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Symmetric Encryption

Key (k bits long)

E(m)

message (n bits long) Frve message

e Shannon: Symmetric Encryption without computational

assumptions requires k > n (achieved by one-time pad)

e Russell and Wang 2002 [RWO02]: What can be said when

the message 1s guaranteed to have high entropy?



“Entropic” Security [CMR98,RWO02]

[RWO2]: Encryption of high-entropy messages
1. No computational assumptions (statistical secrecy)
2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)
[CMRO98]: Hash functions which hide “partial information”

1. Given H(m) and m’, one can check if m’= m
2. Assume high entropy

3. H(m) leaks no predicate of m



This Paper

Motivation:
e Systematic study, simplification of entropic security

e Understand “high-entropy secrets” in simple setting

 Develop tools for settings other than encryption

This talk: » Definitions
» Equivalent characterizations (extraction)
» Encryption: analysis, constructions, bounds

» Ideas for Other Settings



Entropic Security — Intuition

If Eve 1s uncertain about M, then E(M)

does not reveal any predicate of M.



Min-Entropy of Random Variables

There are various ways to measure entropy...

X a random variable on {0,1}" /' N

Probability of predicting X = max, Pr[X = x]

Min-entropy: H_(X) =-log (maxx Pr[X:x:)

“ Message has min-entropy 7 7 means that adversary’s

probability of guessing the message is 27




Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V predicates g:{0,1}"* — {0,1}
V (adversaries) A:{0,1}* — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A> =g(M)] | < ¢

e Statistical version of semantic security a la [GM]
but only for high-entropy distributions




Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V predicates g:{0,1}"* — {0,1}
V (adversaries) A:{0,1}* — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A> =g(M)] | < ¢

Caveats:

e Assumes that message has high entropy!
What if the adversary knows more than you think he knows?

e Composition / computational “issues’”: what happens when such a
scheme gets plugged into more complex situations?




Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V predicates g:{0,1}"* — {0,1}
V (adversaries) A:{0,1}* — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A> =g(M)] | < ¢

[RWO02] There exist (A,£)-ES schemes with

k~ A+ 3log(l/€)
(Without high entropy, still need k ~ n)

Two constructions: twists on the one-time pad. Complicated analysis.
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Results (and Outline)

» Equivalent Definitions:

» Hiding all functions
» Indistinguishability

» Intuition: entropic security ~ randomness extraction

» Two Simple, General Constructions (improve [RWO02])

» Step on expander graph
» Hashing

> LLower Bounds

11



Is This the Right Definition?

Def: (A,€)-entropically secure if V M (entropy > n-A),
V predicates g:{0,1}" — {0,1}
V adversaries A, JA’,

| PrlA(E(M)) = g(M)] — Pr[A’ =g(M)] | <e

Before we commit long-term:
e Can we do better? (This one is better than it looks)

e Can we work with this? (Yes, with effort)




Is This the Right Definition?

Def: (A,€)-entropically secure if V M (entropy > n-A),

‘v’ 2:{0,1}" - any domain yo@

V adversaries A, JA’,
| Pr{A(E(M)) = g(M)] — Pr[A” =g(M)] | <e

Q: Why only predicates? What about functions? Relations?
(If cryptography 1s everything, why sell ourselves short?)

A: Functions are equivalent!

(Relations impossible with short key)




Equivalence of Functions and Predicates

For function f, random variable M :

predf(M) = most likely value = max_{ Pr[f(M) =z] }
Lemma: If

— M random variable (entropy > 2log(1/¢€) )

— E() , A() randomized maps, f arbitrary function.

— Prl A(E(M)) =fM) | > pred (M) + €

Then there exist predicates B and g such that
Pr[ BACE(M))) =gM) | > pred, (M) +¢€/4



Indistinguishability tor High Entropy

Def: (A,€)-entropically secure if V M (entropy > n-A),

‘v’ 2:{0,1}" - _any domain yo@

V adversaries A, JA’,
| Pr{A(E(M)) = g(M)] — Pr[A” =g(M)] | <e

Recall: (Ordinary) semantic security =
V distributions M\M’: E(M) ~pp E(M’)




Indistinguishability tor High Entropy

Def: (A,€)-entropically secure if V M (entropy > n-A),

‘v’ 2:{0,1}" - any domain yo@

V adversaries A, JA’,
| Pr{A(E(M)) = g(M)] — Pr[A” =g(M)] | <e

Definition: (E,D) 1s (¢,€)-indistinguishable (IND) if
V distributions MM’ with H_(M) , H . (M’) > t:
SD(E(M),E(M’)) < €

Proposition: (A,£)-ES equiv. to (¢, €’)-IND for t = n-A-1




Proof: (4,€)-ES = (n-A-1,4¢)-IND

o Take any M,,M, of min-entropy > ¢ = n-A-1
(Sufficient to prove lemma for flat distrib’s on 2’ points)
e Suppose M, M, = () \ 9=0 / R
Use g(x) = b it x € supp(M,)
and M* = M, tor b<{0,1} '
« H (M*)=t+1 =n-\ | L g=1 |
= No A predicts g better than Y2+¢€
= SD( E(M,), EM)) ) < 2¢

e It My,,M, not disjoint, find M, disjoint to both.




Proof: (n-A-1)-IND = A-ES

Suppose that 4 A, f, M such that
PHA(E(M)) = (M) ] > pred(M) + €
Define M, = M | 13/)_
Group M,’s into bins so that
€/2 < weightot M, < predf+ e/2

Advantage still > €/2

—> some pair E(My), E(M)) are far

Contradicts indistinguishability for
t=n-A-1log(l/e)

Save loss 1n entropy via balancing & Goldreich-Levin (tricky!)
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Recall: Indistinguishability

Def: (A,e)-entropically secure if VM , H (M) > n-A,vYA Y g
JA" - | PrAEWMD) = gM)] - Pr{A" = g)] | <e

Def: (z,)-indistinguishable (IND) if V M, M, H_(M,) > t:
EM,) ~.E(M,)

Proposition: (A,£)-ES equiv. to (¢, €’)-IND for t = n-A-1

e What does this say?

— Randomness extractors hide all functions of their source.

e How can we use this?
— Extractors with “invertibility” give encryption schemes




Outline

» Equivalent Definitions:
» Hiding all functions
» Indistinguishability

» Intuition: entropic security ~ randomness extraction

» Two Simple, General Constructions (improve [RWO02])

» Step on expander graph

» Hashing

> LLower Bounds
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Expander Graphs

e Important tool in ... everything.

e Expander = regular, undirected graph

When 3 is
very small,
walk
converges in
1 step

— Let A = adjacency matrix of d-regular

— Vector (1,...,1) has eigenvalue d

— Other eigenvalues € [-d,d]

e Gis a fexpander if otherQn .

* Random walks convgsge yuickly:

Fact: It H_(p) > 1, then walk 1s e-far from uniform after at most

n—t+2log(l/e)
2 log (1/5)

steps, where |G| = 2",
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Using Graphs for Encryption

e Encryption of m = random step from m
o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When can you decrypt?
A: Need labeling N with an inverter N’:
N (Nu,i),i)=u
Exercise: Every regular undirected graph G

has an invertible labeling.



Using Graphs for Encryption

e Encryption of m = random step from m
o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:
N (Nu,i),i)=u

Easier exercise: Cayley graphs are

invertible.



Tangent: Cayley Graphs

e Let (V,*)be a group, B={g,,...,g,} a set of generators.

Cayley graph for (V, * B) has vertex set V and edges:
E={(u g*u)ylueV, geB}.

e Graph 1s undirected 1f B contains its inverses.

— E.g. hypercube {0,1}" with B ={vectors of weight 1}
e Natural labeling 18 N(u,1) = g, *u
o Invertible since N'(w,i) = g1 *w

e Graphs in this talk are Cayley graphs



Using Graphs for Encryption

o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When is E (t,€)-indistinguishable?

A: When walk converges in 1 step.

Sufficient: G is p-expander with 7 < g2 2"

Theorem[LPS]: There exist (explicit) Cayley
graphs with B2 ~ 1/d = 2°%

Corollary. There exist (A,€)-ES encryption
schemes with k ~ A\ + 2 log(1/€)
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IRWO02]: Two constructions

1. E(m,s) =m @ b(s), with b : {0,1}*—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based proof works only for uniform message

— k=2logn+3log (1/€) (here A = 0)

2. E(m,s; 1) = (0, , 0.(m) + s)

— {0 {0,1}"—{0,1}"} are 3-wise independent permutations
— k=~ A+ 3log (1/¢) (works for all A)

— 3n bits of additional randomness, difficult proot




IRWO02]: First construction

1. E(m,s) =m @ b(s), with b : {0,1}*—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based proof works only for uniform message

— k=2logn+3log (1/€) (here A = 0)

Same scheme, new analysis:

e G = Cayley graph for {0,1}" with generators {b(s) | s€{0,1}*}
e Observe that G is a 0-expander (degree = n%/6?) (e.g. [BGSW])
e Previousslide =k=A+2logn + 2log (1/¢)

(Same proof works for all A)



Two General Constructions

#1 : Steps on an expander graph

#2: Random Hashing (not here)




Outline

» Equivalent Definitions:
» Hiding all functions
» Indistinguishability
» Intuition: entropic security ~ randomness extraction
» Two Simple, General Constructions (improve [RWO02])

» Step on expander graph
» Hashing

> LLower Bounds
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[LLower Bounds

e [Lower Bound via Shannon Bound:

k>A

e Lower bound via lower bounds on extractors:
k > A+ log(1/¢)

— Requires that extra randomness be public, 1.e.

E(m,s;i) =@, E(m,s;1))

— All the schemes discussed fit this framework




Simple Lower Bound

Def: (A,e)-entropically secure if VM , H (M) > n-A,vA V pred. g
JA" - | PrAEWMD) = gM)] - Pr{A" = g)] | <e

Proof (reduce to bounds on regular encryption):
+ Vw e {0,1}*, define distribution M, =w Il U, _,
(i.e.. M, = w followed by n-A random bits)

w

* Indistinguishability = Vv,w: E(M,) ~_EM, )

e This is regular encryption (non-entropic) of w !

e Needk> A




Conclusions

e Systematic study of entropic security [CMR98,RW02]
— Stronger definition + characterization as indistinguishability
— Extractors hide all functions of their source!

— Simple constructions, proofs, lower bounds

e Computational question: preserve running time?

e In what other contexts 1s ES interesting?
— Password Hashing [CMR98]: similar definition
— Error Correction (bounded storage, noisy keys) (STOC 05)

— Database Privacy

33



