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Abstract. A quantum encryption scheme(also calledprivate quantum channel,
or state randomization protocol) is a one-time pad for quantum messages. If two
parties share a classical random string, one of them can transmit a quantum state
to the other so that an eavesdropper gets little or no information about the state
being transmitted.Perfectencryption schemes leak no information at all about
the message.Approximateencryption schemes leak a non-zero (though small)
amount of information but require a shorter shared random key. Approximate
schemes with short keys have been shown to have a number of applications in
quantum cryptography and information theory [8].

This paper provides the first deterministic, polynomial-time constructions of quan-
tum approximate encryption schemes with short keys. Previous constructions [8]
are probabilistic—that is, they show that if the operators used for encryption are
chosen at random, then with high probability the resulting protocol will be a
secure encryption scheme. Moreover, the resulting protocol descriptions are ex-
ponentially long. Our protocols use keys of the same length as the probabilistic
constructions; to encryptn qubits approximately, one needsn + o(n) bits of
shared key [8], whereas2n bits of key are necessary for perfect encryption [3].

An additional contribution of this paper is a connection between classical combi-
natorial derandomization and constructions of pseudo-random matrix families in
a continuous space.

1 Introduction

A quantum encryption scheme(or private quantum channel, or state randomization
protocol) allows Alice, holding aclassicalkey3, to scramble a quantum state and send
it to Bob (via a quantum channel) so that (1) Bob, given the key, can recover Alice’s state
exactly and (2) an adversary Eve who intercepts the ciphertext learns nothing about the
message, as long as she doesn’t know the key. We do not assume any shared quantum
states between Alice and Bob, nor any back channels from Bob to Alice.4

? A.A. supported by NSF grant DMS-0111298. A.S. supported by a Microsoft Ph.D. Fellowship.
3 Classical keys are inherently easier to store, distribute and manipulate, since they can be

copied. More subtly, encryption with a shared quantum key is in many ways a dual problem to
encryption with a classical key; see [8, 5] for more discussion.

4 A back channel from Bob to Alice would allow using quantum key distribution to generate a
long secret key. However, such interaction is often impossible, e.g. if Alice wants to encrypt
stored data for her own later use.



There are two variants of this definition. An encryption scheme is calledperfect
if Eve learns zero information from the ciphertext, andapproximateif Eve can learn
some non-zero amount of information. A perfect encryption ensures that the distribu-
tions (density matrices) of ciphertexts corresponding to different messages are exactly
identical, while an approximate scheme only requires that they be very close; we give
formal definitions further below. In the classical case, both perfect and approximate en-
cryption require keys of roughly the same length—n bits of key forn bits of message.
In the quantum case, the situation is different.

For perfect encryption, Ambainis et al. [3] showed that2n bits of key are necessary
and sufficient to encryptn qubits. The construction consists of applying two classical
one-time pads—one in the “standard” basis{|0〉, |1〉} and another in the “diagonal”
basis{ 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)}.

Approximate encryption was studied by Hayden, Leung, Shor and Winters [8]. They
introduced an additional, useful relaxation: they showed that if the plaintext is not en-
tangled with Eve’s system to begin with, then one can getapproximatequantum en-
cryption using onlyn + o(n) bits of key—roughly half as many as are necessary for
perfect encryption.5 The assumption that Eve’s system is unentangled with the message
is necessary for this result; otherwise roughly2n bits are needed, even for approximate
encryption. The assumption holds in the quantum counterpart of the one-time pad situ-
ation (one party prepares a quantum message and sends it to the second party, using the
encryption scheme) as long as the message is not part of a larger cryptographic protocol.

Hayden et al. [8] showed that arandomset of2n+o(n) unitary matrices leads to a
good encryption scheme with high probability (to encrypt, Alice uses the key to choose
one of the matrices from the set and applies the corresponding operator to her input).
However, verifying that a particular set of matrices yields a good encryption scheme
is not efficient; even writing down the list of matrices is prohibitive, since there are
exponentially many of them.

This paper presents the first polynomial time constructions of approximate quantum
encryption schemes (to relish the oxymoron: derandomized randomization protocols).
The constructions run in timeO(n2) when the messageρ consists ofn qubits. That is,
given the key and the input message, Alice can produce the output usingO(n2) steps
on a quantum computer. The key length we achieve is slightly better than that of the
probabilistic construction of [8]. Our results apply to the trace norm on matrices; exact
results are stated further below.

The main tools in our construction are small-bias sets [10] of strings in{0, 1}2n.
Such sets have proved useful in derandomizing algorithms [10], constructing short
PCPs [6] and the encryption of high-entropy messages [12]. Thus, one of the contri-
butions of this paper is a connection between classical combinatorial derandomization
and constructions of pseudo-random matrix families in a continuous space. Specifically,
we connecti Fourier analysis overCZ2n

2 to Fourier analysis over the matricesC2n×2n

.
This parallels to some extent the connection between quantum error-correcting codes
overn qubits and classical codes overGF (4)n.

5 The result of [8] highlights an error in the proof of a lower bound on key length of authentica-
tion schemes in [4]. The results of that paper remain essentially correct, but the definition of
authentication requires some strengthening, and the proof of the lower bound is more involved.



Definitions We assume that the reader is familiar with the basic notation of quantum
computing (see [11] for an introduction). Syntactically, an approximate quantum en-
cryption scheme is a set of2k invertible operators

{
Eκ|κ ∈ {0, 1}k

}
. TheEκ’s may be

unitary, but need not be: it is sufficient that one be able to recover the inputρ from the
outputEκ(ρ), which may live in a larger-dimensional space thanρ. EachEκ takesn
qubits as input and producesn′ ≥ n qubits of output. Ifn′ = n then each operatorEκ

corresponds to a unitary matrixUκ, that isEκ(ρ) = UκρU
†
κ.

For an input density matrix6 ρ, the density matrix of the ciphertext from the adver-
sary’s point of view is:

E(ρ) = Eκ [Eκ(ρ)] =
1
2k

∑
κ∈{0,1}k

Eκ(ρ)

When the scheme is length-preserving, this yieldsE(ρ) = 1
2k

∑
κ UκρU

†
κ.

Definition 1. The set of operators{Eκ} is an approximate quantum encryption scheme
with leakageε (also called “ε-randomizing scheme”) forn qubits if

for all density matricesρ onn qubits: D(E(ρ), 1
2n′ I) =

∥∥∥E(ρ)− 1
2n′ I

∥∥∥
tr
≤ ε.

(1)

HereI refers to the identity matrix in dimension2n′ , andD(·, ·) refers to the trace
distance between density matrices. The trace norm of a matrixσ is the trace of the
absolute value ofσ (equivalently, the sum of the absolute values of the eigenvalues).
Thetrace distancebetween two matricesρ, σ is the trace norm of their difference:

D(ρ, σ)
4
= ‖ρ− σ‖tr = Tr(|ρ− σ|)

This distance plays the same role for quantum states that statistical difference plays
for probability distributions: the maximum probability of distinguishing between two
quantum statesρ, σ via a single measurement is12 + 1

4D(ρ, σ). One can also measure
leakage with respect to other norms; see below.

Remark 1.This definition of quantum encryption implicitly assumes that the message
stateρ is not entangled with the adversary’s system. Without that assumption the def-
inition above is not sufficient, and it isnot possible to get secure quantum encryption
usingn(1 + o(1)) bits of key (roughly2n bits are provably necessary7). Thus, this sort
of construction is not universally applicable, and must be used with care.

Previous Work Ambainis et al. [3] considered perfect encryption; this corresponds to
the case whereε = 0. The choice of matrix norm is irrelevant there, sinceE(ρ) = 1

2n′ I.
As mentioned above, they showed that2n bits of key are necessary and sufficient. The

6 Recall that for a pure state|φ〉, the density matrixρ is |φ〉〈φ|.
7 This folklore result appears more or less explicitly in both [4, 8]. Similar arguments show that
n bits of key are necessary to encryptn classical bits, even with access to quantum computers
(but not interaction).



construction uses the key to choose one of22n Pauli operators (defined below) and
applies that to the input state.

Hayden et al. [8] showed that a set ofO(n2n/ε2) unitary operators suffices. They
showed this both for the trace norm, and for the “operator norm,” discussed below. For
the trace norm, they also showed that a random set of Pauli matrices of the same size
would suffice. This means that for encryptingn qubits, they gave a non-polynomial-
time, randomized scheme requiringn+ log n+ 2 log(1/ε) +O(1) bits of key.

Our Results We present three explicit, polynomial time constructions of approximate
state randomization protocols for the trace norm. All are based on existing constructions
of δ-biased sets [10, 2, 1], or on families of sets with small average bias. The three
constructions are explained and proven secure in Sections 3.1, 3.2 and 3.3, respectively.

The first construction is length-preserving, and requiresn+ 2 log n+ 2 log(1/ε) +
O(1) bits of key, roughly matching the performance of the non-explicit construction.
The second construction is length-increasing: it encodesn qubits inton qubits and2n
classical bits but uses a shorter key: onlyn + 2 log(1/ε) bits of key are required. Both
of these constructions are quite simple, and are proven secure using the same Fourier-
analytic technique.

The final construction has a more sophisticated proof, but allows for a length-
preserving scheme with slightly better dependence on the number of qubits:

n+ min {2 log n+ 2 log(1/ε), log n+ 3 log(1/ε)}+O(1)

bits of key. The right-hand term provides a better bound whenε > 1
n .

Randomization Schemes for Other Norms?Definition 1 measures leakage with re-
spect to the trace norm on density matrices,‖·‖tr. This is good enough for encryption
since the trace norm captures distinguishability of states. However, Hayden et al. [8]
also considered randomization schemes which give guarantees with respect to a differ-
ent norm, the operator norm.

A guarantee on the operator norm implies a guarantee for the trace norm, but schemes
with the operator norm guarantee also have a host of less cryptographic applications,
for example: constructing efficient quantum data hiding schemes in the LOCC (local
operation and classical communication) model; exhibiting “locked” classical correla-
tions in quantum states [8]; relaxed authentication of quantum states using few bits of
key [9]; and transmitting quantum states over a classical channel usingn+ o(n) bits of
communication, rather than the usual2n bits required for quantum teleportation [5].

More formally, for ad×dHermitian matrixAwith eigenvalues{λ1, λ2, ..., λd}, the
operator norm(or∞-norm) is the largest eigenvalue,‖A‖∞ = max |λi|, the Frobenius
norm is the Euclidean length of the vector of eigenvalues,‖A‖2 = (

∑
i λ

2
i )

1/2, and the
trace norm is the sum of the absolute values of the eignvalues,‖A‖tr =

∑
i |λi|. It is

easy to see the chain of inequalities:

‖A‖tr ≤
√
d ‖A‖2 ≤ d ‖A‖∞ .



We can then state the condition for a mapE to beε-randomizing map forn qubits
in three forms of increasing strength. For all input statesρ onn qubits:∥∥E(ρ)− 1

2n I
∥∥

tr
≤ ε;

∥∥E(ρ)− 1
2n I

∥∥
2
≤ ε/
√

2n;
∥∥E(ρ)− 1

2n I
∥∥
∞ ≤ ε/2

n.

Our constructions satisfy the definition with respect to the Frobenius norm, but they
are not known to satisfy the stronger operator-norm definition. This suggests two inter-
esting questions. First, is it possible to prove that the other applications of state random-
ization schemes require only a guarantee on the Frobenius norm? Second, is it possible
to design explicit (i.e. polynomial-time, deterministic) randomization schemes that give
good guarantees with respect to the operator norm?

The remainder of this paper describes our constructions and their proofs of security.

2 Preliminaries

Small-Bias SpacesThe bias of a random variableA in {0, 1}n with respect to a string
α ∈ {0, 1}n is the distance from uniform of the bitα�A, where� refers to the standard
dot product onZn

2 :

Â(α) = EA

[
(−1)α�A

]
= 2Pr[α�A = 0]− 1.

The functionÂ is the Fourier transform of the probability mass function of the distri-
bution, taken over the groupZn

2 .
The bias of a setS ∈ {0, 1}n with respect toα is simply the bias of the uniform

distribution over that set. A setS is calledδ-biased if the absolute value of its bias is at
mostδ for all α 6= 0n.

Small-bias sets of size polynomial inn and1/δ were first constructed by Naor and
Naor [10]. Alon, Bruck et al. (ABNNR, [1]) gave explicit (i.e. deterministic, polynomial-
time) constructions ofδ-biased sets in{0, 1}n with sizeO(n/δ3). Constructions with
sizeO(n2/δ2) were provided by Alon, Goldreich, et al. (AGHP, [2]). The AGHP con-
struction is better whenδ = o(1/n). In both cases, theith string in a set can be con-
structed in roughlyn2 time (regardless ofδ).

One can sample a random point from aδ-biased space over{0, 1}n using either
log n+3 log(1/δ)+O(1) bits of randomness (usingABNNR) or using2 log n+2 log(1/δ)
bits (usingAGHP).

Small-bias Set FamiliesOne can generalize small bias tofamiliesof sets (or random
variables) by requiring that on average, the bias of a random set from the family with
respect to everyα is low [7]. Specifically, the expectation of thesquaredbias must be at
mostδ2. Many results onδ-biased sets also hold forδ-biased families, which are easier
to construct.

Definition 2. A family of random variables (or sets){Ai}i∈I is δ-biased if

Ei←I

[
Âi(α)2

]
≤ δ2 for all α 6= 0n.



Note that this isnotequivalent, in general, to requiring that the expected bias be less
thanδ. There are two important special cases:

1. If S is aδ-biased set, then{S} is aδ-biased set family with a single member;
2. A family of linear spaces{Ci}i∈I is δ-biasedif no particular word is contained in

the dualC⊥i of a random spaceCi from the family with high probability. Specifi-
cally:

Ĉi(α) =
{

0 if α 6∈ C⊥i
1 if α ∈ C⊥i

Hence a family of codes isδ-biased if and only ifPri←I [α ∈ C⊥i ] ≤ δ2, for every
α 6= 0n. Note that to meet the definition, for linear codes the expected bias must be
at mostδ2, while for a single set the bias need only beδ.

One can get a goodδ-biased family simply by taking{Ci} to be the set of all linear
spaces of dimensionk. The probability that any fixed non-zero vectorα lies in the dual
of a random space is exactlyδ2 = 2n−k−1

2n−1 , which is at most2−k.
One can save some randomness in the choice of the space using a standard pairwise

independence construction. View{0, 1}n asGF (2n), and letK ⊆ GF (2n) be an
additive subgroup of size2k. For every non-zero stringa, let the spaceCa be given
by all multiplesaκ, whereκ ∈ K, and the product is taken inGF (2n). The family
{Ca | a ∈ GF (2n), a 6= 0} has the same bias as the set of all linear spaces (δ < 2−k/2).
To see this, let{κ1, ..., κk} be a basis ofK (overGF (2)). A stringα is in C⊥a if and
only if α � (aκ1) = · · · = α � (aκk) = 0. This is a system ofk linearly independent
constraints ona, and so it is satisfied with probabilityδ2 = 2−k whena ← GF (2n),
and even lower probability when we restricta to be non-zero. Choosing a setCa from
the family requiresn bits of randomness.

Entropy of Quantum StatesAs with classical distributions, there are several ways to
measure the entropy of a quantum density matrix. We’ll use the analogue of collision
entropy (a.k.a. Renyi entropy).

For a classical random variableA on{0, 1}n, the collision probability of two inde-
pendent samples ofX is pc =

∑
a Pr[A = a]2. The Renyi entropy ofA is− log pc.

For a quantum density matrixρ, the analogous quantity is− log Tr(ρ2). If the eigen-
values ofρ are{px}, then the eigenvalues ofρ2 are

{
p2

x

}
, and so Tr(ρ2) is exactly the

collision probability of the distribution obtained by measuringρ in a basis of eigenvec-
tors.

√
Tr(ρ2) is called the Frobenius norm ofρ.

If ρ is the completely mixed state ind dimensions,ρ = 1
d I, then Tr(ρ2) is 1/d. The

following fact states that any other density matrix for which this quantity is small must
be very close toI. The fact follows by applying the (standard) inequality Tr(|∆|)2 ≤
dTr(∆2) to the Hermitian matrix∆ = ρ− I/d.

Fact 1. If ρ isd-dimensional quantum state and Tr(ρ2) ≤ 1
d (1+ε2), thenD(ρ, 1

d I) ≤ ε.

Pauli matricesThe2× 2 Pauli matrices are generated by the matrices:

X =
(

0 1
1 0

)
Z =

(
1 0
0 −1

)



The Pauli matrices are the four matrices{I, X, Z,XZ}. These form a basis for
the space of all2 × 2 complex matrices. SinceXZ = −ZX, andZ2 = X2 = 1,
the set generated byX and Z is given by the Pauli matrices and their opposites:
{±I,±X,±Z,±XZ}.

If u andv aren-bit strings, we denote the corresponding tensor product of Pauli
matrices byXuZv. That is, if we writeu = (u1, ..., un) andv = (v1, ..., vn), then

XuZv = Xu1Zv1 ⊗ · · · ⊗XunZvn .

(The stringsx and z indicate in which positions of the tensor productX andZ
appear, respectively.) The set{XuZv | u, v ∈ {0, 1}n} forms a basis for the2n × 2n

complex matrices. The main facts we will need are given below:

1. Products of Pauli matrices obey the group structure of{0, 1}2n up to a minus sign.
That is,(XuZv)(XaZb) = (−1)a�vXu⊕aZv⊕b.

2. Any pair of Pauli matrices either commutes or anti-commutes. Specifically,
(XuZv)(XaZb) = (−1)u�b+v�a(XaZb)(XuZv).

3. The trace ofXuZv is 0 if (u, v) 6= 02n (and otherwise it is Tr(I) = 2n).
4. (XuZv)† = ZvXu = (−1)u�vXuZv

Pauli matrices and Fourier AnalysisThe Pauli matrices form a basis for the set of all
2n×2n matrices. Given a density matrixρ, we can writeρ =

∑
u,v∈{0,1}n αu,vX

uZv.

This basis is orthonormal with respect to the inner product given by1
2n Tr(A†B), where

A,B are square matrices. That is,1
2n Tr((XuZv)†XaZb) = δa,uδb,v.

Thus, the usual arithmetic of orthogonal bases (and Fourier analysis) applies. One
can immediately deduce certain properties of the coefficientsαu,v in the decomposi-
tion of a matrixρ. First, we have the formulaαu,v = 1

2n Tr(ZvXuρ). Second, the
squared norm ofρ is given by the squared norm of the coefficients, that is1

2n Tr(ρ†ρ) =∑
u,v |αu,v|2. Sinceρ is a density matrix, it is Hermitian (ρ† = ρ). One can use this

fact, and the formula for the coefficientsαu,v, to get a compact formula for the Renyi
entropy (or Frobenius norm) in terms of the decomposition in the Pauli basis:

Tr(ρ2) =
1
2n

∑
u,v

|Tr(XuZvρ)|2.

3 State Randomization and Approximate Encryption

3.1 Encrypting with a Small-Bias Space

The ideal quantum one-time pad applies a random Pauli matrix to the input [3]. Con-
sider instead a scheme which first chooses a2n-bit string from some set with small bias
δ (we will setδ later to beε2−n/2). If the set of strings isB we have:

E(ρ0) =
1
|B|

∑
(a,b)∈B

XaZbρ0Z
bXa = Ea,b

[
XaZbρ0Z

bXa
]



That is, we choose the key from the setB, which consists of2n-bit strings. To encrypt,
we view a2n-bit string as the concatenation(a, b) of two strings ofn bits, and apply
the corresponding Pauli matrix.

(The intuition comes from the proof that Cayley graphs based onε-biased spaces
are good expanders: applying a Pauli operator chosen from aδ-biased family of strings
to ρ0 will cause all the Fourier coefficients ofρ0 to be reduced by a factor ofδ, which
implies that the “collision probability” (Frobenius norm) ofρ0 also gets multiplied by
δ. We expand on this intuition below. )

As a first step, we can try to see if a measurement given by a Pauli matrixXuZv

can distinguish the resulting ciphertext from a totally mixed state. More explicitly, we
perform a measurement which projects the ciphertext onto one of the two eigenspaces
of the matrixXuZv. We output the corresponding eigenvalue. (All Pauli matrices have
two eigenvalues with eigenspaces of equal dimension. The eigenvalues are always either
−1 and1 or−i andi.)

To see how well a particular Pauli matrixXuZv will do at distinguishing, it is
sufficient to compute

|Tr(XuZvE(ρ0))|.

This is exactly the statistical difference between the Pauli measurement’s outcome
and a uniform random choice from the two eigenvalues. We can compute it explicitly:

Tr(XuZvE(ρ0)) = Tr
(
XuZvE(a,b)∈B

[
XaZbρ0Z

bXa
])

= Ea,b

[
Tr(XuZvXaZbρ0Z

bXa)
]

= Ea,b

[
Tr(ZbXaXuZvXaZbρ0)

]
= Ea,b

[
(−1)a�v+b�u

]
Tr(XuZvρ0)

Sincea � v + b � u is linear in the concatenated2n-bit vector(a, b), we can take
advantage of the small bias of the setB to get a bound:

|Tr(XuZvE(ρ0))| ≤ δ|Tr(XuZvρ0)| when(u, v) 6= 02n

Equivalently: if we expressρ0 in the basis of matricesXuZv, then each coefficient
shrinks by a factor of at leastδ after encryption. We can now bound the distance from
the identity by computing Tr(E(ρ0)2):

Tr(E(ρ0)2) =
1
2n

∑
u,v

|Tr(XuZvE(ρ0))|2

≤ 1
2n

+
δ2

2n

∑
(u,v) 6=02n

|Tr(XuZvρ0)|2 ≤
1
2n

(1 + δ22nTr(ρ2
0))

Settingδ = ε2−n/2, we get approximate encryption for all states (since Tr(ρ2
0) ≤ 1).

Using the constructions ofAGHP [2] for small-bias spaces, we get a polynomial-time
scheme that usesn+ 2 log n+ 2 log(1/ε) bits of key.



3.2 A Scheme with Shorter Key Length

We can improve the key length of the previous scheme usingδ-biasedfamiliesof sets.
The tradeoff is that the resulting states are longer: the ciphertext consists ofn qubits and
2n classical bits. In classical terms, the encryption algorithm uses additional random-
ness which is not part of the shared key; in the quantum computing model, however,
that randomness is “free” if one is allowed to discard ancilla qubits.

Lemma 1. If {Ai}i∈I is a family of subsets of{0, 1}2n with average square biasδ2,
then the operator

E(ρ0) = Ei∈I
[
|i〉〈i| ⊗ Eab∈Ai

[
XaZbρ0Z

bXa
]]

is an approximate encryption scheme forn qubits with leakageε wheneverδ ≤ ε2−n/2.

Before proving the lemma, we give an example using the small-bias set family from
the preliminaries. View the key set{0, 1}k as an additive subgroupK of the fieldF =
GF (22n). For every elementa ∈ F, define the setCa = {aκ|κ ∈ K}. The family
{Ca} has biasδ < 2−k/2 (Section 2). The corresponding encryption scheme takes a
keyκ ∈ {0, 1}k ⊆ GF (22n):

E(ρ0;κ) =


Chooseα←R GF (22n) \ {0}
Compute the productακ ∈ GF (22n)
Write ακ as a concatenation(a, b), wherea, b ∈ {0, 1}n
Output the classical stringα and the quantum stateXaZbρ0Z

bXa

With a quantum computer, random bits are not really necessary for choosingα; it is
sufficient to prepare2n EPR pairs and discard one qubit from each pair. For the scheme
to be secure, the biasδ should be less than

√
ε/2n, and so the key only needs to be

n+ 2 log(1/ε) bits long. The main disadvantage is that the length of the ciphertext has
increased by2n classical bits.

Proof. As before, the proof will use elementary Fourier analysis over the hypercube
Z2n

2 , and intuition comes from the proof that Cayley graphs based onε-biased set fam-
ilies are also expanders.

Think of the output of the encryption scheme as a single quantum state consisting
of two systems: the first system is a classical string describing which member of the
δ-biased family will be used. The second system is the encrypted quantum state. To
complete the proof, it is enough to bound the collision entropy of the entire system by

1
2n|I| (1 + ε2).

For eachi ∈ I (that is, for each member of the set family), letρi denote the encryp-
tion of ρ0 with a random operator from the setAi. The first step of the proof is to show
that the collision entropy of the entire system is equal to the average collision entropy
of the statesρi.

Claim. Tr(E(ρ0)2) =
1
|I|

Ei←I

[
Tr(ρ2

i )
]



Proof. We can writeE(ρ0) = 1
|I|

∑
i |i〉〈i| ⊗ ρi. Then we have

Tr(E(ρ0)2) = 1
|I|2

∑
i,j Tr

(
(|i〉〈i||j〉〈j|)⊗ ρiρj

)
Since〈i||j〉 = δi,j , we get Tr(E(ρ0)2) = 1

|I|2
∑

i Tr(ρ2
i ), as desired. ut

Take any stringw = (u, v) ∈ {0, 1}2n, whereu, v ∈ {0, 1}n. Recall thatÂi(u, v)
is the ordinary Fourier coefficient (overZ2n

2 ) of the uniform distribution onAi, that is
Âi(u, v) = Ea←Ai

[(−1)a�w]. From the previous proof, we know that

Tr(XuZvρi) = Âi(v, u) · Tr(XuZvρ0).

We can now compute the average collision entropy of the statesρi. Using linearity
of expectations:

Ei

[
Tr(ρ2

i )
]

= Ei

 1
2n + 1

2n

∑
(u,v) 6=0

|Tr(XuZvρi)|2


= 1
2n + 1

2n

∑
(u,v) 6=0

Ei

[
|Tr(XuZvρi)|2

]
= 1

2n + 1
2n

∑
(u,v) 6=0

Ei

[
Âi(v, u)2

]
|Tr(XuZvρ0)|2

The expressionEi

[
Âi(v, u)2

]
is exactly the quantity bounded by the (squared) biasδ2.

As in the previous proof, the entropy Tr(E(ρ0)2) is bounded by 1
2n|I| (1+ δ22nTr(ρ2

0)).
By our choice ofδ, the entropy is at most 1

2n|I| (1 + ε2), and soE(ρ2
0) is within trace

distanceε of the completely mixed state. ut

3.3 Hybrid Construction

Let d be a prime between2n and2n+1. Then, it suffices to show how to randomize a
state in ad-dimensional spaceHd spanned by|i〉, i ∈ {0, 1, . . . , d − 1}, since a state
on n qubits can be embedded intoHd. We defineX andZ on this space byX|j〉 =
|(j + 1) mod d〉 andZ|j〉 = e2πij/d|j〉. Notice thatXjZk = e2πi(jk)/dZkXj and
(XjZk)† = Z−kX−j . (The definitions ofX andZ are different than in the previous
sections, since we are operating on a space of prime dimension).

We start with a construction that usesn + 1 bits of randomness and achieves ap-
proximate encryption forε = 1. (Notice that this is a non-trivial security guarantee. The
trace distance between perfectly distinguishable states is 2. Distance 1 means that the
state cannot be distinguished fromId with success probability more than 3/4.) We will
then extend it to anyε > 0, using more randomness.

Let

E(ρ) =
1
d

d−1∑
a=1

XaZa2
ρZ−a2

X−a.



Claim.

Tr(E(ρ)2) ≤ 1
d
(1 + Tr(ρ2)).

Proof. Let ρ′ = E(ρ).

Tr(ρ′)2 =
∑
ij

ρ′ij(ρ
′
ij)
∗ =

∑
i

ρ′ii(ρ
′
ii)
∗ +

∑
i,j:i 6=j

ρ′ij(ρ
′
ij)
∗.

The first sum is equal tod 1
d2 = 1

d becauseρ′ii = 1
d

∑d
k=1 ρkk = 1

d . To calculate the
second sum, we split it into sumsSt =

∑
i ρ
′
i,i+t(ρ

′
i,i+t)

∗ for t = 1, 2, . . . , d − 1. (In
the indices forρij andρ′ij , we usei+ t as a shortcut for(i+ t) mod d.) We have

ρ′i,i+t =
1
d

d−1∑
a=0

wa2tρi−a,i−a+t,

wherew is thedth root of unity.

ρ′i,i+t(ρ
′
i,i+t)

∗ =
1
d2

d−1∑
a=0

|ρi+a,i+t+a|2 +
∑

a,b,a6=b

w(b2−a2)tρi−a,i+t−a(ρi−b,i+t−b)∗


Therefore,

St =
1
d

d∑
i=1

|ρi,i+t|2 +
1
d2

∑
i 6=j

ci,jρi,i+t(ρj,j+t)∗

where

ci,j =
∑

a

w((i+a)2−(j+a)2)t =
∑

a

w(i2−j2+2a(i−j))t = w(i2−j2)t
∑

a

wa∗2(i−j)t.

Sinced is a prime,2(i − j)t is not divisible byd. Therefore,
∑

a w
a∗2(i−j)t = 0,

cij = 0, St = 1
d

∑d
i=1 |ρi,i+t|2 and

Tr((ρ′)2) =
1
d

+
1
d

∑
i 6=j

|ρij |2.

ut

By Fact 1,D(E(ρ), I
d ) ≤ 1.

We now improve this construction to anyε. LetB be anε-biased set onm = dlog de
bits. Forb ∈ {0, 1}m, define a unitary transformationUb as follows. Identify numbers
0, 1, . . . , d−1 with stringsx ∈ {0, 1}m. DefineUb|x〉 = (−1)b�x|x〉, with b�x being
the usual (bitwise) inner product ofb andx. (Note thatUb is just to theZ operator over
a different group. It is the sameZ operator used in the previous sections). Let

E ′(ρ) =
∑
b∈B

UbρU
†
b andE ′′(ρ) = E(E ′(ρ)).



We claim thatE ′′ is ε-approximate encryption scheme. W.l.o.g., assume thatρ is a pure
state|ψ〉 =

∑
i ci|i〉. Thenρij = cic

∗
j . Let ρ′ = 1

|B|
∑

b∈B UbρU
†
b be the result of

encryptingρ by E ′. Then,

ρ′xy =
1
|B|

∑
b∈B

(−1)b�x+b�yρxy =
1
|B|

∑
b∈B

(−1)b�(x+y)ρxy.

SinceB is ε-biased,|ρ′xy| ≤ ε|ρxy| for any x, y, x 6= y. Therefore,
∑

x6=y |ρ′xy| ≤
ε
∑

x6=y |ρxy|. Together with the Claim above and Fact 1, this implies thatE ′′ is ε-
randomizing. The number of key bits used byE ′′ is n + log |B| + O(1) which isn +
2 log n + 2 log 1

ε + O(1) if the AGHP scheme is used andn + log n + 3 log 1
ε + O(1)

if ABNNR is used. The first bound is the same as the one achieved by using small-bias
spaces directly (Section 3.1). The second bound gives a better result whenε > 1

n .
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4. Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam Smith, Alain Tapp. Authenti-
cation of Quantum Messages. FOCS 2002: 449-458.

5. Charles Bennett, Patrick Hayden, Debbie Leung, Peter Shor and Andreas Winter. Remote
preparation of quantum states. ArXiv e-Print quant-ph/0307100.

6. Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, Avi Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. STOC 2003: 612-621.

7. Yevgeniy Dodis and Adam Smith. Encryption of High-Entropy Sources. Manuscript, 2003.
8. Patrick Hayden, Debbie Leung, Peter Shor and Andreas Winter. Randomizing quantum

states: Constructions and applications. Comm. Math. Phys., to appear. Also ArXiv e-print
quant-ph/0307104.

9. Debbie Leung, personal communication, 2004.
10. Joseph Naor, Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and Appli-

cations. SIAM J. Comput. 22(4): 838-856 (1993).
11. Michael Nielsen, Isaac Chuang.Quantum Computation and Quantum Information. Cam-

bridge University Press, 2000.
12. Alexander Russell, Hong Wang. How to Fool an Unbounded Adversary with a Short Key.

EUROCRYPT 2002: 133-148.


