
Differentially Private Feature Selection via Stability Arguments,
and the Robustness of the Lasso

Adam Smith
asmith@cse.psu.edu

Pennsylvania State University

Abhradeep Thakurta
azg161@cse.psu.edu

Pennsylvania State University

Abstract

We design differentially private algorithms for statistical model selection. Given a data set and a
large, discrete collection of “models”, each of which is a family of probability distributions, the goal is
to determine the model that best “fits” the data. This is a basic problem in many areas of statistics and
machine learning.

We consider settings in which there is a well-defined answer, in the following sense: Suppose that
there is a nonprivate model selection procedure f , which is the reference to which we compare our
performance. Our differentially private algorithms output the correct value f(D) whenever f is stable
on the input data set D. We work with two notions, perturbation stability and subsampling stability.

We give two classes of results: generic ones, that apply to any function with discrete output set; and
specific algorithms for the problem of sparse linear regression. The algorithms we describe are efficient
and in some cases match the optimal nonprivate asymptotic sample complexity.

Our algorithms for sparse linear regression require analyzing the stability properties of the popular
LASSO estimator. We give sufficient conditions for the LASSO estimator to be robust to small changes
in the data set, and show that these conditions hold with high probability under essentially the same
stochastic assumptions that are used in the literature to analyze convergence of the LASSO.

1 Introduction

Model selection is a basic problem in machine learning and statistics. Given a data set and an collection of
“models”, where each model is normally a family of probability distributions, the goal is to determine the
model that best “fits” the data in some sense. The choice of model could reflect a measure of complexity,
such as the number of components in a mixture model, or a choice about which aspects of the data appear
to be most relevant, such as the set of features used for a regression model.

In sparse linear regression problems, for example, each entry in the data set consists of a p-dimensional
real feature vector x and real-valued response (or label) y. The overall goal is to find a parameter vector
θ ∈ Rp such that 〈xi, θ〉 ≈ yi for all n data points (xi, yi). When p is much larger than n, the problem is
underdetermined and so solutions to this problem won’t necessarily generalize well. A common approach
is to look for a vector θ with at most s nonzero entries (where s� n) that labels the data set well. Each set
of at most s positions defines a model and, for a specific model, the problem simplifies to textbook linear
regression. The model selection problem is to decide which of the roughly

(
p
s

)
subsets to consider.

In this paper we investigate the possibility of carrying out sophisticated model selection algorithms
without leaking significant information about individuals entries in the data set. This is critical when the
information in the data set is sensitive, for example if it consists of financial records or health data. Our

1

algorithms satisfy differential privacy [8, 5], which essentially ensures that adding or removing an individ-
ual’s data from a data set will have little effect on the inferences made about them based on an algorithm’s
output [5, 9].

Formally, there is no reason to separate model selection from the fitting of a specific distribution of
the data once the model is selected—either way, one is trying to select a best fit from among a class of
probability distributions. However, the separation into two phases survives for (at least) two reasons: First,
individual models are often parameterized by a finite-dimensional real vector, and so fitting a particular
model to the data is a continuous optimization task. In contrast, the set of models is typically discrete, and
the corresponding optimization problems tend to have a very different feel. Second, the model selection step
is typically much more computationally expensive.

The question, then, is how well differentially private algorithms can do at model selection, and how
to design algorithms that are computationally efficient. The challenge is to select from a large number of
possible models using as few resources (samples and running time) as possible.

Our Contributions. We consider the setting in which there is a “well-defined” answer, in the following
sense: Suppose that there is nonprivate model selection procedure f , which is the reference to which we
compare our performance. Our algorithms output the correct value f(D) whenever f is stable on the input
data set D. We work with two notions, perturbation stability and subsampling stability.

We give two classes of results: generic ones, that apply to any function; and specific algorithms for the
problem of sparse linear regression. The algorithms we describe are efficient and in some cases match the
optimal asymptotic sample complexity for nonprivate algorithms.

Our algorithms for sparse linear regression require analyzing the stability properties of the popular
LASSO estimator. We give sufficient conditions for the LASSO estimator to be robust to small changes in
the data set, and show that these conditions hold with high probability under essentially the same stochastic
assumptions that are used in the literature to analyze convergence of the LASSO. This analysis may be of
independent interest.

Differential privacy. Our algorithms take as input a data set D ∈ U∗ that is a list of elements in a universe
U . The algorithms we consider are all symmetric in their inputs, so we may equivalently view the data as
a multi-set in U . We say multi-sets D and D′ are neighbors if |D 4 D′| = 1. More generally, the distance
between two data sets is the size of their symmetric difference, which equals the minimum number of entries
that need to be added to or removed from D to obtain D′.
Definition 1 (Differential privacy [8, 7]). A randomized algorithm A is (ε, δ)-differentially private if for
every two neighboring datasets D and D′ in U∗ (that is, with |D 4 D′| = 1), and for all events O ⊆
Range(A) the following holds:

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ .

This definition is meaningful roughly when ε is at most a small constant (say 1/10) and δ is significantly
less than 1/n (see [12] for a discussion).

The next two sections describe our contributions in more detail.

1.1 Generic Algorithms For Stable Functions

We give two simple, generic transformations that, given any function f and parameters ε, δ > 0, return
a (ε, δ)-differentially private algorithm (see Definition 1) that is correct whenever f is sufficiently stable

2

on a particular input D. The two algorithms correspond to different notions of stability. In both cases,
the correctness guarantees do not have any dependence on the size of the range of f , only on the privacy
parameters ε and δ. In the context of model selection, this implies that there is no dependency on the number
of models under consideration.

• Perturbation Stability: We say that f is stable on D if f takes the value f(D) on all of the neighbors
of D (and unstable otherwise). We give an algorithm Adist that, on input D, outputs f(D) with high
probability if D is at distance at least 2 log(1/δ)

ε from the nearest unstable data set. Unfortunately, the
algorithm Adist is not efficient, in general.

• Subsampling stability: We say f is q-subsampling stable on D if f(D̂) = f(D) with probability at least
3/4 when D̂ is a random subsample from D which includes each entry independently with probability
q. We give an algorithm Asamp that, on input D, outputs f(D) with high probability whenever f is q-
subsampling stable for q = ε

32 log(1/δ) . The running time of Asamp dominated by running f about 1/q2

times; hence it is efficient whenever f is.

This result has an clean statistical interpretation: Given a collection of models, let the sample complexity
of model selection be the minimum number of samples (over nonprivate algorithms) from a distribution
in one of the models needed to select the correct model with probability at least 2/3. Then the sample
complexity needed for differentially private model selection increases by a problem-independent factor
of O(log(1/δ)/ε).

Technique: Proxies for the distance to instability. The idea behind the first algorithm comes from the work
of Dwork and Lei [6] on private parametric estimation. If we were somehow given a promise that f is stable
on D, we could release f(D) without violating differential privacy. The issue is that stability itself can
change between neighboring data sets, and so stating that f is stable on D may violate differential privacy.
The solution implicit in [6] (specifically, in their algorithms for estimating interquartile distance and the
median) is to instead look at the distance to the nearest unstable instance. This distance changes by at most
1 between neighboring data sets, and so one can release a noisy version of the distance privately, and release
f(D) when that noisy estimate is sufficiently high. Developing this simple idea leads to the algorithmAdist.

The difficulty with this approach is that it requires computing the distance to the nearest unstable instance
explicitly. We observe that if one can compute a lower bound d̂(D) on the distance to the nearest unstable
instance, and if d̂ does not change much between neighboring data sets, then one can release a noisy version
of d̂ differentially privately, and release f(D) when the noisy estimate is sufficiently high. The challenge,
then, is to efficiently compute useful proxies for the distance to the nearest unstable input.

We obtain our algorithm for subsampling-stable functions by giving an efficient distance bound for a
bootstrapping-based model selector f̂(D) that outputs the most commonly occurring value of f in a set of
about 1/ε2 random subsamples taken from the input D. The approach is inspired by the “sample and aggre-
gate” framework of Nissim et al. [18]. However, our analysis allows working with much larger subsamples
than those in previous work [18, 25, 13]. In our context, the analysis from previous work would lead to a
polynomial blowup in sample complexity (roughly, squaring the number of samples needed nonprivately),
whereas our result increases the sample complexity by a small factor.

1.2 Feature Selection for Sparse Linear Regression and Robustness of the LASSO

Our second class of results concerns feature selection for sparse linear regression. Recall the task is to select
a set of s out of p features to be used for linear regression. This problem provides an interesting challenge

3

for model selection problems since the number of distinct models to be considered is enormous (
(
p
s

)
, where

we want to make s as large as possible without losing statistical validity).
Given a data set of n entries (xi, yi) ∈ Rp × R, let X ∈ Rn×p be the matrix with rows xi and y ∈ Rp

be the column vector with entries yi. Suppose that the data set satisfies a linear system

y = Xθ∗ +w (1)

where θ∗ is a parameter vector (in Rp) to be estimated, and w ∈ Rn×1 is an error vector whose entries are
assumed to be small. We say a vector is s-sparse if has at most s nonzero entries. The problem we consider
is: assuming that θ∗ is s-sparse, under what conditions can we recover the support of θ∗ while satisfying
differential privacy?

The nonprivate version of this problem has been studied extensively in the literature on high-dimensional
statistics and compressed sensing. Several works [30, 27, 17] have shown that n = O(s log p) samples
suffice to recover the support of θ∗, assuming the data are drawn i.i.d. from one of a fairly large class of
probability distributions. Moreover, this bound is known to be asymptotically tight [27, 20].

Differentially private algorithms for sparse regression were first considered in our recent work (Kifer
et al. [13]). They gave feature selection procedures that require n � s log(p) · (min{s, log p}) samples to
recover the support of θ∗. Matching the optimal sample complexity (under reasonable assumptions) was
left as an open problem.

We give two efficient algorithms that approach the optimal sample complexity s log p.

• Our results on subsampling stability imply immediately that one can get efficient differentially private
algorithms with sample complexity O(log(1/δ)

ε s log p) under the same stochastic assumptions used in
nonprivate upper bounds. This is already a significant improvement over the previous work [13]. How-
ever, it retains the multiplicative dependence on log(1/δ)/ε.

• We also give explicit estimators for the distance to instability of a popular technique for sparse re-
gression known as the Lasso (as well as a more robust variant). This allows us to get efficient dif-
ferentially private algorithms with optimal sample complexity O(s log p) — removing the dependence
on ε and δ —when p is very large. More specifically, we derive algorithms with sample complexity
n = O(max{s log p, k2s4/ log(p), ks3/2}), where k = log(1/δ)/ε. This is O(s log p) when s < log2/3 p

k2/3

and k < log2/3 p. Note that it is interesting to come up with good model selectors even when s is constant,
since p may be very large.

Techniques: Stability and Robustness of the LASSO. The (efficient, nonprivate) upper bounds on feature
selection for sparse linear regression derive mostly from analyses of a popular approach known as the Lasso.
The idea is to find an estimate θ̂ of θ∗ which is sparse and which minimizes some norm of the estimated
error ŵ = y −Xθ̂. This is done by penalizing the usual mean squared error loss with some multiple of the
L1 norm of θ:

θ̂(D) = arg min
θ∈C

1

2n
‖y −Xθ‖22 +

Λ

n
‖θ‖1 (2)

The consistency properties of the Lasso are well-studied: a variety of assumptions on the data, when
n = ω(s log p), the estimate θ̂ is known to converge to θ∗ in the L2 norm [27, 17]. Moreover, if the entries
of θ∗ are bounded away from zero, θ̂ will have the same support as θ∗ [27].

We extend these results to show that, under essentially the same assumptions, the support of θ̂ does
not change when a small number of data points are changed. Other work on LASSO robustness captures
different properties. (See Section 1.3 below.) Our analysis requires significantly refining the “primal-dual”

4

construction technique of Wainwright [27]. The idea is to show that an optimal solution to (2) for data set
D′ which is “near” D can be transformed into an optimal solution for D. This involves analyzing how the
KKT conditions on the subgradient of the nondifferentiable loss function in (2) change as the data varies.

Significantly, we also use the primal-dual analysis to give an efficient and smooth estimator for the dis-
tance from a given data set D to the nearest unstable data set. The estimator essentially uses the subgradient
of the regularized loss (2) to measure how big a change would be needed to one of the zero entries of θ̂
to “jump” away from zero. This is delicate because changing the data set changes both the minimizer and
the geometry of the loss function. The efficient distance estimator gives us the differentially private feature
selector with optimal sample complexity.

Assumptions. As mentioned, our analyses of stability make various assumptions about the data. First, it
is important to note that the assumptions are made only for the utility analysis. The privacy guarantees
are unconditional. Second, we distinguish between “fixed data” assumptions, which give deterministic
conditions the data set for a given algorithm to perform well, and “stochastic” assumptions, which give
conditions on a distribution from which the data are drawn i.i.d. We analyze the Lasso’s robustness under
essentially the same assumptions (fixed-data and stochastic) used in previous work to analyze consistency.
The difference is that we require certain constants to be larger, leading to a constant factor increase in sample
complexity.

1.3 Prior Work on Learning and Stability

The relationship between learning, statistics and stability has been studied in the learning theory literature
(e.g., Rogers and Wagner [21]) and in robusts statistics (e.g., Huber [10]) for over thirty years. Many
variants of stability have been studied, and the literature is too vast to survey here. We highlight only the
most relevant works.

The main difference with our work is that the learning literature focuses on algorithms whose output lies
in a metric space; stability measures how much the output changes under various models of perturbation,
and the focus is on settings where some change in unavoidable even for very “nice” data sets [3, 23, 2, 19].
Several papers on privacy have sought to exploit such stability properties for privacy purposes [6, 22, 4]. In
contrast, we look at settings where some discrete structure may remain unchanged under perturbations. This
is effectively a stronger assumption, leading to tighter sample complexity bounds.

Both notions of peturbation that we conisder have been studied previously, namely robustness to changes
in the input data set D [3, 23, 28, 6] and stability to subsampling or resampling from the training data set D
[24, 1, 16, 15].

Robustness to small changes in the input data was studied both to provide resilience to outliers and noise
(as in robust statistics) as well as to get good generalization error [3, 23]. One consequence of these works
is that if a learning algorithm f satisfies our notion of stability, then it generalizes well. Perhaps the most
relevant work in this line is by Xu et al. [28], who study the L2 robustness of Lasso-like estimators to small
perturbations, and show that uniform stability (in which the set of selected features changes by only small
steps between any pairs of neighbors) is impossible for algorithms with sparse output. Finally, Lee et al.
[14] look at Huberized versions of the LASSO with the goal of providing robustness, but no not provide
formal consistency or convergence guarantees.

Stability under subsampling and resampling were also studied extensively in the prior work [24, 1, 16,
15]. In particular, they were used for model selection and clustering [15]. Again, their notion of stability is
weaker than ours.

5

2 Stability and Privacy

Consider a function f : U∗ → R from data sets to a range R. We assume that the range R is finite, for
simplicity.

Definition 2. A function f : U∗ → R is k-stable on input D if adding or removing any k elements from D
does not change the value of f , that is, f(D) = f(D′) for all D′ such that |D4D′| ≤ k. We say f is stable
on D if it is (at least) 1-stable on D, and unstable otherwise.

The distance to instability of a data set D ∈ U∗ with respect to a function f is the number of elements
that must be added to or removed from D to reach an data set that is not stable. Note that D is k-stable if
and only if its distance to instability is at least k.

A First Attempt. For any function f , there is a differentially private algorithm Adist that outputs f(D)
wheneverD is sufficiently stable. It follows the lines of more general approaches from previous work [6, 11]
that calibrate noise to differentially private estimates of local sensitivity. The algorithm is not efficient, in
general, but it is very simple: On input D and parameters ε, δ > 0, Adist computes the distance d from D to
the nearest unstable instance, and add Lap(1/ε) noise to get an estimate d̃ of d. Finally, if d̃ > log(1/δ)

ε , then
it releases f(D), otherwise it outputs a special symbol ⊥.

Proposition 3. For every function f :

(1) Adist is (ε, δ)-differentially private.

(2) For all β > 0: if f is log(1/δ)+log(1/β)
ε -stable onD, thenA(D) = f(D) with probability at least 1−β.

For brevity, we defer the proof of this proposition to Section A.1.This result based on distance is the best
possible, in the following sense: if there are two data sets D1 and D2 for which A outputs different values
f(D1) and f(D2), respectively, with at least constant probability, then the distance from D1 to D2 must be
Ω(log(1/δ)/ε).

However, there are two problems with this straightforward approach. First, the algorithm is not efficient,
in general, since it may require searching all data sets within distance up to d from D (this may not even be
implementable at all if U is infinite). Second, the model selection algorithm given to us may not be stable
on the instances of interest.

More Robust Functions, and Efficient Proxies for Distance. We remedy these problems by (a) modifying
the functions to obtain a more stable function f̂ that equals f on “nice” inputs, and (b) designing efficient,
private estimators for the distance to instability with respect to f̂ .

We combine these two goals into a single definition: we are looking for a pair of functions f̂ , d̂ that act
as proxies for f and the stability of f , respectively. We measure the usefulness of the pair by a set N of
“nice” inputs on which this pair allows us to release the actual value f .

Definition 4. Given f : U∗ → R, a pair of functions f̂ : U∗ → R, d̂ : U∗ → R are proxies for f and its
stability which are accurate on a set N (which depends on parameters ε, δ) if the following hold:

1. For all D: d̂(D) ≤ (dist. of D to instability of f̂).

2. GSd̂ ≤ 1

3. For all D ∈ N : f(D) = f̂(D) and d̂(D) ≥ 2 log(1/δ)/ε.

6

One can use such a proxy by adding Laplace noise to d̂ and releasing f̂(D) whenever the noisy version
of d̂ is sufficiently large. The resulting mechanism will be (ε, δ)-differentially private and, on all inputs
D ∈ N , will release f(D) with probability at least 1− δ.

For every function f , one can get a valid proxy by letting f̂ = f and letting d̂(D) be the distance to
instability of D w.r.t. f . The set N of good instances for this pair is exactly the set of inputs D on which f
is 2 log(1/δ)

ε -stable. As mentioned above, the main problem is computational efficiency.
Given a function f , the goal is to find proxies (f̂ , d̂) that are efficient (ideally, as efficient as evaluating

f alone) and have as large as possible a set N of good inputs.

2.1 From Sampling Stability to Stability

We give a generic construction that takes any function f and produces a pair functions (f̂ , d̂) that are
efficient—they take essentially the same time to evaluate as f—and are accurate for data sets on which
the original f is subsampling stable.

Definition 5 (Subsampling stability). Given a data set D ∈ U∗, let D̂ be a random subset of D in which
each element appears independently with probability q. We say f is q-subsampling stable on input D ∈ U∗
if f(D̂) = f(D) with probability at least 3/4 over the choice of D̂.

The algorithmAsamp (Algorithm 1) uses bootstrapping to create a modified function f̂ that equals f(D)

and is far from unstable on a given D whenever f is subsampling stable on D. The output of f̂(D) is the
mode (most frequently occurring value) in the list F = (f(D̂1), ..., f(D̂m)) where the D̂i’s are random
subsamples of size about εn/ log(1/δ). The distance estimator d̂ is, up to a scaling factor, the difference
between the frequency of the mode and the next most frequent value in F . Following the generic template
in the previous section, the algorithm Asamp finally adds Laplace noise to d̂ and outputs f̂(D) if the noise
distance estimate is sufficiently high.

We summarize the properties of Asamp below.

Theorem 6.
1. Algorithm Asamp is (ε, δ)-differentially private.

2. If f is q-subsampling stable on input D where q = ε
32 log(1/δ) , then algorithm Asamp(D) outputs f(D)

with probability at least 1− 3δ.

3. If f can be computed in time T (n) on inputs of length n, then Asamp runs in expected time
O(logn

q2)(T (qn) + n).

Note that the utility statement here is an input-by-input guarantee; f need not be subsampling stable on
all inputs. Importantly, there is no dependence on the size of the rangeR. In the context of model selection,
this means that one can efficiently satisfy differential privacy with a modest blow-up in sample complexity
(about log(1/δ)/ε) whenever there is a particular model that gets selected with reasonable probability.

Previous work in data privacy has used the idea of bootstrapping or subsampling to convert from various
forms of subsampling stability to some sort of stability [18, 6, 25, 13]. The main advantage of the version
we present here is that size of the subsamples is quite large: our algorithm requires a blowup in sample
complexity of about log(1/δ)/ε, independent of the size of the output range R, as opposed to previous
algorithms that had blowups polynomial in n and some measure of “dimension” of the output.

The following lemma provides the key to analyzing our approach. The main observation is that the
stability of the mode is a function of the difference between the frequency of the mode and the next most

7

Algorithm 1 Asamp: Bootstrapping for Subsampling-Stable f
Require: dataset: D, function f : U∗ → R, privacy parameters ε, δ > 0.

1: q ← ε
32 log(1/δ) , m← log(n/δ)

q2 .
2: repeat
3: Subsample m data sets D̂1, ..., D̂m from D, where D̂i includes each position of D independently w.p.

q.
4: until each position of D appears in at most 2mq sets D̂i
5: Compute F = 〈f(D̂1), · · · , f(D̂m)〉.
6: For each r ∈ R, let count(r) = #{i : f(D̂i) = r}.
7: d̂ ← (count(1) − count(2))/(2mq) where count(1), count(2) are the two highest counts from the pre-

vious step.
8: d̃← d̂+ Lap(1

ε).
9: if d̃ > log(1/δ)/ε then

10: Output f̂(D) = mode(F).
11: else
12: Output ⊥.

frequent element. The lemma roughly says that if f is subsampling stable on D, then D is far from unstable
w.r.t. f̂ (not necessarily w.r..t f), and moreover one can estimate the distance to instability of D efficiently
and privately. Proof of this lemma is deferred to Section A.2 for brevity.

Lemma 7. Fix q ∈ (0, 1). Given f : U∗ → R, let f̂ : U∗ → R be defined as f̂(D) = mode(f(D̂1), ..., f(D̂m))
where each D̂i includes elements ofD independently w.p. q andm = log(1/δ)/q2. Let d̂(D) = (count(1)−
count(2))/(4mq). Fix a data set D. Let E be the event that no position of D is included in more than 2mq

of the subsets D̂i.

(1) E occurs with probability at least 1− δ.

(2) Conditioned on E, the pair (f̂ , d̂) are a good proxy for f and its stability (that is, d̂ lower bounds the
stability of f̂ on D, and d̂ has global sensitivity 1).

(3) If f is q-subsampling stable on D, then with probability at least 1− δ over the choice of subsamples,
we have f̂(D) = f(D), and d̂(D) ≥ 1/16q.

The events in (2) and (3) occur simultaenously with probability at least 1− 2δ.

Theorem 6 follows from the lemma by noting that for small enough q, the function d, which acts as an
efficient proxy for stability, will be large enough that even after adding Laplace noise one can tell that f̂ is
stable on instance D, and release f .

3 Consistency and Stability of Sparse Regression using LASSO

Recall the linear system in (1). A common approach for estimating the underlying parameter vector θ∗ is
via least-squared regression, where the loss function in the regression problem is L̂(θ;D) = 1

2n‖y−Xθ‖
2
2,

where the data set D = (y, X) and has size n. When the dimensionality of the problem (p) is larger than
the data set size (n), a common approach is to add an L1 penalty term to the loss function to encourage

8

selection of sparse minimizers. This formulation is commonly called LASSO (Least Absolute Shrinkage
and Selection Operator) [26]. The formal optimization problem corresponding to the current formulation is
given in (3). Here C ⊆ Rp is some fixed convex set and Λ is some regularization parameter.

θ̂(D) = arg min
θ∈C

1

2n
‖y −Xθ‖22 +

Λ

n
‖θ‖1 (3)

[27, 17] showed that under certain “niceness” conditions on the data set D = (y, X) and the underlying
parameter vector θ∗, the support of θ̂(D) equals the support of θ∗ and ‖θ̂(D)− θ∗‖2 goes down to zero as
n goes to infinity. This property is often referred to as consistency. In this paper we revisit the consistency
assumptions (in [27]) for LASSO and relate the two different sets of assumptions sufficient for consistency,
namely, fixed data and stochastic assumptions. Additionally, we weaken the fixed data assumptions that are
sufficient for consistency.

An important property of any algorithm is the stability of its output with respect any changes in its input
data. In this paper we study the stability properties of the support of the minimizer of a LASSO program.
We follow a very strong notion of stability where the changes in the data set can be addition or removal of
any constant (k) number of entries. At a high level, we show that almost under the same set of “niceness”
conditions for consistency one can also guarantee stability.

In this work we study the consistency and stability properties of LASSO (and one of its variants) in
two different settings: i) fixed data setting where the data set D is deterministic, and ii) stochastic where
the dataset D is drawn from some underlying distribution. The general flavor of our results in this section
is that we first prove the consistency and stability properties in the fixed data setting and then show one
particular stochastic setting which satisfies the fixed data assumptions with high probability. The fixed data
assumptions are given in Assumption 8 below.

Assumption 8 (Typical system). Data set (Xn×p,yn×1) and parameter vector θ∗ ∈ Rp are (s,Ψ, σ,Φ)-
TYPICAL if there exists a w ∈ Rp such that y = Xθ∗ +w and

(1) Column normalization: ∀j, ‖cj‖2 ≤
√
n, where cj is the j-th column of X .

(2) Bounded parameter vector: ‖θ∗‖0 ≤ s and all nonzero entries of θ∗ have absolute value in (Φ, 1−
Φ).

(3) Incoherence: Let Γ be the support of θ∗.
‖(XΓc

TXΓ)(XΓ
TXΓ)−1sign(θ∗)‖∞ < 1

4 . Here Γc = [p] − Γ is the complement of Γ; XΓ is the
matrix formed by the columns of X whose indices are in Γ; and sign(θ∗) ∈ {−1, 1}|Γ| is the vector
of signs of the nonzero entries in θ∗.

(4) Restricted Strong Convexity: The minimum eigenvalue of XΓ
TXΓ is at least Ψn.

(5) Bounded Noise: ‖XT
ΓcVw‖∞ ≤ 2σ

√
n log p, where V = In×n−XΓ(XΓ

TXΓ)−1XΓ
T is the projec-

tor on to the complement of the column space of XΓ.

3.1 Consistency of LASSO Estimator

Under a strengthened version of the fixed data conditions above (Assumption 8), [27] showed that one can
correctly recover the exact support of the parameter vector θ∗ and moreover the estimated parameter vector
θ̂(D) is close to θ∗ in the L2 metric. Theorem 9 restates the result of [27] in the context of this paper. We
note that the result of [27] holds even under this weaker assumption (Assumption 8).

9

Theorem 9 (Modified Theorem 1 of [27]). Let Λ = 4σ
√
n log p. If there exists a θ∗ such that (X,y,θ∗) is

(s,Ψ, σ,Φ)-TYPICAL with Φ = 16σ
Ψ

√
s log p
n , then ‖θ̂(D) − θ∗‖2 ≤ 8σ

Ψ

√
s log p
n . Moreover, the support of

θ̂(D) and θ∗ are same.

Along with the fixed data setting, [27] considered the stochastic setting where the rows of the design
matrix X are drawn from N (0, 1

4Ip) and the noise vector w is drawn independently from a mean zero sub-
Gaussian distribution with variance σ2. They showed that with high probability, under such a setting and

choosing Λ = 4σ
√
n log p, one has ‖θ̂(D)− θ∗‖2 ≤ 8σ

Ψ

√
s log p
n and the support of θ̂(D) and θ∗ are same.

The analysis of [27] in the stochastic setting relies on a different set of arguments compared to the arguments
for the fixed data setting in Theorem 9. Moreover, it is not clear apriori if any stochastic setting satisfies the
fixed data setting conditions with high probability. In the following theorem, we connect the stochastic and
the fixed data setting, i.e., we show that under the stochastic setting considered above, with high probability,
the data set D = (y, X) satisfies the fixed data conditions. It should be mentioned here that [27] considered
a more general distribution N (0,Σ) (with a specific class of covariance matrices). But for the purposes of
brevity, we stick to the simplerN (0, 1

4Ip) distribution. The proof of this theorem is provided in Section B.1.

Theorem 10 (Stochastic Consistency). Let Λ = 4σ
√
n log p and n = ω(s log p). If each row of the design

matrix X be drawn i.i.d. from N (0, 1
4Ip) and each entry of the noise vector w be drawn i.i.d. from a mean

zero sub-Gaussian distribution with variance σ2, then there exists a constant Ψ such that with probability
at least 3/4, the data set D = (y, X) obtained via (1) and under permissible choices of θ∗ in Assumption

8, (y, X,θ∗) satisfies (s,Ψ, σ,Φ)-TYPICAL with Φ = 16σ
Ψ

√
s log p
n .

3.2 Normalization

Recall the linear system defined in (1). In the rest of the paper, we assume following normalization bounds
on the data set D = (y, X) and the underlying parameter vector θ∗. We assume that θ∗ is from the convex
set C = {θ : ‖θ‖∞ ≤ 1}. Often we restrict the convex set C to a support Γ (represented by CΓ). The set
CΓ is set of all vectors in C whose coordinates are zero outside Γ. Notice that since C is convex, CΓ is also
convex.

We assume that each entry of the design matrix X has absolute value at most one, i.e., ‖X‖max =
max1≤i≤n,1≤j≤p |Xi,j | ≤ 1, and additionally we assume that the response vector y has L∞-norm at most s,
i.e., ‖y‖∞ ≤ s. Notice that bounding the L∞-norm of y is without loss of generality, since when the design
matrix X and the parameter vector θ∗ are bounded as above, bounding y will only decrease the noise. In
case the data set D = (y, X) does not satisfy the above bound we normalize the data set to enforce such a
bound. By normalizing we mean scaling down each data entry individually, so that they satisfy the above
bound. For clarity of exposition, in the rest of the paper we define the universe of data sets U∗ to be sets of
entries from this domain and we will assume this normalization to be implicit in all the algorithms we state
(unless mentioned otherwise).

3.3 Stability of LASSO Estimator in the Fixed Data Setting

In Section 3.1 we saw that under certain “niceness” conditions (Assumption 8) on the data set D = (y, X),
with suitable choice of regularization parameter Λ, one can ensure that the support of θ̂(D) equals the
support of θ. Moreover, ‖θ̂(D) − θ∗‖2 goes down to zero as n → ∞ as long as n = ω(s log p). In
this section we ask the following question: “Under what (further) assumptions on the data set D and the

10

parameter vector θ∗, the support of the minimizer θ̂(D) does not change even if a constant k number of
entries from the domain U are either added or removed from D?”

We answer this question in two different settings. In the first setting we analyze the stability properties
of the original LASSO program in (3) where we show that under assumptions very similar to the one for
consistency, the support of the minimizer θ̂(D) is also stable. In the second setting we huberize the LASSO
program (i.e., transform the program to make sure that the gradient of the objective function is always
bounded.) This enables us to get better stability guarantees without compromising on the correctness of
support selection.

3.3.1 Stability of unmodified LASSO

We show that under Assumption 8, the support of the minimizer θ̂(D) in (3) does not change even if k data
entries are removed or added to D as long as n = ω(s log p, s

4k2

log p , ks
3/2). We call this property k-stability

(Definition 2). Moreover, the support of θ̂(D) equals the support of underlying parameter vector θ∗ (see
(1)) and ‖θ̂(D)− θ∗‖2 goes down to zero as n→∞. It is important to note that Assumption 8 in particular
is satisfied by a random Gaussian design matrix X and a sub-gaussian noise vector w. We will discuss the
stochastic setting for stability in Section 3.5.

The main stability theorem for LASSO is given in Theorem 11. For the purpose of clarity, we defer the
complete proof of the stability theorem to Section B.2.1. The correctness follows directly from Theorem 9.
It is important to note that our stability theorem bypasses the impossibility result of [29]. In their work, [29]
showed that under worst case assumptions, minimizer of the LASSO program (i.e., θ̂(D) in (3)) does not
have a stable support, i.e., the support changes with changing one entry in D. Since, we work with stronger
assumptions, the impossibility result does not apply to us.

Theorem 11 (Stability of unmodified LASSO). Fix k ≥ 1. Suppose s ≤
√

σn1/2 log1/2 p
2k(1/Ψ+1) and Λ =

4σ
√
n log p. If there exists a θ∗ such that (X,y,θ∗) is (s,Ψ, σ,Φ)-TYPICAL with Φ = max

{
16σ
Ψ

√
s log p
n , 8ks3/2

Ψn

}
(for the data set D = (y, X) from U∗), then θ̂(D) has k-stable support.

Proof sketch. For any data set D′ differing in at most k entries from D, we construct a vector v which has
the same support as θ̂(D) and then argue that v = θ̂(D′), i.e., v is indeed the true minimizer of the LASSO
program on D′. The novelty in the proof goes in constructing the vector v.

Let Γ̂ be the support of θ̂(D). We obtain the vector v by minimizing the objective function L̂(θ;D′) +
Λ‖θ‖1 restricted to the convex set CΓ̂. Recall that all the vectors in CΓ̂ have support in Γ̂. Using the
consistency result from Theorem 9 and a claim that shows that the L2 distance between θ̂(D) and v is
small, we conclude that the support of v equals Γ̂. By showing that under the assumptions of the theorem,
the objective function at v has a zero sub-gradient, we conclude that v = θ̂(D′).

We should mention here that a similar line of argument was used in the proof of Theorem 9 by [27] to
argue consistency of LASSO estimators. Here we use it to argue stability of the support.

3.3.2 Stability of huberized LASSO

In this section, we modify the LASSO program of (3) in the following (4) to have better stability properties
when s = Ω(log n). The main idea is to huberize the loss function in order to control the gradient of the

11

loss. Before providing the exact details of the huberization, we provide a toy example below to make the
presentation clear.

Consider a simple quadratic function f(x) = 1
2x

2 and a maximum gradient constraint of α ∈ R.
One way to modify the function such that it satisfies the gradient constraint is by replacing f(x) with the
following.

f̂(x) =


αx− α2

2 if x > α

αx− α2

2 if x < −α
1
2x

2 otherwise

The two main properties of f̂ are: i) it is continuously differentiable and ii) its gradient is always bounded by
α. We will perform a similar transformation to the loss function for linear regression to control its gradient.

Recall that the loss function for linear regression is given by L̂(θ;D) = 1
2n

∑n
i=1(yi − 〈xi,θ〉)2, where

yi is the i-th entry of the vector y and xi is the i-th row of the design matrix X . We denote the function
(yi − 〈xi,θ〉)2 by `(θ; yi,xi). Consider the following huberization of the loss function `. For any given
y ∈ R and x ∈ Rp, ˆ̀(θ; y,x) is defined as follows. (Here s denotes the number of non-zero entries in the
underlying parameter vector θ∗ in the linear system defined in (1).)

ˆ̀(θ; y,x) =


5
√
s log n(y − 〈x,θ〉)− 12.5s log n if (y − 〈x,θ〉) > 5

√
s log n

−5
√
s log n(y − 〈x,θ〉)− 12.5s log n if (y − 〈x,θ〉) < −5

√
s log n

1
2(y − 〈x,θ〉)2 otherwise

θ̃(D) = arg min
θ∈C

1

n

n∑
i=1

ˆ̀(θ; yi,xi) +
Λ

n
‖θ‖1 (4)

In this section we show the correctness (Theorem 12) and stability property (Theorem 13) of θ̃(D) under
Assumption TYPICAL (Assumption 8).

Theorem 12 (Correctness of huberized LASSO). Let Λ = 4σ
√
n log p, let D = (y, X) be a data set

from U∗ and n = ω(s log p). If there exists a θ∗ such that for each row xi in the design matrix X ,

|〈xi,θ∗〉| ≤ 2
√
s log n, (y, X,θ∗) is (s,Ψ, σ,Φ)-TYPICAL with Φ = 16σ

Ψ

√
s log p
n , then the support of

θ̃(D) matches the support of θ∗ and moreover ‖θ̃(D)− θ∗‖∞ ≤ 8σ
Ψ

√
s log p
n .

We defer the proof of this theorem till Section B.2.2. In the proof of Theorem 12 we show that under
the assumptions of the theorem, the region where the unconstrained minimizer of the huberized LASSO
estimator lies, the huberized loss function and the unmodified loss functions are the same. In Theorem 13
we show that as long as the data set size n = ω(s log p, s

3k2 logn
log p , ks

√
log n), the support of θ̃(D) does not

change even if a constant number (k) of data entries from U are removed or added inD. The proof structure
of Theorem 13 is same as the proof structure of Theorem 11 for the unmodified LASSO. For the purpose of
brevity we defer the proof of Theorem 13 till Section B.2.2.

Theorem 13 (Stability of huberized LASSO). Fix k > 1. Under assumptions of Theorem 12 and n =

ω(s log p, s
3k2 logn

log p), (y, X,θ∗) is (s,Ψ, σ,Φ)-TYPICAL with Φ = max

{
16σ
Ψ

√
s log p
n , 20ks

√
logn

Ψn

}
, then

θ̃(D) has a k-stable support.

12

Function Instantiation (Parameters: s, Λ, Ψ) Threshold (ti) Slack (∆i)

g1(D) negative of the (s+ 1)st largest absolute value of n5 L̂(θ̂(D);D) −Λ
2

6s2

Ψ

g2(D) minimum eigenvalue of XΓ̂
TXΓ̂ 2Ψn s

g3(D) minimum absolute value of the non-zero entries in θ̂(D) ×n 8s3/2

Ψ
4s3/2

Ψ

g4(D) negative of the max. absolute value of the non-zero entries in θ̂(D) ×n 8s3/2

Ψ − n 4s3/2

Ψ

Table 1: Instantiation of the four test functions

3.4 Efficient Test for k-stability

In Section 3.3 we saw that under Assumption 8 and under proper asymptotic setting of the size of the data
set (n) with respect to the parameters s, log p and k, both the unmodified LASSO in (3) and the huber-
ized LASSO in (4) have k-stable support for their minimizers θ̂(D) and θ̃(D) respectively. An interesting
question that arises is “can we efficiently test the stability of the support of the minimizer, given a LASSO in-
stance?” In this section we design efficiently testable proxy conditions which allow us to test for k-stability
of the support of a LASSO minimizer. For the ease of exposition, we present the results in the context of
unmodified LASSO instance only. The result for the huberized LASSO follows analogously.

The main idea in designing the proxy conditions is to define a set of four test functions g1, · · · , g4 (with
each gi : U∗ → R) that have the following properties: i) For a given data set D from U∗ and given set
of thresholds t1, · · · , t4, if each gi(D) > ti, then adding or removing any one entry in D does not change
the support of the minimizer θ̂(D). In other words, the minimizer θ̂(D) is 1-stable. ii) Let ∆1, · · · ,∆4

be a set of slack values. If each gi(D) > ti + (k − 1)∆i, then the support of the minimizer θ̂(D) is k-
stable. In Table 1 we define the test functions (in the notation of LASSO from (3)) and the corresponding
thresholds (ti) and the slacks (si). There s refers to the sparsity parameter and (s + 1)st largest absolute
value of n5 L̂(θ̂(D);D) refers the (s + 1)-st maximum absolute value of the coordinates from the vector
n5 L̂(θ̂(D);D) = −XT (y − 〈X, θ̂(D)〉).

Design intuition. The main intuitions that govern the design on the proxy conditions in Table 1 are as
follows. i) One needs to make sure that gradients of the loss function along the directions not in the support
of the minimizer are sufficiently smaller than Λ/n, so that changing k data entries do not increase gradient
beyond Λ/n, otherwise that particular coordinate will become non-zero. ii) Along the directions in the
support of the minimizer, one needs to make sure that the objective function has sufficient strong convexity,
so that changing k data entries do not move the minimizer along that direction too far. iii) On data sets where
the minimizer has stable support, the local sensitivity [18] of the proxy conditions at D should be small. By
local sensitivity we mean the amount by which the value of a proxy condition changes when one entry is
added or removed from the data set D.

Theorem 14 shows that the gi’s (with their corresponding thresholds ti and slacks ∆i) are efficiently
testable proxy conditions for the k-stability of the support of the minimizer θ̂(D). For the purposes of
brevity, we defer the proof of this theorem till Section B.2.3. Next in Theorem 16 we show that if the
data set D = (y, X) satisfies a slight strengthening of Assumption 8 (see Assumption 15), then for all
i ∈ {1, · · · , 4}, gi(D) > ti + (k − 1)∆i. This ensures that the proxy conditions are almost as good as the
fixed data conditions in Assumption 8. In Section 3.5 we analyze a stochastic setting where Assumption 15
is satisfied with high probability.

Theorem 14 (k-stability (proxy version)). Let D be a data set from U∗. If gi(D) > ti + (k − 1)∆i for all
i ∈ {1, · · · , 4} and Λ > 16ks2

Ψ , then θ̂(D) has k-stable support.

13

Assumption 15 (Super-typical system). Data set (Xn×p,yn×1) and parameter vector θ∗ ∈ Rp are (s,Ψ, σ,Φ, k)-
STRONGLY-TYPICAL if there exists a w ∈ Rp such that y = Xθ∗ +w and

(1) (y, X,θ∗) is (s,Ψ, σ,Φ)-TYPICAL .

(2) Restricted Strong Convexity: The minimum eigenvalue of XΓ
TXΓ is at least Ψ̂n, where Ψ̂n =

2Ψn+ (k − 1)s.

(3) Bounded Noise: For any set Γ of size s, ‖XT
ΓcVw‖∞ ≤ 2σ

√
n log p− 6(k − 1)s2/Ψ, where

V = In×n −XΓ(XΓ
TXΓ)−1XΓ

T is the projector on to the complement of the column space of XΓ.

Theorem 16. Let D = (y, X) be a data set from U∗ and let Λ = 4σ
√
n log p. If there exists a θ∗

such that (y, X,θ∗) is (s,Ψ, σ,Φ, k)-STRONGLY-TYPICAL with Φ = max

{
16σ
Ψ

√
s log p
n , 16ks3/2

Ψn

}
, then

gi > ti + (k − 1)∆i for all i ∈ {1, · · · , 4}.

The proof of this theorem follows using an intuition very similar to that used in the proof of Theorem
11. For the sake of clarity, we defer the proof till Section B.2.3.

3.5 Stability of LASSO in Stochastic Setting

In Section 3.3 we saw two variants of LASSO (unmodified and huberized) and a set of conditions (from
Theorems 11 and 13) under which we argued that if the data set size n is sufficiently large compared to
(s, k, log p), then the minimizers of the two LASSO programs ((3) and (4)) are k-stable. In Section 3.4 we
saw a strengthened set of assumptions (in Theorem 16) which implies that under these assumptions, the data
set D will pass the efficient k-stability test designed in Section 3.4.

In this section we will see one specific stochastic setting for the data set D = (y, X), where the set of
conditions (in Theorems 11, 13 and 16) are satisfied with high probability. The specific stochastic setting
we consider here is the same we considered for consistency in Section 3.1. Consider each row of the design
matrix X is drawn i.i.d. from N (0, 1

4Ip) and the entries in the noise vector w is drawn i.i.d. from a mean
zero sub-Gaussian distribution with variance σ2.

Analysis of unmodified LASSO in stochastic setting. In order to make sure that Theorem 11 is applicable in
the stochastic setting, we need to ensure two things: i) the data set D̂ = (ŷ, X̂) that gets used in Theorem 11
is from the domain U∗, and ii) (ŷ, X̂,θ∗) satisfy (s,Ψ, σ,Φ, k)-STRONGLY-TYPICAL . This in particular
implies that (ŷ, X̂,θ∗) satisfy (s,Ψ, σ,Φ)-TYPICAL .

Given the data set D = (y, X) drawn from the distribution mentioned above, we first divide each
entry in the design matrix X by

√
log(ns), where s is the sparsity parameter of the parameter vector θ∗.

If the absolute value of any entry in X after dividing by
√

log(ns) exceeds 1, then just round it to −1

or 1 (whichever is closer). Call this design matrix X̂ . Similarly, if the absolute value of any entry in y
exceeds s, then round it to −s or s whichever is closer. By union bound and the tail property of Gaussian
distribution it follows that once each entry of the design matrix X is divided by

√
log(ns), with high

probability (i.e., with probability at least 1 − e−4) none of the columns which are in the support of θ∗ gets
truncated. Conditioned on this event, with probability at least 15/16, the design matrix X̂ satisfies column
normalization condition and restricted strong convexity condition in Assumption 15 with parameter Ψ′ (as
long as n = ω(ks log n)), where Ψ′ = Ψ/

√
log(ns) and Ψ is the restricted strong convexity parameter

corresponding to random Gaussian design matrix. Also by similar arguments as in the proof of Theorem

14

10, it follows that as long as n = ω(s log p log n, k2s4/ log p), with probability at least 7/8, the incoherence
and bounded noise conditions are satisfied. Thus, we have the following stochastic analogue of Theorem
11. We do not need to argue about the truncation of the entries in y, since the truncation can be viewed as
reducing the noise w.

Corollary 17. Fix k ≥ 1. Let Λ = 4σ
√
n log p and n = ω(s log p log n, s

4k2 logn
log p , ks log n). There exists a

constant Ψ such that under the assumptions ‖θ∗‖0 ≤ s, and the absolute value of any non-zero entry of θ∗

is in (Φ, 1 − Φ) (for Φ = max

{
16σ
Ψ

√
s logn log p

n , 16ks3/2
√

logn
Ψn

}
), with probability at least 3/4, the tuple

(ŷ, X̂,θ∗) satisfy (s,Ψ, σ,Φ, k)-STRONGLY-TYPICAL assumption.

The above theorem implies that as long as n
logn = ω(s log p, s

4k2

log p , ks
3/2), with high probability the

support of the minimizer θ̂(D̂) is k-stable. The analysis for huberized LASSO is analogous and is omitted
for brevity.

4 Private Support Selection for Sparse Linear Regression

In Section 2 we designed a generic framework to transform a model selection function f : U∗ → R (which
takes the data set D and outputs a model Γ ∈ R) to an efficient differentially private algorithm for model
selection if we have proxy functions f̂and d̂ for f and its distance to instability (see Definition 4). In this
section we use this framework for support selection in sparse linear regression. Note that in the context of
linear regression (with sparsity parameter s for the underlying parameter vector θ∗) one can view the space
of all possible models R to be all the

(
p
s

)
sets of coordinates from [p]. Once a support of size s is chosen,

one can restrict the linear regression problem to the set of s-coordinates chosen and then use algorithms
(e.g., objective perturbation) for private linear regression from [13] to obtain a parameter vector θpriv such
that L̂(θpriv;D)− L̂(θ∗;D) scales as O

(
s2 log(1/δ)

nε

)
. For more details, see Theorem 9 in [13].

The main challenge in designing a private support selection algorithm is to come up with effective
proxies f̂ and d̂ for a given support selection function f . In the following two sections we design two
different sets of proxies f̂ and d̂. Later we compare the sample complexities of the algorithms corresponding
to both. In the current discussion, we set f to be the function that returns the support of the minimizer of
unmodified LASSO program in (3). Although the results in this section can be easily extended to the
huberized LASSO program in (4), we do not present it for brevity.

4.1 Support Selection via Sampling Stability

We use the same f̂ and d̂ used in Lemma 7 and use Algorithm 1 for support selection. In the current context,
the non-private model selection function f in Algorithm 1 is the function that returns the support of the
minimizer of unmodified LASSO program in (3). By Theorem 6, the output is always (ε, δ)-differentially
private. In order to argue that Algorithm 1 outputs the correct support, we make the following assumption
(Assumption 18) about the data set D and the parameter vector θ∗. Under this assumption, we obtain the
following utility guarantee (Corollary 19) for the support selection algorithm as a corollary to Theorem 6.

Assumption 18. [(s,Ψ, σ,Φ)-Sub-sampled TYPICAL] Let D̂ be a random subset of D = (y, X) in
which each element appears independently with probability q = ε

32 log(1/δ) . The data set D̂ and parameter
vector θ∗ ∈ Rp satisfy
(s,Ψ, σ,Φ)-TYPICAL with probability at least 3/4.

15

It is important to note that the above assumption is satisfied by the stochastic setting in Section 3.5 with
high probability.

Corollary 19 (Utility). Let Λ = 8σ
√
nq log p where q = ε

32 log(1/δ) . If there exists a θ∗ such that the data
set D = (y, X) and θ∗ satisfy Assumption 18 (Assumption (s,Ψ, σ,Φ)-Sub-sampled TYPICAL) with

Φ ≥ 16σ
Ψ

√
s log p
nq , then w.p. at least 1 − 3δ, the current instantiation of Algorithm 1 outputs the correct

support of θ∗.

In order to analyze the sample complexity for support selection implied by the corollary above, first note
that in expectation the sub-sampled data set D̂ will be of size nq, where n is the size of the original data set
D. Therefore, by sub-sampling we have blown up the sample complexity by a factor of 1/q with respect
to the non-private sample complexity implied by Theorem 9. Hence, the sample complexity for consistent
support selection, implied by the above corollary, is (s log p)/q.

4.2 Support Selection via Stability of LASSO

In Section 3.3.1 we analyzed the stability properties of the unmodified LASSO program in (3). Moreover,
in Section 3.4 we designed an efficient test for k-stability via defining four proxy conditions g1, · · · , g4 in
Table 1. In this section we transform it to a differentially private algorithm for outputting the support. In
the language of Section 2 (and using the notation of Section 3.4) the proxy functions f̂ and d̂ we define are:
i) d̂(D) = max

{
mini

gi(D)−ti
∆i

+ 1, 0
}

and ii) f̂(D) equals the support of the minimizer of the LASSO
program in (3) when the data set D is stable, and ⊥ o.w.

Lemma 20. If Λ > 16s2

Ψ (in (3)), then the proxy functions f̂ and d̂ defined above satisfy Definition 4.

Proof. In Theorem 14 we saw that if for all i, gi(D) > ti + (k − 1)∆i, then the data set D is k-stable. This
straight away implies that if d̂(D) > k, then the data set D is k-stable w.r.t. the support of the minimizer.

To complete the proof, we need to show that the global sensitivity of D̂ is at most one. When d̂(D) is
greater than or equal to zero, changing one entry in D changes d̂(D) by at most one, since one can show
that in such a case each gi changes by at most ∆i. (See Claims 35, 36, and 37 in Section B.2.3.) Now since
d̂ cannot be negative, global sensitivity of d̂ is at most one.

With Lemma 20 in hand, the algorithm for support selection follows from Section 2. Add Lap(1/ε)
noise to d̂(D) and then test if it is greater than log(1/δ)/ε. If the answer is “yes”, then output the exact sup-
port of the minimizer θ̂(D). By Proposition 3, the above algorithm is (ε, δ)-differentially private. Moreover,
whenever d̂(D) is greater than 2 log(1/δ)/ε, the algorithm outputs f(D) with probability 1− δ. We obtain
the following corollary.

Corollary 21. Let D = (y, X) be a data set from U∗ and let Λ = 4σ
√
n log p. If there exists a θ∗ such that

(y, X,θ∗) is (s,Ψ, σ,Φ, k)-STRONGLY-TYPICAL with

Φ = max

{
16σ
Ψ

√
s log p
n , 16ks3/2

Ψn

}
, where k = 2 log(1/δ)/ε, then the above algorithm outputs the correct

support of θ∗ with probability at least 1− δ.

Hence, it directly follows that the sample complexity for consistent support selection is (s log p, k2s4/ log p, ks3/2),
where k = log(1/δ)/ε. It is important to note that the assumption in the above corollary is satisfied by the
stochastic setting in Section 3.5 with high probability.

16

Comparing to the sample complexity obtained in Section 4.1, we find that when the sparsity parameter
s is greater than log2 p, the sampling based approach has better sample complexity. When s is small (i.e.,
s < log2/3 p

k1/3), the stability of LASSO based approach has better sample complexity.

Note on optimal sample complexity. [27] mentioned that in the stochastic setting (i.e., the setting in Section
3.5) any non-private algorithm for consistent recovery of the support of θ∗ will have sample complexity of
at least s log p. (See Section D in [27] for a detailed discussion.) Comparing to the sample complexities
of our private algorithms we see that our sampling based algorithm matches the non-private lower bound
on sample complexity up to factors in ε and log(1/δ). Similarly, when s < log2/3p

k2/3 and k < log2/3 p, the
stability of LASSO based algorithm matches the sample complexity lower bound (without any dependence
on the privacy parameters ε and δ).

17

References

[1] F. R. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In ICML, 2008.

[2] S. Ben-David, U. Von Luxburg, and D. Pál. A sober look at clustering stability. Learning Theory,
2006.

[3] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research, 2:
499 – 526, 2002.

[4] K. Chaudhuri and D. Hsu. Convergence rates for differentially private statistical estimation. In ICML,
2012.

[5] C. Dwork. Differential privacy. In ICALP, 2006.

[6] C. Dwork and J. Lei. Differential privacy and robust statistics. In STOC, 2009.

[7] C. Dwork, K. Kenthapadi, F. Mcsherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In EUROCRYPT, 2006.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, 2006.

[9] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary information in
data privacy. In KDD, 2008.

[10] P. Huber. Robust Statistics. Wiley, 1981.

[11] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private analysis of graph structure.
PVLDB, 2011.

[12] S. P. Kasiviswanathan and A. Smith. A note on differential privacy: Defining resistance to arbitrary
side information. CoRR, arXiv:0803.39461 [cs.CR], 2008.

[13] D. Kifer, A. Smith, and A. Thakurta. Private convex empirical risk minimization and high-dimensional
regression. In COLT, 2012.

[14] Y. Lee, S. N. MacEachern, and Y. Jung. Regularization of case-specific parameters for robustness and
efficiency. Technical report, Statistics Deepartment, Ohio State University, April 2011.

[15] M. Meilă. The uniqueness of a good optimum for k-means. In ICML, pages 625–632, 2006.

[16] N. Meinshausen and P. Bhlmann. High dimensional graphs and variable selection with the lasso.
Annals of Statistics, 2006.

[17] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional
analysis of m-estimators with decomposable regularizers. In NIPS, 2009.

[18] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis.
In STOC, 2007.

[19] A. Rakhlin and A. Caponnetto. Stability of k-means clustering. In NIPS, 2007.

18

[20] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear
regression over `q-balls. 2011.

[21] W. Rogers and T. Wagner. A finite sample distribution-free performance bound for local discrimination
rules. The Annals of Statistics, 1978.

[22] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learning in a large function space: Privacy-
preserving mechanisms for svm learning. CoRR, abs/0911.5708, 2009.

[23] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform con-
vergence. The Journal of Machine Learning Research, 2010.

[24] J. Shao. Bootstrap model selection. Journal of the American Statistical Association, 1996.

[25] A. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In STOC, 2011.

[26] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 1996.

[27] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity using `1-
constrained quadratic programs. In IEEE Transactions on Information Theory, 2006.

[28] H. Xu, C. Caramanis, and S. Mannor. Robust regression and lasso. Information Theory, IEEE Trans-
actions on, 2010.

[29] H. Xu, C. Caramanis, and S. Mannor. Sparse algorithms are not stable: A no-free-lunch theorem. In
IEEE Trans. Pattern Anal. Mach. Intell., 2012.

[30] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning Research,
2007.

A Stability and Privacy

A.1 Proof of Proposition 3

Proof of part (1). Note that Algorithm Adist can have only two possible outputs: ⊥ or f(D). We show that
for each of the outputs, the differential privacy condition holds. Firstly, since the true distance d can change
by at most one if one entry is removed (added) from (to) the data set D, therefore, by the following theorem
(Laplace mechanism) from [8], the variable d̃ (in Algorithm Adist) satisfies (ε, 0)-differential privacy.

Theorem 22 (Laplace Mechanism [8]). Let f : U∗ → R be a function (with U∗ being the domain of data
sets). If for any pair of data sets D and D′ with symmetric difference at most one, |f(D)− f(D′)| ≤ 1, then
the output A(D) = f(D) + Lap

(
1
ε

)
is (ε, 0)-differentially private.

Since we have shown d̃ is (ε, 0)-differentially private, it follows that for any pair of data sets D and D′
differing in one entry, differential privacy condition holds for the output ⊥, i.e.,

Pr[Adist(D) = ⊥] ≤ eε Pr[Adist(D′) = ⊥]

19

Notice that by the tail property of Laplace distribution, it follows that if d̃ > log(1/δ)
ε , then with proba-

bility at least 1− δ the actual distance d is greater than zero. Define the event E equal to be true, if the noise
Lap(1/ε) is greater than 1

ε log(1/δ). Then, we have,

Pr[Adist(D) = f(D)] ≤ Pr[Adist(D) = f(D) ∧ Ē] + Pr[E]

≤ Pr[Adist(D′) = f(D) ∧ Ē] + δ

≤ Pr[Adist(D′) = f(D)] + δ

Thus, we can conclude that Algorithm Adist is (ε, δ)-differentially private.

Proof of Part (2). By the tail property of Laplace distribution, if the true distance d is at least 1
ε (log(1/δ) +

log(1/β)), then with probability at least 1− β, the noisy distance d̃ is greater than 1
ε log(1/δ). Hence with

probability at least 1− β, f(D) is output.

A.2 Proof of Lemma 7

Proof. Proof of part (1) of the lemma follows by a direct application of Chernoff-Hoeffding’s bound. To
prove part (2), notice that conditioned on the event E adding or removing one entry in the original data set
changes any of the counts count(r) by at most 2mq. Therefore, count(1) − count(2) changes by at most
4mq. This in turn means that d̂(D) changes by at most one for any D and hence have global sensitivity
of one. This also implies that d̂ lower bounds the stability of f̂ on D. To prove part (3), notice that when
d̂(D) ≥ 1/16q, it implies that count(1)− count(2) ≥ m/4. Thus, if we bound the probability of the highest
bin having count less than 5/8m by 1 − δ, then we are done. Recall that in expectation the highest bin has
count at least 3/4m. Now the remaining proof follows directly via the application of Chernoff-Hoeffding’s
bound.

B Consistency and Stability of Sparse Linear Regression via LASSO

B.1 Consistency of LASSO Estimator

Proof of Theorem 10 (Stochastic Consistency). In the following we show that each of the Conditions 1, 3,
4, and 5 in Assumption 8 are satisfied with probability at least 15/16. By union bound over the failure
probabilities of these events, this will straightaway imply Theorem 10.

• Column normalization condition: Since we assumed n = Ω(s log p), by tail bound over the norm
of random Gaussian vectors, with probability at least 15/16, the column normalization condition is
satisfied.

• Restricted strong convexity (RSC): By Proposition 1 from [20], it directly follows that there exists
a constant Ψ such that with probability at least 15/16 the minimum eigenvalue of XT

ΓXΓ is at least
Ψn.

• Incoherence: Let us represent the vector (XT
ΓXΓ)sign(θ∗) to be u. Recall that by definition

‖sign(θ∗)‖∞ ≤ 1. Hence, by the RSC property above, ‖u‖2 ≤
√
s

Ψn , which implies that ‖u‖∞ ≤
√
s

Ψn .

20

Let ai be the i-th column of the matrix XΓc and bi be the i-th column of the matrix XΓ Now for any
row j ∈ [p− s],

|
(
XT

ΓcXΓu
)
j
| =

∣∣∣∣∣∣
∑
i∈[s]

ui〈aj , bi〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣〈aj ,
∑
i∈[s]

uibi〉

∣∣∣∣∣∣ (5)

Notice that
∑

i∈[s] uibi = XΓu. Therefore, ‖
∑

i∈[s] uibi‖2 ≤ |largest singular value of XΓ| · ‖u‖2.
It is well known from random matrix theory that with probability at least 1 − e−n, the largest sin-
gular value of XΓ is at most

√
n. Therefore, it follows that ‖

∑
i∈[s] uibi‖2 ≤

1
Ψ

√
s
n . Since aj ∼

N (0, 1
4Ip),

∣∣∣〈aj ,∑i∈[s] uibi〉
∣∣∣ in (5) is sub-Gaussian with standard deviation at most 1

Ψ

√
s
n . There-

fore by the tail property of sub-Gaussian random variables, with probability at most 1
p ,
∣∣∣〈aj ,∑i∈[s] uibi〉

∣∣∣ ≤
1
Ψ

√
s log p
n . Taking union bound over all the possible columns in XΓc , as long as n = ω(s log p), we

obtain the required incoherence condition with probability at least 15/16.

• Bound ‖XT
ΓcVw‖∞ ≤ 2σ

√
n log p: From the column normalization condition, we know that with

probability at least 15/16 each column of XΓc has L2-norm of at most
√
n. Let ãi be the random

variable for the i ∈ [p − s]-th entry of the vector XT
ΓcVw. Notice that (over the randomness of w)

ãi is sub-Gaussian with standard deviation at most σ
√
n. Therefore, using the tail property of sub-

Gaussian random variables and taking an union bound over all the columns of XΓc , with probability
at least 15/16, we get the required bound ‖XT

ΓcVw‖∞ ≤ 2σ
√
n log p.

B.2 Stability of LASSO Estimator in the Fixed Data Setting

B.2.1 Proof of Theorem 11 (Stability of unmodified LASSO)

Proof of Theorem 11 follows directly from the following two lemmas and a claim (Lemmas 23 and 24 and

Claim 25). The main idea is to show that under Assumption (s,Ψ, σ,Φ)-TYPICAL with Φ = max

{
16σ
Ψ

√
s log p
n , 8ks3/2

Ψn

}
,

changing k entries in D does not change the support of θ̂(D).

Lemma 23. Under the assumptions of Theorem 11 if Γ̂ is the support of θ̂(D) and θ̂(D)Γ̂ = arg min
θ∈CΓ̂

1
2n‖y−

Xθ‖22 + Λ
n‖θ‖1, then θ̂(D)Γ̂ equals θ̂(D).

For the ease of notation, we denote θ̂(D)Γ̂ by z.

Lemma 24. Let D′ = (y′, X ′) be a data set formed by inserting (removing) k entries in the data set D
from the domain U and let z′ = arg min

θ∈CΓ̂

1
2|D′|‖y

′ −X ′θ‖22 + Λ
|D′|‖θ‖1. Under assumptions of Lemma 23,

z′ = θ̂(D′), where θ̂(D′) = arg min
θ∈C

1
2|D′|‖y

′ −X ′θ‖22 + Λ
|D′|‖θ‖1.

To prove the above lemma, we use a proof technique which was developed by [27] under the name of
primal-dual construction and was used to argue consistency in non-private sparse linear regression.

Claim 25. Under assumptions of Lemma 24, θ̂(D) and θ̂(D′) have the same support.

21

In the following we provide the proofs of the above two lemmas and the claim.

Proof of Lemma 23. In order to prove this lemma, we first prove that the minimizer θ̂(D) is unique. We use
Theorem 9 (which is a modified version of Theorem 1 from [27]) to prove the above claim.

Since from Theorem 9 we have ‖θ̂(D) − θ∗‖∞ ≤ Φ, it follows that θ̂(D) lies in the interior of the set
C. This in turn implies that the objective function 1

2n‖y − Xθ‖
2
2 + Λ

n‖θ‖1 has a sub-gradient of zero at
θ̂(D). Additionally, notice that by assumption, the objective function restricted to the support of θ̂(D) is
strongly convex, since the support of θ̂(D) and θ∗ are same. These two observations along with the fact
that the gradient of the objective function just outside θ̂(D) is at least Λ (on the subspace orthogonal to the
support of θ̂(D)) imply that the gradient of the objective function just outside θ̂(D) is strictly greater than
zero. Hence, θ̂(D) is the unique minimizer.

By the restricted strong convexity property of the objective function, 1
2n‖y − Xθ‖

2
2 + Λ

n‖θ‖1 has an
unique minimizer θ̂(D)Γ̂ in CΓ̂. Now, if θ̂(D)Γ̂ does not equal θ̂(D), then it contradicts that θ̂(D) =
arg min

θ∈C
1

2n‖y −Xθ‖
2
2 + Λ

n‖θ‖1.

Proof of Lemma 24. For the ease of notation, we fix the following: i) L̂(θ;D) = 1
n

∑n
i=1 `(θ; di), where

di = (yi,xi), yi is the i-th entry of y and xi is the i-th row of X , ii) we denote θ̂(D)Γ̂ by z. Also, since by
Theorem 9, Γ̂ equals the support of θ∗ (i.e., Γ∗), we fix Γ̂ = Γ∗.

Let z′ = arg min
θ∈CΓ∗

L̂(θ;D′) + Λ
n+k‖θ‖1. W.l.o.g. assume that D′ has k entries more than D and call

these entries α1, · · · , αk. (The analysis for the case when D′ has k entries less than D follows analogously.)
In the following claim we show that z′ does not differ too much from z in the L2-metric.

Claim 26. ‖z − z′‖2 ≤ 4ks3/2

Ψn .

Proof. By restricted strong convexity of L̂ at z in a ball (in the subspace formed by the support set Γ∗) of
radius 2kζ

Ψn around it, we have the following.

nL̂(z′;D) + Λ‖z′‖1 ≥ nL̂(z;D) + Λ‖z‖1 +
Ψn

2
‖z′ − z‖22

⇒

(
(n+ k)L̂(z′;D′)−

k∑
i=1

`(z′;αi)

)
+ λ‖z′‖1 ≥

(
(n+ k)L̂(z;D′)−

k∑
i=1

`(z;αi)

)

+Λ‖z‖1 +
Ψn

2
‖z′ − z‖22

⇒ Ψn

2
‖z − z′‖22 ≤

k∑
i=1

|`(z;αi)− `(z′;αi)|

The last inequality follows from the fact that L̂(z′;D′) ≤ L̂(z;D′). Now, by mean value theorem for any
data entry d, |`(z; d)−`(z′; d)| ≤ ‖5`(z′′; d)‖2‖z−z′‖2, where z′′ is some vector in CΓ∗ . By assumption,
‖ 5 `(z′′; d)‖2 ≤ 2s3/2.

Hence, it follows that ‖z − z′‖2 ≤ 4ks3/2

Ψn .

Now using Claim 27 below, we conclude that z′ is indeed the unique minimizer in C which minimizes
L̂(θ;D′) + Λ

n+k‖θ‖1.

Claim 27. If Λ = 4σ
√

log p, then z′ is the unique minimizer of arg min
θ∈C
L̂(θ;D′) + Λ

n+k‖θ‖1.

22

Proof. By assumption, ‖θ∗‖∞ ≤ 1 − max

{
16σ
Ψ

√
s log p
n , 8ks3/2

Ψn

}
. Also from Theorem 9, we know that

‖θ∗ − θ̂(D)‖∞ ≤ 8σ
Ψ

√
log p
n . Using the bound obtained in Claim 26, we conclude that z′ lie in the interior

of the set C. Hence, along any direction i ∈ Γ∗ there exist a sub-gradient of the objective function at z′

whose slope is zero. In the following we analyze the sub-gradients of the objective functions along directions
i ∈ [p]− Γ∗.

For any direction i ∈ [p]− Γ∗ we have,

(n+ k)5 L̂(z′;D′)i = n5 L̂(z;D)i + n(5L̂(z′;D)i −5L̂(z;D)i) +
k∑
j=1

5`(z′;αj)i

⇒ |(n+ k)5 L̂(z′;D′)i| ≤ |n5 L̂(z;D)i|︸ ︷︷ ︸
A

+ |n(5L̂(z′;D)i −5L̂(z;D))i|︸ ︷︷ ︸
B

+

∣∣∣∣∣∣
k∑
j=1

5`(z′;αj)i

∣∣∣∣∣∣︸ ︷︷ ︸
C

(6)

We will bound each of the terms (A,B andC) on the right individually in order to show thatA+B+C < Λ.
This will imply that z′ is the minimizer of the objective function L̂(θ;D′) + Λ

n+k‖θ‖1 when restricted to
the convex set C. The uniqueness follows from the restricted strong convexity of the objective function in
the directions in Γ∗.

Bound termA ≤ Λ
2 in (6): Notice that termA is equal to |XT (y−Xz)|i. We have argued in the proof of

Lemma 23, that z lies in the interior of the convex set C. Now since z is the minimizer of 1
2n‖y −Xθ‖

2
2 +

Λ
2n‖θ‖1, therefore

1

n

[
XΓ∗

TXΓ∗ XΓ∗
TXΓ∗c

XΓ∗c
TXΓ∗ XΓ∗c

TXΓ∗

] [
z|Γ∗ − θ∗|Γ∗

0

]
+

1

n

[
XΓ∗

T

XT
Γ∗c

]
w +

Λ

n

[
v|Γ∗

v|Γ∗c

]
= 0 (7)

Here Γ∗c = [p]−Γ∗ and for any vector θ ∈ Rp, θ|Γ∗ is the vector formed by the coordinates of θ which are
in Γ∗. Additionally, the vector v is a sub-gradient of ‖ · ‖1 at z. From (7) we have the following.

(XΓ∗
TXΓ∗)(z|Γ∗ − θ∗Γ∗) +XΓ∗

Tw + Λv|Γ∗ = 0 (8)

⇔ (z|Γ∗ − θ∗|Γ∗) = −(XΓ∗
TXΓ∗)

−1XΓ∗
Tw − Λ(XΓ∗

TXΓ∗)
−1v|Γ∗ (9)

In the above expression v|Γ∗ ∈ {−1, 1}|Γ∗|, since for all i ∈ Γ∗, we have |zi| > 0, where zi is the i-th
coordinate of z. Now note that v|Γ∗c ∈ [−1, 1]p−|Γ

∗|. Therefore, if we bound each of the coordinates of
v|Γ∗c to be in [−1

2 ,
1
2], we can conclude that for i ∈ Γ∗c, |XT (y −Xz)i| ≤ Λ

2 .
Combining (7) and (9), we have the following.

23

(XT
Γ∗cXΓ∗)(zΓ∗ − θ∗Γ∗) +XΓ∗c

Tw + ΛvΓ∗c = 0

⇔ vΓ∗c =
1

Λ

(
(XΓ∗c

TXΓ∗)(XΓ∗
TXΓ∗)

−1XΓ∗
Tw −XT

Γ∗cw

− Λ(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗

)
= −(XΓ∗c

TXΓ∗)(XΓ∗
TXΓ∗)

−1vΓ∗

− XΓ∗c
T

Λ

(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)
w

⇔ ‖vΓ∗c‖∞ ≤ ‖(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗‖∞

+
1

Λ
‖XΓ∗c

T
(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)
w‖∞

= ‖(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗‖∞+

+
1

Λ
‖XΓ∗c

TVw‖∞ (10)

In the above expression V =
(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)

is a projection matrix. Applying the bounds
from Bullets 3 and 5 from Assumption TYPICAL (Assumption 8), we have ‖vΓc‖∞ < 1

2 . From this it
directly follows that for all i ∈ Γ∗c, |XT (y −Xz)i| < Λ

2 .

Bound on term B ≤ 4ks2

Ψ in (6): The term B is upper bounded by ‖XTX(z′ − z)‖∞. Since by as-
sumption on the domain of data entries U every column of X has L2-norm of at most

√
n, it follows that

every entry of the matrix XTX is at most n. Also note that (z− z′) has only s-non-zero entries. Therefore,
‖XTX(z′ − z)‖∞ ≤ n

√
s‖z − z′‖2. From Claim 26 we already know that ‖z − z′‖2 ≤ 4ks3/2

Ψn . With this
we get the relevant bound on B.

Bound on term C ≤ 2ks3/2 in (6): By the definition of `(z;αj) (where αj = (y,x) is as defined in (6)),
we have5`(z;αj) = −x(y − 〈x, z〉). Using the assumed bounds on y and ‖x‖2, we bound | 5 `(z;αj)i|
by 2s3/2. Now, it directly follows that the term C is bounded by 2ks3/2.

Now to complete the proof of Claim 27, we show that A+B + C < Λ. From the bounds on A, B and
C above, we have A+B + C ≤ Λ

2 + 4ks2

Ψ + 2ks3/2. Recall, that Λ = 4σ
√
n log p. By assumption on s, it

now follows that A+B + C < Λ.

This concludes the proof of Lemma 24.

To complete the proof of Theorem 11 (utility guarantee), all that is left is to prove Claim 25.

Proof of Claim 25. We need to show that the supports of θ̂(D) and θ̂(D′) are the same. From Lemma 24 it
directly follows that supp(θ̂(D′)) ⊆ supp(θ̂(D)). To prove equality, we provide the following argument.

From Theorem 9 we know that ‖θ̂(D)− θ∗‖∞ ≤ 8σ
Ψ

√
s log p
n . Additionally, by assumption the absolute

value of the minimum non-zero entry of θ∗ is at least Φ = max

{
16σ
Ψ

√
s log p
n , 8ks3/2

Ψn

}
. This means that the

absolute value of the minimum non-zero entry of θ̂(D) is at least 4ks3/2

Ψn . Recall that in Claim 26 we showed

24

‖θ̂(D) − θ̂(D′)‖∞ ≤ 4ks3/2

Ψn . From this we can conclude that every coordinate where θ̂(D) is non-zero,
θ̂(D′) is also non-zero.

Hence, supp(θ̂(D′)) = supp(θ̂(D)). This concludes the proof.

B.2.2 Proofs of Theorems 12 (Correctness Theorem) and 13 (Stability Theorem) for huberized LASSO

Proof of Theorem 12 (Correctness Theorem). We first show that the support of θ̃(D) in (4) will be the same
as the output of LASSO in (3), i.e., the support of θ̂(D) in (3) is same as the support of θ̃(D). Moreover,
we show that the minimizer θ̃(D) equals θ̂(D).

Claim 28. θ̃(D) equals θ̂(D).

Proof. In order to prove this claim, we invoke Theorem 1 from [27] (see Theorem 9). Notice for all the
rows xi of X , by assumption |〈xi,θ∗〉| ≤ 2

√
s log n. By triangle inequality we have

|〈xi, θ̂(D)〉| ≤ |〈xi,θ∗〉|+ |〈xi, θ̂(D)− θ∗〉|

≤ 2
√
s log n+

√
s2 log p

n

The last inequality follows from the bound ‖θ̂(D) − θ∗‖2 (see Theorem 9). Since, we assumed n =
ω(s log p), it follows that for all the rows xi (with i ∈ [n]), |〈xi, θ̂(D)〉| ≤ 3

√
s log n. Therefore the

following are true for all i ∈ [n]: −xi(yi − 〈xi, θ̂(D)〉) = 5ˆ̀(θ̂(D); yi,xi). This property straight away
implies that θ̂(D) is the minimizer of the objective function in (4). To show that θ̃(D) = θ̂(D), now
all we need to show is that θ̂(D) is the unique minimizer of the objective function in (4). This is true
because at θ̂(D) in a ball of radius r → 0, the function ˆ̀(θ; yi,xi) equals the function 1

2(yi − 〈xi,θ〉)2

for all i ∈ [n]. Hence, from the proof Lemma 23 since θ̂(D) is the unique minimizer of (3), it follows that
θ̃(D) = θ̂(D).

To conclude the proof of Theorem 12, we invoke Theorem 1 from [27]. For completeness purposes we
provide it in Theorem 9.

Proof of Theorem 13 (Stability Theorem). Since, in huberized LASSO we intend to get a better dependence
on the data set size n, we weaken the constraint on the maximum and minimum allowable values of θ∗. We

assume that ‖θ∗‖∞ ≤ 1 − max

{
16σ
Ψ

√
s log p
n , 20ks

√
logn

Ψn

}
and the absolute value of every non-zero entry

of θ∗ is at least max

{
16σ
Ψ

√
s log p
n , 20ks

√
logn

Ψn

}
. Similar to the stability proof for LASSO (Theorem 11), we

prove the stability guarantee via Lemma 29 and 30, and Claim 31.

Lemma 29. Under assumptions of Theorem 12, if Γ̂ is the support of θ̃(D) and θ̃(D)Γ̂ = arg min
θ∈CΓ̂

1
n

∑n
i=1

ˆ̀(θ; (yi, Xi))+

Λ
n‖θ‖1 , then θ̃(D)Γ̂ equals θ̃(D).

For the ease of notation, we denote θ̃(D)Γ̂ by z.

Lemma 30. Let D′ = (y′, X ′) be a data set formed by inserting (removing) k entries in D (which are from
the domain U) and let z′ = arg min

θ∈CΓ̂

1
|D′|
∑|D′|

i=1
ˆ̀(θ; (y′i, X

′
i))+ Λ

|D′|‖θ‖1. Under assumptions of Lemma 29,

z′ = θ̃(D′), where θ̃(D′) = arg min
θ∈C

1
|D′|
∑|D′|

i=1
ˆ̀(θ; (y′i, X

′
i)) + Λ

|D′|‖θ‖1.

25

To prove the above lemma, we use a proof technique which was developed by [27] under the name of
primal-dual construction and was used to argue consistency in non-private sparse linear regression.

Claim 31. Under assumptions of Lemma 30, θ̃(D) and θ̃(D′) have the same support.

In the following we provide the proofs of the above two lemmas and the claim. The proof of Lemma 29
is exactly the same for Lemma 23 in Section B.2.1 and hence omitted here.

Proof of Lemma 30. For the ease of notation, we fix the following: i) L̂(θ;D) = 1
n

∑n
i=1

ˆ̀(θ; di), where
di = (yi,xi), yi is the i-th entry of y and xi is the i-th row of X , ii) we denote θ̃(D)Γ̂ by z. Also, since by
Theorem 12, Γ̂ equals the support of θ∗ (i.e., Γ∗), we fix Γ̂ = Γ∗.

Let z′ = arg min
θ∈CΓ∗

L̂(θ;D′) + Λ
n+k‖θ‖1. W.l.o.g. assume that D′ has k entries more than D and call

these entries α1, · · · , αk. (The analysis for the case when D′ has k entries less than D follows analogously.)
In the following claim we show that z′ does not differ too much from z in the L2-metric.

Claim 32. ‖z − z′‖2 ≤ 10ks
√

logn
Ψn .

Proof. By restricted strong convexity of L̂ at z in a ball (in the subspace formed by the support set Γ∗) of
radius 2kζ

Ψn around it, we have the following.

nL̂(z′;D) + Λ‖z′‖1 ≥ nL̂(z;D) + Λ‖z‖1 +
Ψn

2
‖z′ − z‖22

⇒

(
(n+ k)L̂(z′;D′)−

k∑
i=1

`(z′;αi)

)
+ λ‖z′‖1 ≥

(
(n+ k)L̂(z;D′)−

k∑
i=1

`(z;αi)

)

+Λ‖z‖1 +
Ψn

2
‖z′ − z‖22

⇒ Ψn

2
‖z − z′‖22 ≤

k∑
i=1

|`(z;αi)− `(z′;αi)|

The last inequality follows from the fact that L̂(z′;D′) ≤ L̂(z;D′). Now, by mean value theorem for any
data entry d, |`(z; d) − `(z′; d)| ≤ ‖ 5 `(z′′; d)‖2‖z − z′‖2, where z′′ is some vector in CΓ∗ . Therefore,
‖ 5 `(z′′; d)‖2 ≤ 2s

√
log n.

Hence, it follows that ‖z − z′‖2 ≤ 10ks
√

logn
Ψn .

Now using Claim 33 below, we conclude that z′ is indeed the unique minimizer in C which minimizes
L̂(θ;D′) + Λ

n+k‖θ‖1.

Claim 33. z′ is the unique minimizer of arg min
θ∈C
L̂(θ;D′) + Λ

n+k‖θ‖1.

Proof. By assumption, ‖θ∗‖∞ ≤ 1 − max

{
16σ
Ψ

√
s log p
n , 20ks

√
logn

Ψn

}
. Also from Theorem 9, we know

that ‖θ∗ − θ̃(D)‖∞ ≤ 8σ
Ψ

√
s log p
n . Using the bound obtained in Claim 32, we conclude that z′ lie in the

interior of the set C. Hence, along any direction i ∈ Γ∗ there exist a sub-gradient of the objective function
at z′ whose slope is zero. In the following we analyze the sub-gradients of the objective functions along
directions i ∈ [p]− Γ∗.

26

For any direction i ∈ [p]− Γ∗ we have,

(n+ k)5 L̂(z′;D′)i = n5 L̂(z;D)i + n(5L̂(z′;D)i −5L̂(z;D)i) +
k∑
j=1

5`(z′;αj)i

⇒ |(n+ k)5 L̂(z′;D′)i| ≤ |n5 L̂(z;D)i|︸ ︷︷ ︸
A

+ |n(5L̂(z′;D)i −5L̂(z;D))i|︸ ︷︷ ︸
B

+

∣∣∣∣∣∣
k∑
j=1

5`(z′;αj)i

∣∣∣∣∣∣︸ ︷︷ ︸
C

(11)

We will bound each of the terms (A,B andC) on the right individually in order to show thatA+B+C < Λ.
This will imply that z′ is the minimizer of the objective function L̂(θ;D′) + Λ

n+k‖θ‖1 when restricted to
the convex set C. The uniqueness follows from the restricted strong convexity of the objective function in
the directions in Γ∗.

Bound term A ≤ Λ
2 in (11): Notice that term A is equal to |XT (y −Xz)|i. We have argued in the proof

of Lemma 23, that z lies in the interior of the convex set C. Now since z is the minimizer of 1
2n‖y−Xθ‖

2
2 +

Λ
2n‖θ‖1, therefore

1

n

[
XΓ∗

TXΓ∗ XΓ∗
TXΓ∗c

XΓ∗c
TXΓ∗ XΓ∗c

TXΓ∗

] [
z|Γ∗ − θ∗|Γ∗

0

]
+

1

n

[
XΓ∗

T

XT
Γ∗c

]
w +

Λ

n

[
v|Γ∗

v|Γ∗c

]
= 0 (12)

Here Γ∗c = [p]−Γ∗ and for any vector θ ∈ Rp, θ|Γ∗ is the vector formed by the coordinates of θ which are
in Γ∗. Additionally, the vector v is a sub-gradient of ‖ · ‖1 at z. From (12) we have the following.

(XΓ∗
TXΓ∗)(z|Γ∗ − θ∗Γ∗) +XΓ∗

Tw + Λv|Γ∗ = 0 (13)

⇔ (z|Γ∗ − θ∗|Γ∗) = −(XΓ∗
TXΓ∗)

−1XΓ∗
Tw − Λ(XΓ∗

TXΓ∗)
−1v|Γ∗ (14)

In the above expression v|Γ∗ ∈ {−1, 1}|Γ∗|, since for all i ∈ Γ∗, we have |zi| > 0, where zi is the i-th
coordinate of z. Now note that v|Γ∗c ∈ [−1, 1]p−|Γ

∗|. Therefore, if we bound each of the coordinates of
v|Γ∗c to be in [−1

2 ,
1
2], we can conclude that for i ∈ Γ∗c, |XT (y −Xz)i| ≤ Λ

2 .
Combining Equations 12 and 14, we have the following.

(XT
Γ∗cXΓ∗)(zΓ∗ − θ∗Γ∗) +XΓ∗c

Tw + ΛvΓ∗c = 0

⇔ vΓ∗c =
1

Λ

(
(XΓ∗c

TXΓ∗)(XΓ∗
TXΓ∗)

−1XΓ∗
Tw −XT

Γ∗cw

− Λ(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗

)
= −(XΓ∗c

TXΓ∗)(XΓ∗
TXΓ∗)

−1vΓ∗

−XΓ∗c
T

Λ

(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)
w

⇔ ‖vΓ∗c‖∞ ≤ ‖(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗‖∞

+
1

Λ
‖XΓ∗c

T
(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)
w‖∞

= ‖(XΓ∗c
TXΓ∗)(XΓ∗

TXΓ∗)
−1vΓ∗‖∞ +

+
1

Λ
‖XΓ∗c

TVw‖∞

27

In the above expression V =
(
In×n −XΓ∗(XΓ∗

TXΓ∗)
−1XT

Γ∗
)

is a projection matrix. Applying the bounds
from Bullets 3 and 5 from Assumption TYPICAL (Assumption 8), we have ‖vΓc‖∞ < 1

2 . From this it
directly follows that for all i ∈ Γ∗c, |XT (y −Xz)i| < Λ

2 .

Bound on term B ≤ 10ks3/2
√

logn
Ψ in (11): The term B is upper bounded by ‖XTX(z′ − z)‖∞. First

notice that since by Assumption (s,Ψ, σ,Φ)-TYPICAL every column of X has L2-norm of at most
√
n.

Hence, it follows that every entry of the matrix XTX is at most n. Also note that (z − z′) has only s-
non-zero entries. Therefore, ‖XTX(z′ − z)‖∞ ≤ n

√
s‖z − z′‖2. From Claim 32 we already know that

‖z − z′‖2 ≤ 10ks
√

logn
Ψn . With this we get the relevant bound on B.

Bound on term C ≤ 10ks
√

log n in (11): By the definition of `(z;αj) (where αj = (y,x) is as defined
in (11)), we have5`(z;αj) = −x(y−〈x, z〉). From the assumed bounds on y and ‖x‖2 in Section 3.2, we
bound | 5 `(z;αj)i| by 10s2

√
log n. Now, it directly follows that the term C is bounded by 10ks

√
log n.

Now to complete the proof of Claim 33, we show that A + B + C < Λ. From the bounds on A, B
and C above, we have A + B + C ≤ Λ

2 + 10ks3/2
√

logn
Ψ + 10ks

√
log n. Recall, that Λ = 4σ

√
n log p. By

assumption on s, it now follows that A+B + C < Λ.

This concludes the proof of Lemma 30.

To complete the proof of Theorem 13 (utility guarantee), all is left is to provide the proof for Claim 31.

Proof of Claim 31. We need to show that the supports of θ̃(D) and θ̃(D′) are the same. From Lemma 24 it
directly follows that supp(θ̃(D′)) ⊆ supp(θ̃(D)). To prove equality, we provide the following argument.

From Theorem 9 we know that ‖θ̃(D)− θ∗‖∞ ≤ 8σ
Ψ

√
s log p
n . Additionally, by assumption the absolute

value of the minimum non-zero entry of θ∗ is at least Φ = max

{
16σ
Ψ

√
s log p
n , 20ks

√
logn

Ψn

}
. This means that

the absolute value of the minimum non-zero entry of θ̃(D) is at least 10ks
√

logn
Ψn . Recall that in Claim 32 we

showed ‖θ̃(D) − θ̃(D′)‖∞ ≤ 10ks
√

logn
Ψn . From this we can conclude that every coordinate where θ̃(D) is

non-zero, θ̃(D′) is also non-zero.
Hence, supp(θ̃(D′)) = supp(θ̃(D)). This concludes the proof.

B.2.3 Proofs of Theorems 14 (k-stability (proxy version)) and 16 (STRONGLY-TYPICAL⇒ k-stability
(proxy version))

Proof of Theorem 14

Proof of Theorem 14 (k-stability (proxy version)). The proof of this theorem directly follows from Lemma
34 and Claims 35, 36, and 37 below. We prove these statements after stating them.

Lemma 34. If gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then changing one entry in D does not
change the support of θ̂(D).

In the following three lemmas we bound the local sensitivity (i.e., the amount by which the value of
gi(D) changes when an entry is added or removed from D) of the test functions g1, · · · , g4 on a data set D
when gi(D) > ti for all i ∈ {1, · · · , 4}.

28

Claim 35. Following the definition in Table 1, if gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then for
any neighboring dataset D′ (i.e., having one entry more (less) compared to D),

∣∣g1(D)− g1(D′)
∣∣ ≤ 6s2

Ψ
= ∆1

Claim 36. If gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then for any neighboring dataset D′ (i.e.,
having one entry more (less) compared to D),∣∣g2(D)− g2(D′)

∣∣ ≤ s = ∆2

Claim 37. If gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then for any neighboring dataset D′ (i.e.,
having one entry more (less) compared to D),

n‖θ̂(D)− θ̂(D′)‖∞ ≤ n‖θ̂(D)− θ̂(D′)‖2 ≤
4s3/2

Ψ
= ∆3 = ∆4

Proof of Lemma 34. We prove the lemma via the following three claims (Claims 38, 39 and 40).

Claim 38. If gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , if Γ̂ is the support of θ̂(D) and θ̂(D)Γ̂ =

arg min
θ∈CΓ̂

1
2n‖y −Xθ‖

2
2 + Λ

n‖θ‖1 (where CΓ̂ ⊆ C is the convex subset of C restricted to support in Γ̂), then

θ̂(D)Γ̂ equals θ̂.

Claim 39. Let D′ = (y′, X ′)) be a data set formed by inserting (removing) one entry in D. Let z′ =

arg min
θ∈CΓ̂

1
2|D′|‖y

′ − X ′θ‖22 + Λ
|D′|‖θ‖1. Then, if gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then

z′ = θ̂(D′), where θ̂(D′) = arg min
θ∈C

1
2|D′|‖y

′ −X ′θ‖22 + Λ
|D′|‖θ‖1.

Claim 40. If gi(D) > ti for all i ∈ {1, · · · , 4} and Λ > 16s2

Ψ , then θ̂(D) and θ̂(D′) have the same support.

The proof of these claims follow directly from the proofs of Lemmas 23, 24 and Claim 25 respectively.

Proof of Claim 35. W.l.o.g. we assume that the dataset D′ has one entry more than D (call this entry dnew).
First note that if gi(D) > ti for all i ∈ {1, · · · , 4}, then (s+ 1)-th coordinate of θ̂(D) is zero. Additionally,
note that by Lemma 34 the support of θ̂(D) and θ̂(D′) is the same. We now need to bound the following.

(n+1)5L̂(θ̂(D′);D′) = n5L̂(θ̂(D);D)+n(5L̂(θ̂(D′);D)−5L̂(θ̂(D);D))+5`(θ̂(D′); dnew) (15)

For any i ∈ [p]− Γ̂ (where Γ̂ is the support of θ̂(D)), by triangle inequality the following is true.∣∣∣(n+ 1)5 L̂(θ̂(D′);D′)i − n5 L̂(θ̂(D);D)i

∣∣∣ ≤ n ∣∣∣(5L̂(θ̂(D′);D)i −5L̂(θ̂(D);D)i)
∣∣∣︸ ︷︷ ︸

B

+
∣∣∣5`(θ̂(D′); dnew)i

∣∣∣︸ ︷︷ ︸
C

(16)

We can bound each of this terms (B and C) individually.

29

Bound on term B ≤ 4s2

Ψ in (16): The term B is upper bounded by ‖XTX(θ̂(D′) − θ̂(D))‖∞. First
notice that by definition every column of X has L2-norm of at most

√
n. Thus it follows that every entry

of the matrix XTX is at most n. Also note that (θ̂(D′) − θ̂(D)) has only s-non-zero entries. Therefore,
‖XTX(θ̂(D′) − θ̂(D))‖∞ ≤ n

√
s‖θ̂(D′) − θ̂(D)‖2. From Claim 26 we already know that ‖θ̂(D′) −

θ̂(D)‖2 ≤ 4s3/2

Ψ . With this we get the relevant bound.

Bound on term C ≤ 2s3/2 in (16): By the definition of `(θ̂(D);αj) (where αj = (y,x) is as defined in
(6)), we have 5`(θ̂(D);αj) = −x(y − 〈x, θ̂(D)〉). From the assumed bounds on y and ‖x‖2, we bound
| 5 `(θ̂(D);αj)i| by 2s3/2. Now, it directly follows that the term C is bounded by 2s3/2.

Proof of Claim 36. From Lemma 34 we know that the minimizers θ̂(D) and θ̂(D′) share the same support.
Additionally, since if gi(D) > ti for all i ∈ {1, · · · , 4}, we know that the the size of the support of θ̂(D) is
less than or equal to s.

Now to prove Lemma 36, all we need to show is that restricted to any support Φ of size s, the minimum
eigenvalue of the Hessian of L̂(θ̂(D);D) does not change by more than s when the dataset D is changed to
a neighboring one D′. Since, we are only concerned with linear regression, the Hessian of the loss function
L̂(·;D) evaluated at any point is XTX , where X is the design matrix. W.l.o.g. if we assume that D′ has
one entry more than D (and call that entry dnew = (y,x), where y ∈ R and x ∈ Rp, then the Hessian of
L̂(·;D′) at any point is given by XTX + xxT .

Representing the minimum eigenvalue of a matrix A as λ(A) and AΦ as the matrix formed by columns
from the set Φ, we have the following.∣∣g2(D)− g2(D′)

∣∣ =
∣∣λ(XΓ̂

TXΓ̂)− λ(XΓ̂
TXΓ̂ + xΓ̂xΓ̂

T)
∣∣

≤ max. eigenvalue(xΓ̂xΓ̂
T) ≤ s

The first inequality follows from Weyl’s inequalities. This completes the proof.

Proof of Claim 37. From Lemma 34 we know that the unique minimizers θ̂(D) and θ̂(D′) share the same
support.

Now, from Claim 26, it follows that ‖θ̂(D) − θ̂(D′)‖2 ≤ 4s3/2

Ψn . This in turn implies that ‖θ̂(D) −
θ̂(D′)‖∞ ≤ 4s3/2

Ψn since L∞-norm is less than or equal to L2-norm.

Proof of Theorem 16

Proof of Theorem 16 (STRONGLY-TYPICAL⇒ k-stability (proxy version)). From Assumption (s,Ψ, σ,Φ, k)-
STRONGLY-TYPICAL , it directly follows that g2(D) > t2 + (k − 1)∆2. To argue about g3(D) and
g4(D), notice that by Theorem 9 it follows that the absolute value of any non-zero entry of θ̂(D) is in(

2(4+(k−1))s3/2

Ψn , 1− 2(4+(k−1))s3/2

Ψn

)
. Hence, g3(D) > t3 + (k − 1)∆3 and g4(D) > t3 + (k − 1)∆4.

To complete the proof, all we need to argue is about g1(D). Using similar proof technique of Claim
27 (more precisely (10)) and the bounded noise condition from Assumption (s,Ψ, σ,Φ, k)-STRONGLY-
TYPICAL (i.e., ‖XT

ΓcVw‖∞ ≤ 2σ
√
n log p− 6(k− 1)s2/Ψ) it follows that g1(D) > t1 + (k− 1)∆1.

30

	Introduction
	Generic Algorithms For Stable Functions
	Feature Selection for Sparse Linear Regression and Robustness of the LASSO
	Prior Work on Learning and Stability

	Stability and Privacy
	From Sampling Stability to Stability

	Consistency and Stability of Sparse Regression using LASSO
	Consistency of LASSO Estimator
	Normalization
	Stability of LASSO Estimator in the Fixed Data Setting
	Stability of unmodified LASSO
	Stability of huberized LASSO

	Efficient Test for k-stability
	Stability of LASSO in Stochastic Setting

	Private Support Selection for Sparse Linear Regression
	Support Selection via Sampling Stability
	Support Selection via Stability of LASSO

	Stability and Privacy
	Proof of Proposition 3
	Proof of Lemma 7

	Consistency and Stability of Sparse Linear Regression via LASSO
	Consistency of LASSO Estimator
	Stability of LASSO Estimator in the Fixed Data Setting
	Proof of Theorem 11 (Stability of unmodified LASSO)
	Proofs of Theorems 12 (Correctness Theorem) and 13 (Stability Theorem) for huberized LASSO
	Proofs of Theorems 14 (k-stability (proxy version)) and 16 (STRONGLY-TYPICAL k-stability (proxy version))

