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1 Introduction

To be written (probably by Adam).

2 Technical Questions About Differential Privacy

2.1 Efficient Algorithms for Releasing Conjunctions

Contributed by: Adam Smith, Aaron Roth, Jon Ullman
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Consider the universe X = {0, 1}d. A function f : X → {0, 1} is a conjunction if it is the logical
AND of literals, each of which consists of a bit of the input or its negation. Let C be the set of all
3d nontrivial conjunctions, and Ck be the set of conjunctions that involve only k literals.

For simplicity, assume the size of the database n is public, and the answer to query f on data
set X is the average 1

n

∑
x∈X f(x). For asymptotic notation, we take ε constant and log(1/δ) =

O(log n).

Open Question 1. Is there a (ε, δ)-differentially private query release mechanism that can an-
swer all queries in Ck to additive error poly(d, k)/n that runs in time poly(dk) (or even simply
subexponential in d)?

Background The Laplace mechanism applied to this problem directly runs in time O(
(
d
k

)
) and

adds expected noise Õ(2k
(
d
k

)
/n) per entry (ignoring log factors, this is an upper bound on the

error for all answers with high probability), or
√

2k
(
d
k

)
/n with (ε, δ)-differential privacy. Various

optimizations improve the dependency on k [BCD+07].
Blum et al. [BLR08] and subsequent work [DNR+09, RR10, HR10b, GRU12a, HLM12a] give

algorithms with additive error only Õ
(

poly(k,d)√
n

)
. Unfortunately, even the most efficient of these

algorithms [HR10b] has running time that is linear in |X | = 2d.
An even more recent line of work [GHRU11, HRS11, TUV12] gave algorithms for releasing con-

junctions with subexponential error in subexponential time. [TUV12], for example, give algorithms

for releasing k-way marginals with running time poly(n) and error o(1) provided n = dω(
√
k)/ε. See

[TUV12] for a succinct summary of the state of the art.
The lower bounds are far from matching the upper bounds. [KRSU10] show that the error of

(ε, δ)-d.p. algorithms for releasing all k-way marginals must be Ω̃(min{ 1√
n
, d

k/2

n }) (regardless of

running time). That bound only rules out o(1) error when n � dk/2. [UV11] show that efficient,
synthetic data releases which preserve all 2-way marginals up to o(1) additive error must have
running time superpolynomial in d, but this does not rule out other types of synopses.

2.2 Efficient Algorithms for Answering Convex Queries?

Contributed by: Zhiyi Huang and Aaron Roth

Let X = [0, 1]` be the `-dimensional unit rectangle endowed with the Euclidean norm, and let
S ⊆ {φ : [0, 1]` → [0, 1]} be the collection of predicates such that for each φ ∈ S:

1. φ is 1-Lipschitz: for all x, y ∈ [0, 1]`, |φ(x)− φ(y)| ≤ ||x− y||2

2. φ is convex: for all x, y ∈ [0, 1]` and for all t ∈ [0, 1], φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y)

For each φ ∈ S, define the query fφ(D) = 1
n

∑
x∈D φ(x). Then:

Open Question 2. Let C = {fφ : φ ∈ S} denote the set of 1-Lipschitz, convex linear queries
defined over the universe X = [0, 1]`. Is there a differentially private query release mechanism
operating in the interactive setting, that can answer any subset of k queries from C to additive
error Õ(poly(`, log(k))/

√
n) with per-query update time poly(`, n)?
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Background The Laplace mechanism gives a computationally efficient algorithm for answering
any collection of k linear queries on a database of size n defined over a universe X to additive

error Õ
(√

k
n

)
[DMNS06, DRV10], and the running time of this mechanism is only O(n) per query

(i.e. the time it takes to evaluate the query itself). On the other hand, a series of results [BLR08,
DNR+09, RR10, HR10b, GHRU11, GRU12a, HLM12a] has shown that it is in principle possible

to answer any k such queries with error that scales only like Õ
(

poly(log k,log |X |)√
n

)
, which allows a

mechanism to privately answer nearly exponentially many queries in the size of the database to
non-trivial accuracy. Unfortunately, even the most efficient of these algorithms [HR10b] has running
time that is linear in |X | (i.e. exponential in the dimension of the space), which can be prohibitive.
Moreover, recent results have shown that modulo mild hardness assumptions, this running time
is the best possible for any mechanism that can answer more than O(n2) general linear queries
to non-trivial accuracy [DNR+09, Ull12]. In other words: the Laplace mechanism has essentially
optimal accuracy among polynomial time algorithms that can answer queries at a comparable level
of generality.

These results do not rule out mechanisms which can answer special, structured subclasses of
linear queries to accuracy that approaches the best information-theoretic results, while maintaining
computational efficiency. Convex, Lipschitz queries seem like a natural candidate. A natural
example of a convex query is an `2 distance query: such a query is specified by a point in the
metric space, and asks for the average distance from the query point to the database points. It was
recently shown that it is indeed possible to give computationally efficient algorithms for answering
such queries (indeed, distance queries defined over arbitrary metrics) [HR12d]. This result crucially
uses the metric structure of such queries, however. Is it possible to get a similar result for the set
of all convex, Lipschitz queries?

We remark that the question is also interesting without the Lipschitz constraint: do there exist
efficient algorithms for the set of convex queries? However, we note that without the Lipschitz
constraint, the set of convex queries includes boolean conjunctions, because the convex function:

fS(x) =

(
1

|S|
∑
i∈S

xi

)t
approaches the value of the boolean conjunction on variables S on the vertices of the boolean
hypercube, as the exponent t approaches infinity. Boolean conjunctions are themselves an important
challenge problem in differential privacy.

2.3 Efficient, Synthetic Data for Graph Cut Queries?

Contributed by: Aaron Roth

Consider a d vertex weighted graph with a publicly known vertex set and a private edge set.
Such a graph can be described by a matrix A ∈ [0, 1]d×d, where A(i, j) = A(j, i) = w(i, j) is defined
to be the weight of the edge between vertex i and j. Write m to denote the total weight of the edge
set: m =

∑d
i=1

∑d
j=1A(i, j). Two such graphs A and A′ are defined to be edge neighbors if there

exist indices i∗, j∗ such that for all (i, j) 6= (i∗, j∗), A(i, j) = A′(i, j) and A(j, i) = A′(j, i): i.e. they
are identical except in a single edge. We can ask for differentially private algorithms with respect
to the edge neighbor relation on graphs.
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A cut query between two subsets of vertices S, T ⊆ V is defined to be the sum weight of the
edges crossing between S and T :

fS,T (A) =
∑
i∈S

∑
j∈T

A(i, j)

The set of all cut queries is denoted Qcut = {fS,T : S, T ⊆ V }. Note that cut queries are 1-sensitive
linear queries on the private database, and that there are |Qcut| = O(22d) such queries in total.

Do there exist efficient, privacy preserving algorithms for non-interactively answering all cut
queries to optimal accuracy?

Open Question 3. Is there a 1-differentially private algorithm running in time polynomial in d,
that for any graph A can produce a synthetic graph Â such that for all S, T ⊆ V :

fS,T (A)− Õ(
√
m · d) ≤ fS,T (Â) ≤ fS,T (A) + Õ(

√
m · d)

Open Question 4. Is there a 1-differentially private algorithm running in time polynomial in d,
that for any graph A can produce a synthetic graph Â such that for all S, T ⊆ V :

0.99 · fS,T (A)− Õ(d) ≤ fS,T (Â) ≤ 1.01 · fS,T (A) + Õ(d)

Background The problem of privately answering graph cut queries was first considered by
[GHRU11, GRU12a]. These are an attractive class of linear queries, because they seem to avoid one
of the main obstacles for developing efficient, non-interactive query release mechanisms: namely,
they are defined over a universe (the edge set of the complete graph) which is polynomial, not
exponential, in the size of the database (the edge set of the private graph). As such, interactive
mechanisms such as multiplicative weights can be efficiently run on such queries [HR10b]. Never-
theless, efficient algorithms for synthetic data are lacking. It was observed in [GRU12a] that simple
input perturbation (i.e. adding noise Lap(1/ε) to each entry of A) can be used to produce synthetic
data which answers every cut query to additive error O(d3/2). However, this is suboptimal when
m � d2. For example, private multiplicative weights produces synthetic data which achieves the
error from Question 3 when all k = 22d cut queries are asked – however, this takes time propor-
tional to the number of queries asked [HR10b, GRU12a]. Moreover, the net mechanism paired
with a net of Benczur Karger cut sparsifiers produces synthetic data which achieves the error from
Question 4, but again, this mechanism is not computationally efficient [BLR08, BBDS12]. Blocki
et al. [BBDS12] give a mechanism which produces a data structure which can answer (S, S̄) cut
queries with constant multiplicative error and additive error O(|S|

√
d). This improves over the

input perturbation bound of O(d3/2) for cuts of the form (S, S̄) when |S| � d. It does not however
improve over input perturbation for large cuts.

One way to efficiently achieve the bounds of 3 would be to give a private algorithm for ap-
proximating the cut-norm of a graph, which corresponds to the private distinguishing problem of
finding the cut query which most differs on two different graphs A,A′ [GRU12a]. This would allow
an algorithm to efficiently find the update queries necessary for multiplicative weights, which gives
an efficient offline algorithm [GHRU11]. Note that good non-private algorithms are known for
efficiently approximating the cut-norm [AN06].

Note that if the analyst is only interested in the answers to a polynomial number of k cut
queries, rather than all cut queries, then the input perturbation bound improves to additive error
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O(d
√

log k), and private multiplicative weights can be run in time polynomial in d and k, and
gives synthetic data with additive error Õ(

√
m log k). Note also that the problem of approximating

a normalized variant of the cut-norm is related to the problem of computing the top singular
vector of the matrix A. Near optimal, efficient algorithms are known for this task: [KT13, CSS12,
HR12a] but these algorithms all require some assumption on the spectral gap of the matrix, which
precludes their black-box use with graphs produced as intermediate steps using algorithms like
private multiplicative weights.

2.4 Reduction Hypothesis Under the ε-Matrix Mechanism

Contributed by: Chao Li, Gerome Miklau

Designing strategy matrix is core to the matrix mechanism[LHR+10]. Given a workload matrix
W and a strategy matrix A, the expected squared error of answering W using A under the ε-matrix
mechanism is ||A||21trace(WTW(ATA)+)/ε2. Here ||A||1 is the maximum L1 norm of columns of
A, T denotes the transpose of a matrix and + denotes the pseudo inverse of a matrix. Given two
strategy matrices A and B, if ATA = BTB and ||B||1 ≤ ||A||1, we say strategy A is dominated
by strategy B since B can answer any query that can be answered by A with smaller or the same
error. Since ATA = BTB, the number of queries in B is at least the rank of A. A natural question
is that given a strategy A with rank r, whether can we find another r× n strategy that dominates
A.

Open Question 5. Given an m × n matrix A with rank r, whether there exists an r × n matrix
B such that ATA = BTB and ||B||1 ≤ ||A||1.

Background When searching for a good strategy in the matrix mechanism, the size of the
matrix is always fixed as the size of the domain[LHR+10] or proportional to the rank of the
workload[YZW+12, LM12]. However it is not clear whether there exist better strategy matri-
ces with larger size. If the answer to Question 5 is yes, it is guaranteed that there always exists an
optimal strategy under the ε-matrix mechanism with the least number of queries.

2.5 Are there subexponential-time local Lipschitz reconstructors?

Contributed by: Madhav Jha and Sofya Raskhodnikova

A function f : {1, . . . , n}d → R is c-Lipschitz (with respect to the `1 metric on {1, . . . , n}d) if
|f(x)− f(y)| ≤ c · ‖x− y‖1 for all points x, y in the domain {1, . . . , n}d. We say f is Lipschitz (or
satisfies the Lipschitz property) if f is 1-Lipschitz. This problem is concerned with local reconstruc-
tion of the Lipschitz property. As explained in [JR11], local reconstructors (which are also called
local filters) can be used in a filter mechanism. This mechanism is designed for the privacy settings
where the client specifies a query by sending an arbitrary program f to the database curator asking
to evaluate it on the database x; moreover, the client claims that the function f specified by the
program has low global sensitivity. A local filter for the Lipschitz property can be used in a mech-
anism based on global sensitivity (such as the Laplace mechanism) to obtain algorithms which are
(i) differentially private even if the client is misreporting the global sensitivity of her program and
(ii) as accurate as the Laplace mechanism for honest clients.

Beginning with [ACCL07], the definition of property reconstructors has been strengthened and
relaxed in several ways [SS10, BGJ+12, JR11, AJMR12]. We give the most relevant definition from
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the privacy point of view, based on [AJMR12]. Intuitively, a local filter can be used to replace
oracle access to an arbitrary function with oracle access to a related Lipschitz function.

Definition 1. A local filter for the Lipschitz property is a randomized algorithm A which gets
oracle access to an input function f : D → R and an input x ∈ D. The randomness of algorithm
A is specified by a string ρ (the “random seed”), so that for fixed f and ρ, algorithm A runs
deterministically on input x and produces output Af,ρ(x) ∈ R. (In particular, a local filter has no
internal state to store previously made queries – this property is the reason for calling it “local”.)
The function g(x) = Af,ρ(x) output by the filter must obey the following conditions:

1. For each f and ρ, the function g must be Lipschitz.

2. If f is Lipschitz then with high probability (over the choice of ρ) g should be close to f :
∀x ∈ D, |f(x)− g(x)| should be small.

Open Question 6. What is the time complexity of local Lipschitz reconstruction of functions
f : {1, . . . , n}d → R?

Best known upper bound: [JR11] gave a deterministic local Lipschitz filter for functions f :
{1, . . . , n}d → R which runs in time O((log n+1)d). Their filter guarantees that the output function
g is identical to f (and not just close to f in `∞) if f is Lipschitz.

Best known lower bound: [AJMR12] showed that every (possibly randomized and adaptive)
local Lipschitz filter for functions f : {0, 1}d → R must make 2Ω(d) look ups to its oracle f even if
the filter is allowed to make an Ω(d) additive error on every output.

Possible relaxations of local reconstructors. In the light of the exponential lower bound
above, the second open question is about relaxations of Definition 1. Specifically, item 1 of Defini-
tion 1 may be relaxed to only require that the filter output κ-Lipschitz function for some constant
κ > 1. It may be further relaxed to require that g is κ-Lipschitz with high probability. We call
such filters κ-relaxed. Another relaxation, suggested by Or Sheffet, is to require item 2 to hold
only when function f belongs to a particular class H. We say such filters are accurate on H. It
is not hard to see that these relaxations still yield useful filter mechanisms. (The first relaxation
will cause additional noise proportional to κ/ε, where ε is the parameter of ε-differential privacy.
Requiring item 1 to hold only with high probability will yield (ε, δ)-differential privacy instead of
“pure” ε-differential privacy. Finally, the relaxation to class H will cause the mechanism to be
accurate only on programs which specify functions from H.)

Open Question 7. What is the time complexity of the relaxed local filters, defined above? Specif-
ically, are there κ-relaxed local Lipschitz filters for functions f : {0, 1}d → R which run in time
2o(d)? Also, is there an interesting class H of functions f : {0, 1}d → R such that there are local
Lipschitz filters which are accurate on H and run in time 2o(d)?

2.6 Competitive online mechanisms

Contributed by: Aleksandar Nikolov
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Let us represent a database D ∈ Un drawn from a universe U as a histogram x ∈ N|U | (‖x‖1 ≤ n
is the database size). Let us further represent a set of d counting queries as a matrix A ∈ {0, 1}d×|U |
in the natural way. The mean squared error of a mechanism M on the query set A is

errM(A) = max
x

E
1

d
‖M(x)−Ax‖22,

where the expectation is taken over the randomness of M. The optimal error for A and n is
optε,δ(A,n) = minM(errM(A)), where the minimum is over (ε, δ)-differentially private mechanisms.

An online mechanism is initially given x. At time step i, the mechanism is given the i-th row
of A and must approximate (Ax)i. Let A≤i be the matrix consisting of the first i rows of A. An
(ε, δ)-differentially private online mechanism M is C-competitive if at any time step i,

errM(A≤i) ≤ C · optε,δ(A≤i)

Open Question 8. Does there exist an online mechanism which is C-competitive for all A and
for some non-trivial C? What about restricted classes of A? What is the optimal value of C?

Background There exist (ε, δ)-differentially private online mechanisms [HR10a, GRU12b] which
answer any set of d counting queries on databases of size at most n with mean squared error O(n)
(ignoring dependence on ε, δ and |U |). Since any non-trivial set of linear queries requires error
Ω(1), these mechanisms are O(n)-competitive for counting queries on databases of size at most n.
Furthermore, simple randomized response is O(N)-competitive for counting queries by the same
reasoning. Finally, the Gaussian noise mechanism [BDMN05] is O(d)-competitive for d counting
queries.

2.7 Dependence of error on universe size

Contributed by: Aleksandar Nikolov

Let us represent a database D ∈ Un drawn from a universe U as a histogram x ∈ N|U |, where
the database size is ‖x‖1 ≤ n. Let us further represent a set of d counting queries as a matrix
A ∈ {0, 1}d×|U | in the natural way. The mean squared error of a mechanismM on the query set A
and databases of size at most n is

errM(A,n) = max
x:‖x‖1≤n

E
1

d
‖M(x)−Ax‖22,

where the expectation is taken over the randomness of M. The optimal error for A and n is
optε,δ(A,n) = minM(errM(A,n)), where the minimum is over (ε, δ)-differentially private mecha-
nisms

Open Question 9. Does there exist a family of 0-1 matrices {Ai}∞i=1, Ai of dimensions d× |Ui|,
for which optε,δ(Ai, n) grows to infinity with |Ui| for fixed n, ε, and δ > 0? What is the optimal
worst-case dependence of optε,δ(A,n) on |U |?

Background There exist (ε, δ)-differentially private mechanisms [HR10a, GRU12b, HLM12b,
NTZ12] which can answer any set of d counting queries with error

errM(A,n) = O

(
n
√

log(1/δ) log |U |
ε

)
.
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On the other hand, the best known lower bounds on optε,δ(A,n) for databases of size at most n
are given by matrices A of dimensions O(n) × n, i.e. the universe size is n. For example, for a
random O(n) × n 0-1 matrix A, opt(A,n) = Ω

(
n
ε

)
with constant probability [DN03a]. A lower

bound technique which uses queries over a universe of size n cannot show that the optimal error
for counting queries must grow with |U | for fixed n.

For pure differential privacy, i.e. when δ = 0, we know packing-based lower bounds on optε,0(A,n)
that depend logarithmically on |U |. Specifically, we know [HT10, Har11] that for d ≥ n1.1, and for
a random d× |U | 0-1 matrix A, with constant probability

optε,0(A,n) = Ω

(
n log(|U |/n)

ε

)
.

The tight dependence on |U | for (ε, 0)-differentially private mechanisms is also open. The best
known upper bound [NTZ12] on optε,0(A,n) is O(1

εn polylog(d) log3/2 |U |).

2.8 Removing the Square Root of Rank

Contributed by: Moritz Hardt and Aaron Roth

This problem is about privacy-preserving low-rank approximation in the spectral norm. The
coherence of a symmetric n × n matrix A given in its singular value decomposition A = UΣU t is
defined as µ(A) = n‖U‖2∞.

Open Question 10. Is there an (ε, δ)-differentially private algorithm which given an n×n matrix A
and a number 1 ≤ k ≤ n, returns a rank-k matrix B such that with probability 2/3,

‖A−B‖2 ≤ ‖A−Ak‖2 +O
(
ε−1poly(k log(1/δ))µ(A)

)
Here, Ak is the best rank k approximation of A in the spectral norm which is denoted by ‖ · ‖2.

Background. For motivation of coherence in the contect of privacy see [HR12b, HR12c]. The
latter result showed the above bound up to a factor of

√
rank(A) in front of the coherence term.

The question is to remove this dependence on the rank. The main motivation for this problem
is that the above bound does not depend on the dimension n, but only on k and the coherence
parameter µ(A) which can be significantly smaller than n.

3 Technical Questions Relating to Other Definitions

3.1 Necessary and Sufficient Conditions for Self-Composability

Contributed by: Ashwin Machanavajjhala

A very attractive property of differential privacy is that it linearly self-composes.

Definition 2. Given two mechanisms M1 and M2, M∗M1,M2
is the algorithm with range(M∗M1,M2

) =

range(M1)× range(M2) such that for all databases D, P
[
M∗M1,M2

(D) = (ω1, ω2)
]

= P [M1(D) =
ω1]P [M2(D) = ω2]. A privacy definition P with parameter ε self-composes linearly if for all ε1,
ε2, and mechanisms M1 and M2 that satisfy P with parameters ε1 and ε2, respectively, M∗M1,M2

satisfies P with parameter ε1 + ε2.

Open Question 11. What are necessary and sufficient conditions for a privacy definition to satisfy
linear self-composability?
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Background We know a sufficient condition for when a general privacy definition from the Puffer-
fish framework [KM12] is linear self-composable. Namely, any privacy definition that compares the
output distribution of a mechanism on some set N of pairs of neighboring datasets composes with
itself. What is the full characterization of this class?

3.2 Characterization of general answerability

Contributed by: Daniel Li

Suppose that the privacy mechanism K is the Laplace mechanism. We use the interactive model
and assume that the database does not remember the past queries. If one person asks one query
Q for m times, and each time the variance of the answer is v. Then by averaging the answers of
these m queries, she may refine the answer and get the answer with variance v/m.

Open Question 12. Are there smarter methods rather than averaging, and what is the ultimate
limit of these smarter methods? In other words, what is the least variance she can get by asking
the same query m times?

Background We know the answer for the case when the inference function is a linear function
(averaging is an example). We call this linear answerability. And the answer is open for general
inference functions (e.g. take a median), namely general answerability. Please refer to [LLMS12].

3.3 Blatant Non-Privacy Lower Bound for Releasing Non-differentiable Statis-
tical Estimators

Contributed by: Shiva Kasiviswanathan

Background. Assume we have n samples x1 . . .xn ∈ Rk+1, consider the following optimization
problem:

L(θ; x1 . . .xn) =
1

n

n∑
i=1

`(θ; xi), (1)

where θ ∈ Θ ⊂ Rk+1, the separable loss function L : Θ× (Rk+1)n → R measures the “fit” of θ ∈ Θ
to any given data x1 . . .xn, and ` : Θ×Rk+1 → R is the loss function associated with a single data
point. The M -estimator (θ̂) associated with a given a function L(θ; x1 . . .xn) ≥ 0 is

θ̂ = argminθ∈Θ L(θ; x1 . . .xn) = argminθ∈Θ

1

n

n∑
i=1

`(θ; xi).

M -estimators are natural extensions of the Maximum Likelihood Estimators (MLE) and very
commonly used in statistical studies. For a differentiable loss function `, the estimator θ̂ could
be found by setting ∂ L(θ; x1 . . .xn) to zero. For differentiable loss functions, Kasiviswanathan,
Rudelson, and Smith [KRS13] showed that one needs to add at least Ω(1/

√
n) noise while releasing

these M -estimators to prevent a blatant non-privacy attack (this is an informal statement, for a
formal statement see Theorem 4.2 of [KRS13]).

Question. The open question is to obtain blatant non-privacy lower bounds for non-differentiable
loss functions. Note that non-differentiable `’s are very commonly use in practice, e.g., ` could
be the L1-loss function or the hinge loss appearing in Support Vector Machines. Since avoiding
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blatant privacy in itself is a very weak privacy guarantee such lower bounds will “truly” reveal the
cost of privacy.

4 Nontechnical Questions

4.1 Setting the privacy parameters

Contributed by: Arik Friedman, Andreas Haeberlen, Benjamin C. Pierce

Open Question 13. What are reasonable values for ε (and δ) in differential privacy?

Background Much of the research on differential privacy has focused on exploring theoretical
upper and lower bounds on the relation between privacy and utility for different applications, usually
exploring the asymptotic behavior of the system. However, to bridge the gap between theory and
practice, researchers who apply differential privacy investigate privacy and utility trade-offs under
specific settings and particular datasets, and evaluate based on the obtained outcomes whether a
certain algorithm provides an acceptable performance within the given privacy constraints. To this
end, understanding what are reasonable values of the privacy parameters is key in evaluation of
practical systems. While ε is usually thought of as a small (< 1) number [Dwo11], in some cases
larger values may be acceptable. For example, Dwork et al. [CDS11] suggested that for datasets
such as a search query logs, in some scenarios even values as high as ε = 12 may be acceptable.

Many experimental studies of differentially private mechanisms indicated significant loss of util-
ity for low values of ε, and demonstrated that for many applications and datasets, achieving rea-
sonable utility requires ε values well beyond 1 [CM08, MKA+08, KKMN09, MM10, FS10, BLST10,
MKS11]. Chen et. al. [CRFG12] have even proposed to avoid setting a pre-determined privacy
budget altogether, and track privacy deficit instead.

The motivation underlying this open problem is to generate guidelines for practitioners and for
researchers who work on applied differential privacy. Such guidelines would allow to assess whether
a given solution achieves a reasonable privacy/utility tradeoff or not. Additionally, it would be
useful to look at some concrete scenarios, e.g., how to design a medical study for which differential
privacy guarantees will be provided, and to determine how large a privacy budget would be required
to publish the expected results.

Motivating examples To motivate the discussion on reasonable values for ε and δ, consider
two other problem areas: determining a key length for a cryptographic system, and evaluating
the strength of a password. Recommendations for minimum key length to use in a cryptographic
cipher may rely on the best known attacks on that cipher, the technology available at the time,
assumptions about the adversary’s power, the sensitivity of the protected data, and safety margins
that capture expected technological advancements and improvements in attack methodologies1. In
password cracking, considering a brute-force attack is useful for getting an estimate of what makes
a good or a bad password, and websites can use such benchmarks to guide users and give them
feedback whether their chosen password is weak, ok or strong, even though a particular user’s
password may be easy to guess given the right auxiliary information. In both cases, the choice
of the security parameter (key length or password strength) can be translated to measures of the

1See, e.g., http://www.keylength.com/
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expected effort the adversary would need to invest (in time or money), allowing decision makers
to make security choices without needing to understand the underlying technology. Moreover, the
resulting best practices change over time, to reflect technological advancements and knowledge of
new attacks.

Similarly, while actual privacy guarantees depend on the data, the adversary’s goal and auxiliary
information, it may still be useful to consider attack models and typical scenarios that would allow
to reason about privacy protection and the effort the adversary would need to invest to acquire
certain data despite differential privacy protections.

Possible directions A possible way to address this problem is by considering several scenarios
and attacks, and assessing what would be reasonable values for the privacy parameters in these
contexts, or translate ε and δ to cost (e.g., in repeated queries – time or money) that reflects
the effort that the adversary needs to invest to obtain its goals under the given privacy settings.
For example, it is possible to discuss desirable privacy requirements under specific scenarios such
as collaborative security [RAW+10], analysis of commuting patterns [MKA+08], of search logs
[KKMN09], or network trace analysis [MM10], and assess the privacy guarantees under different
kinds of attacks, such as database reconstruction attacks [DN03b], compositions attacks [GKS08],
deFinetti attack [Kif09], classifier-based attacks [Cor11], and temporal inference attacks [CKN+11].

4.2 Defining Privacy for Social Networks

Contributed by: Ashwin Machanavajjhala

Open Question 14. How can we formalize a privacy definition for social networks? Can correla-
tions in a social network be mathematically described (in order to define a set of possible adversarial
prior distributions)? Which correlations in a social network should be considered sensitive infor-
mation, and which ones should we allow an adversary to learn about?

Background Recent work [KM11, KM12] has shown that differential privacy does limit the
ability of an adversary to accurately learn sensitive information about individuals when the data
are correlated (especially in social networks). Privacy can be formally defined in the presence
of certain kinds of correlations, namely those induced by publicly known constraints in the data
[KM12]. Can this be done for social networks?
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