term γ.

Theorem 26 Assuming that ‖ 5 `(θ; d)‖2 ≤ ζ (for all d ∈ P and for all θ ∈ F), the
following are true.

1. With Gamma density ν1, w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
8ζ2p2 log2 p

γ

nε2∆
+

∆

2n
‖θ̂‖22

2. With Gaussian density ν2, w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
4pζ2(8 log 2

δ + 4ε) log(1/γ)

nε2∆
+

∆

2n
‖θ̂‖22

Proof The proof essentially goes via bounding ‖b‖2 under the two distributions ν1 and ν2

used in Algorithm Obj-Pert (Algorithm 1) and plugging it in Lemma 3.

Recall that distribution ν1(b; ε, ζ) ∝ e
− ‖b‖2

2ζ . Thus, under the distribution ν1 for b, we
have ‖b‖2 ∼ Γ(p, 2ζ

ε ). The following lemma from Chaudhuri et al. (2011) provides a tail
bound for Gamma distribution.

Lemma 27 (Lemma 4 from Chaudhuri et al. (2011)) Let X be a random variable
drawn from the distribution Γ(p, θ), where p is a positive integer. Then,

Pr

[
X ≥ pθ log

p

γ

]
≤ γ

Using Lemma 27, w.p. ≥ 1− γ we have the following:

‖b‖2 ≤
2pζ log p

γ

ε

Plugging in the value of ‖b‖2 from above into Lemma 3, we have w.p. ≥ 1− γ

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
8ζ2p2 log2 p

γ

nε2∆
+

∆

2n
‖θ̂‖22

This completes the proof of first part of the theorem.

For the second part, we need to bound ‖b‖2 when b ∼ N
(

0, Ip
ζ2(8 log 2

δ
+4ε)

ε2

)
. We use

the following lemma from Dasgupta and Schulman (2007).
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Lemma 28 (Lemma 2 from Dasgupta and Schulman (2007)) Pick X from the dis-
tribution N (0, Ip). Then for any φ ≥ 1, we have

Pr[‖X‖2 ≥
√
φp] ≤ e−

p
2

(φ−1−log φ)

In the above lemma, in order to set e−
p
2

(φ−1−log φ) ≤ γ, we need 1 + 2
p log 1

γ ≤
φ
2 . Therefore,

setting φ as above, we have w.p. ≥ 1− γ,

‖X‖2 ≤
√

2 +
2

p
log

1

γ

√
p

⇒ ‖X‖2 ≤
√

2p log
1

γ

Using the above bound we have w.p. ≥ 1− γ,

‖b‖2 ≤

√
2pζ2

(
8 log 2

δ + 4ε
)

log 1
γ

ε2

Plugging in the value of ‖b‖2 from above into Lemma 3, we have w.p. ≥ 1− γ,

Ĵ(θpriv;D)− Ĵ(θ̂;D) ≤
4pζ2(8 log 2

δ + 4ε) log(1/γ)

nε2∆
+

∆

2n
‖θ̂‖22

This completes the proof of second part of the theorem.

D.2. Estimating Generalization Error

Generalization error : In our presentation of generalization error we restrict ourselves
to Generalized Linear Models (GLM). In GLM, each data entry d in the dataset is of the
form (y, x), where y ∈ R and x ∈ Rp. The loss function `(θ; d) is of the form `GLM(xT θ; y),
where d = (y, x).

Following is the generalization error bound we obtain as a corollary to Theorem 4 by
using (Shalev-Shwartz et al., 2009, Theorem 2) to convert from empirical risk to general-
ization error. In the rest of the paper, we only concentrate on empirical risk as one can
easily convert it to generalization error via the result discussed above. For the simplicity of
exposition, in this section we assume that the regularizer 1

nr(θ) (in the loss J̄(θ;D)) is zero
for all θ.

Theorem 29 Consider that for any data entry d = (y, x) (where y ∈ R and x ∈ Rp),
‖x‖2 ≤ R. Also assume that |`′GLM(u; y)| ≤ L and |`′′GLM(u; y)| ≤ (ε∆)/(2R2), where u ∈ R
and y ∈ R, and the derivatives are w.r.t. u. When using Gaussian density ν2 for the

noise vector b and setting ∆ = Θ

(√
(RL)2p log(1/δ)

ε‖θ̄‖2

)
, we have Eb

[
J̄(θpriv;P)− J̄(θ̄;P)

]
=

O

(
(RL)
√
p log(1/δ)‖θ̄‖2
εn

)
.

The main takeaway from the above theorem is that if we assume ζ = RL and ‖θ̂‖2 ≈ ‖θ̄‖2
(see Theorem 4), then asymptotically the generalization error is same as the empirical risk.
Additionally, comparing the private generalization error to the non-private one, we can
show that the private version is worse by a factor of

√
p.
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Appendix E. Refined utility guarantees under stronger assumptions

E.1. Parameter Estimation Error bounds

Theorem 30 (Parameter estimation error) Under the assumption that ‖5`(θ; d)‖2 ≤
ζ (for all d ∈ P and for all θ ∈ F), the following are true for Algorithm 1.

1. When using the Gaussian density ν2 and ψ ≥
√

32pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η) +2
√

∆
(∆+η)‖θ̂‖2,

then w.p. ≥ 1− γ the following are true.

(a) ‖θpriv − θ#‖2 ≤
√

2pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η)

(b) ‖θpriv − θ̂‖2 ≤
√

2pζ
√

(8 log 2
δ

+4ε) log(1/γ)

ε(∆+η) +
√

∆
(∆+η)‖θ̂‖2

Here ψ is the radius of the ball around θ̂ where L̂ is η
n -strongly convex.

Proof By assumption we have L̂(θ;D) is η/n-strongly convex in a ball of radius ψ around
θ̂, where θ̂ = arg minθ∈F L̂(θ;D). We will fix the value of ψ later.

Recall that

θpriv = arg min
θ∈F
L̂(θ;D) +

∆

2n
‖θ‖22 +

bT θ

n︸ ︷︷ ︸
Jpriv(θ;D)

and

θ# = arg min
θ∈F
L̂(θ;D) +

∆

2n
‖θ‖22︸ ︷︷ ︸

J#(θ;D)

where b is the noise vector used in Algorithm Obj-Pert (Algorithm 1).

Assume for now that ψ ≥ 2
(
‖θpriv − θ#‖2 + ‖θ# − θ̂‖2

)
. We will remove this assump-

tion as we move along. The above assumption implies the following:

1. L̂(θ;D) is η
n -strongly convex in a ball of radius ‖θ# − θ̂‖2 around θ#.

2. L̂(θ;D) is η
n -strongly convex in a ball of radius ‖θpriv − θ#‖2 around θpriv.

In order to bound ‖θpriv− θ̂‖2, we first bound ‖θpriv− θ#‖2 and ‖θ#− θ̂‖2 individually.
Since ‖θpriv − θ̂‖2 ≤ ‖θpriv − θ#‖2 + ‖θ# − θ̂‖2, we obtain the required bound.

Since θpriv is the minimizer of Jpriv(θ;D), the following is true from the definition of
Jpriv.

Jpriv(θ#;D) ≥ Jpriv(θpriv;D) +
∆ + η

2n
‖θ# − θpriv‖22 (13)

⇒ J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆ + η

2n
‖θ# − θpriv‖22 (14)
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Notice that J#(θ#;D) ≤ J#(θpriv;D), since θ# is the minimizer of J#(θ;D). Therefore we
have the following:

bT θ# ≥ bT θpriv +
∆ + η

2
‖θ# − θpriv‖22 (15)

⇒ bT (θ# − θpriv) ≥ ∆ + η

2
‖θ# − θpriv‖22 (16)

⇒ ‖b‖2‖θ# − θpriv‖2 ≥
1

2
‖θ# − θpriv‖22(∆ + η) (17)

⇒ ‖θ# − θpriv‖2 ≤
2‖b‖2

(∆ + η)
(18)

Here, η is the local strong convexity parameter.
In order to bound ‖θ# − θ̂‖2, we first notice the following:

L̂(θ̂) +
∆

2n
‖θ̂‖22 ≥ L̂(θ#) +

∆

2n
‖θ#‖22 +

∆ + η

2n
‖θ# − θpriv‖22 (19)

⇒ ∆‖θ̂‖22 ≥ (∆ + η)‖θ̂ − θ#‖22 (20)

⇒ ‖θ̂ − θ#‖2 ≤

√
∆

∆ + η
‖θ̂‖2 (21)

From Equations 18 and 21, it follows that

‖θpriv − θ̂‖2 ≤
2‖b‖2

(∆ + η)
+

√
∆

∆ + η
‖θ̂‖2

Equations 18 and 21 also imply a bound on the radius ψ, so that the initial assumption

ψ ≥ 2
(
‖θpriv − θ#‖2 + ‖θ# − θ̂‖2

)
is true. We set ψ ≥ 2

(
2‖b‖2
(∆+η) +

√
∆

∆+η‖θ̂‖2
)

to satisfy

the above assumption.
From the tail bound calculations for ‖b‖2 in Appendix D.1.2, w.p. ≥ 1− γ we have the

following.

• In Algorithm Obj-Pert (Algorithm 1) when the noise distribution is ν2, we have

‖b‖2 ≤

√
2pζ2

(
8 log 2

δ + 4ε
)

log 1
γ

ε2

Plugging in these bounds for ‖b‖2, completes the proof.

E.2. Proof of Theorem 5

In order to prove Theorem 5, we prove the following slightly generalized version. Substi-
tuting the parameters from Assumption 1 in Theorem 31 and setting ∆ = 2λ/ε , we obtain
Theorem 5. Note that in Theorem 5 we ignore the term γ, since there we are dealing with
expected error.
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Theorem 31 When using the Gaussian distribution function ν2 and ψ ≥
√
pζ
√

log(1/δ) log(1/γ)

ε(∆+η) +√
∆

(∆+η)‖θ̂‖2, then w.p. ≥ 1− γ the following is true.

L̂(θpriv;D)− L̂(θ̂;D) = O

(
pζ2 log(1/δ) log(1/γ)

nε2(∆ + η)
+

∆

n
‖θ̂‖22

)
Here ψ is the radius of the ball around θ̂ where L̂ is η

n -strongly convex.

Proof Using Equation 14 from Appendix E.1 we have

J#(θ#;D) +
bT θ#

n
≥ J#(θpriv;D) +

bT θpriv

n
+

∆ + η

2n
‖θ# − θpriv‖22 (22)

⇒ J#(θpriv;D)− J#(θ#;D) ≤ bT (θ# − θpriv)

n
− ∆ + η

2n
‖θ# − θpriv‖22 (23)

⇒ J#(θpriv;D)− J#(θ#;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

(24)

The last step follows from Cauchy-Schwarz inequality. Recall that

L̂(θpriv;D)−L̂(θ̂;D) = (J#(θpriv;D)−J#(θ#;D))+(J#(θ#;D)−J#(θ̂;D))+
∆

2n
‖θ̂‖22−

∆

2n
‖θpriv‖22

Notice that J#(θ#;D)− J#(θ̂;D) ≤ 0. Using Equation 24 we have the following.

L̂(θpriv;D)− L̂(θ̂;D) ≤ ‖b‖2‖θ
# − θpriv‖2
n

+
∆

2n
‖θ̂‖22

The theorem follows from using the tail bounds for ‖b‖2 under the distributions ν1 and ν2

(see Appendix E.1) and Theorem 30.

Appendix F. Exponential Mechanism based High-dimensional Regression

F.1. Details of Algorithm Exp-mech

Algorithm 4 Exponential Mechanism based feature selection (Exp-mech )

Require: dataset: D = {d1, . . . , dn}, privacy parameters: (ε, δ), loss function: L̂(θ;D) =
1
n

∑n
i=1 `(θ; di), dimensionality of the problem: p, number of data points: n, L2 penal-

ization parameter: ∆, support size of θ∗: s, closed convex set: F, α: bound on |`(θ; d)|
restricted to any support of size s and for any d ∈ T

1: For any s-sparse subspace Γ, let score function q(Γ;D) = min
θ∈FΓ

∑n
i=1 `(θ; di), where FΓ

refers to the vectors in F with support in Γ. Pick a subspace Γ̂ w.p. ∝ e−
ε

2α
q(Γ;D).

2: return Γ̂
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F.1.1. Privacy

Theorem 32 Algorithm Exp-mech (Algorithm 4) is ε-differentially private.

Proof In order to prove the theorem, we bound the sensitivity of the score function q(Γ;D)
(i.e., the maximum absolute change in q(θ;D) when one entry of D is modified) via the
following lemma.

Lemma 33 Sensitivity of the score function q(Γ;D) = min
θ∈FΓ

∑n
i=1 `(θ;D) is bounded by

α ≥ max
θ∈FΓ,d∈T

`(θ; d), where Γ is any s-sparse subset and T is the domain from which the

data entries are drawn.

Proof Let D′ be any dataset which either has one entry more (less) than D. W.l.o.g. we
assume that D′ has one entry more as compared to D (i.e., D′ has entry dn+1 which D does
not). To bound the sensitivity of q we need to bound |q(Γ;D′)− q(Γ;D)| for any database
pairs D and D′, and any subset Γ of size at most s. The bound is as follows.

|q(Γ;D′)− q(Γ;D)| =
∣∣∣∣min
θ∈FΓ

nL̂(θ;D′)− min
θ∈FΓ

nL̂(θ;D)

∣∣∣∣
=

∣∣∣∣min
θ∈FΓ

(
nL̂(θ;D) + `(θ; dn+1)

)
− min
θ∈FΓ

(
nL̂(θ;D)

)∣∣∣∣
≤
∣∣∣∣min
θ∈FΓ

nL̂(θ;D) + max
θ∈FΓ

`(θ; dn+1)− min
θ∈FΓ

nL̂(θ;D)

∣∣∣∣
= max

Γ,θ∈FΓ,d∈T
`(θ; d) ≤ α

With this the bound in the above lemma follows.

Now for two datasets D and D′, the ratio of the probabilities for picking any support of size
s is as follows.

Pr[Γ̂(D) = Γ]

Pr[Γ̂(D′) = Γ]
≤ e−

εq(Γ;D)
2α

e−
εq(Γ;D′)

2α

·
∑

Γ e
− εq(Γ;D′)

2α∑
Γ e
− εq(Γ;D)

2α

≤ eε

The lower bound of e−ε also follows symmetrically. With this the proof is complete.

F.2. Proof of Theorem 6

In order to prove Theorem 6, we prove a slightly more general version stated below. Since
in Theorem 6 we are dealing with expected error, we ignore the term γ.

Theorem 34 Assume that |`(θ; d)| ≤ α (for all θ ∈ FΓ, for all d ∈ T and for all support Γ
of size s). With probability ≥ 1− γ, we have

L̂(φ;D)− L̂(θsp;D) =
2αs log(p/γ)

εn
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where φ = arg min
θ∈FΓ̂

L̂(θ;D) and Γ̂ is the support selected by Algorithm Exp-mech (Algorithm

4).

Proof Let Γmin be the support of size ≤ s which minimizes minθ∈F L̂Γ(θ;D) w.r.t. Γ.
Recall that Γ̂ is the support output by exponential sampling. Based on the distribution
used for exponential sampling, we have the following for any κ > 0.

Pr

[
min
θ∈FΓ̂

L̂(θ;D) ≥ min
θ∈FΓmin

L̂(θ;D) +
κ

n

]
≤
(
p

s

)
exp

(
− εκ

2α

)
⇒ Pr

[
min
θ∈FΓ̂

L̂(θ;D) ≥ L̂(θsp;D) +
κ

n

]
≤
(
p

s

)
exp

(
− εκ

2α

)
The last inequality follows from the fact that L̂(θsp;D) = minθ∈F L̂Γmin(θ;D). Setting the
R.H.S. ≤ γ, we have κ ≤ 2αs

ε log p
γ . Thus w.p. ≥ 1− γ we have

L̂(φ;D)− L̂(θsp;D) ≤ 2αs

nε
log

p

γ

This completes the proof.

F.3. Proof of Theorem 7

In order to prove Theorem 7, we prove a slightly more general version stated below. Setting
α = 4s2, ζ = 2s3/2, λ = s and ‖φ‖2 ≤

√
s, and substituting ∆ = Θ

(
s
ε

)
in Theorem 35 we

obtain the required bound for Theorem 7. (See Appendix H for an explanation about the
setting of above parameters.) Since in Theorem 7 we are dealing with expected error, we
ignore the term γ.

Theorem 35 Let L̂(θ;D) be Ψ-strongly convex for a given dataset D when the support of
θ ∈ F is restricted to any set Γ of size ≤ s. Assuming that ‖`(θ; d)‖2 ≤ ζ, |`(θ; d)| ≤ α, λ
is the bound on the maximum eigenvalue of 52` (for all θ ∈ FΓ, for all d ∈ T and for all
support Γ of size s), with probability ≥ 1− γ, the following is true.

L̂(θpriv;D)− L̂(θ∗;D) ≤
16sζ2(8 log 2

δ + 2ε) log(2/γ)

nε2(∆ + nΨ)
+

4αs

nε
log

2p

γ
+

∆

2n
‖φ‖22

where φ = arg minθ∈FΓ̂
L̂(θ;D) and Γ̂ is the support chosen by Algorithm Exp-mech (Algorithm

4).

Proof We bound L̂(θpriv;D)− L̂(θ∗;D) in two parts A and B mentioned below.

L̂(θpriv;D)− L̂(θ∗;D) = L̂(φ;D)− L̂(θ∗;D)︸ ︷︷ ︸
A

+ L̂(θpriv;D)− L̂(φ;D)︸ ︷︷ ︸
B

Let us first concentrate on part A. From Theorem 34, w.p. ≥ 1− γ
2 we have

A ≤ 4αs

nε
log

2p

γ
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Notice that after selecting Γ̂, the problem has reduced to a s-dimensional subspace. Now
invoking Theorem 31 restricted to the support Γ̂, setting the failure probability to γ/2 and
plugging ε/2, w.p. ≥ 1− γ

2 we have

B ≤
16sζ2(8 log 2

δ + 2ε) log(2/γ)

nε2(∆ + nΨ)
+

∆

2n
‖φ‖22

Using the bounds for A and B above, Theorem 34 follows.

Appendix G. Efficient Feature Selection via Sample and Aggregate
Framework

G.1. Details of Algorithm Samp-Agg

Algorithm 5 Samp-Agg : Sample and Aggregate based feature selection

Require: dataset: D = {d1, . . . , dn}, privacy parameter: ε, algorithm: Asupp, dimension-
ality of the problem: p, number of data points: n, support size of θ∗: s, and number of
blocks: k, convex set F

1: Partition the dataset D into k blocks of size ψ = n
k each. Call the blocks D1, · · · ,Dk.

2: for i = 1 to k do
3: Set Vi = Asupp(Di, s,F) {Vi ∈ {0, 1}p is an indicator vector for the support.

Asupp(·, s) is guaranteed to produce a support of size at most s.}
4: end for
5: Set G = 1

k

∑k
i=1 Vi +Lap

(
2s
kε

)p {Lap(λ)p is a vector of i.i.d. Laplace r.v. with scaling
parameter λ.}

6: Γ̂← indices of the largest s-coordinates in G.
7: return Γ̂

G.2. Privacy Guarantee for Algorithm Samp-Agg (Algorithm 5)

Theorem 36 Algorithm Samp-Agg (Algorithm 5) is ε-differentially private.

Proof To prove the theorem, we notice that in Algorithm Samp-Agg each entry of the
dataset D lies in only one of the data blocks Di. Now consider the set of indicator vectors
Vi ∈ {0, 1}n returned by Algorithm Asupp for each data block Di. One can view Vi ’s to be
votes ∈ {0, 1} given to each coordinate by the data block Di. We define a score function

for any coordinate c ∈ [p] and for any dataset D as q(c,D) = 1
k

k∑
i=1

Vi(c), where Vi(c) is the

vote for coordinate c in the i-th block and k is number of blocks. Notice that the sensitivity
of the score function q is bounded by 1

k . This means that by removing (adding) one entry
from (to) D, one can change q(c,D) by at most 1

k for any dataset D and for any c ∈ [p].
We now invoke the following theorem by Bhaskar et al. (2010).
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Theorem 37 (Modified Theorem 4 from Bhaskar et al. (2010)) Let A = {a1, · · · , ap}
be a set of elements and let D be a dataset which assigns score q(a,D) to each element a ∈ A.
Also let ∆q be the upper bound on the sensitivity of q, i.e., by removing (adding) one en-
try from (to) D, one can change q(a,D) by at most ∆q for any dataset D and for any
a ∈ A. If one picks a set Γ̂ of s highest entries from A based on the noisy scores defined by

qnoisy(a,D) = q(a,D) + Lap
(

2s(∆q)
ε

)
, then Γ̂ is ε-differentially private.

Here Lap(κ) denotes the Laplace distribution with scaling parameter κ.

In Theorem 37, setting A to be the set of p-coordinates, ∆q = 1
k and setting privacy

parameter to ε, we have Γ̂ (the output of Algorithm Samp-Agg (Algorithm 5)) to be ε-
differentially private.

This completes the proof.

G.3. Proof of Theorem 8

Proof To select a support Γ̂, Algorithm Samp-Agg (Algorithm 5) does the following. It

first finds A = 1
k

k∑
i=1

Vi, where Vi ∈ {0, 1}p is an indicator vector indicating whether a

particular coordinate ∈ [p] is in the support for data block Di (see Line 5 of Algorithm
Samp-Agg (Algorithm 5)). To each coordinate of A, it independently adds noise Lap

(
2s
kε

)
.

Call this noisy vector Anoise. Now Γ̂ is the set of s coordinates with the highest value in
Anoise.

By assumption, Asupp identifies the correct support Γ̂∗ for all k of the data blocks. This
means that the entries in A corresponding to the correct support has value one and all others
are set to zero. Let GOOD be the coordinates in Γ̂∗ and let BAD be the complementary
set. Then for any 0 ≤ ψ ≤ 1, the following is true.

Pr[a coordinate∈ GOOD has value ≤ 1− ψ in Anoise] ≤
1

2
e−

ψεk
4s

By union bound, this in turn implies the following.

Pr[any coordinate∈ GOOD has value ≤ 1− ψ in Anoise] ≤
s

2
e−

ψεk
2s

Similarly,

Pr[any coordinate∈ GOOD has value ≥ ψ in Anoise] ≤
p

2
e−

ψεk
2s

Therefore,

Pr[any coordinate∈ GOOD is left out or any coordinate∈ BAD is chosen] ≤ pe−
ψεk
2s

Setting ψ = 1
2 , we have the R.H.S. of the above expression to be p exp

(
− εk

4s

)
. Hence w.p.

≥ 1− p exp
(
− εk

4s

)
, we have Γ̂ as the correct support.

This completes the proof.
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G.4. Private Sparse Linear Regression via Sample and Aggregate Framework

We look at the following linear system: y = Xθ∗ + w, where the design matrix X ∈ Rn×p,
output vector y ∈ Rn×1, parameter vector θ∗ ∈ Rp (which is guaranteed to be s-sparse),
and w ∈ Rn×1 is a noise vector.

In order to obtain a private estimate of θ∗, we use Algorithm Samp-Agg (Algorithm 5)
for support selection and Algorithm Obj-Pert (Algorithm 1) for privately solving the convex
optimization problem restricted to the feature set selected. We define the loss function as
L̂(θ;D) = 1

2n‖y −Xθ‖
2
2. Now as discussed in Algorithm Samp-Agg , we need to instantiate

the Algorithm Asupp which identifies the true support. To this end, we solve the following
L1-penalized linear regression (also known as LASSO) on each of the data blocks Di.

θ̂ ∈ arg min
θ∈F
L̂(θ;Di) +

Λ

n
‖θ‖1 (25)

One can guarantee that if the dataset follows some statistical conditions (namely, Ψ Re-
stricted Strong Convexity (RSC) [Assumption Sparse-Linear’ (Assumption 3)]), then
‖θ̂ − θ∗‖2 will be small (Negahban et al., 2010). Since θ∗ has s-non-zero entries, picking
the top s-coordinates of θtemp (based on absolute value) will provide a good support. An
implicit assumption here is that the minimum absolute value of any non-zero coordinate of
θ∗ is bounded away from zero.

Once the support Γ̂ is chosen via sample and aggregate framework, the low dimen-
sional problem is solved via Algorithm Obj-Pert (Algorithm 1). The details are provided
in Algorithm 6. There are two main features specific to this algorithm. First, the low-
dimensional convex optimization (in Line 5) is performed on a closed convex set F =
{θ ∈ Rp : ‖θ‖∞ ≤ 1}. Our privacy proof needs this bound to guarantee that 5L̂(θ;D) does
not change by much if one entry is added (removed) to (from) D. But bounding the convex
set F means that we cannot use the results of objective perturbation for unconstrained op-
timization (originally proposed by Chaudhuri et al. (2011) (see Lemma 14)). This is where
our privacy guarantee for constrained optimization (Lemma 21 and Theorem 2) becomes
useful. The other feature of Algorithm 6 is that we truncate the vector y to form ynew. In
the proof of Theorem 43 (utility theorem), we claim that truncating does not degrade the
utility.

G.4.1. Privacy Analysis

Theorem 38 Algorithm 6 is (ε, δ)-differentially private.

Proof We prove the privacy in two stages. In the first stage we prove that Line 2 of
Algorithm 6 is ε

2 -differentially private. The proof of this directly follows from Theorem
36. In the second stage, we prove that Line 5 of Algorithm 6 is ( ε2 , δ)-differentially private.
Using the composition property of differential privacy (Dwork and Lei (2009)), we conclude
that Algorithm 6 is (ε, δ)-differentially private.

To prove that Line 5 of Algorithm 6 is ( ε2 , δ)-differentially private, we first bound the
term ζ which is the upper bound on ‖ 5 `(θ; d)‖2 when θ ∈ F is restricted to any support
Γ of size at most s. The following lemma provides this bound.
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Algorithm 6 Private Sparse Linear Regression

Require: dataset: D = (y,X), privacy parameters: ε and δ, sparsity parameter: Λ, di-
mensionality of the problem: p, number of data points: n, support size of θ∗: s, L2

penalization: ∆
1: Define Asupp((y,X), s) as below:

• θ̂ ∈ arg min
θ∈Rp

1
2n‖y −Xθ‖

2
2 + Λ

n‖θ‖1

• Return the top s-coordinates of θ̂ based on absolute value.

2: Call Algorithm 5 with parameters D, ε2 ,Asupp, p, n, s, k =
√
n. Store the support re-

turned as Γ̂.

3: Let ynew ∈ Rn s.t. ∀i ∈ [n], ynew(i) =


s if s < yi

−s if yi < −s
yi otherwise

4: For each row Xi of the matrix X, pick the top s-coordinates (in terms of absolute value)

and call it vi. If any ‖vi‖2 ≥
√
s, then set Xi =

√
sXi
‖Xi‖2 .

5: Call Algorithm 1 with the following parameters: i) Dataset D = (ynew, X), ii) Loss
function L̂(θ;D) = 1

2n‖ynew − 〈X, θ〉‖
2
2, iii) Sensitivity parameters ζ = 2s3/2 and λ = s,

iv) Privacy parameters ( ε2 , δ), v) Parameters s (dimensionality), n (size of the dataset),

vi) Convex set F = {θ ∈ Rp : ‖θ‖∞ ≤ 1, supp(θ) ⊆ Γ̂}, vii) L2 penalization ∆.
6: return The output returned by Algorithm 1.

Lemma 39 Let θ ∈ F is restricted to any support Γ of size at most s. We have ‖ 5
`(θ; d)‖2 < 2s3/2 .

Proof Consider an y ∈ [−s, s] and a vector v ∈ Rp s.t. restricted to any support Γ of size
s, ‖x|Γ‖2 ≤

√
s. Now consider d = (y, x) to be any data entry of the dataset D. We have

the following:

‖ 5 `(θ; d)‖2 =
1

2
‖ 5θ (y − 〈x|Γ, θ〉)2‖2

= ‖(y − 〈xΓ, θ〉)x|ΓT ‖2
≤ ‖y · x|Γ‖2 + ‖x|Γ‖2‖x|Γ‖1
≤ s3/2 + s3/2

< 2s3/2

The last inequality follows from the facts that each entry of y′new is between [−s, s], each row
of X restricted to the support Γ has L2-norm at most

√
s, and ‖θ‖∞ ≤ 1. Here restricting

any vector x ∈ Rp to support Γ means to set all the coordinates of x outside Γ to zero.

We now upper bound the maximum eigenvalue of 52`Γ(θ;D) = 1
2(y − x|TΓθ)2, where y ∈

[−s, s] and x ∈ Rp with ‖x|Γ‖2 ≤
√
s. We have 52`Γ(θ;D) = x|TΓx|Γ. From Lemma 40

below it follows that the highest eigenvalue of x|TΓx|Γ is bounded by s.
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Lemma 40 (Chaudhuri et al. (2011)) Let A =
∑

j wjx
T
j xj, for 1×p vectors xj. Then,

p∑
i=1

|λi(A)| ≤
∑
j

|wj | · ‖xj‖22

where λi is the i-th eigenvalue of A.

Setting ζ = 2s3/2 and λ = s, and invoking Theorem 2, it follows that Line 5 of Algorithm
6 is ( ε2 , δ)-differentially private.

G.4.2. Utility Analysis

Lemma 41 Let Λ = 4σn1/4
√

log p and ∆ = Θ (s/ε). Under Assumption Sparse-Linear’
(Assumption 3) on the design matrices X1, · · · , X√n and noise vectors w1, · · · , w√n (corre-

sponding to data blocks D1, · · · ,D√n), if n ≥ (16σ
ΨΦ )4s2 log2 p, then Algorithm Asupp (in Line

1 of Algorithm 6) outputs a set of size s which contains the correct support of θ∗.

Lemma 41 follows from (Negahban et al., 2010, Corollary 2). It roughly states that under
Assumption 3 (Assumption Sparse-Linear’ ), with high probability the L2 distance between

θ̂ ∈ arg min
θ∈Rp

1
2n‖y−Xθ‖

2
2 + Λ

n‖θ‖1 and θ∗ goes down as
√

s log p
n , where Λ is an appropriately

chosen parameter. This means that for sufficiently large n, w.h.p. the support of the top-s
coordinates of θ̂ is the support for θ∗. Following is a detailed proof for the above lemma.
Proof In order to prove Lemma 41, we first state the following lemma from Negahban
et al. (2010).

Lemma 42 (Corollary 2 from Negahban et al. (2010)) Consider the optimization prob-
lem defined as θ̂ arg min

θ∈Rp
1

2n‖y−Xθ‖
2
2 + 1

nΛ‖θ‖1, where y ∈ Rn is the response vector, Xn×p

is the design matrix. Under the assumption that the tuple (X,w) is (s,σ,Ψ)-well behaved,
if we set Λ = 4σ

√
n log p, then we have

‖θ̂ − θ∗‖22 ≤
64σ2

Ψ2

s log p

n

Here w is the noise in the linear system.

In order to use the above lemma, we observe the following. First, any design matrix (sub-
sampled from the original design matrix X) on which Asupp (defined in Line 1 of Algorithm
6) executes has

√
n number of rows. (Here n is the number of rows in the original design

matrix X.) Second, note that by Assumption 3 (Assumption Sparse-Linear’ ) each of the
√
n

design matrices on which Asupp executes in Algorithm 6 follows restricted strong convexity.
Thus, from Lemma 42 the following is true for each data block Di.

‖θ̂ − θ∗‖2 ≤
8σ

Ψ

√
s log p

n1/4
(26)
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Let Φ be the minimum absolute value of any non-zero coordinate of θ∗. Now, setting
the R.H.S. of Equation 26 to Φ

2 , we have n ≥ (16σ
αΦ )4s2 log2 p. This means that when

n ≥ (16σ
ΨΦ )4s2 log2 p, for any coordinate i ∈ [p] where θ∗(i) 6= 0, we have |θ̂(i)| ≥ Φ

2 . Similarly,

for any coordinate i ∈ [p] where θ∗(i) = 0, we have |θ̂(i)| < Φ
2 .

Thus, if we pick the top s coordinates (in terms of absolute value), then all the coordi-
nates in the support of θ∗ will be chosen. This completes the proof.

Theorem 43 (Theorem 44, special case) Let Λ = 4σn1/4
√

log p and ∆ = Θ (s/ε).
Under Assumption Sparse-Linear’ (Assumption 3), if n ≥ (16σ

ΨΦ )4s2 log2 p, then w.p. ≥
1 −

(
p exp

(
− ε
√
n

8s

))
we have Eb

[
L̂(θpriv;D)− L̂(θ∗;D)

]
= O

(
1
nε

(
s4 log(1/δ)

nεΨ + s2
))

. Here

b is the noise vector in Algorithm Obj-Pert (Algorithm 1).

The above theorem (Theorem 43) almost follows directly from Lemma 41, and Theorems 4
and 8. In order to prove Theorem 43, we first prove a slightly general version below. Plug-
ging in the value of ∆ = Θ (s/ε) yields Theorem 43. Since we are dealing with expectation
in Theorem 43, we ignore the term γ.

Theorem 44 (Utility) Under the conditions of Lemma 41, w.p. ≥ 1−
(
p exp

(
− ε
√
n

8s

)
+ γ
)

we have

L̂(θpriv;D)− L̂(θ∗;D) ≤
64s4

(
8 log 2

δ + 2ε
)

log 1
γ

nε2(∆ + Ψ)
+

∆

2n
‖θEmp‖22

Here θEmp ∈ arg minθ∈FΓ̂
L̂(θ;D).

Proof We prove this theorem in two stages. In the first stage, we lower bound the
probability with which the correct support of θ∗ is chosen in Line 2 of Algorithm 6. In the
second stage, we bound the empirical risk for the optimization problem (restricted to the
support Γ̂ chosen). Note that if the correct support of θ∗ is chosen, then the empirical risk
bound of the second stage corresponds to the empirical risk bound for the actual problem.
We conclude the proof by combining the failure probabilities of stages one and two.

Stage one: From Lemma 41, it follows that Algorithm Asupp (see Line 1 of Algorithm 6)
outputs the correct support. Once the correct support is chosen, the problem reduces to an
s-dimensional problem.

Stage two: We complete the proof of stage two by invoking Theorem 31 with parameters
ζ = 2s3/2, k =

√
n and dimensionality of the problem = s.

Appendix H. Low-dimensional linear regression

Consider the linear regression problem,

y = Xθ∗ + w (27)
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where the design matrix X ∈ Rn×p, output vector y ∈ Rn×1, parameter vector θ∗ ∈ Rp,
and w ∈ Rn×1 is a noise vector. We define the loss function for any given θ as L̂(θ;D) =
1

2n

∑n
i=1(yi − 〈Xi, θ〉)2, where yi is the i-th entry in the vector y and Xi is the i-th row of

the matrix X. The setting we are interested in is where each row of the design matrix X
has L2 norm at most

√
p and the parameter vector θ∗ has L2 norm at most

√
p. Notice that

since we assume θ∗ and the rows of X have norm at most
√
p, so truncating y into [−p, p]

will not hurt utility guarantees. Therefore, w.l.o.g. we assume that y ∈ [−p, p]. Also, since
θ∗ is assumed to have norm at most

√
p, we assume that the convex set over which the

optimization is performed has L2 norm at most
√
p, i.e., F =

{
θ ∈ Rp : ‖θ‖2 ≤

√
p
}

.
Under this setting we want to bound the gradient of 1

2(yi−〈Xi, θ〉)2 by ζ for any θ ∈ F.
It is easy to see that the gradient is XT

i (yi − 〈Xi, θ〉). Therefore, under the choice of
parameters in the problem we have ζ = 2p3/2.

Similarly, to bound the maximum eigenvalue of 52 1
2(yi − 〈Xi, θ〉)2 by λ, we first notice

that the hessian is XT
i Xi. Since ‖Xi‖2 ≤

√
p, the maximum eigenvalue of the matrix is p.

Hence, we can set λ = p.
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