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Abstract. A quantum encryption schenfalso calledprivate quantum channgl

or state randomization protocpis a one-time pad for quantum messages. If two
parties share a classical random string, one of them can transmit a quantum state
to the other so that an eavesdropper gets little or no information about the state
being transmittedPerfectencryption schemes leak no information at all about
the messageApproximateencryption schemes leak a non-zero (though small)
amount of information but require a shorter shared random key. Approximate
schemes with short keys have been shown to have a number of applications in
quantum cryptography and information theory [8].

This paper provides the first deterministic, polynomial-time constructions of quan-
tum approximate encryption schemes with short keys. Previous constructions [8]
are probabilistic—that is, they show that if the operators used for encryption are
chosen at random, then with high probability the resulting protocol will be a
secure encryption scheme. Moreover, the resulting protocol descriptions are ex-
ponentially long. Our protocols use keys of the same length as the probabilistic
constructions; to encrypt qubits approximately, one needs+ o(n) bits of
shared key [8], whereas: bits of key are necessary for perfect encryption [3].

An additional contribution of this paper is a connection between classical combi-
natorial derandomization and constructions of pseudo-random matrix families in
a continuous space.

1 Introduction

A quantum encryption schenger private quantum channgbr state randomization
protoco) allows Alice, holding aclassicalkey?, to scramble a quantum state and send

it to Bob (via a quantum channel) so that (1) Bob, given the key, can recover Alice’s state
exactly and (2) an adversary Eve who intercepts the ciphertext learns nothing about the
message, as long as she doesn’t know the key. We do not assume any shared quantum
states between Alice and Bob, nor any back channels from Bob to Alice.

* A.A. supported by NSF grant DMS-0111298. A.S. supported by a Microsoft Ph.D. Fellowship.

3 Classical keys are inherently easier to store, distribute and manipulate, since they can be
copied. More subtly, encryption with a shared quantum key is in many ways a dual problem to
encryption with a classical key; see [8, 5] for more discussion.

4 A back channel from Bob to Alice would allow using quantum key distribution to generate a
long secret key. However, such interaction is often impossible, e.g. if Alice wants to encrypt
stored data for her own later use.



There are two variants of this definition. An encryption scheme is calétect
if Eve learns zero information from the ciphertext, aapproximateif Eve can learn
some non-zero amount of information. A perfect encryption ensures that the distribu-
tions (density matrices) of ciphertexts corresponding to different messages are exactly
identical, while an approximate scheme only requires that they be very close; we give
formal definitions further below. In the classical case, both perfect and approximate en-
cryption require keys of roughly the same length-bits of key forn bits of message.

In the quantum case, the situation is different.

For perfect encryption, Ambainis et al. [3] showed thatbits of key are necessary
and sufficient to encrypt qubits. The construction consists of applying two classical
one-time pads—one in the “standard” ba§j8), |1)} and another in the “diagonal”
basis{ 7 (10) + 1)), 75 (10) — [1))}.

Approximate encryption was studied by Hayden, Leung, Shor and Winters [8]. They
introduced an additional, useful relaxation: they showed that if the plaintext is not en-
tangled with Eve’s system to begin with, then one canaggiroximatequantum en-
cryption using onlyn + o(n) bits of key—roughly half as many as are necessary for
perfect encryptiol.The assumption that Eve’s system is unentangled with the message
is necessary for this result; otherwise roughiybits are needed, even for approximate
encryption. The assumption holds in the quantum counterpart of the one-time pad situ-
ation (one party prepares a quantum message and sends it to the second party, using the
encryption scheme) as long as the message is not part of a larger cryptographic protocol.

Hayden et al. [8] showed thatrandomset of2"+°(") unitary matrices leads to a
good encryption scheme with high probability (to encrypt, Alice uses the key to choose
one of the matrices from the set and applies the corresponding operator to her input).
However, verifying that a particular set of matrices yields a good encryption scheme
is not efficient; even writing down the list of matrices is prohibitive, since there are
exponentially many of them.

This paper presents the first polynomial time constructions of approximate quantum
encryption schemes (to relish the oxymoron: derandomized randomization protocols).
The constructions run in tim@(n?) when the messageconsists ofr qubits. That is,
given the key and the input message, Alice can produce the output@sirtg steps
on a quantum computer. The key length we achieve is slightly better than that of the
probabilistic construction of [8]. Our results apply to the trace norm on matrices; exact
results are stated further below.

The main tools in our construction are small-bias sets [10] of strind®,in}>".

Such sets have proved useful in derandomizing algorithms [10], constructing short

PCPs [6] and the encryption of high-entropy messages [12]. Thus, one of the contri-

butions of this paper is a connection between classical combinatorial derandomization
and constructions of pseudo-random matrix families in a continuous space. Specifically,

we connecti Fourier analysis ové&F2" to Fourier analysis over the matric€8” *2" .

This parallels to some extent the connection between quantum error-correcting codes
overn qubits and classical codes oV&#'(4)".

5 The result of [8] highlights an error in the proof of a lower bound on key length of authentica-
tion schemes in [4]. The results of that paper remain essentially correct, but the definition of
authentication requires some strengthening, and the proof of the lower bound is more involved.



Definitions We assume that the reader is familiar with the basic notation of quantum
computing (see [11] for an introduction). Syntactically, an approximate quantum en-
cryption scheme is a set Bf invertible operator§ E, |« € {0,1}*}. The E,.'s may be
unitary, but need not be: it is sufficient that one be able to recover the jrfipoin the
output E,;(p), which may live in a larger-dimensional space tharEachE,, takesn
qubits as input and produces$ > n qubits of output. Ifn” = n then each operatdft,,
corresponds to a unitary matrix., that isE, (p) = U, pU].

For an input density matrfxp, the density matrix of the ciphertext from the adver-
sary’s point of view is:

1
k€{0,1}*
When the scheme is length-preserving, this yi€lfs) = 5 >, U.pU!.

Definition 1. The set of operator§E, } is an approximate quantum encryption scheme
with leakager (also called “e-randomizing scheme”) for qubits if

<e.

tr

for all density matricep onn qubits:  D(E(p), 5+1) = HE(p) — 51

Herel refers to the identity matrix in dimensia®’, andD(-, -) refers to the trace
distance between density matrices. The trace norm of a matisxthe trace of the
absolute value of (equivalently, the sum of the absolute values of the eigenvalues).
Thetrace distancédetween two matrices, o is the trace norm of their difference:

A
D(p,0) = llp = ol = Tr(lp — o)

This distance plays the same role for quantum states that statistical difference plays
for probability distributions: the maximum probability of distinguishing between two
quantum stateg, o via a single measurement§s+ iD(p, o). One can also measure
leakage with respect to other norms; see below.

Remark 1.This definition of quantum encryption implicitly assumes that the message
statep is not entangled with the adversary’s system. Without that assumption the def-
inition above is not sufficient, and it isot possible to get secure quantum encryption
usingn(1 + o(1)) bits of key (roughly2n bits are provably necessdjyThus, this sort

of construction is not universally applicable, and must be used with care.

Previous Work Ambainis et al. [3] considered perfect encryption; this corresponds to
the case where= 0. The choice of matrix norm is irrelevant there, siist@) = 2—},]1.
As mentioned above, they showed tBatbits of key are necessary and sufficient. The

% Recall that for a pure state), the density matrix is |¢) (¢).

" This folklore result appears more or less explicitly in both [4, 8]. Similar arguments show that
n bits of key are necessary to encryptlassical bits, even with access to quantum computers
(but not interaction).



construction uses the key to choose one8f Pauli operators (defined below) and
applies that to the input state.

Hayden et al. [8] showed that a set@fn2"/¢?) unitary operators suffices. They
showed this both for the trace norm, and for the “operator norm,” discussed below. For
the trace norm, they also showed that a random set of Pauli matrices of the same size
would suffice. This means that for encryptingqubits, they gave a non-polynomial-
time, randomized scheme requiringt+ logn + 2log(1/€) + O(1) bits of key.

Our Results We present three explicit, polynomial time constructions of approximate
state randomization protocols for the trace norm. All are based on existing constructions
of d-biased sets [10, 2, 1], or on families of sets with small average bias. The three
constructions are explained and proven secure in Sections 3.1, 3.2 and 3.3, respectively.
The first construction is length-preserving, and requirgs2logn + 2log(1/¢) +
O(1) bits of key, roughly matching the performance of the non-explicit construction.
The second construction is length-increasing: it encedgsbits inton qubits andn
classical bits but uses a shorter key: only- 21log(1/¢) bits of key are required. Both
of these constructions are quite simple, and are proven secure using the same Fourier-
analytic technique.
The final construction has a more sophisticated proof, but allows for a length-
preserving scheme with slightly better dependence on the number of qubits:

n + min {2logn + 2log(1/e€),logn + 3log(1/e)} + O(1)

bits of key. The right-hand term provides a better bound WéhEn%.

Randomization Schemes for Other Norms?Definition 1 measures leakage with re-
spect to the trace norm on density matride$,,. This is good enough for encryption
since the trace norm captures distinguishability of states. However, Hayden et al. [8]
also considered randomization schemes which give guarantees with respect to a differ-
ent norm, the operator norm.

A guarantee on the operator norm implies a guarantee for the trace norm, but schemes
with the operator norm guarantee also have a host of less cryptographic applications,
for example: constructing efficient quantum data hiding schemes in the LOCC (local
operation and classical communication) model; exhibiting “locked” classical correla-
tions in quantum states [8]; relaxed authentication of quantum states using few bits of
key [9]; and transmitting quantum states over a classical channelusingn) bits of
communication, rather than the us@al bits required for quantum teleportation [5].

More formally, for ad x d Hermitian matrixA with eigenvalueg A1, Ao, ..., A4}, the
operator norm(or co-norm) is the largest eigenvalugd || .. = max |\;|, the Frobenius
norm is the Euclidean length of the vector of eigenvalijes|, = (3, A?)1/2, and the
trace norm is the sum of the absolute values of the eignvalullg, = >, |\i|. Itis
easy to see the chain of inequalities:

4], < V|| All, < d]|All. -



We can then state the condition for a m@&po bee-randomizing map for. qubits
in three forms of increasing strength. For all input states n qubits:

|€(p) — 51 |, <e/V2r ||E(p) — o=

Our constructions satisfy the definition with respect to the Frobenius norm, but they
are not known to satisfy the stronger operator-norm definition. This suggests two inter-
esting questions. First, is it possible to prove that the other applications of state random-
ization schemes require only a guarantee on the Frobenius norm? Second, is it possible
to design explicit (i.e. polynomial-time, deterministic) randomization schemes that give
good guarantees with respect to the operator norm?

<&  [[&p) - 5l

|, < o

<e/2™.

| o0

The remainder of this paper describes our constructions and their proofs of security.

2 Preliminaries

Small-Bias SpaceJhe bias of a random variablé¢ in {0, 1}™ with respect to a string
a € {0,1}" is the distance from uniform of the kit®> A, where® refers to the standard
dot product orZ3:

Ala) =E4 [(-1)*94] =2Prla® A= 0] - 1.

The functionA is the Fourier transform of the probability mass function of the distri-
bution, taken over the groufs.

The bias of a se' € {0,1}™ with respect tax is simply the bias of the uniform
distribution over that set. A sétis calledd-biased if the absolute value of its bias is at
mostd for all o # 0.

Small-bias sets of size polynomialinand1/é were first constructed by Naor and
Naor [10]. Alon, Bruck et al. ABNNR, [1]) gave explicit (i.e. deterministic, polynomial-
time) constructions of-biased sets if0, 1}" with sizeO(n/§?). Constructions with
sizeO(n? /%) were provided by Alon, Goldreich, et ah&HP, [2]). The AGHP con-
struction is better whed = o(1/n). In both cases, thg" string in a set can be con-
structed in roughly:? time (regardless of).

One can sample a random point fromi-biased space ovel0, 1}" using either
logn+3log(1/6)+0(1) bits of randomness (usimBNNR) or using2 log n+2 log(1/49)
bits (USINGAGHP).

Small-bias Set FamilieOne can generalize small biasfamilies of sets (or random
variables) by requiring that on average, the bias of a random set from the family with
respect to every is low [7]. Specifically, the expectation of tlsgquarecbias must be at
mostd2. Many results ord-biased sets also hold férbiased families, which are easier

to construct.

Definition 2. Afamily of random variables (or set§)A;},.; is J-biased if

E;1 |:/L'(Oé)2:| < 52 for all « 7& 0™.



Note that this isiotequivalent, in general, to requiring that the expected bias be less
thand. There are two important special cases:

1. If Siis ad-biased set, thefiS} is ad-biased set family with a single member;
2. A family of linear space$C;},; is é-biasedif no particular word is contained in
the dualC;- of a random spac€; from the family with high probability. Specifi-

cally:
W f0ifagCH
Ci(o‘)_{ufaeql

Hence a family of codes i&biased if and only ifPr;_;[a € C;+] < 62, for every
a # 0™. Note that to meet the definition, for linear codes the expected bias must be
at mosts2, while for a single set the bias need only&e

One can get a goagtbiased family simply by takingC;} to be the set of all linear
spaces of dimensioka The probability that any fixed non-zero vectoties in the dual
of a random space is exacily = 2;;:1, which is at mosg—*.

One can save some randomness in the choice of the space using a standard pairwise
independence construction. Vief@,1}™ as GF(2"), and letK C GF(2") be an
additive subgroup of size*. For every non-zero string, let the space’, be given
by all multiplesax, wherex € K, and the product is taken i@F(2"). The family
{C, | a € GF(2"),a # 0} has the same bias as the set of all linear spacesI—*/2).
To see this, le{k, ..., k1. } be a basis oK (over GF(2)). A string a is in C if and
only if « ® (ak1) = -+ = a ® (aky) = 0. This is a system of linearly independent
constraints om, and so it is satisfied with probabili) = 2% whena « GF(2"),
and even lower probability when we restricto be non-zero. Choosing a gt from
the family requires: bits of randomness.

Entropy of Quantum Stateés with classical distributions, there are several ways to
measure the entropy of a quantum density matrix. We’'ll use the analogue of collision
entropy (a.k.a. Renyi entropy).

For a classical random variahleon {0, 1}™, the collision probability of two inde-
pendent samples of isp. = >, Pr[A = a]?. The Renyi entropy ofl is — log p...

For a quantum density matrix the analogous quantity islog Tr(p?). If the eigen-
values ofp are{p,}, then the eigenvalues pf are{p2}, and so Tfp?) is exactly the
collision probability of the distribution obtained by measurpnip a basis of eigenvec-
tors./Tr(p?) is called the Frobenius norm pf

If pis the completely mixed state ihdimensionsp = 5]1, then Tp?) is1/d. The
following fact states that any other density matrix for which this quantity is small must
be very close td. The fact follows by applying the (standard) inequality|T¥|)? <
dTr(A?) to the Hermitian matrixA = p — 1/d.

Fact 1. If pis d-dimensional quantum state and#f) < (1+€?), thenD(p, 1I) < e.

Pauli matricesThe2 x 2 Pauli matrices are generated by the matrices:

() ()



The Pauli matrices are the four matricEs X, Z, X Z}. These form a basis for
the space of al2 x 2 complex matrices. Sinc¥Z = —ZX, andZ? = X? = 1,
the set generated by{ and Z is given by the Pauli matrices and their opposites:
{+L,+X,+7,+X Z}.

If « andv aren-bit strings, we denote the corresponding tensor product of Pauli
matrices byX“Z". That is, if we writeu = (ul, ..., u,) andv = (vy, ..., v,), then

XUZ' = X"MZN Q... @ XU ZVn.

(The stringsz and z indicate in which positions of the tensor productand Z
appear, respectively.) The sgX, Z, | u,v € {0,1}"} forms a basis for the™ x 2"
complex matrices. The main facts we will need are given below:

1. Products of Pauli matrices obey the group structur@of }2” up to a minus sign.
Thatis,(X“Z?)(XZ%) = (—1)2@v X u®azveb,

2. Any pair of Pauli matrices either commutes or anti-commutes. Specifically,
(XuZU)(Xazb) — (_1)u®b+v®a(Xazb)(Xuzv)_

3. The trace ofX“Z" is 0 if (u,v) # 0?" (and otherwise it is Ti) = 27).

4. (Xuzv)t = Zv X% = (—1)uOvXugy

Pauli matrices and Fourier Analysighe Pauli matrices form a basis for the set of all
2" x 2™ matrices. Given a density matrix we can writep = 3, <o 13 Qup X" Z".
This basis is orthonormal with respect to the inner product givegty (A’ B), where

A, B are square matrices. That ig& Tr((X“Z")TX*Z%) = 64,00,.-

Thus, the usual arithmetic of orthogonal bases (and Fourier analysis) applies. One
can immediately deduce certain properties of the coefficiepts in the decomposi-
tion of a matrixp. First, we have the formula,, , = %TI’(Z”X“;)). Second, the
squared norm g is given by the squared norm of the coefficients, tha}%ﬁr(pr) =
> o low.w|?. Sincep is a density matrix, it is Hermitianp{ = p). One can use this
fact, and the formula for the coefficients, ,,, to get a compact formula for the Renyi
entropy (or Frobenius norm) in terms of the decomposition in the Pauli basis:

1
THp?) = 50 S0 T (X 27) P,

uU,v

3 State Randomization and Approximate Encryption

3.1 Encrypting with a Small-Bias Space

The ideal quantum one-time pad applies a random Pauli matrix to the input [3]. Con-
sider instead a scheme which first choosesa-#it string from some set with small bias
§ (we will setd later to bee2~"/2). If the set of strings i3 we have:
1
S(PO) = @ Z Xapr()ZbXa = Ea,b [XaprOZbXa]
(a,b)eB



That is, we choose the key from the ggtwhich consists oPn-bit strings. To encrypt,
we view a2n-bit string as the concatenatidn, b) of two strings ofn bits, and apply
the corresponding Pauli matrix.

(The intuition comes from the proof that Cayley graphs baseé-lbiased spaces
are good expanders: applying a Pauli operator chosen fritniased family of strings
to po will cause all the Fourier coefficients of to be reduced by a factor éf which
implies that the “collision probability” (Frobenius norm) pf also gets multiplied by
6. We expand on this intuition below. )

As a first step, we can try to see if a measurement given by a Pauli ndatix’
can distinguish the resulting ciphertext from a totally mixed state. More explicitly, we
perform a measurement which projects the ciphertext onto one of the two eigenspaces
of the matrixX*Z". We output the corresponding eigenvalue. (All Pauli matrices have
two eigenvalues with eigenspaces of equal dimension. The eigenvalues are always either
—1and1l or —i andi.)

To see how well a particular Pauli matriX“Z" will do at distinguishing, it is
sufficient to compute

[Tr(X*Z"E(po))l-

This is exactly the statistical difference between the Pauli measurement’s outcome
and a uniform random choice from the two eigenvalues. We can compute it explicitly:

TrH(X“Z"E(po)) = Tr (X“Z E(upyen [X*Z0po 2" X"])
=Ko [Tr(X"Z°X*Zbpy 2" X*)]
=Ko [TH(Z° XX Z° X" Z"py)]

— ]Ea,b [(_1)a®v+b®u] Tr(Xqupo)

Sincea ® v + b ® w is linear in the concatenatésh-bit vector (a, b), we can take
advantage of the small bias of the geto get a bound:

TH(X"Z°€ (po))| < S[TH(X"Z%py)|  when(u,v) # 02"

Equivalently: if we expresg, in the basis of matriceX* 2", then each coefficient
shrinks by a factor of at leastafter encryption. We can now bound the distance from
the identity by computing T€ (po)?):

THE(p)?) = 5 D THX" 2 (o) P

u,v

1 62 U r7v 2 1 2 2
<onton Z ITr(X“Z"po)|? < 271(1 + 622" Tr(p?))

= on
(u’v);éozn

Settingd = €27"/2, we get approximate encryption for all states (sincg3y < 1).
Using the constructions ofGHP [2] for small-bias spaces, we get a polynomial-time
scheme that uses+ 2logn + 2log(1/e) bits of key.



3.2 A Scheme with Shorter Key Length

We can improve the key length of the previous scheme usibigsedfamiliesof sets.

The tradeoff is that the resulting states are longer: the ciphertext consistgibfts and

2n classical bits. In classical terms, the encryption algorithm uses additional random-
ness which is not part of the shared key; in the quantum computing model, however,
that randomness is “free” if one is allowed to discard ancilla qubits.

Lemma 1. If {A;},.; is a family of subsets dfo, 1}*" with average square hia#’,
then the operator

E(po) = Eicz [[i)(i] ® Bapea, [X*Z°poZ° X ]]
is an approximate encryption scheme foqubits with leakage whenevep < ¢2-"/2.

Before proving the lemma, we give an example using the small-bias set family from
the preliminaries. View the key séb, 1}* as an additive subgrouf§ of the fieldF =
GF(22"). For every element € F, define the seC, = {ak|x € K}. The family
{C,} has biasy < 27%/2 (Section 2). The corresponding encryption scheme takes a
keyx € {0,1}F C GF(2*):

Choosen —p GF(227)\ {0}

Compute the produetx € GF(22")

Write a as a concatenatiofa, b), wherea, b € {0,1}"

Output the classical string and the quantum staf§® Z%p, 2> X

E(po; k) =

With a quantum computer, random bits are not really necessary for chagsirig
sufficient to preparen EPR pairs and discard one qubit from each pair. For the scheme
to be secure, the biasshould be less thag/e/2", and so the key only needs to be
n + 2log(1/€) bits long. The main disadvantage is that the length of the ciphertext has
increased byn classical bits.

Proof. As before, the proof will use elementary Fourier analysis over the hypercube
73", and intuition comes from the proof that Cayley graphs basedwased set fam-
ilies are also expanders.

Think of the output of the encryption scheme as a single quantum state consisting
of two systems: the first system is a classical string describing which member of the
o-biased family will be used. The second system is the encrypted quantum state. To
complete the proof, it is enough to bound the collision entropy of the entire system by
wm(L+é).

For eachi € 7 (that is, for each member of the set family), tetdenote the encryp-
tion of py with a random operator from the sét. The first step of the proof is to show
that the collision entropy of the entire system is equal to the average collision entropy
of the state9;.

Claim. Tr((po)?) = |71|JEH [Tr(p2)]



Proof. We can write€(pg) = \%I > 10 (i ® p;. Then we have

TH(EP0)?) = e o, Tr((10)il15) ) © i)
Since(i||j) = 6; ;, we get T(E(po)?) = ﬁ >, Tr(p?), as desired. O

Take any stringy = (u,v) € {0,1}?", whereu,v € {0,1}". Recall thatd; (u, v)
is the ordinary Fourier coefficient (ovér™) of the uniform distribution om;, that is
Ai(u,v) = Eqa, [(—1)2©%]. From the previous proof, we know that

TrH(X“Z"p;) = A;(v,u) - TH(X“Z" po).

We can now compute the average collision entropy of the statéssing linearity
of expectations:

Ei[Tr(p})] =Bi |3 + 5 > [Tr(X"Z"p;)]?
(u,v)#0

=L +L Z E; [|Tr(X"“Z"p;)?]
(u,v)7#0

—L+4 Y E [AZ-(M)Q} ITH(X Y Z° po)|?
(u,v)#0

The expressioft; [Ai(v, u)Q] is exactly the quantity bounded by the (squared) Btas
As in the previous proof, the entropy(¥i(po)?) is bounded byﬁ(l +622"Tr(p3)).

By our choice ofd, the entropy is at mo%(l + €2), and sof(p?) is within trace
distance: of the completely mixed state. O

3.3 Hybrid Construction

Let d be a prime betwee?™ and2™*!. Then, it suffices to show how to randomize a
state in ad-dimensional spac®(; spanned byi), i € {0,1,...,d — 1}, since a state
on n qubits can be embedded intd;. We defineX and Z on this space by |j) =

|(j + 1) mod d) and Z|j) = e2*/4|j). Notice thatX’ zZ¥ = >7(ik)/dZk X7 and
(X7 ZF)t = Z=kX~J. (The definitions ofX andZ are different than in the previous
sections, since we are operating on a space of prime dimension).

We start with a construction that usest 1 bits of randomness and achieves ap-
proximate encryption for = 1. (Notice that this is a non-trivial security guarantee. The
trace distance between perfectly distinguishable states is 2. Distance 1 means that the
state cannot be distinguished frogn/vith success probability more than 3/4.) We will
then extend it to any > 0, using more randomness.

Let

1 - a r7a® —a?y—a
5(p):EZX Z% pZ v X,

a=1



Claim.

Tr(E(p)?) < =(1+Tr(p?)).

Ul =

Proof. Letp’ = E(p).

Tr(p)? = phi(0h)" = ph(pl) + D pli(piy)"

i
The first sum is equal td-, = } becausey, = 1 3°{_, px, = 1. To calculate the

second sum, we splititinto sunds = >, pi (05 ;1) fort =1,2,...,d — 1. (In
the indices fom;; andp;;, we usei + t as a shortcut fofi + ) mod d.) We have

d—1
/ _ ]' a’t . .
pi,i+t - 8 w sza,z—ath,
a=0

wherew is thed' root of unity.

d—1

N 1 22 «

p;,i-i-t(p;,i-i-t) T2 Z |pi+a,i+t+a|2 + Z w® e )tpi—a,i+t—a(m—b,i+t—b)
a=0 a,b,a#b
Therefore,
1 1
S = 7 Z ‘pi,i+t|2 + PE] Zci,jpi,wt(ﬂj,jﬂ)*
i=1 i#j
where
Cij = Z wl(i+a)?=G+a)*)t — Z w3 F2ali=))t _ ,, (i* =)t Z w29t
a a a

Sinced is a prime,2(i — j)t is not divisible byd. Therefore,y", w**2(=)t = q,
cij = 0,8 = £ 30, [pisref* and

1 1
Tr((p)?) = 5+ g O il
i#]

By Fact 1,D(E(p), ) < 1.

We now improve this construction to amylet B be ane-biased set om = [log d]
bits. Forb € {0,1}™, define a unitary transformatid, as follows. Identify numbers
0,1,...,d—1with stringsz € {0, 1}™. DefinelU,|x) = (—1)*®%|z), with b® x being
the usual (bitwise) inner product bfandx. (Note thatl, is just to theZ operator over
a different group. It is the samé operator used in the previous sections). Let

E'(p) =Y _ UppU; and€” (p) = E(€'(p)).

beB



We claim that” is e-approximate encryption scheme. W.I.0.g., assumedisaa pure
state|y) = >, ¢cili). Thenp;; = cicj. Letp’ = ‘%‘ZbeB prUbT be the result of
encryptingp by £’. Then,

P/zy - % Z(*l)l@m%@ypzy - Fa Z(*l)be(m+y)P1y-
beB beB

Since B is e-biased,|p;,, | < €[psy| for anyz,y, x # y. Thereforey" (o}, <

€2 yzy |Pzy|. Together with the Claim above and Fact 1, this implies #fatis e-
randomizing. The number of key bits used&Yis n + log |B| + O(1) which isn +

2logn + 2log 1 + O(1) if the AGHP scheme is used and+ logn + 3log 1 + O(1)

if ABNNR is used. The first bound is the same as the one achieved by using small-bias
spaces directly (Section 3.1). The second bound gives a better resultwht;i;n
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