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Symmetric Encryption

• Shannon: Symmetric Encryption without computational 
assumptions requires  k � n (achieved by one-time pad)

• Russell and Wang 2002 [RW02]: What can be said when 

the message is guaranteed to have high entropy?

E D

Key

message messageEve

E(m)

(k bits long)

(n bits long) ???
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“Entropic” Security [CMR98,RW02]

[RW02]: Encryption of high-entropy messages

1. No computational assumptions (statistical secrecy)

2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)

[CMR98]: Hash functions which hide “partial information”

1. Given H(m) and m’, one can check if  m’= m

2. Assume high entropy

3. H(m) leaks no predicate of m
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This Paper

Motivation:

• Systematic study, simplification of entropic security

• Understand “high-entropy secrets” in simple setting

• Develop tools for settings other than encryption

This talk: � Definitions

� Equivalent characterizations (extraction)

� Encryption: analysis, constructions, bounds

� Ideas for Other Settings
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Entropic Security — Intuition

If Eve is uncertain about M, then E(M)

does not reveal any predicate of M.
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Min-Entropy of Random Variables

• There are various ways to measure entropy…

• X a random variable on {0,1}n

• Probability of predicting X = maxx Pr[X = x]

• Min-entropy:        H�(X) = -log (maxx Pr[X=x])

• “ Message has min-entropy t ” means that adversary’s 

probability of guessing the message is 2-t
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� predicates g:{0,1}n � {0,1}

���� (adversaries)  A:{0,1}* � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

• Statistical version of  semantic security à la [GM]
but only for high-entropy distributions
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� predicates g:{0,1}n � {0,1}

���� (adversaries)  A:{0,1}* � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Caveats:
• Assumes that message has high entropy!

What if the adversary knows more than you think he knows?
• Composition / computational “issues”: what happens when such a 

scheme gets plugged into more complex situations?
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� predicates g:{0,1}n � {0,1}

���� (adversaries)  A:{0,1}* � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

[RW02] There exist (λ,ε)-ES schemes with

k � λ + 3 log(1/ε)

(Without high entropy, still need k � n)

Two constructions: twists on the one-time pad. Complicated analysis.
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Results (and Outline)

�Equivalent Definitions:

�Hiding all functions

� Indistinguishability

� Intuition: entropic security � randomness extraction

�Two Simple, General Constructions (improve [RW02])

�Step on expander graph

�Hashing

�Lower Bounds
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Is This the Right Definition?

Before we commit long-term:

• Can we do better? 

• Can we work with this? 

(This one is better than it looks)

(Yes, with effort)

Def: (λ,ε)-entropically secure if ����M (entropy � n-λ),  
���� predicates g:{0,1}n � {0,1}

���� adversaries A,   ���� A’ ,

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε
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Is This the Right Definition?

Q: Why only predicates? What about functions? Relations?

(If cryptography is everything, why sell ourselves short?)

A: Functions are equivalent!  

(Relations impossible with short key)

Def: (λ,ε)-entropically secure if ����M (entropy � n-λ),  
���� predicates g:{0,1}n � {0,1}

���� adversaries A,   ���� A’ ,

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

functions any domain you like
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Equivalence of Functions and Predicates

For function f, random variable M : 

predf (M) =  most likely value  =  maxz{ Pr[f(M) = z] }

Lemma: If

– M random variable (entropy � 2log(1/ε) )

– E() , A()  randomized maps, f arbitrary function.

– Pr[ A(E(M)) = f(M) ]   � predf (M) + ε

Then there exist predicates B and g such that 

Pr[ B(A(E(M))) = g(M) ]   � predg(M) + ε / 4
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Indistinguishability for High Entropy

Def: (λ,ε)-entropically secure if ����M (entropy � n-λ),  
���� predicates g:{0,1}n � any domain you like

���� adversaries A,   ���� A’ ,

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

functions any domain you like

Recall: (Ordinary) semantic security �

� distributions M,M’: E(M) �PPT E(M’) 
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Indistinguishability for High Entropy

Definition: (E,D) is (t,ε)-indistinguishable (IND) if  

� distributions M,M’ with H�(M) , H�(M’) � t:
SD(E(M),E(M’)) � ε

Proposition: (λλλλ,εεεε)-ES equiv. to ( t , εεεε’)-IND for t = n-λ-1

Def: (λ,ε)-entropically secure if ����M (entropy � n-λ),  
���� predicates g:{0,1}n � {0,1}

���� adversaries A,   ���� A’ ,

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

functions any domain you like
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Proof: (λ,ε)-ES � (n-λ-1,4ε)-IND

• Take any M0,M1 of min-entropy � t = n-λ-1
(Sufficient to prove lemma for flat distrib’s on 2t points)

• Suppose M0 	 M1 = 

Use g(x) = b if x � supp(Mb) 
and M* = Mb for b�{0,1}

• H�(M*) = t+1 =n-λ
� No A predicts g better than ½+ε
� SD( E(M0), E(M1) ) � 2ε

• If M0,M1 not disjoint, find M2 disjoint to both.

M0 M1

g=0

g=1
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Proof: (n-λ-1)-IND� λ-ES

• Suppose that � A, f, M such that

Pr[A(E(M)) = f(M) ] � predf(M) + ε

• Define My = M |{f(M)=y}

• Group My’s into bins so that

ε / 2 � weight of My � predf + ε/2

• Advantage still � ε/2

 � some pair E(My), E(Mz) are far

• Contradicts indistinguishability for 

t = n – λλλλ – log(1/ε)

• Save loss in entropy via balancing & Goldreich-Levin (tricky!)

f =1
f =2

f =3

f =5

f =4

M1
M2

M3 M4

M5

M6
M7 M8
M9

M10
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Recall: Indistinguishability

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Def: (t,ε)-indistinguishable (IND) if �M0,M1, H�(Mb) � t:
E(M0) �ε E(M1)

Proposition: (λλλλ,εεεε)-ES equiv. to ( t , εεεε’)-IND for t = n-λ-1

• What does this say? 
– Randomness extractors hide all functions of their source.

• How can we use this?
– Extractors with “invertibility” give encryption schemes
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Outline

�Equivalent Definitions:

�Hiding all functions

� Indistinguishability

� Intuition: entropic security � randomness extraction

�Two Simple, General Constructions (improve [RW02])

�Step on expander graph

�Hashing

�Lower Bounds
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Expander Graphs

• Important tool in … everything.

• Expander = regular, undirected graph with fast mixing time

– Let A = adjacency matrix of d-regular (undirected) graph G

– Vector (1,…,1) has eigenvalue d

– Other eigenvalues � [-d,d]

• G is a β-expander if other eigenvalues � [-βd , βd]

• Random walks converge quickly:

Fact: If H�(p) � t, then walk is ε-far from uniform after at most

steps, where |G| = 2n.n – t + 2 log(1/ε)
2 log (1/β)

When β is 
very small, 

walk 
converges in 

1 step
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Using Graphs for Encryption

• Encryption of m = random step from m

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:

N’( N(u,i) , i) = u

Exercise: Every regular undirected graph 
has an invertible labeling.

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)



23

Using Graphs for Encryption

• Encryption of m = random step from m

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:

N’( N(u,i) , i) = u

Easier exercise: Cayley graphs are 
invertible. 

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)
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Tangent: Cayley Graphs

• Let (V,*) be a group, B={g1,…,gd} a set of generators.

Cayley graph for (V,*,B) has vertex set V and edges:
E = { (u, g*u) | u � V, g � B }.

• Graph is undirected if B contains its inverses.
– E.g. hypercube {0,1}n with B ={vectors of weight 1}

• Natural labeling is N(u,i) = gi*u

• Invertible since N’(w,i) = gi
-1*w

• Graphs in this talk are Cayley graphs
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Using Graphs for Encryption

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When is E (t,ε)-indistinguishable?

A: When walk converges in 1 step.

Sufficient: G is β-expander with β2 � ε2 2t-n

Theorem[LPS]: There exist (explicit) Cayley

graphs with β2 � 1/d = 2-k

Corollary: There exist (λ,ε)-ES encryption 

schemes with k ���� λλλλ + 2 log(1/εεεε)

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)
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[RW02]: Two constructions

1.  E(m,s) = m  b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k � 2 log n + 3 log (1/ε) (here λ = 0)

2.  E(m,s; i) = (φi , φi(m) + s)

– {φi: {0,1}n�{0,1}n }  are 3-wise independent permutations

– k � λ + 3 log (1/ε) (works for all λ)

– 3n bits of additional randomness, difficult proof



27

[RW02]: First construction

1.  E(m,s) = m  b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k � 2 log n + 3 log (1/ε) (here λ = 0)

Same scheme, new analysis:

• G =  Cayley graph for {0,1}n with generators {b(s) | s�{0,1}k} 

• Observe that G is a δ-expander (degree = n2/δ2) (e.g. [BGSW])

• Previous slide � k = λλλλ + 2 log n + 2 log (1/εεεε)
(Same proof works for all λ)
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Two General Constructions

#1 : Steps on an expander graph

#2: Random Hashing (not here)
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Outline

�Equivalent Definitions:

�Hiding all functions

� Indistinguishability

� Intuition: entropic security � randomness extraction

�Two Simple, General Constructions (improve [RW02])

�Step on expander graph

�Hashing

�Lower Bounds
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Lower Bounds

• Lower Bound via Shannon Bound:

k ���� λλλλ

• Lower bound via lower bounds on extractors:

k ���� λλλλ + log(1/εεεε)

– Requires that extra randomness be public, i.e.

E(m,s;i) = (i , E’(m,s;i) )

– All the schemes discussed fit this framework
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Simple Lower Bound

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � pred. g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Proof (reduce to bounds on regular encryption):

• ���� w � {0,1}λ , define distribution Mw = w || Un-λ

(i.e.:   Mw =  w followed by n-λ random bits)

• Indistinguishability������� v,w:   E(Mv) �ε E(Mw)

• This is regular encryption (non-entropic) of w !
• Need k � λ
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Conclusions

• Systematic study of entropic security [CMR98,RW02] 
– Stronger definition + characterization as indistinguishability

– Extractors hide all functions of their source!

– Simple constructions, proofs, lower bounds

• Computational question: preserve running time?

• In what other contexts is ES interesting? 
– Password Hashing [CMR98]: similar definition

– Error Correction (bounded storage, noisy keys) (STOC 05)

– Database Privacy 


