Round-Efficient Multi-party Computation with a Dishonest Majority

Jonathan Katz, U. Maryland Rafail Ostrovsky, Telcordia Adam Smith, MIT

Longer version on http://theory.lcs.mit.edu/~asmith

Multi-party Computation [GMW87]

- Also called "Secure Function Evaluation"
- Network of *n* players
- Each has input x_i
- Want to compute $f(x_1,...,x_n)$ for some known function f
- *E.g.* electronic voting

Multi-party Computation [GMW87]

Multi-party Computation [GMW87]

Round-efficient MPC tolerating any t < n

For any PPT f(), we get (abortable, unfair) MPC:

- In *O*(log *n*) rounds... with black-box simulation
- In O(1) rounds... with non-black-box simulation

- No assumption of Common Random String, but:
 - Given CRS, MPC takes O(1) rounds [BMR, CLOS]
 - This talk: how to generate a **CRS** from scratch fast?

Review: Standard Synchronous Model

- Synchronous network of *n* players (= randomized TM's)
- Authenticated, unblockable Broadcast Channel
- Adversary corrupts t < n players
 - Malicious coordination of corrupted players
 - Choice of corruptions is static (= before start of protocol)
 - Messages may be rushed
- Computationally bounded adversary

No initial common random string

Big Picture: Active Adversary

- t < n/2 *O*(depth) rds, unconditional security, adaptive [GMW87, CDDHR99]
 - O(1) rounds, static [GMW87, BMR90]
- $t \ge n/2$ Robustness and fairness impossible [Cleve,GMW] (Abortable) • O(n+k) rounds static (?) [...,BG,GL]
 - $O(\log n)$ static with black box simulation
 - O(1) static with non-black-box simulation

Rest of talk

- Reduction of MPC to "simulatable coin-flipping"
 Two protocols
- O(log n) round protocol (black box)
 based on Chor-Rabin proof scheduling
- O(1) round protocol (non-black-box)based on Barak's non-malleable coin-flipping

Simulatable Coin-Flipping is Enough

• Honest-but-Curious adversary:

[BMR90] O(1) rounds for any t < n

- Intuition: to go from Honest-But-Curious to Active, we want independence of zero-knowledge proofs [GMW]
- Possible in $\Omega(n)$ rounds (sequential proofs)
- Possible in *O*(1) rounds [CLOS90]
 - Need a common random string
- To get CRS from scratch: simulatable coin-flipping

Simulatable Coin-Flipping I

Output *k* coin flips (or abort) so that:

- 1) Adversary can bias outcome only by sometimes aborting
- 2) Simulator can set outcome to any desired string (needed for composition theorems)

Simulatable Coin-Flipping II

Composition Lemma:

Simulatable Coin-Flipping III

Two protocols:

- Proof scheduling of Chor-Rabin: $O(\log n)$ rounds
- Non-malleability technique of Barak: O(1) rounds

Simulatable CF: Protocol Outline [Lindel102]

I) For all *i*:
$$\begin{cases} 1. P_i \\ 0 \end{pmatrix} m_i = \text{Commit}(r_i) \\ \hline 2. P_i \text{ proves knowledge of } r_i \\ \hline 1. P_i \text{ proves knowledge of } r_i \\ \hline 1. P_i \text{ proves knowledge of } r_i \\ \hline 1. P_i \text{ proves consistency mith } m_i \\ \hline 1. P_i \text{ proves consistency with } m_i \\ \hline 1. P_i \text{ proves consistency with } m_i \\ \hline 1. P_i \text{ proves consistency mith } m_i \\ \hline 1. P_i \text{ proves con$$

• Lie about x_i (i.e. **falsify** proofs)

Problem: Malleability of Proofs

- When proofs overlap, bad things can happen:
 - P₁ Proof of x_1 P₂ Proof of x_2 Describes the description of x_1 Proof of x_2
- P_2 can choose x_2 to depend on x_1
- Protocols often provably broken
- Non-malleable Zero-Knowledge [DDN]:
 - Resists this attack
 - Huge round complexity*

 P_3

- For all $i: P_i$ must prove some statement x_i in ZK
- log *n* phases, each with 2 blocks

- Each phase:
 - Players either **blue** or **red**
- At phase *t*:
 - **Blue** = { $\mathbf{P}_i | t$ -th bit of i is **0**}
 - **Red** = { $P_i | t$ -th bit of i is 1}
- 1st block: **Red** prove to **Blue** 2nd block: **Blue** prove to **Red**

- For all $i: P_i$ must prove some statement x_i in ZK
- log *n* phases, each with 2 blocks

- Each phase:
 - Players either **blue** or **red**
- At phase *t*:
 - **Blue** = { $\mathbf{P}_i | t$ -th bit of i is **0**}
 - **Red** = { P_i | *t*-th bit of *i* is 1}
- 1st block: **Red** prove to **Blue** 2nd block: **Blue** prove to **Red**

- For all $i: P_i$ must prove some statement x_i in ZK
- log *n* phases, each with 2 blocks

- Each phase:
 - Players either **blue** or **red**
- At phase *t*:
 - **Blue** = { $\mathbf{P}_i | t$ -th bit of i is **0**}
 - **Red** = { P_i | *t*-th bit of *i* is 1}
- 1st block: **Red** prove to **Blue** 2nd block: **Blue** prove to **Red**

- For all $i: P_i$ must prove some statement x_i in ZK
- log *n* phases, each with 2 blocks

- Each phase:
 - Players either **blue** or **red**
- At phase *t*:
 - **Blue** = { $\mathbf{P}_i | t$ -th bit of i is **0**}
 - **Red** = { P_i | *t*-th bit of *i* is 1}
- 1st block: **Red** prove to **Blue** 2nd block: **Blue** prove to **Red**

Chor-Rabin Scheduling: Analysis

- At every point, each player is
 either prover or verifier but never both
- For every pair *i*,*j*:

Eventually P_i proves to P_j and P_j proves to P_i

- Simulator who controls a single honest player can
 - Falsify all proofs
 - **Extract** witnesses from all other players
- Sufficient for simulatable coin flipping (and MPC)
- (Not known if Chor-Rabin works directly in MPC)

Getting to Constant Rounds

- All pairs *i*, *j* of players run some pairwise coin flipping protocol π simultaneously
- Get n(n-1) strings σ_{ij}
- Give proofs with respect to σ_{ii} in the global coin flip
- Need some kind of non-malleable coin flipping protocol

Non-Malleable Coin Flipping [Barak02]

- Two executions run concurrently
- Resists man-in-the-middle attack

• Constant rounds

Parallel Non-Malleable Coin Flipping

• Two sets of *n* parallel protocols

- All σ_i independent, random
- For each *i*: either $\rho_i \in \{\sigma_1, \dots, \sigma_n\}$ or ρ_i independent

The end

- Improved round complexity for dishonest majority
- Protocols still far from practical... how well can we do?
- Adaptive adversaries?
- log(*n*)-round on black-box round complexity?
- What about composability?
 - Composability results useful even for "stand-alone" model and essential for practice
 - Concurrent composability: impossible [Lindell03]
 - Limited non-malleability?

Old slides graveyard

Review: Computational Power

Two main models:

- 'Computational' security
 - Adversary runs in polynomial time
 - Assume secure cryptographic primitives (e.g. signatures)
- 'Statistical' security
 - Adversary has unbounded computational power
 - Assume secure channels between honest player

Definition of Security [...,Canetti99]

Security: real protocol equivalent to ideal protocol with TP

 $\forall \operatorname{PPT} A, \exists \operatorname{PPT} S_A : \pi[A](1^k) \approx \pi^{2}[S_A](1^k)$

Ideal Protocol for function f()

- 1. $\forall i: P_i \text{ sends } x_i \text{ to } TP$
- 2. *TP* computes $y = f(x_1, \dots, x_n)$

- *3. TP* broadcasts *y*
- 4. Honest players output *y*

Abortable Ideal Protocol for f()

- 1. $\forall i: P_i \text{ sends } x_i \text{ to } TP$
- 2. *TP* computes $y = f(x_1, \ldots, x_n)$
- 3. TP sends y to A
- 4. A replies accept/reject
- 5. *TP* sends y' = y (if accept) or $y' = \perp$ (if reject)
- 6. Honest players output y'

Protocol neither robust nor fair

Outline

- Passive adversaries: O(1) rounds for any t < n
- Intuition: to go from passive to active, we want independence of zero-knowledge proofs
- Independence easy with Common Random String (NIZK)
- To generate a CRS: simulatable coin-flipping
 - Proof scheduling of Chor-Rabin: $O(\log n)$ rounds
 - Non-malleability technique of Barak: O(1) rounds
- Open questions

Passive (honest-but-curious) adversaries

- All players follow protocol faithfully
- *A* tries to learn by looking at internal state of *t* parties (e.g. honest verifier ZK)
- [BMR90]: *O*(1) rounds for any *t* < *n* (static)
 All communication over broadcast channel

From passive to active adversaries [GMW]

General schema: real players P_i emulate passive players P_i '

- 1. $\forall i: P_i$ commits to initial state of P_i ': input x_i , coins r_i
- 2. P_i proves knowledge of (x_i, r_i)
- 3. Repeat:
 - P_i commits to new state of P_i '
 - P_i broadcasts messages sent by P_i ' at this round.
 - P_i proves consistency of new state and messages with previous round.

From passive to active adversaries [GMW]

Main challenge: independence in this emulation

- Committed input values should be independent
- Proofs should be independent. We want that
 - Simulator can prove false statements
 - Simultaneously extract witnesses from cheaters.

Rest of talk: how to guarantee independence

Why Coin Flipping is Enough

- Suppose all players see a common random string σ
- Divide σ into n pieces
- Player *i* gives commitments and proofs with respect to string σ_i

$$\sigma = \sigma_1 \sigma_2 \sigma_3 \dots \sigma_n$$

- Players' proofs are mutually in the note σ_l w.r.t. σ_l
- Simulator can prove false statements and simultaneously extract from malicious players.