
Secure Multi-party Quantum
Computing

Claude Crépeau, McGill

Daniel Gottesman, UC Berkeley

Adam Smith, MIT

Preliminary version presented at NEC workshop on

quantum crypto after QIP 2000

Since then:

• Protocols have changed a little.

• Definitions have been found.

• Proofs have changed a lot

Classical Distributed Protocols

• Extensively studied

• Many applications

– Banking / E-commerce

– Electronic Voting

– Auctions / Bidding

Questions for Quantum Protocols

• Do existing protocols remain secure?

– Not always: factoring, discrete log

Questions for Quantum Protocols

• Do existing protocols remain secure?

• Can we find better / more secure protocols for

existing tasks?

– E.g. Key distribution, coin flipping (?), “quantum voting”

Questions for Quantum Protocols

• Do existing protocols remain secure?

• Can we find better / more secure protocols for

existing tasks?

• What new, quantum tasks can we perform?

– E.g. Quantum Secret-Sharing, Zero-Knowledge,

Authentication, Entanglement Purification

– General trend: do cryptographywith quantum data

– Goal: building blocks for complex protocols

Overview

• What is multi-party (quantum) computing?

• A Sketch of the Protocol

• An Impossibility Result

What is Multi-party

Computing?

Classical Multi-party Computing

• Network of n players

• Each has input xi

• Want to compute

f(x1,…,xn) for some

known function f

• E.g. electronic voting

Protocol

x1

x2
x3

xn

f(x1,…,xn)

Classical Multi-party Computing

Even if t out of n

players try to cheat:

Protocol

x1

x2
x3

xn

f(x1,…,xn)

1. Cheaters learn nothing
(except output)

2. Cheaters cannot affect
output

Classical Multi-party Computing

Even if t out of n

players try to cheat:

Protocol

x1

x2
x3

xn

1. Cheaters learn nothing
(except output)

2. Cheaters cannot affect
output

Even with unbounded
computation time

QuantumMulti-party Computing

• Players’ inputs are quantum states
– Possibly entangled

– No description necessary
(protocol is “oblivious”)

• Output is quantum

• Want to evaluate a known
quantum circuitU

• Player i gets i-th component of
output

Protocol

ρ1

ρ2

ρ3

ρn

QuantumMulti-party Computing

• Players’ inputs form an
arbitrary state
ρ in H1⊗H2 ⊗... ⊗Hn

• Player i holds i-th
component:

ρi = tr{1,...,n}\i (ρ)
Protocol

ρ1

ρ2

ρ3

ρn

QuantumMulti-party Computing

• Players’ inputs form an
arbitrary state
ρ in H1⊗H2 ⊗... ⊗Hn

• Player i holds i-th
component:

ρi = tr{1,...,n}\i (ρ)
• Each player gets one

output:

ρi’ = tr{1,...,n}\i (UρU†)

ρ1’
ρ2’

ρ3’

ρn’

ρ’= UρU†

Protocol

QuantumMulti-party Computing

Protocol

ρ1

ρ2

ρ3

ρn

Even if t out of n

players try to cheat:

1. Cheaters learn nothing
(except output)

2. Cheaters cannot affect output
(except by choice of inputs)

Easy Solution: Trusted Outside Mediator

• If everybody trusts Tom

• Send all inputs to Tom

• Tom:

– Applies U

– Distributes outputs

ρ1

ρ2

ρ3

ρn

Tom

Easy Solution: Trusted Outside Mediator

• If everybody trusts Tom

• Send all inputs to Tom

• Tom:

– Applies U

– Distributes outputs

Challenge: Simulate the presence of Tom

Tom
ρ1’

ρ2’
ρ3’

ρn’

ρ’= UρU†

Results

• t < n/6:

Any Multi-party Quantum Computation

• t < n/4:

Verifiable Secret-Sharing (weaker subtask)

• t ≥ n/4:

Even VQSS is impossible

Results

Classical MPC
(with broadcast)

Classical MPC
(without broadcast)

Quantum
MPC

n/2n/3n/4n/6

IMPOSSIBLE

?

t = number
of cheaters

0

Verifiable Quantum
Secret Sharing

(Weaker task,
to be defined)

MPQC and Fault-Tolerant Computing

• MPQC is like FTQC with a different error model...

– Similar protocol techniques:

Classical MPC[BGW,CCD] → FTQC[AB99] → MPQC[us]

– Different proof techniques

(Need different notion of “proximity” to coding subspaces)

Error
location

Type of
errors

At most t positionsCan occur anywhere

maliciously placed,
entangled with data

randomly spread,
independent

MPQCFTQC

A Sketch of the

Protocol

Protocol Overview

• Share
– Each player encodes his input using a QECC

– Sends i-th component to player i

– Proves that sharing was done “correctly”

i.e. distributed shares form a codeword except on positions

held by cheaters

• Compute
– Use fault-tolerant circuits to apply U to encoded inputs

• Distribute
– Give each player all components of his output

Why is this enough?

• If:

– All players share their input with a “proper” codeword

– (and)No information is leaked by proof

• Then the cheaters:

– can’t disturbthe calculation since QECC and FTQC

will tolerate errors in any t locations

– (Informally:) can’t learn infosince they can’t disturb!

An Impossibility
Proof

Verifiable Quantum Secret-Sharing

• Idealized “qubit commitment”

• 2-phase protocol

• Sharing: Dealer D shares a secret system ρ such that

– Cheaters can’t learn anything about ρ
– Dealer can’t change ρ

• Recovery: Receiver Rspecified by context
– All players send shares to R

– R reconstructs ρ

Easy Solution:Give ρ to trusted Tom, get it back later.

Verifiable Quantum Secret-Sharing

• Sharing phase of our MPCprotocol is a VQSS

• My opinion:

Most “interesting” MPCprotocols will imply VQSS,

since they should allow simulating Tom’s presence in

more general tasks

e.g.qubit commitment

• Theorem: VQSSis impossible fort ≥ n/4

Theorem: No VQSStoleratest ≥ n/4

Lemma:

Any VQSSprotocol “is” a QECCcorrecting t errors

Proof:

• Look at the state F(|ψ〉) of protocol at the end of sharing phase

when all players are honest, and input is |ψ〉

• Protocol is oblivious, so F(|ψ〉)= E|ψ〉 for some trace preserving E.

• At this point, arbitrary corruption of t players can’t change

reconstructed secret |ψ〉

• Thus E is the encoding operator for a QECC.

Theorem: No VQSStoleratest ≥ n/4

Proof:

• No cloningsays that no QECCcan correct n/2 erasures

• Fact: Any QECCwhich corrects t errors can correct 2t
erasures

• Thus no QECCtolerates n/4 errors

• All these arguments work regardless of dimension of

components of QECC

• Thus, no VQSStolerates t = n/4 cheaters.

Conclusions

• Study general cryptographic tasks in distributed setting

• You can do anything you want when t < n/6

• You can’t do much when t ≥ n/4

• Along the way:

– First “zero-knowledge” quantum proofs secure against

malicious verifiers

– Refined notions of “proximity” to QECC’s.

– Wrestled with definitions for malicious quantum adversaries

More Protocol Sketch

How to prove sharing is correct?

• Use Zero-Knowledge Proof techniques due to

[Crépeau,Chaum,Damgård1988](from classical MPC)

• Based on classical Reed-Solomon code:

– To encode a, pick a random polynomial p of degree 2t over

Zq such that p(0)=a and output (p(1), ... ,p(n))

• We use: “polynomial codes” of [Aharonov,Ben-Or99]

∑
=

=

=
ap

tpp

npppaE

)0(
2)deg(:

)(),...,2(),1(

Basic Step

• Prover takes secret |ψ〉
– Shares E|ψ〉 (system #1)

– Shares E(∑|a〉) (system #2)

• Players together generate random bit b

• If b=0 then do nothing

If b=1 then “add in Zq” System #1 to System #2

• Measure System #2 and broadcast results

• Accept if broadcast vectorclose to a classical codeword

()
()

∑

∑
=

+=
⊗

aEE

aEEA

xyxyxA
n

ψ

ψ

Properties of Basic Step

• If dealer passes test many timesin

– computational basisand

– Rotated “Fourier basis” (q-ary analogue of |0〉+ |1〉, |0〉- |1〉)

Then shared state is“close” to a quantum codeword

• If dealer was honest,

then no information is leaked and state is not disturbed

• This can be “boosted” to get secure protocol for t < n/4

What does “close to a codeword” mean?

• Shared state should differ from a codeword only on

positions held by cheaters

• Natural notion of closeness:

(1) Reduced density matrix of honest players

= reduced density matrix of some state in coding space Q

• Too strong: Our protocols can’t guarantee that.

• Instead:

(2) Shares held by honest players pass parity checks restricted to

those positions

What does “close to a codeword” mean?

• (1) ≠ (2)
– (1) is not even a subspace!

– Basic problem: errors and data can be entangled

• Analysis of fault-tolerant protocols only requires (1)

• We can only guarantee notion (2)

• Nonetheless, our protocols are secure:

– Notion (2) strong enough to ensure well-defined decoding:

changes made by cheaters to a state in (2) cannot affect output

– Fault-tolerant procedures work for states in (2)

