Secure Multi-party Quantum Computing

Claude Crépeau, McGill Daniel Gottesman, UC Berkeley Adam Smith, MIT

Preliminary version presented at NEC workshop on quantum crypto after QIP 2000

Since then:

- Protocols have changed a little.
- Definitions have been found.
- Proofs have changed a lot

Classical Distributed Protocols

- Extensively studied
- Many applications
 - Banking / E-commerce
 - Electronic Voting
 - Auctions / Bidding

Questions for Quantum Protocols

- Do existing protocols remain secure?
 - Not always: factoring, discrete log

Questions for Quantum Protocols

- Do existing protocols remain secure?
- Can we find better / more secure protocols for existing tasks?
 - E.g. Key distribution, coin flipping (?), "quantum voting"

Questions for Quantum Protocols

- Do existing protocols remain secure?
- Can we find better / more secure protocols for existing tasks?
- What new, quantum tasks can we perform?
 - E.g. Quantum Secret-Sharing, Zero-Knowledge,
 Authentication, Entanglement Purification
 - General trend: do cryptography with quantum data
 - Goal: building blocks for complex protocols

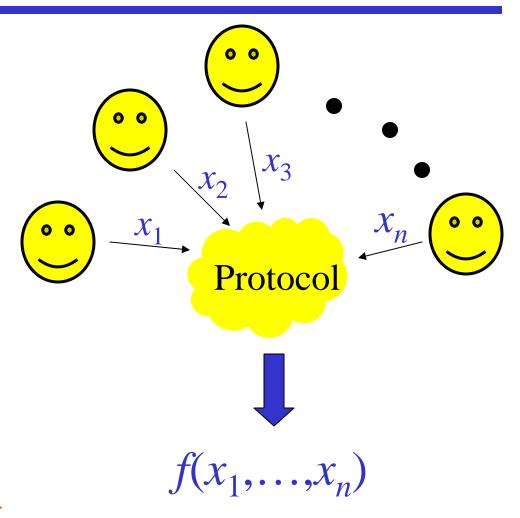
Overview

- What is multi-party (quantum) computing?
- A Sketch of the Protocol
- An Impossibility Result

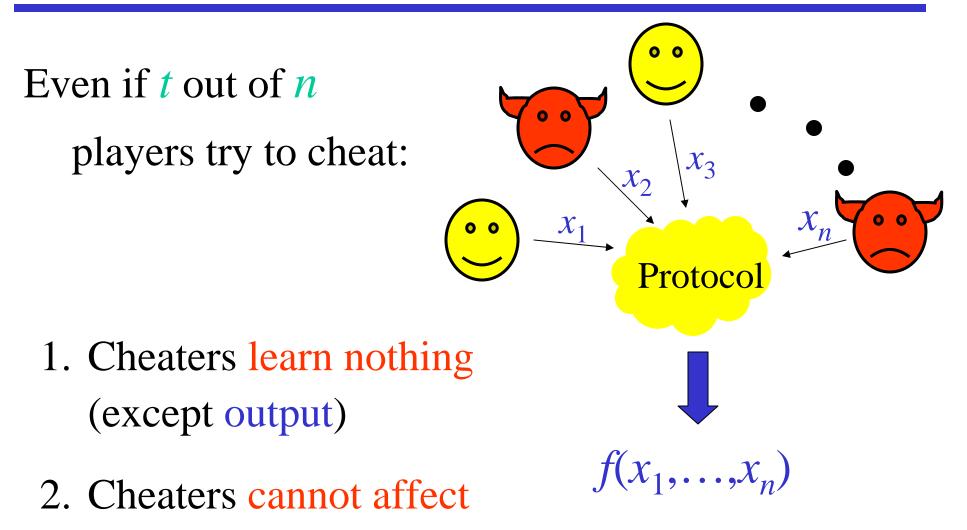
What is Multi-party Computing?

Classical Multi-party Computing

- Network of *n* players
- Each has input x_i
- Want to compute $f(x_1,...,x_n)$ for some known function f
- *E.g.* electronic voting

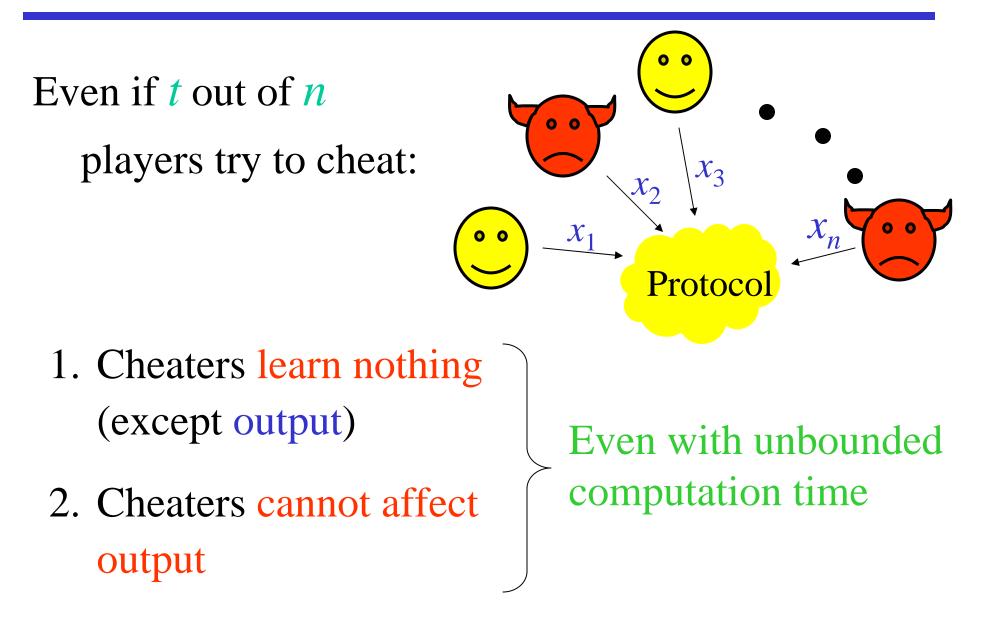


Classical Multi-party Computing



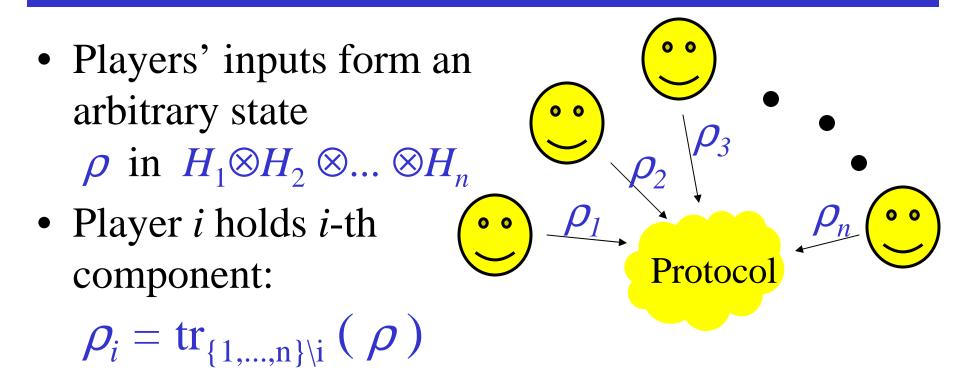
output

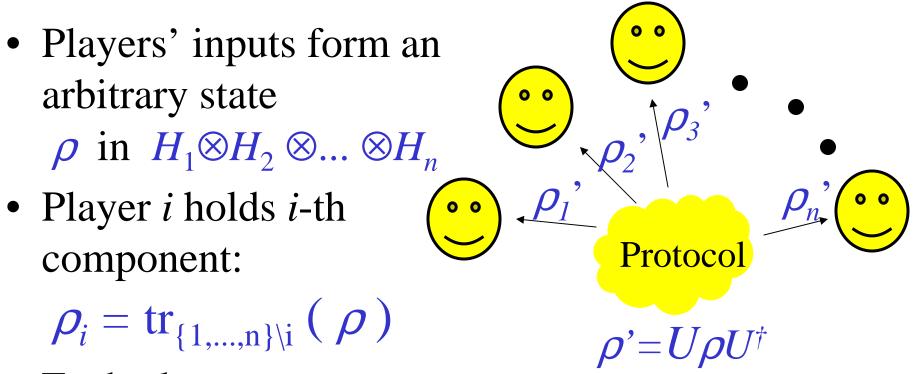
Classical Multi-party Computing



Protocol

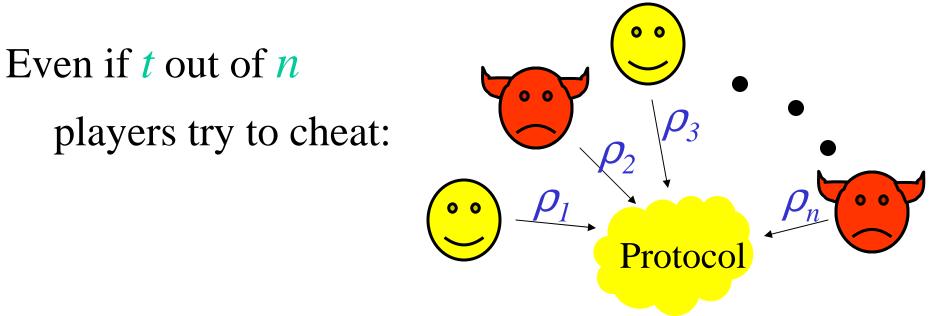
- Players' inputs are quantum states
 - Possibly entangled
 - No description necessary (protocol is "oblivious")
- Output is quantum
- Want to evaluate a known quantum circuit *U*
- Player *i* gets *i*-th component of output





• Each player gets one output:

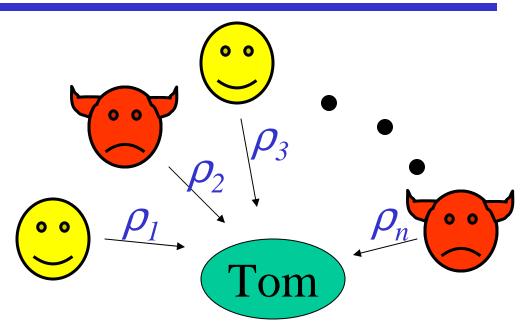
$$\rho_i' = \operatorname{tr}_{\{1,\dots,n\}\setminus i} (U\rho U^{\dagger})$$



- 1. Cheaters learn nothing (except output)
- 2. Cheaters cannot affect output (except by choice of inputs)

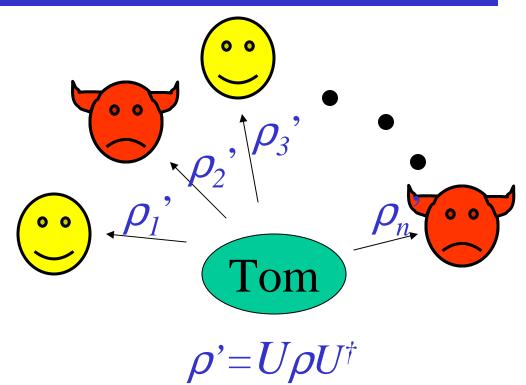
Easy Solution: Trusted Outside Mediator

- If everybody trusts **Tom**
- Send all inputs to **Tom**
- Tom:
 - Applies U
 - Distributes outputs



Easy Solution: Trusted Outside Mediator

- If everybody trusts **Tom**
- Send all inputs to **Tom**
- Tom:
 - Applies U
 - Distributes outputs



Challenge: Simulate the presence of Tom

Results

• *t* < *n*/6:

Any Multi-party Quantum Computation

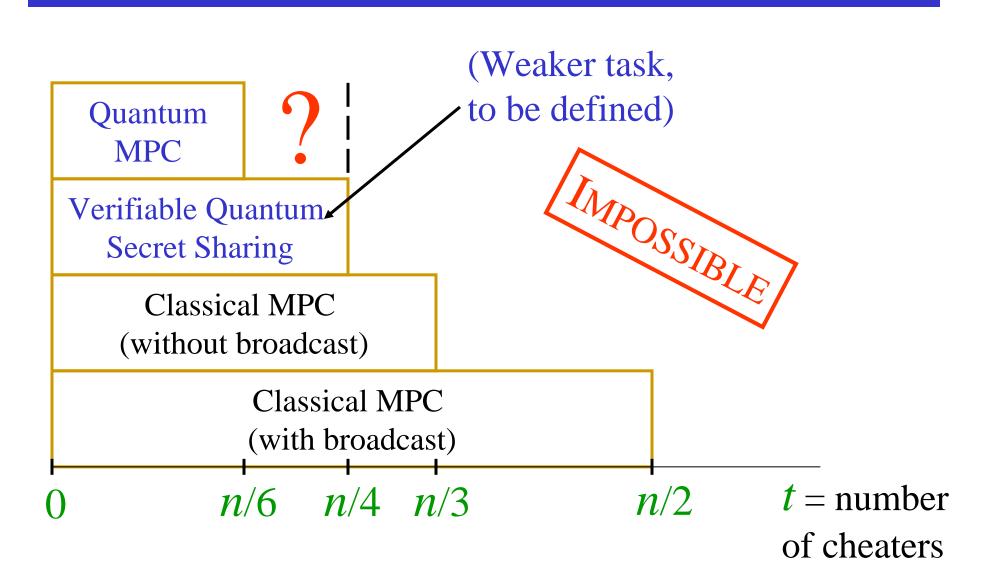
• *t* < *n*/4:

Verifiable Secret-Sharing (weaker subtask)

• $t \ge n/4$:

Even VQSS is impossible

Results



MPQC and Fault-Tolerant Computing

• MPQC is like FTQC with a different error model...

	FTQC	MPQC
Type of errors	randomly spread, independent	maliciously placed, entangled with data
Error location	Can occur anywhere	At most <i>t</i> positions

– Similar protocol techniques:

Classical MPC [BGW,CCD] → FTQC [AB99] → MPQC [us]

Different proof techniques

(Need different notion of "proximity" to coding subspaces)

A Sketch of the Protocol

Protocol Overview

- Share
 - Each player encodes his input using a QECC
 - Sends *i*-th component to player *i*
 - Proves that sharing was done "correctly"
 i.e. distributed shares form a codeword except on positions held by cheaters

• Compute

- Use fault-tolerant circuits to apply U to encoded inputs

• Distribute

- Give each player all components of his output

Why is this enough?

• If:

- All players share their input with a "proper" codeword
- (and) No information is leaked by proof
- Then the cheaters:
 - can't disturb the calculation since QECC and FTQC
 will tolerate errors in any *t* locations
 - (Informally:) can't learn info since they can't disturb!

An Impossibility Proof

Verifiable Quantum Secret-Sharing

- Idealized "qubit commitment"
- 2-phase protocol
- Sharing: Dealer *D* shares a secret system ρ such that
 - Cheaters can't learn anything about ρ
 - Dealer can't change ρ
- Recovery: Receiver *R* specified by context
 - All players send shares to R
 - R reconstructs ρ

Easy Solution: Give ρ to trusted Tom, get it back later.

Verifiable Quantum Secret-Sharing

- Sharing phase of our MPC protocol is a VQSS
- My opinion:

Most "interesting" MPC protocols will imply VQSS, since they should allow simulating Tom's presence in more general tasks

- e.g. qubit commitment
- Theorem: VQSS is impossible for $t \ge n/4$

Theorem: No VQSS tolerates $t \ge n/4$

Lemma:

Any VQSS protocol "is" a QECC correcting *t* errors **Proof**:

- Look at the state $F(|\psi\rangle)$ of protocol at the end of sharing phase when all players are honest, and input is $|\psi\rangle$
- Protocol is oblivious, so $F(|\psi\rangle) = E|\psi\rangle$ for some trace preserving *E*.
- At this point, arbitrary corruption of *t* players can't change reconstructed secret $|\psi\rangle$
- Thus *E* is the encoding operator for a QECC.

Theorem: No VQSS tolerates $t \ge n/4$

Proof:

- No cloning says that no QECC can correct n/2 erasures
- Fact: Any QECC which corrects *t* errors can correct 2*t* erasures
- Thus no QECC tolerates n/4 errors
- All these arguments work regardless of dimension of components of QECC
- Thus, no VQSS tolerates t = n/4 cheaters.

Conclusions

- Study general cryptographic tasks in distributed setting
- You can do anything you want when t < n/6
- You can't do much when $t \ge n/4$
- Along the way:
 - First "zero-knowledge" quantum proofs secure against malicious verifiers
 - Refined notions of "proximity" to QECC's.
 - Wrestled with definitions for malicious quantum adversaries

More Protocol Sketch

How to prove sharing is correct?

- Use Zero-Knowledge Proof techniques due to
 [Crépeau,Chaum,Damgård1988] (from classical MPC)
- Based on classical Reed-Solomon code:
 - To encode *a*, pick a random polynomial *p* of degree 2*t* over Z_q such that p(0)=a and output $(p(1), \dots, p(n))$
- We use: "polynomial codes" of [Aharonov,Ben-Or99]

$$E|a\rangle = \sum_{\substack{p:\deg(p)=2t\\p(0)=a}} |p(1), p(2), ..., p(n)\rangle$$

Basic Step

- Prover takes secret $|\psi\rangle$
 - Shares $E|\psi\rangle$ (system #1)
 - Shares $E(\sum |a\rangle)$ (system #2)

- If b=0 then do nothing
 If b=1 then "add in Z_q" System #1 to System #2
- Measure System #2 and broadcast results
- Accept if broadcast vector close to a classical codeword

$$A(|x\rangle|y\rangle) = |x\rangle|y+x\rangle$$
$$A^{\otimes n}(E|\psi\rangle E\sum |a\rangle)$$
$$= E|\psi\rangle E\sum |a\rangle$$

Properties of Basic Step

- If dealer passes test many times in
 - computational basis and
 - Rotated "Fourier basis" (q-ary analogue of $|0\rangle + |1\rangle$, $|0\rangle |1\rangle$)

Then shared state is "close" to a quantum codeword

• If dealer was honest,

then no information is leaked and state is not disturbed

• This can be "boosted" to get secure protocol for t < n/4

What does "close to a codeword" mean?

- Shared state should differ from a codeword only on positions held by cheaters
- Natural notion of closeness:
 - (1) Reduced density matrix of honest players

= reduced density matrix of some state in coding space Q

- Too strong: Our protocols can't guarantee that.
- Instead:

(2) Shares held by honest players pass parity checks restricted to those positions

What does "close to a codeword" mean?

- $(1) \neq (2)$
 - (1) is not even a subspace!
 - Basic problem: errors and data can be entangled
- Analysis of fault-tolerant protocols only requires (1)
- We can only guarantee notion (2)
- Nonetheless, our protocols are secure:
 - Notion (2) strong enough to ensure well-defined decoding:
 changes made by cheaters to a state in (2) cannot affect output
 - Fault-tolerant procedures work for states in (2)