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Abstract. We initiate a theoretical study of the census problem. Infor-
mally, in a census individual respondents give private information to a
trusted party (the census bureau), who publishes a sanitized version of
the data. There are two fundamentally conflicting requirements: privacy
for the respondents and utility of the sanitized data. Unlike in the study
of secure function evaluation, in which privacy is preserved to the extent
possible given a specific functionality goal, in the census problem privacy
is paramount; intuitively, things that cannot be learned “safely” should
not be learned at all.
An important contribution of this work is a definition of privacy (and
privacy compromise) for statistical databases, together with a method
for describing and comparing the privacy offered by specific sanitization
techniques. We obtain several privacy results using two different sanitiza-
tion techniques, and then show how to combine them via cross training.
We also obtain two utility results involving clustering.

1 Introduction

We initiate a theoretical study of the census problem. Informally, in a census
individual respondents give private information to a trusted party (the census
bureau), who publishes an altered or sanitized version of the data. There are two
fundamentally conflicting requirements: privacy for the respondents and utility
of the sanitized data. While both require formal definition, their essential tension
is clear: perfect privacy can be achieved by publishing nothing at all – but this
has no utility; perfect utility can be obtained by publishing the data exactly
as received from the respondents, but this offers no privacy. Very roughly, the

? A full version of this paper may be found on the World Wide Web at
http://research.microsoft.com/research/sv/DatabasePrivacy/.

?? This research was done while A.S. was a student at MIT, partially supported by a
Microsoft fellowship and by US ARO Grant DAAD19-00-1-0177.



2 S. Chawla, C. Dwork, F. McSherry, A. Smith and H. Wee

sanitization should permit the data analyst to identify strong stereotypes, while
preserving the privacy of individuals.

This is not a new problem. Disclosure control has been studied by researchers
in statistics, algorithms and, more recently, data mining. However, we feel that
many of these efforts lack a sound framework for stating and proving guarantees
on the privacy of entries in the database. The literature is too extensive to survey
here; we highlight only a few representative approaches in Section 1.2.

1.1 Summary of Our Contributions and Organization of the Paper

Definitions of Privacy and Sanitization. We give rigorous definitions of pri-
vacy and sanitization (Sections 2 and 3, respectively). These definitions, and the
framework they provide for comparing sanitization techniques, are a principal
contribution of this work.

For concreteness, we consider an abstract version of the database privacy
problem, in which each entry in the database—think of an individual, or a par-
ticular transaction—is an unlabeled point in high-dimensional real space IRd.
Two entries (points) that are close in IRd (say, in Euclidean distance) are con-
sidered more similar than two entries that are far.

Our first step was to search the legal and philosophical literature to find a
good English language definition of privacy relevant to statistical databases. The
phrase “protection from being brought to the attention of others” in the writings
of Gavison [19] resonated with us. As Gavison points out, not only is such pro-
tection inherent in our understanding of privacy, but when this is compromised,
that is, when we have been brought to the attention of others, it invites fur-
ther violation of privacy, as now our every move is examined and analyzed. This
compelling concept – protection from being brought to the attention of others –
articulates the common intuition that our privacy is protected to the extent that
we blend in with the crowd; moreover, we can convert it into a precise mathe-
matical statement: intuitively, we will require that, from the adversary’s point
of view, every point be indistinguishable from at least t−1 other points, where t
is a threshold chosen according to social considerations. Sweeney’s seminal work
on k-anonymity is similarly motivated [30]. In general, we think of t as much,
much smaller than n, the number of points in the database.

In analogy to semantic security [21], we will say that a sanitization technique
is secure if the adversary’s probability of breaching privacy does not change sig-
nificantly when it sees the sanitized database, even in the presence of auxiliary
information (analogous to the history variable in the definition of semantic se-
curity). As noted below, auxiliary information is (provably) extremely difficult
to cope with [14].

Histograms Preserve Privacy. A histogram for a database is a partition of IRd

along with the exact counts of the number of database points present in each
region. Histograms are prevalent in official statistics, and so they are a natural
technique to consider for sanitization. We analyze a recursive histogram saniti-
zation, in which the space is partitioned recursively into smaller regions (called
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cells) until no region contains 2t or more real database points. Exact counts of
the numbers of points in each region are released. The intuition is that we reveal
more detailed information in regions where points are more densely clustered.
We prove a strong result on the privacy provided when the data are drawn uni-
formly from the d-dimensional unit cube, in the absence of auxiliary information.
Generalizations are discussed in Remark 4 and Section 7.

Density-based Perturbation Provides Utility. Section 5 describes a simple input
perturbation technique, in which noise from a spherically symmetric distribution
(such as a Gaussian) is added to database points. The magnitude of the noise
added to a real database point is a function of the distance to the point’s t-th
nearest neighbor. The intuition for this sanitization is two-fold. On one hand,
we are “blending a point in with its crowd,” so privacy should be preserved.
On the other hand, points in dense regions should be perturbed much less than
points in sparse regions, and so the sanitization should allow one to recover a lot
of useful information about the database, especially information about clusters
and local density.

We formalize the intuition about utility via two results. First, we show a
worst-case result: an algorithm that approximates the optimal clustering of the
sanitized database to within a constant factor gives an algorithm that approx-
imates the optimal clustering of the real database to within a constant factor.
Second, we show a distributional result: if the data come from a mixture of
Gaussians, then this mixture can be learned from the perturbed data. Our algo-
rithmic and analysis techniques necessarily vary from previous work on learning
mixtures of Gaussians, as the noise that we add to each point depends on the
sampled data itself.

The intuition about privacy—namely, that this style of perturbation blends
a point in with its crowd—is significantly harder to turn into a proof. We explain
why privacy for this type of sanitization is tricky to reason about, and describe
some simplistic settings in which partial results can be proven.

Privacy of Perturbed Data via Cross-Training. In Section 6 we describe a variant
for which we can again prove privacy when the distribution is uniform over the
d-dimensional unit cube. The idea is to use cross-training to get the desirable
properties of histograms and spherical perturbations. The real database points
are randomly partitioned into two sets, A and B. First, a recursive histogram
sanitization is computed for set B. As stated above, this information can be
released safely. Second, for each point in set A we add random spherical noise
whose magnitude is a function of the histogram for B (it is based on the diameter
of the B-histogram cell into which the point falls). We release the histogram for
set B and the perturbed points from set A. Since the only information about
the first set used for the perturbation is information provably safe to reveal, the
privacy of the points in the first set is not compromised. An additional argument
is used to prove privacy of the points in the second set. The intuition for the
utility of the spherical perturbations is the same as before: points which lie in
dense regions will lie in small histogram cells, and so will be perturbed little,
thus preserving clusters approximately.
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Open Questions. Our work suggests a rich set of fascinating questions, several
of which we have begun exploring together with other researchers. We mention
some of these in Section 7.

1.2 Related Work

We briefly highlight some techniques from the literature. Many additional refer-
ences appear in the full paper (see the title page of this paper for the URL).

Suppression, Aggregation, and Perturbation of Contingency Tables. Much of
the statistics literature is concerned with identifying and protecting sensitive en-
tries in contingency tables (see, e.g., [12, 22]). For example, in the 2-dimensional
case, for discrete data, these are frequency counts, or histograms, indicating how
many entries in the database match each possible combination of the values of
two particular attributes (e.g. number of cars and number of children). It is com-
mon to regard an entry as sensitive if it corresponds to a pair of attribute values
that occurs at most a fixed number of times (typically 1 or 2) in the database.
One reason for regarding low-count cells as sensitive is to prevent linkage with
other databases: if a given pair of attribute values uniquely identifies an individ-
ual, then these fields can be used as a key in other databases to retrieve further
information about the individual.

Input Perturbation. A second broad approach in the literature is to perturb
the data (say via swapping attributes or adding random noise) before releas-
ing the entire database, or some subset thereof (such raw, unaggregated entries
are typically called microdata). Various techniques have been considered in the
statistics [33, 34, 27] and data mining [4, 1, 16] communities. In some cases, pri-
vacy is measured by how (un)successfully existing software re-identifies individ-
uals in the database from the sanitized data and a small amount of auxiliary
information. In other cases, the notion of privacy fails to take into account pre-
cisely this kind of auxiliary information. The work of Efvimievski et al. [16] is a
significant, encouraging exception, and is discussed below.

Imputation. A frequent suggestion is for the census bureau to learn D and
then publish artificial data obtained by sampling from the learned distribu-
tion (see, e.g., [28]). We see two difficulties with this approach: (1) we want our
sanitized database to reflect (possibly statistically insignificant) “facts on the
ground”. For example, if a municipality is deciding where to run a bus line, and
a certain geographic region of the city has a higher density of elderly residents, it
may make sense to run the bus line through this region. Note that such “blips” in
populations can occur even when the underlying distribution is uniform; (2) any
model necessarily eliminates information; we feel it is not reasonable to assume
that the sanitizer can predict (privacy-respecting) statistical tests that may be
invented in the future.

k-Anonymity, Input Aggregation, and Generalization. Similarly to input per-
turbation, one can also suppress or aggregate fields from individual records to
reduce the amount of identifying information in the database. A database is said
to be k-anonymized if every modified entry in the sanitized database is the same
as at least k others [31]. The intuition is that privacy is protected in this way by
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guaranteeing that each released record will relate to at least k individuals. This
requirement on the sanitization does not directly relate to what can and cannot
be learned by the adversary. For example, the definition may permit informa-
tion to be leaked by the choice of which records to aggregate (there are many
aggregations that will make a database k-anonymous), or from the fact that cer-
tain combination of attribute values does not exist in the database. Information
may also be gleaned based on the underlying distribution on data (for example,
if the suppressed attribute is sex and the number of identical records with sex
suppressed is two).

Interactive Solutions. In query monitoring, queries to an online database
are audited to ensure that, even in the context of previous queries, the re-
sponses do not reveal sensitive information. This is sometimes computationally
intractable [25], and may even fail to protect privacy, for example, in the setting
in which the adversary knows even one real database record [11].

A related approach is output perturbation, in which a query control mech-
anism receives queries, computes exact answers, and then outputs a perturbed
answer as the response to the query [9, 5]. This approach can sometimes be inse-
cure, intuitively, because noise added in response to multiple queries can cancel
out (see [2, 11]). The limitation can be shown to be inherent: if the number of
queries to the database is large (even polynomial in the number of entries (rows)
in the database), the amount of noise added to answers must be large [11]. By
restricting the total number of queries allowed, one can in fact circumvent this
and get strong privacy guarantees while adding much less noise [11, 15]. This
approach is not available in our context: in an interactive solution, the query in-
terceptor adds fresh noise to the response to each query; in our context, a noisy
version of the database is constructed and published once and for all. Although
this seems to make the problem more difficult, there are obvious advantages:
the sanitization can be done off-line; the real data can be deleted or locked in a
vault, and so may be less vulnerable to bribery of the database administrator.

A Recent Definitional Approach. The definitions of privacy in [11, 15, 16]
(written concurrently with this work – see [13]) are consonant with our point of
view, in that they provide a precise, meaningful, provable guarantee. All three
follow the same paradigm: for every record in the database, the adversary’s con-
fidence in the values of the given record should not significantly increase as a
result of interacting with or exposure to the database. The assumption is that
the adversary can name individual records in the database; this captures the set-
ting in which the database is multi-attribute, and the adversary has somehow,
out of band, figured out enough about some individual to construct a query that
effectively names the individual. Even in such a setting, it should be impossible
to learn the value of even a single additional binary data field or the value of
any predicate of the data tuple.

The work of Evfimievsky et al. [16] is in our model, ie, it describes a san-
itization method (in this case, for transactions). Specifically, it is an input-
perturbation technique, in which items are randomly deleted from and added
to transactions. As we understand their work, both their specific technique and
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their definitions only consider applying the same, fixed, perturbation to each
point in the database, independent of the other points in the database. Neither
our definitions nor our techniques make this assumption. This both enhances
utility and complicates privacy arguments.

Cryptographic Approaches. Much work in cryptography has focused on topics
closely related to database privacy, such as private information retrieval and
secure function evaluation (see, e.g., [18] and [20]). These problems are somewhat
orthogonal to the one considered here. In secure function evaluation, privacy is
preserved only to the extent possible given a specific functionality goal; but
which functions are “safe” in the context of statistical databases? The literature
is silent on this question.

2 A Formal Definition of Privacy

2.1 What do We Mean by “Privacy”?

As mentioned above, our notion of privacy breach is inspired by Gavison’s writ-
ing on protection from being brought to the attention of others. This phrase
articulates the common intuition that our privacy is protected to the extent that
we blend in with the crowd. To convert this intuition into a precise mathematical
statement we must abstract the concept of a database, formulate an adversary
(by specifying the information to which it has access and its functionality), and
define what it means for the adversary to succeed.

2.2 Translation into Mathematics

Under our abstraction of the database privacy problem, the real database (RDB)
consists of n unlabeled points in high dimensional space IRd, each drawn inde-
pendently from an underlying distribution D. Intuitively, one is one’s collection
of attributes. The census bureau publishes a sanitized Database (SDB), contain-
ing some n′ points, possibly in a different space. This is a very general paradigm;
in particular, it covers the case in which the SDB contains only summary infor-
mation.

To specify security of a cryptographic primitive we must specify the power
of the adversary and what it means to break the system. Since the goal of our
adversary is to “single out” a record in the database, we call the adversary an
isolator. The isolator takes two inputs – the sanitized database and auxiliary
information (the auxiliary information is analogous to the history variable in
the definition of semantic security). The isolator outputs a single point q ∈ IRd.
This completes the description of the functionality of the adversary. Note that
the definition admits adversaries of unbounded computational power. Our results
require no complexity-theoretic assumptions5.

5 We do not object to using complexity-theoretic assumptions. We simply have not
yet had a need to employ them.
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We next define the conditions under which the adversary is considered to
have succeeded in isolating. The definition is parameterized with two values: a
privacy threshold t, intuitively, the size of the “crowd” with which one is supposed
to blend in, and an isolation parameter c, whose use will be clear in a moment.
Roughly, c helps to formalize “blending in”.

For a given isolating adversary I, sanitized database SDB, and auxiliary
input z, let q = I(SDB, z) (I may be a randomized algorithm). Let δ be the
distance from q to the nearest real database point, and let x be an RDB point
at distance δ from q. Let B(p, r) denote a ball of radius r around point p. If
the d-dimensional ball of radius cδ and centered at q contains at least t real
database points, that is, if |RDB ∩ B(q, cδ)| ≥ t, then the adversary fails to
isolate x. Otherwise, the adversary succeeds.

We will give a slightly more general definition shortly. First we give some
intuition for the definition. The adversary’s goal is to single out someone (i.e.,
some RDB point) from the crowd, formalized by producing a point that is much
closer to some x ∈ RDB than to t− 1 other points in the RDB. The most likely
victim x is the RDB point closest to q. So q “looks something like” x. On the
other hand, if B(q, cδ) contains at least t RDB points, then q also looks almost
as similar to lots of (i.e., t−1) other RDB points, so x hasn’t really been singled
out.

Note that the definition of isolation is a relative one; the distance requirement
for success varies according to the local density of real database points. This
makes sense: if we name an intersection in New York City, there are perhaps a
few hundred people living at or very near the intersection, so our point is “close
to” many points (people) in the RDB. In contrast, if we name an intersection
in Palo Alto, there are perhaps 10 people living near the intersection6. More
generally, we have the following definition:

Definition 1. ((c, t)-isolation) Let y be any RDB point, and let δy = ‖q− y‖.
We say that q (c, t)-isolates y if B(q, cδy) contains fewer than t points in the
RDB, that is, |B(q, cδy) ∩ RDB| < t.

We frequently omit explicit mention of t, and speak of c-isolation. It is an easy
consequence of the definitions that if q = I(SDB, z) fails to c-isolate the nearest
RDB point to q, then it fails to c-isolate even one RDB point.

For any point p (not necessarily in the RDB), we let τp be the minimum
radius so that B(p, τp) contains t RDB points. We call this the t-radius of p.

3 Definition of Sanitization

Suppose one of us publishes all our information on the web — that is, we publish
our RDB point x where the adversary can find it — so that the point is part
of the adversary’s auxiliary information. Clearly, the adversary can isolate x by
setting q = x (in which case δx = 0 and B(q, cδx) contains only x — we assume

6 This analogy was suggested by Helen Nissenbaum.
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no two points are identical). It seems unfair to blame the sanitizing procedure for
this isolation; indeed, there is an adversary simulator that, without access to the
sanitized database, can also isolate x, since x is part of the auxiliary information.
We are therefore concerned with how much seeing the sanitized database helps
the adversary to succeed at isolating even one RDB point. Intuitively, we do not
want that seeing the SDB should help “too much”. Our notion of “too much”
is fairly relaxed. Letting ε denote the probability that isolation may occur, we
tend to think in terms of, say, ε = 1/1000. This says that about one out of every
1,000 sanitized databases created may be vulnerable to an isolation event7. The
parameter ε can be a function of d and n. Note, however, that ε cannot depend
only on n – otherwise privacy could be improved simply by the introduction of
additional points.

More formally, a database sanitizer, or simply sanitizer for short, is a ran-
domized algorithm that takes as input a real database of some number n of
points in IRd, and outputs a sanitized database of some number n′ of points, in
a possibly different space IRd′

.
A sanitizer is perfect if for every distribution D over IRd from which the

real database, for all isolating adversaries I, and points are drawn, there exists
an adversary simulator I ′ such that with high probability over choice of RDB,
for all auxiliary information strings z, the probability that I(SDB, z) succeeds
minus the probability that I ′(z) succeeds is small. The probabilities are over the
coin tosses of the sanitization and isolation algorithms. We allow the sanitizer
to depend on the parameters c, t, and also allow I, I ′ to have access to D.

More precisely, let ε be a parameter (for example, ε = 2−d/2). We require that
for all I there exists an I ′ such that, if we first pick a real database RDB ∈R Dn,
then with overwhelming probability over RDB, for all z,∑

x∈RDB

|Pr[I(SDB, z) isolates x]− Pr[I ′(z) isolates x]| < ε,

where the probabilities are over the choices made by I, I ′, and the sanitization
algorithm.

Remark 1. The summation (over x ∈ RDB) is for the following reason. Suppose
the adversary knows, as part of its auxiliary information, some point y ∈ RDB.
For every x 6= y ∈ RDB, we want x’s chances of being isolated to remain more
or less unchanged when the adversary is given access to the sanitized database.
Thus, if we were to write |Pr[∃x I(SDB, z) isolates x]−Pr[∃x I ′(z) isolates x]| <
ε, then we might have z = y ∈ RDB, I ′(z) = y, and I(SDB, z) could (somehow)
isolate a different point x 6= y ∈ RDB with probability one. This is clearly
unsatisfactory.

This is excessively ambitious, and in fact a nontrivial perfect sanitizer does
not exist [14]. However, by specifying the ideal we can begin to articulate the

7 The adversary has no oracle to tell it when it has succeeded in isolating an RDB
point.
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value of specific sanitization techniques. For a given technique, we can ask what
can be proved about the types of distributions and auxiliary information for
which it can ensure privacy, and we can compare different techniques according
to these properties.

4 Histograms

Consider some partition of our space IRd into disjoint cells. The histogram for
a dataset RDB is a list describing how many points from the dataset fall into
each cell. A sanitization procedure is histogram-based if it first computes the
histogram for the dataset and bases the output only on that information.

For example, in one dimension the cells would typically be sub-intervals of
the line, and the histogram would describe how many numbers from the dataset
fall into each of the intervals. In higher dimensions, the possibilities are more
varied. The simplest partition divides space into cubes of some fixed side-length
(say at most 1). That is, each cell is a cube [a1, a1 + 1] × · · · × [ad, ad + 1] for
integers a1, ..., ad.

Our principal result for histograms is that, if the original data set RDB
consists of n points drawn independently and uniformly from some large cube
[−1, 1]d, then the following sanitization procedure preserves privacy:

Recursive Histogram Sanitization: Divide the cube into 2d equal-
sized subcubes in the natural way, i.e., by bisecting each side at the
midpoint. Then, as long as there exists a subcube with at least 2t points
from RDB, further subdivide it into 2d equal-sized cubes. Continue until
all subcubes have fewer than 2t points, and release the exact number of
points in each subcube.

Theorem 1. Suppose that RDB consists of n points drawn i.i.d. and uniformly
from the cube [−1, 1]d. There exists a constant csecure (given in Lemma 2) such
that the probability that an adversary, given a recursive histogram sanitization
as described above, can csecure-isolate an RDB point is at most 2−Ω(d).

The proof is quite robust (in particular, the error bound does not depend
on n). Using the techniques developed in this section, several variants on the
partitioning described above can be shown to preserve privacy, even under less
rigid assumptions about the underlying distribution. Thus, our goals are to prove
privacy of histogram sanitizations, to illustrate techniques that are useful for
proving privacy, and to establish a result which we will need when we deal with
cross-training-based sanitizers later on.

The technical heart of the proof of Theorem 1 is following proposition:

Proposition 2 Suppose that the adversary knows only that the dataset consists
of n points drawn i.i.d. from the cube [−1, 1]d, and that we release the exact
histogram (cell counts) for the natural partition of this cube into 2d subcubes of
side-length 1. Then the probability that the adversary succeeds at c-isolating a
point for c > 121 is at most 2−Ω(d), as long as t = 2o(d).
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The constant 121 in the proposition can in fact be improved significantly, to
approximately 30, with minor changes to the proofs in this section.

This result is strong—it essentially states that for any point q which the
adversary might produce after seeing the histogram, the distance to q’s nearest
neighbor is at most a constant less than the distance between q and its 2o(d)-
th nearest neighbor. When n = 2o(d), the result is perhaps less surprising: the
distance between q and its nearest neighbor is Ω(

√
d) with high probability, and

2
√

d is an upper bound on the distance from q to its farthest neighbor (assuming
q is in the large cube [−1, 1]d). For very large values of n (say 2Ω(d)), the proof
becomes much more involved.

Remark 2. We would like to understand the probability that the adversary iso-
lates a point after seeing the sanitization, given reasonable assumptions about
the adversary’s a priori view of the database. Currently we assume that the
underlying distribution is uniform on a d-dimensional hypercube. The follow-
ing example shows that such a “smoothness” condition is necessary to obtain a
bound on the adversary’s probability of success, when a histogram of the data
is released.

Consider the following distribution. In each of the 2d subcubes of the hyper-
cube, there is an infinite sequence of points p1, p2, . . .. The probability density
at point pi is 1

2d
1
2i . That is, each subcube has equal mass, and within a sub-

cube, mass is distributed over the infinite sequence of points in an exponentially
decreasing manner. Now, if the adversary knows the number of points in a sub-
cube, say m, then, she produces the point q = plog m in that subcube. With a
constant probability, there are at least one, but no more than t, points at q, and
the adversary succeeds. On the other hand, without knowledge of the number of
points in each subcube (as given by the histogram), the adversary simulator I ′

has an exponentially low probability of succeeding.

The next subsections sketch the proof of Proposition 2. The full version of
the paper contains the details of the proof, as well as extensions to cover finer
subdivisions of the cube and the recursive sanitization described above.

4.1 Simplifying the Adversary

We distinguish two related definitions of isolation. The adversary is always given
the sanitized database SDB as input (the adversary may also receive side infor-
mation about the real database—typically, in our setting, the distribution from
which the points in the real database are drawn).

– A ball adversary produces a pair (q, r) where q ∈ IRn is a point in space
and r ∈ IR+ is a non-negative real number. The adversary succeeds if B(q, r),
the ball of radius r centered at q, contains at least one point in RDB, but
B(q, cr) contains fewer than t points in RDB (equivalently, r < τq/c).

– A point adversary produces only a point q ∈ IRn. The adversary succeeds
at c-isolation if there is a point in D within distance τq/c of q, i.e. if there
exists some r for which the corresponding ball adversary would have won.
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We first prove Proposition 2 for ball adversaries since their behavior is eas-
ier to understand. At the end of the proof, we show that point adversaries do
essentially no better than ball adversaries in this context, and so the restriction
to ball adversaries is made without loss of generality.

4.2 Proof Sketch for Proposition 2

We sketch here the proof of Proposition 2. Recall that the points in the real
database RDB are drawn uniformly from the large cube [−1, 1]d, and the san-
itization consists of the number of points from RDB contained in each of the
cubes obtained by dividing [−1, 1]d once along each dimension. That is, a cell C
is a d-dimensional hypercube of side-length and volume 1, which has one vertex
at (0, 0, ..., 0) and the opposite vertex in the set {−1,+1}d. The total number of
points in the database is n, and we denote the number of points appearing in a
cell C by nC . The sanitization is simply the list of all 2d values nC .

Define a function f : IRn → IR+ which captures the adversary’s view of the
data.

f(x) =
nC

n
· 1
Vol(C)

for x ∈ C. (1)

The function f is a probability density function. The adversary does not
see the data as being drawn i.i.d. according to f , but the function is useful
nonetheless for bounding the adversary’s probability of success.

Lemma 1. If a ball adversary succeeds at c-isolation with probability ε, then
there exists a pair (q, r) such that Prf [B(q, r)] ≥ ε/n and Prf [B(q, cr)] ≤ (2t +
8 log(1/ε))/n. 8

The intuition for the proof of Lemma 1 is simple: it is sufficient to show that
if one considers only the number of points landing in a particular region, there is
almost no difference between the adversary’s view of RDB and a set of n points
sampled i.i.d. from f .

Roughly, Lemma 1 means that for a ball adversary to succeed, a necessary
(but not sufficient) condition is that:

Prf [B(q, r)]
Prf [B(q, cr)]

≥ ε/n

(2t + 8 log(1/ε))/n
= ε/(2t + 8 log(1/ε)). (2)

This means that it is sufficient to bound the ratio on the left-hand side above
by some negligible quantity to prove privacy against ball adversaries (in fact, the
upper bound need only hold as long as Prf [B(q, r)] is itself not too large). The
better the bound on the ratio in Eqn. (2), the better the result on privacy. To get
the parameters described in the statement of Proposition 2, it will be sufficient
to prove a bound of 2−Ω(d) for the ratio: we can then think of ε as 2−γd, for a
constant γ < 1, and think of t as being 2−o(d).
8 We are assuming that n is at least 2t + 8 log(1/ε). The assumption is not necessary,

but simplifies the proofs. In fact, when n is small one can use completely different
proofs from the ones described here which are much simpler.
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The upper bound, and the proof of Proposition 2, rely on the following
lemma:

Lemma 2. There is a constant 1/60 < β < 1 such that, for any point q, radius
r > 0 and cell C for which B(q, r) ∩ C 6= 0, we have:

1. If r ≤ β
√

d, then
Vol(B(q, r) ∩ C)
Vol(B(q, 3r) ∩ C)

≤ 2−Ω(d). (3)

2. If r > β
√

d, then for all cells C ′ neighboring C:

C ′ ⊆ B(q, csecurer) (4)

where csecure ≤ (2/β)+1. A neighboring cell is a cube of the same side-length
which shares at least one vertex with C.

Remark 3. The value of the constant β can be made much larger, at least 1/15.
Obtaining this bound requires more careful versions of the proofs below.

A detailed proof is in the full version. Roughly, to prove Part 1, we need to
estimate the probability that a point chosen from a ball lies is a cube. To this
end, we approximate sampling from a ball by sampling from an appropriately
chosen spherical Gaussian. This allows us to analyze behavior one coordinate at
a time. Our (rather involved) analysis only holds for radii r ≤ β

√
d. It is possible

that a different analysis would yield a better bound on β and hence on β.
Part 2 is much simpler; it follows from the fact that the diameter of the cube

[−1, 1]d is 2
√

d.
We can now prove Proposition 2, which states that releasing the histogram

preserves privacy, with the adversary’s success probability bounded by 2−Ω(d).
We first give a proof for ball adversaries, and then observe that (almost) the
same proof works for point adversaries too.

Proof (of Proposition 2). Ball adversaries: Assume there is a ball adversary who
chooses the best possible pair (q, r) based on SDB.

First, suppose that r ≤ β
√

d (the constant is from Lemma 2). In that case,
we will actually show that 3-isolation (not 121-isolation!) is possible only with
very small probability. Our proof relies on Part 1 of the lemma. We can write
the mass of B(q, r) under f as a weighted sum of the volume of its intersections
with all the possible cubes of C:

Pr
f

[B(q, r)] =
∑
C

nC

n
· Vol(B(q, r) ∩ C)

We can bound each of these intersections as an exponentially small fraction
of the mass of B(q, 3r):

Pr
f

[B(q, r)] ≤
∑
C

nC

n
· 2−Ω(d) · Vol(B(q, 3r) ∩ C) = 2−Ω(d) · Pr

f
[B(q, 3r)]
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Now the mass of B(q, 3r) is at most 1, which means that the ratio in Eqn. (2)
is at most 2−Ω(d), and so ε/(2t + 8 log(1/ε)) ≤ 2−Ω(d). This is satisfied by
ε = 2−Ω(d) (for essentially the same constant in the Ω-notation), and so in this
case, 3-isolating the point q is possible only with probability 2−Ω(d).

Now consider the case where r > β
√

d. If B(q, r) doesn’t intersect any cells
C, then we are done since the ball captures a point with probability 0. If there
is a cell C which intersects B(q, r), then, by Part 2 of Lemma 2, B(q, csecurer)
(for csecure ≤ (2/β) + 1) contains all the cells C ′ which are neighbors to C, in
particular all of [−1, 1]d. (Recall that our points are initially uniform in [−1, 1]d,
and we consider a subdivision which splits the cube into 2d axis-parallel subcubes
of equal size). The adversary succeeds with probability zero at csecure-isolation,
since all n points will be within distance csecurer.

Point adversaries: Suppose the adversary outputs a particular point q, and let
r be the smallest radius such that Prf [B(q, r)] = ε. By the previous discussion,
B(q, csecurer) contains mass at least (2t + 8 log(1/ε))/n. Thus, with probability
at least 1 − 2ε, there is no point inside B(q, r) and there are t points inside
B(q, csecurer) (by the proof of Lemma 1). The ratio between the distances to the t-
th nearest point and to the nearest point to q is then at most csecurer/r = csecure.
The point adversary succeeds at csecure-isolating a point with probability at most
2ε.

Because β > 1/60, the constant csecure is at most 121, and so the adversary
fails to 121-isolate any point in the database. ut

Remark 4. The proof technique of this section is very powerful and extends in
a number of natural ways. For example, it holds even if the adversary knows
an arbitrary number of the points in the real database, or (with a worse isola-
tion constant), if the adversary knows a constant fraction of the attributes of a
database point. The analysis holds if the underlying distribution is a mixture of
(sufficiently separated) hypercubes.

Recent work also indicates that histogram sanitization, at least to a limited
depth of recursion, can be constructed for “round” distributions such as the
sphere or the ball [6]. Together, these techniques yield privacy for sufficiently
separated mixtures of round and square distributions.

5 “Round” Perturbation Sanitizations

Perturbation via additive noise is a common technique in the disclosure control
literature. In this section, we present a variant on this technique in which the
magnitude of the noise added to a point depends on the local density of the
database near the point. We consider three perturbation sanitizers that are very
similar when the dimension d is large. In these sanitizers, d′ = d and n′ = n
(that is, the sanitized database consists of points in the same space as the real
database, and the numbers of points in the real and sanitized databases are
identical). As before, let B(p, r) denote the ball of radius r around p, let S(p, r)
denote the corresponding sphere, or the surface of B(p, r). Let N (µ, σ2) denote
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a d-dimensional Gaussian with mean µ and variance σ2 in every dimension. For
x ∈ IRd, the t-radius τx is the minimum radius such that B(x, τx) contains t
RDB points (x need not be an RDB point.)

1. The Ball Sanitizer: For x ∈ RDB, BSan(x, RDB) ∈R B(x, τx).
2. The Sphere Sanitizer: For x ∈ RDB, SSan(x, RDB) ∈R S(x, τx).
3. The Gaussian Sanitizer: For x ∈ RDB, GSan(x, RDB) ∈R N (x, τ2

x/d).

We will refer to these as round, or spherical sanitizers, because of the shape of
the noise distribution. The intuition for these sanitizations is three-fold: we are
blending a point in with a crowd of size t, so privacy should be preserved; points
in dense regions should be perturbed much less than points in sparse regions,
and so the sanitization should allow one to recover a lot of useful information
about the database, especially information about clusters and local density; we
are added noise with mean zero, so data means should be preserved.

Round sanitizations have been studied before, typically with independent,
identically distributed noise added to each point in the database. This approach
implicitly assumes that the density of the data is more or less uniform in space
for the entire data set. Even with data drawn i.i.d. from a uniform distribution on
a fixed region, this need not be the case. Indeed, Roque [27] showed that (in low
dimensions) re-identification software defeats this i.i.d. spherical noise, though
the standard packages fail if the noise is not spherical (say, drawn from from a
mixture of Gaussians). Kargupta et al. [24] argue that independent additive per-
turbation may have limited application to preserving privacy insofar as certain
informative features of the data set (e.g.: the principal components) are largely
unaffected by such perturbations. Their argument assumes (critically) that the
sanitizer applies a fixed distribution to each element, and ultimately describes
how to reconstruct the covariance matrix of the attributes. In this work, we ap-
ply data-driven distributions to the elements, and prove privacy guarantees for
the individuals. Moreover, we conjecture it is possible to exploit what Kargupta
et al. perceive as a weakness (reconstructing the covariance matrix, which we
can do), while provably maintaining privacy (which we conjecture)9. Finally, the
data-dependent noise distribution provides more potential functionality than a
fixed noise distribution [4, 1, 16], at the cost of a more difficult analysis.

5.1 Results for Round Sanitizers

We have obtained several results on the privacy and utility of round sanitizations.
Our most powerful result is concerned with learning a mixture of Gaussians from
the sanitized data. This result is of independent interest, and is described in the
Section 5.2. We first summarize our results.
9 Specifically, given recent results in constructing histograms for round distribu-

tions [6], we conjecture it will be possible to obtain cross-training results for mixtures
of Gaussians, analogous to our cross-training results for the hypercube described in
Section 6 below.
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Utility. The task of extracting information from a database whose points have
been spherically perturbed is essentially one of learning from noisy data. Stan-
dard techniques do not apply here, since the noise distribution actually depends
on the data. Nonetheless, we prove two results using the intuition that round per-
turbations preserve expectations (on average) and that our particular strategy
is suited to clustering.

1. When the data are drawn uniformly from a mixture of Gaussians D, there is
an efficient algorithm that learns D from the Gaussian sanitization. Learn-
ing mixtures of Gaussians has already been heavily investigated [3, 8, 32],
however existing analyses do not apply in our setting. The algorithm and its
analysis are sketched in Section 5.2.

2. For any distribution, suppose we are given an algorithm to find k clusters,
each of cardinality at least t, minimizing the maximum diameter of a cluster,
and assume the data are sanitized with either BSan or SSan. Then running
the algorithm on the sanitized data does a good job of clustering the original
data. More precisely, any algorithm that approximates the optimal cluster-
ing of the sanitized database to within a constant factor gives an algorithm
that approximates the optimal clustering of the real database to within a
constant factor, and the maximum diameter of a cluster exceeds the maxi-
mum diameter of an optimal k-clustering on the RDB by at most a factor
of 3.

Privacy. The intuition for privacy is significantly harder to turn into a complete
proof than is the one for utility. We analyze two special cases, and give a lower
bound showing that high-dimensionality is necessary for the privacy of this type
of sanitization. The proofs of the results below appear in the full version of the
paper.

1. The database consists of only two points, x and y, which are sanitized with
respect to each other, and the underlying distribution is the unit sphere
in d dimensions. That is, t = 2 and each of x and y is perturbed using
SSan with perturbation radius ‖x− y‖. The adversary is given ‖x− y‖, and
the sanitizations x′ and y′. We show that the probability of 4-isolation is
exponentially small in d, with overwhelming probability over the choice of
x and y. The proof is by symmetry: we construct many pairwise-distant
“decoy” pairs x′, y′ which are equiprobable in the adversary’s view.

2. The real database consists of n sanitized points, drawn from the d-dimensional
unit sphere. The adversary is given all but one point in the clear, together
with a sanitization of the final point using SSan. The adversary’s goal is to
4-isolate the last point. Intuitively, privacy holds because the hidden point
can lie in any direction from its sanitization, while any point q produced by
the adversary can only isolate points lying in an exponentially small fraction
of these directions. The result is proved for t = 2.

3. Sanitization cannot be made arbitrarily safe: for any distribution, if sani-
tization is done using BSan, then there is a polynomial time adversary I
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requiring no auxiliary information, such that the probability that the adver-
sary succeeds is Ω(exp(−d)/ log(n/t)).

Remark 5. The second result above highlights the delicacy of proving privacy for
this type of sanitization. Contrary to intuition, it is not the case that seeing the
sanitizations of the remaining n− 1 points, rather than their exact values, gives
less information. The reason is that the sanitization of y, implicitly contains in-
formation about the t-neighborhood of y. This sort of dependency is notoriously
hard to deal with in cryptography, e.g. in the selective decommitment problem.
We have not yet proved or disproved the viability of the above-mentioned sani-
tizations; instead we circumvent the difficulty via cross-training.

5.2 Learning Mixtures of Gaussians

In this section we look at an algorithm for mining sanitized data. We address the
well-studied problem of learning a mixture of Gaussians, with the twist that the
samples have been sanitized using one of the round sanitizers discussed above.
The distribution that results from the sanitization is no longer a mixture of
Gaussians (samples are not even independent!) and traditional algorithms for
learning mixtures of Gaussians do not apply. Nonetheless, we will see that the
core properties that make Gaussian mixtures learnable remain intact, and prove
that the mixtures can be read from an optimal low rank approximation.

We assume there are k mean vectors µi, each with an associated mixing
weight wi. Let wmin denote the minimum of the mixing weights. Each point
in the data set is independently produced by selecting a µi with probability
proportional to the wi, and applying independent, normally distributed noise
to each coordinate. We assume that the Gaussians are spherical, in that every
Gaussian has an associated variance that is used for each of the coordinates. Let
σ2

1 denote the maximum such variance. We assume that the sanitization process
amounts to applying an additive perturbation established by choosing a point
uniformly at random from the unit sphere, which is then scaled in length by
a random variable at most 2σ2

√
d, where σ2 may depend on the sampled data.

Notice that this is sufficiently general to capture all the perturbation based
sanitizations described above – SSan, BSan, and GSan – the latter two using a
random variable for the scaling factor.

For the purposes of analysis, we assume that we have access to two data
sets A and B that have been independently sanitized. Each is assumed to result
from the same underlying set of means, and to be independent of the other.
We use Au to denote the sanitized vector associated with u, Âu the unsanitized
vector associated with u, and Au the original mean vector associated with u.
We form the matrices A, Â, and A by collecting these columns for each point
in the data set. Let wu denote the mixing weight associated with the Gaussian
with mean Au. The matrices B, B̂, and B and their associated columns are
analogous, though they represent an independently sanitized disjoint data set.
While this setting is not difficult for the sanitization process to accommodate,
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the motivation is simply for the clarity of analysis and it is unclear whether
disjoint data sets are necessary in practice.

The main linear algebraic tool that we use is a matrix’s optimal rank k
projection. For every matrix M , this is a projection matrix PM , such that for all
rank k matrices D, we have ‖M−PMM‖2 ≤ ‖M−D‖2. Computing the optimal
projection is not difficult; in most cases it is an O(dn log(dn)) operation. We
also make use of the single linkage clustering algorithm [29]. For our purposes,
given a collection of points, single linkage repeatedly inserts an edge between
the closest pair of non-adjacent points until the resulting graph has k connected
components. Our actual algorithm can be stated succinctly:

Cluster(A,B, k)
1. Compute PA and PB , and form C = [PBA|PAB].
2. Apply single linkage to C, forming k clusters.

Cluster takes a pair of data sets, and uses the structure define by each data set to
filter the noise from the points in the other. If the mean vectors µi have sufficient
separation, all inter-cluster distances in C will exceed all intra-cluster distances
in C, and single linkage will associate exactly those points drawn from the same
mean.

Theorem 3. Assume that d < n/2. If for each pair of means µi, µj,

‖µi − µj‖ ≥ 4(σ1 + σ2)(16/w
1/2
min +

√
k log(kn/δ))

then with probability 1 − 2(e−nwmin/8 + 2− log6 n/2 + δ), Cluster partitions the
columns of A and B according to the underlying Gaussian mixture.

Proof. The proof is conducted by bounding ‖µu − Cu‖ for each u. Assume,
without loss of generality, that µu = Au and Cu = PBAu. Notice that

‖µu − Cu‖ = ‖Au − PBAu‖ ≤ ‖Au − PBAu‖+ ‖PBAu − PBAu‖

In Lemmas 3 and 4 below, we bound these two terms, so that their sum is at
most 1/4 the assumed separation of the mean vectors. With such separation, all
inter-cluster distances are at least 1/2 the mean separation, and all intra-cluster
distances are at most 1/2 the mean separation.

Although the above result requires a uniform bound on the pairwise separa-
tion between the means of the clusters, by using a more sophisticated clustering
algorithm than Single-Linkage on the low-dimensional projection of the data,
we can improve the results such that the requisite separation between a pair of
means depends only on the variances of the corresponding Gaussians.

Lemma 3 (Systematic Error). Assume d < n/2. With probability at least
1− (e−nwmin/8 + 2− log6 n/2), for all u

‖(I − PB)Au‖ ≤ 16(σ1 + σ2)/w1/2
u
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Proof. Note that there are likely many columns v in B drawn from the same
mean as u, i.e., columns v for which

(I − PB)Au = (I − PB)Bv

With probability at least 1−e−nwu/8, column (I−PB)Au occurs at least nwu/4
times in (I − PB)B. Let the row vector x have a 1 in each position that such a
column exists. The definition of the L2 norm requires

‖(I − PB)Bx‖/‖x‖ ≤ ‖(I − PB)B‖2

Note that Bx = Au‖x‖2, which leads us to

‖(I − PB)Au‖ ≤ ‖(I − PB)B‖2/‖x‖

As with high probability ‖x‖ >
√

nwu/4, we now work to bound the matrix
norm on the right hand side. The triangle inequality implies that

‖(I − PB)B‖2 ≤ ‖(I − PB)(B −B)‖2 + ‖B − PBB‖2

(I−PB) is a projection matrix of unit L2 norm, and so the first term is bounded
by ‖B − B‖2. The optimality of PBB bounds the second term by ‖B − B‖2 as
B is a rank k matrix. Combining these two bounds yields

‖(I − PB)B‖2 ≤ 2‖B −B‖2

Finally, to bound ‖B−B‖2 we use a result of Furedi and Komlos [17], which
places a high probability bound on the norm of zero mean random matrices
with independent entries. While B −B does not have independent entries – the
sanitization process depends on the result of the random events producing B̂
– each of the matrices B − B̂ and B̂ − B do meet the criteria for Furedi and
Komlos’s bound. As such, with probability at least 1− 2− log6 n/2

‖B −B‖2 ≤ ‖B − B̂‖2 + ‖B̂ −B‖2
≤ 4σ1

√
n/2 + d + 4σ2

√
n/2 + d

= 4(σ1 + σ2)
√

n

Combining these several bounds, we arrive at the statement of the theorem.

Lemma 4 (Random Error). For each u,

Pr[‖PB(Au −Au)‖ > c(σ1 + σ2)
√

k] ≤ 2ke−c2

We prove this lemma for the GSan sanitizer. However, the proof is easily
modified to accommodate BSan and SSan sanitizers. Note that each are normal-
izations of GSan vectors, and will only change the projection by the factor of
normalization. As we are discussing high dimensional Gaussians, the normaliza-
tion factor will be highly concentrated, and unlikely to result in even a non-trivial
constant factor.
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Proof. We start by bounding

‖PB(Au −Au)‖ ≤ ‖PB(Au − Âu)‖+ ‖PB(Âu −Au)‖

Both Au− Âu and Âu−Au are d dimensional multivariate Gaussians with mean
zero. These distributions are spherically symmetric, and their projection onto a
fixed k dimensional subspace results in a k dimensional Gaussian in this space,
with the same variance in each coordinate. The length of such vectors is described
by the χ2 distribution, and standard concentration bounds give the probability
noted above.

6 Combining Histograms and Perturbations:
Cross-Training

We are drawn to spherical sanitizations because of their apparent utility (see
the discussion in Section 5.1). However, as noted in Remark 5, we have some
concerns regarding the privacy offered: it is not the privacy of the perturbed
points that concerns us, but the privacy of the points in the t-neighborhood of
the perturbed points (since the sanitization radius itself leaks information about
these points). In this section, we combine a histogram-based sanitization with
a spherical sanitization to obtain a provably private spherical sanitization for
n = 2o(d) points, (again in the absence of auxiliary information).

We randomly divide the dataset into two sets — A and B10. We construct a
recursive histogram on B (as in Section 4). We then sanitize points in A using
only their position in the histogram on B. We release the sanitizations of points
in A, along with the exact count, for every cell in the histogram, of points in
A and B lying in that cell. We also assume that the adversary knows for every
sanitized point v′ ∈ SDB, the cell in the histogram that its pre-image v ∈ A lies
in (this only helps the adversary).

For a point v ∈ A, let C be the cell containing v in the recursive histogram
constructed for B. Let P (C) be the parent cell of C. P (C) has twice the side-
length of C, and contains at least t points. Consider the following sanitization
procedure:

Cross-Training Round Sanitization: Let ρv be the side-length of the
cube C. Select a point Nv at random from a spherical Gaussian which
has variance ρ2

v in each coordinate. Output v′ = v + Nv.

As shown above, this procedure protects the privacy of points in B since the
information released about these points depends only on the recursive histogram
of the set B. In this section we prove that it also protects the privacy of points
in A, under the assumption that from the adversary’s point of view, the a priori
distribution of points in the database is uniform when restricted to the cell C.

Consider a particular point v ∈ A. Suppose the side-length of the cell C
containing v is ρv. Lemma 5 below shows that with probability 1− 2−Ω(d) over
10 In fact, our proof only requires that A contain at most 2o(d) points.
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the choice of RDB and the coins of the sanitization algorithm, the following
occurs: for any point q which the adversary might produce, the distance between
q and v will be Ω(ρv

√
d). Since the t-radius of v is O(ρv

√
d), this implies that

adversary c-isolates v with probability at most 2−Ω(d) (for some constant c).
The result is quite useful. If A contains 2o(d) points, then a union bound

shows that with probability at least 1−2−(Ω(d)−o(d)), the sanitization is “good”:
that is, the adversary can succeed at isolating some point with probability at
most 2−Ω(d).

Below, we state the main lemma of this section; the proof, omitted for lack
of space, is in the full version.

Lemma 5. Suppose that v is uniformly distributed in the cube C, and q is the
output of the adversary on input v′ = v + Nv. There is a constant α < 9 such
that with probability 1− 2−Ω(d), the ball B(q, (α + 1)‖v− q‖) contains the entire
parent cell P (C). The probability is over choice of the real database RDB and
the coins of the sanitization algorithm.

7 Future Work

Isolation in few dimensions. Many have raised the case in which the adversary,
studying the sanitized data, chooses a small set of attributes and outputs values
that uniquely identify a point in the RDB (no other point in the RDB agrees
well with the given point on this particular set of attributes). This may not be
a privacy breach as we have defined it, since the adversary may have very bad
luck at guessing the remaining attribute values, and therefore the point q that
the adversary produces may not be particularly close to any point in the RDB.
However, as M. Sudan has pointed out, the adversary may know the difference
between the attributes on which it is guessing and the ones it has learned from
the sanitized data.

We are uncertain exactly what it means for the adversary to “know” this
difference. Our notion of privacy breach essentially says we don’t care about
such things: after all, releasing a histogram cell count of 1 says there is a unique
individual in a certain subcube, but we prove that the advesary cannot isolate
this individual. However, the question is provocative.

The attack corresponds imprecisely to identification of a short key for a
population unique (see the discussion in Section 1.2). Alternatively, the adversary
may know a key to a population unique and the worry is that the sanitization
may permit the learning of additional attribute values. On the one hand, we note
that our definition of a perfect sanitization precludes either of these possibilities:
roughly speaking, if it were possible to learn the key to a population unique then
there is a choice for the auxiliary information that would permit the remaining
attribute values to be learned, which would constitute an isolation. On the other
hand, we have already noted that perfect sanitizers cannot exist [14], and our
privacy results have been proved, for the most part, without permitting the
adversary auxiliary information.
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With this in mind, one may extend the definition of isolation to allow the
adversary to approximate a real point in only a few attributes. Note however,
that as the number of attributes estimated by the adversary decreases, the no-
tion of isolation must become more and more stringent. This corresponds to an
increase in the parameter c in our definition of c-isolation.

This suggests the following extended definition. The adversary, upon receiv-
ing the SDB, outputs a k-dimensional axis-parallel hyperplane H (k ≤ d), and
a point q in this hyperplane. Let ΠH(y) denote the projection of an RDB point
y onto the hyperplane H. Let y be the RDB point which is closest to q under
the projection ΠH . For a given function φ(k), we say that q (φ, c, t)-isolates
y in H iff ΠH(y) is (φ(k)c, t)-isolated by q in the projected space H. Recur-
sive histogram sanitizations are safe with respect to (φ,O(1), 2o(d))-isolation for
φ(k) = 2d/k.

We believe that understanding these issues is the most important conceptual
challenge arising from this work.

Histogram Sanitizations of Round Distributions and of Mixtures. An immediate
focus of future work will be to investigate histogram sanitizations in the context
of the “round” (spherical, ball, and Gaussian) distributions. (Chawla et al. [6]
prove privacy of a first-level histograms for balls and spheres, in which the dis-
tribution is partitioned into exp(d) regions, but as of this writing the results
only extend to a constant number of recursive steps). Together with a cross-
training result for round distributions, such a result would nicely complement
our learning algorithm for mixtures of Gaussians.

The results extend immediately to the case in which the underlying distribu-
tion is a mixture of sufficiently separated “nice” distributions such as hypercubes,
balls, and spheres.

Utility. Another pressing direction is to further explore utility, in particular, a
method for assessing the validity of results obtained by applying a given statis-
tical test to sanitized data. The statistics literature on imputed data (e.g., [26]
should be helpful in this endeavor.

Changes over Time. An important aspect of any sanitization technique is to con-
sider its application in an online setting, where the database changes over time.
We feel that sanitizations of points should not be recomputed independently
as the database changes, because an adversary collecting information over time
may be able to gather enough to filter out the noise. However, in situations such
as when one of the t-nearest neighbors of a point dies, one may be forced to
recompute the sanitization. We believe that in such a case the new sanitization
should be conditioned on the previous one appropriately, so as to prevent leak-
age of extra information. A related open area is to extend the definitions and
techniques to multiple databases.

Real-Life Data. Then, there are the more obvious questions: how to cope with
discrete data, or even non-numerical data. In general, to draw a connection to
real life data, we will need to scale different attributes appropriately, so that the
data are well-rounded. This requires some formal treatment.
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Impossibility Results. M. Naor has suggested studying impossibility results, for
example, searching for utilities that cannot be obtained while maintaining pri-
vacy. Initial investigations, already mentioned in the paper, have been fruitful.
This is a subject of work in progress, joint with Naor.
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