Secure Multi-party Quantum
Computing

Claude Crepeau, McGilll
Daniel Gottesman, UC Berkeley

Adam SmithmiT

Preliminary version presented at NEC workshop on
guantum crypto after QIP 2000

Since then:
* Protocols have changed a little.
e Definitions have been found.

* Proofs have changed a lot

Classical Distributed Protocols

* Extensively studied

 Many applications
— Banking / E-commerce
— Electronic Voting

— Auctions / Bidding

Questions for Quantum Protocols

e Do existing protocols remain secure?

— Not alwaysifactoring, discrete log

Questions for Quantum Protocols

e Do existing protocols remain secure?

e Can we find bettetrmore secure protocols for

existing tasks?

— E.g.Key distribution, coin flipping (?), “quantum vogh

Questions for Quantum Protocols

e Do existing protocols remain secure?

e Can we find bettetrmore secure protocols for
existing tasks?

 \What new, guantum tasks can we perform?

— E.g.Quantum Secret-Sharing, Zero-Knowledge,

Authentication, Entanglement Purification

— General trend: do cryptographwth quantum data

— Goal: building blocks for complex protocols

Overview

 What is multi-party (quantum) computing?
e A Sketch of the Protocol

 An Impossiblility Result

What I1s Multi-party
Computing?

Classical Multi-party Computing

Network ofn players o

Each has input N\ \X3 °
Xy ﬁ
Want to compute Protocol

f(x,,...,x,) for some

known functionf l'

o T(Xg, - Xp)
E.g.electronic voting

Classical Multi-party Computing

Even ifl out ofn

players try to cheat: \ * R
ORI
Protocol
1. Cheaterszarn nothing 1
(exceptoutpu)
f(X;,... %)

2. Cheatersannot affect
output

Classical Multi-party Computing

Even ifl out ofn

players try to cheat: \

‘ Protocol

1. Cheatergearn nothing
(exceptoutpu)

. Even with unbounded

2. Cheatersannot affect [Computation time
output

_/

QuantumMulti-party Computing

 Players’ inputs are quantum state
— Possibly entangled g ®
— No description necessary \/03 o

(protocol is ‘Oblivious’) 0 \’% 0
« Output is quantum - 4/”
Protocol

e \Want to evaluate a known

guantum circuit)

 Playerl getsl-th component of
output

QuantumMulti-party Computing

e Players’ inputs form an
®

arbitrary state o
o in H,OH, ... OH,

\,03 .
e Playeri holdsi-th &TQZ‘ ﬂ
P

component: rotocol

QuantumMulti-party Computing

e Players’ inputs form an
®

arbitrary state o
o in H,OH, ... OH,

2,\,03’ o
+ Playeri holdsi-th «P\l’\g ﬁi
P

component: rotocol

P= 1t i (£) o= UpUt
o Each player gets one

output:

QuantumMulti-party Computing

Even ift out of n .
players try to cheat: ' \,03 *.

@a . Y

rotocol

1. Cheaterszarn nothing
(exceptoutpu)

2. Cheatersannot affect output
(except by choice of inputs)

Easy SolutionTrusted Outside Mediator

 |f everybody trustg om
O -

e Send all inputs td om \,03

e Tom: ‘ ,0 '
\1> 4)
— AppliesU -

— Distributes outputs

Easy SolutionTrusted Outside Mediator

 |f everybody trustg om
O

e Send all inputs té om

\Q,\pg .

2

e TOm: 1

o g I
— AppliesU -)

— Distributes outputs

p=UpUT

Challenge: Simulate the presence of Tom

Results

e { < N/6:
Any Multi-party Quantum Computation

e L <N/4:
Verifiable Secret-Sharing (weaker subtask)

e { > nN/4;
Even VQSS Is impossible

Results

(Weaker task,
Quantum to be defined)
MPC ? /
Verifiable Quantuna /, 44,00
Secret Sharing O, 5
Classical MPC g
(without broadcast)
Classical MPC
(W|th broadcast)
0 ne ni4 n/3 n/2 [= number

of cheaters

MPQC and Fault-Tolerant Computing

e MPQC is like FTQC with a different error model...

FTQC MPQC
Type of |randomly spread, maliciously placed,
errors Independent entangled with data
Error Can occur anywhere | At mostt positions
location

— Similar protocol techniques:
Classical MPBGW,CCD] - FTQC[AB99] - MPQC|us]

— Different proof techniques
(Need different notion of “proximity” to coding ssijpaces)

A Sketch of the
Protocol

Protocol Overview

e Share
— Each player encodes his input using a QECC

— Sends-th component to player

— Proves that sharing was done “correctly”
l.e. distributed shares form a codeword exceptasitijons
held by cheaters

« Compute

— Use fault-tolerant circuits to applyto encoded inputs

e Distribute

— Give each player all components of his output

Why Is this enough?

o |f:
— All players share their input with a “proper” codedo

- (and)No Information is leaked by proof

* Then the cheaters:
— can’tdisturbthe calculation since QECC and FTQC

will tolerate errors in an{/locations

— (Informally:) can’tlearn infosince they can’tlisturd

An Impossibllity
Proof

Verifiable Quantum Secret-Sharing

|dealized “qubit commitment”
2-phase protocol

Sharing DealerD shares a secret systgnsuch that
— Cheaters can’t learn anything abgut
— Dealer can’t change

Recovery Recelver specified by context
— All players send shares o

— R reconstructg®

Easy SolutionGive pto trustedl om, get it back later.

Verifiable Quantum Secret-Sharing

e Sharing phase of ollPC protocol is avQSS

e My opinion
Most “interesting’MPC protocols will ImplyVQSS
since they should allow simulating Tom’s presence In

more general tasks

e.g.qubit commitment

» Theorem VQSSis impossible foi = N/4

Theorem No VQSStolerates = n/4

Lemma

Any VQSSprotocol “is” aQECCcorrectingl errors

Proof

* Look at the staté(|¢)) of protocol at the end of sharing phase
when all players are honest, and input/is

* Protocol is oblivious, s&(|¢))= E|¢) for some trace preservirig

« At this point, arbitrary corruption dfplayers can’t change

reconstructed secrgl)

 ThusE is the encoding operator forIGECC.

Theorem No VQSStolerated = n/4

Proof.

« No cloningsays that n@Q ECCcan correct)/2 erasures

* Fact Any QECCwhich corrects errors can correcil
erasures

 Thus noQECCtoleratesV/4 errors

« All these arguments work regardless of dimension of
components oDECC

 Thus, novQSStolerated = n/4 cheaters.

Conclusions

o Study general cryptographic tasks in distributetrsgt

 You can do anything you want whérs /6

e You can’t do much wheh= n/4

* Along the way:

— First “zero-knowledge” quantum proofs secure agfain
malicious verifiers

— Refined notions of “proximity” to QECC's.
— Wrestled with definitions for malicious quantunvadsaries

More Protocol Sketch

How to prove sharing Is correct?

 Use Zero-Knowledge Proof techniques due to
[Crépeau,Chaum,Damgard194fiom classical MPC)

e Based on classical Reed-Solomon code:

— To encode, pick a random polynomidl of degree’l over
Z, such thap(0)=a and outputf(1), ... ,p(n)

« We use: “polynomial codes” ot haronov,Ben-0Or99]

Ela)=) |p®, p2),....p(n))

p:deg(p)=2t
p(0)=a

Basic Step

Prover takes secrgt) Aq X>‘ y>) - ‘ X>‘ y¥ X>
— Sharek|y) (system #1) ADn(E“/j>EZ ‘ a>)
— Shares(2 |a)) (system #2) = EW’ >EZ ‘ a>

Players together generate/randonibit

f b=0then do nothing
f b=1then “add InZ,” System #1 to System #2

Measure System #2 and broadcast results

Accept ifbroadcast vectalose to aclassical codeword

Properties of Basic Step

o |f dealer passes test many tinres
— computational basasnd

— Rotated Fourier basis(g-ary analogue o)+ |1), |0- |1))

Then shared state islose” to a qguantum codeword
* |f dealer was honest

then no information is leaked and state Is not disturbed

 This can be “boosted” to get secure protocol feri/4

What does ¢lose to a codewofanean?

e Shared state should differ from a codeword only on
positions held by cheaters

« Natural notion of closeness:
(1) Reduced density matrix of honest players

= reduced density matrix of some state in codirareQ)
* Too strong Our protocols can’t guarantee that.

e |nstead:

(2) Shares held by honest players pass parity cheskscted to
those positions

What does ¢lose to a codewofanean?

- (1)#(2)
— (1) is not even a subspace!

— Basic problem: errors and data can be entangled
» Analysis of fault-tolerant protocols only requirgs
 We can only guarantee notiGn)

* Nonetheless, our protocols are secure

— Notion(2) strong enough to ensure well-defined decoding:
changes made by cheaters to a staf)inannot affect output

— Fault-tolerant procedures work for state§n

