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Privacz in Statistical Databases

Individuals Server/agency Users
i_ L1 . (queries) Government,
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Large collections of personal information
* census data

* medical/public health data

* social networks

* recommendation systems

* trace data: search records, etc

* intrusion-detection systems

Recently:
* larger data sets
* more types of data
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Privacz in Statistical Databases

* Two conflicting goals
» Utility: Users can extract “aggregate” statistics

» “Privacy”: Individual information stays hidden

* How can we define these precisely?

> Variations on model studied in

* Statistics (“statistical disclosure control”)

* Data mining / database (“privacy-preserving data mining” *)

» Since ~2002: Rigorous foundations & analysis
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Privacz & Crzeto

Image: Gary Larson
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Privacz & Crzeto

* No bright lines

» Crypto: psychiatrist and patient

» Data privacy: have to release some
data at the expense of others

Image: Gary Larson

Wednesday, September 19, 2012



Privacy & Crypto

* No bright lines

» Crypto: psychiatrist and patient

» Data privacy: have to release some
data at the expense of others

Different from secure function
evaluation

» SFE: how do we securely distribute
a computation we've agreed on!

» Data privacy: what computation
should we perform!?

Image: Gary Larson
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Privacz & Crzeto

* How can crypto contribute!?

» Modeling
» Attacks (“cryptanalysis”)

* More hacking!

* Coherent principles

» Distributed models

* How can crypto benefit?

» Theory of “moderate” security

» Applicable to areas such as anonymous communication, voting?
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* Data privacy research is diverse
» Researchers from crypto, learning, algorithms, databases, ...

> Tools from lots of areas

Wednesday, September 19, 2012



An overview of research on Erivacz?

* Data privacy research is diverse
» Researchers from crypto, learning, algorithms, databases, ...

> Tools from lots of areas

* Great progress

» We’re 10 years ahead of where we were in 2002
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An overview of research on Erivacz?

* Data privacy research is diverse
» Researchers from crypto, learning, algorithms, databases, ...

> Tools from lots of areas

* Great progress

» We’re 10 years ahead of where we were in 2002

> Area still immature

 This talk

» More tutorial than survey
» Much has been left out
» Not only my work

» Sparse on references
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An overview of research on Erivacz?

* Data privacy research is diverse
» Researchers from crypto, learning, algorithms, databases, ...

> Tools from lots of areas

* Great progress

» We’re 10 years ahead of where we were in 2002

> Area still immature

| I can has
* This talk b sotand s

» More tutorial than survey

>

» Much has been left out
» Not only my work

» Sparse on references
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This talk

* Act I: Attacks
» (Why is privacy hard?)

> Reconstruction attacks
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» One approach: “differential” privacy
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» Basic techniques: noise addition, exponential sampling
» Answering many queries

» Exploiting “local” sensitivity

Wednesday, September 19, 2012



This talk

(Act I: Attacks )

» (Why is privacy hard?)

> Reconstruction attacks

* Act ll: Definitions

» One approach: “differential” privacy

> Variations on the theme

* Act lll: Algorithms

» Basic techniques: noise addition, exponential sampling
» Answering many queries

» Exploiting “local” sensitivity
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External Information

Individuals Server/agency Users Internet
i— L1 . queries Government, Social
To ((_) researchers, € ocla

i : —> A businesses network
: answers (a5
y Malicious ther
i adversary anonymized

data sets

 Users have external information sources
> Can’t assume we know the sources

» Can’t ignore them!

* Anonymization schemes are regularly broken
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* Warm-up: fine-grained releases
» Netflix

» Composition

e Reconstruction attacks

» Based on approximate linear statistics

» Based on synthetic data
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Netflix Data Release [Narayanan, Shmatikov 2008]

* Ratings for subset of
movies and users

* Usernames replaced
with random IDs

e Some additional
perturbation

Image credit: Arvind Narayanan
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Netflix Data Release Narayanan, shmatikov 2008;

o P & o Alice
& & Bob
& AL _I_ & © | Charlie
> % > % Danielle
o |99 i Erica
AL P Frank
Anonymized Public, incomplete
NetFlix data IMDB data

Image credit: Arvind Narayanan
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Netflix Data Release

'Narayanan, Shmatikov 2008]

o P & & Alice
& & Bob
& o _I_ & © | Charlie
> % > % Danielle
o |99 P Erica
AL P Frank
Anonymized Public, incomplete
NetFlix data IMDB data
21 Alice
& Bob
—_— & & Charlie
— ' e Danielle
o PP Erica
S Frank

Identified NetFlix Data
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Netflix Data Release Narayanan, shmatikov 2008;

o (Pld > o Alice
& & Bob
© P o _I_ & © | Charlie
> v © s Danielle
& /i i Erica
?lo ia Frank
Anonymized Public, incomplete On average,
NetFlix data IMDB data four movies
uniquely
1S | Alice identify user
& Bob
—_— © P @& Charlie
— K> ? Danielle
& PP Erica
Plo Frank

Identified NetFlix Data
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Netflix Data Release Narayanan, shmatikov 2008;

& A > & Alice
& ® Bob
© P @@ _I_ & © | Charlie
K> 4 K> % Danielle
o PP 4 Erica
k> 4 Frank
Anonymized Public, incomplete On average,
NetFlix data IMDB data four movies
uniquely
P ‘ Alice identify user
& Bob
o P D Charlie Second round
— > 2 Danielle  of Netflix
o |P? Erica competition
Pl Frank postponed

Identified NetFlix Data

Image credit: Arvind Narayanan
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals Servers

—3 | Hospital {__ statsa

A \
sensitive
. information
Hospital /

B statsp

o 2o o >0 >
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals Servers
i Hospital statsa
i sensitive
information
i Hosgaltal {tssy

* Example: two hospitals serve overlapping populations

» What if they independently release “anonymized” statistics?
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals Servers
i Hospital statsa
i sensitive
information
i Hosgaltal {tssy

* Example: two hospitals serve overlapping populations

» What if they independently release “anonymized” statistics?

» Composition attack: Combine independent releases

» Popular anonymization schemes leak lots of information
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

Individuals

X

=3

X
X

Servers

Hospital
A

Hospital
B

“Adam has either diabetes
or high blood pressure”

statsa

sensitive
information

“Adam has either diabetes
or emphyzema”

\
Attacker
——”’———)'

statsp

* Example: two hospitals serve overlapping populations

» What if they independently release “anonymized” statistics?

» Composition attack: Combine independent releases

» Popular anonymization schemes leak lots of information
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Other attacks

* Reidentifying individuals based on external sources, e.g.

» Social networks [Backstrom, Dwork, Kleinberg *07, NS'09]

- afte s T4 7
» Computer networks b AW NG,
» ,\»J\ o7, -
[Coull,Wright, Monrose, Collins, Reiter '07, O e **&_‘;*{{*
O A o e é
Ribeiro, Chen, Miklau, Townsley 08] £ Y7
N » e !
. T o o =
» Genetic data (GWAS) [Homer et al.’08, ...] WIS ST A

» Advertising systems [Korolova]

14
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Is the Eroblem granularitz?

* Examples so far: releasing individual information

° Problems:

» Composition

» Average salary before/after professor resigns

. O
» “Global” result can reveal specific values: o °F
o © .-

e “SupportVector Machine” output o Pt
depends on only a few inputs Q. _\—‘ o ®

e O e

.- ®
e ©
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Is the Eroblem granularitz?

* Examples so far: releasing individual information

° Problems:

» Composition

» Average salary before/after professor resigns

. O
» “Global” result can reveal specific values: o °F
O O P e
 “SupportVector Machine” output O O At
depends on only a few inputs Q .. v e ?
e e e
» Statistics may together encode data  -- oo °

* Reconstruction attacks:
Too many, “too accurate” stats => reconstruct the data

* Robust even to fairly significant noise

Wednesday, September 19, 2012
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Reconstruction Attacks [pinios)

> release

f——> A——>  —| attack —»% = (¥
f~ f(x)

Concrete setting: n users, each with secret x(i) € {0,1}.
Subset query: for S C {1,...n}, let

S (i) = (xs.7) e >¢@~fs<x>
’LES

1/4
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Reconstruction Attacks [pinios)

> release

f——> A——>  —| attack —»% = (¥
f~ f(x)

Concrete setting: n users, each with secret x(i) € {0,1}.
Subset query: for S C {1,...n}, let

Z z (xs, ) R /® fs(a)
’LES

What sets of subset queries S5y, ..., S, allow reconstruction?

@ # queries m
o Error duamming(Z, z), for distortion o = max; \]A”SZ — fs.(7)]
@ Running time

1/4
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Can we release all subset queries?

[DiNi03]
# queries m 2"
Error duamming(Z, ) 4an
Q = Mmaxy ‘}Sz — sz(x>|
Running time 2"

2/4
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Can we release all subset queries?

[DiNi03]
# queries m 2"
Error duamming(Z, ) 4an
Q = Mmaxy ‘}Sz — sz(x>|
Running time 2"

Attack successful for any nontrivial error o = o(1).

2/4
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Can we release all subset queries?

[DiNi03]
# queries m 2"
Error duamming(Z, ) 4an
@ = Inaxy ‘}Sz — Js:(z)]
Running time 2"

Attack successful for any nontrivial error o = o(1).

Algorithm:
o For y € {0,1}", write Hamming distance in terms of subset
queries:

dHamming(y7 :B) —n- fSo (37) ‘|‘|Sl| — - fSl (l’)
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o For y € {0,1}", write Hamming distance in terms of subset
queries:
dHamming(y7 :B) —n- fSo (37) ‘|‘|Sl| — - fSl (l’)

A

dy:n'}go —|—|51]—n fgl

2/4

Wednesday, September 19, 2012



Can we release all subset queries?

[DiNi03]
# queries m 2"
Error duamming(Z, ) 4an
@ = Inaxy ‘}Sz — Js:(z)]
Running time 2"

Attack successful for any nontrivial error o = o(1).

Algorithm:
o For y € {0,1}", write Hamming distance in terms of subset
queries:
dHamming(y7 :B) —n- fSo (37) ‘|‘|Sl| — - fSl (l’)

A

dy:n'}go —|—|51]—n fgl

A

o Qutput z = argmingcg 11» dy
2/4
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A few subset queries? [DiNi0s,DMT07,DY08]

[DiNi03] | [DiNi03,DMT07,DY08]
# queries m 2" n
Error dyamming(Z, ) 4an 2(ay/n)n
@ = Inaxy ‘}Sz — Js:(z)]
Running time 2" O(nlogn)

3/4
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A few subset queries? [DiNi0s,DMT07,DY08]

[DiNi03] | [DiNi03,DMT07,DY08]
# queries m 2" n
Error dyamming(Z, ) 4an 2(ay/n)n
Q = Mmaxy ‘}Sz — sz(x)|
Running time 2" O(nlogn)

Attack successful for error a« = o(1/4/n).

3/4
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A few subset queries? [DiNi0s,DMT07,DY08]

[DiNi03] | [DiNi03,DMT07,DY08]
# queries m 2" n
Error dyamming(Z, ) 4an 2(ay/n)n
@ = Inaxy ‘}Sz — Js:(z)]
Running time 2" O(nlogn)
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A few subset queries? [DiNi0s,DMT07,DY08]

[DiNi03] | [DiNi03,DMTO07,DYO08]
# queries m 2" n
Error dyamming(Z, ) 4an 2(ay/n)n
Q = Inax; ‘}Sz — sz(x)|
Running time 2" O(nlogn)
Algorithm:

@ QQueries come from the rows of £1 Hadamard matrix:

H H
> 0 = (1) H, = (Hzg N ”:{52>

» H, has all eigenvalues ++/n.

e Using n subset queries (one per row), can derive
z = %Hnaj + e where || €]l < 2

o Compute 2/ = (n- H, 1)z = z + ¢ where |||z < 2an
e Round to {0,1}" to get 2

Wednesday, September 19, 2012

4/4



Bezond Subset Queries

Wednesday, September 19, 2012

28



Bezond Subset Queries

* These attacks can be extended
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» Exploit sparsity of secret vector
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» Algebraically defined or uniformly random
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Bezond Subset Queries

* These attacks can be extended
» Handle some very distorted queries

» Exploit sparsity of secret vector

* So far:unnatural queries

» Algebraically defined or uniformly random

» Require “naming rows”

* Natural, symmetric queries! Yes!
» [KRSU’10] marginal tables

* Each person’s data is a row in a table
« k=way marginal: distribution of some k attributes

» [KRS’12] regression analysis, decision tree classifiers, ...

Wednesday, September 19, 2012
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Reconstruction from Marginals [KRSU*I0]

n .
People ai X I"e|ease ) reconstruction ZE ~ :I;
| -  J '
M lI 'l ] 'n
d+| attributes "
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Reconstruction from Marginals [KRSU*I0]

* Data set: d “public” attributes per person, | “sensitive”

n Cp—
People ai X I"e|ease ) reconstruction ZE ~ af;
| -  J .
M lI ll ] 'n
d+| attributes I

29
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Reconstruction from Marginals [KRSU*I0]

* Data set: d “public” attributes per person, | “sensitive”

n Cp—
People ai X I"e|ease ) reconstruction x ~ af;
| -  J .
M II Il ] ln
d+| attributes I

* Suppose release allows learning 2-way marginals
» 2-way marginals are subset queries!

> If aj are uniformly random and d > n, then dp 4 (2, ) = o(n)
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Reconstruction from Marginals [KRSU*I0]

* Data set: d “public” attributes per person, | “sensitive”

n p—
People ai X I"e|ease ) reconstruction {,U ~ af;
\ - > .
. nI Il I
d+ 1| attributes -

* Suppose release allows learning 2-way marginals
» 2-way marginals are subset queries!

> If aj are uniformly random and d > n, then dp 4 (2, ) = o(n)

* Theorem: With k-way marginals, d >> &1 suffices

29
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Reconstruction from Marginals [KRSU*I0]

* Data set: d “public” attributes per person, | “sensitive”

n p—
Pe0ple ai L r‘elease) reconstruction Tl ~ |z
\ - > .
~ ..
d+ 1| attributes .

* |dea: view statistics as noisy linear encoding Mx + e

M

* Signal processing: Reconstruction uses geometry of matrix M

Wednesday, September 19, 2012
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* Data set: d “public” attributes per person, | “sensitive”

n p—
Pe0ple ai L r‘elease) reconstruction Tl ~ |z
\ - > .
~ ..
d+ 1| attributes .

* |dea: view statistics as noisy linear encoding Mx + e

aixaj

M

* Signal processing: Reconstruction uses geometry of matrix M
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Reconstruction from Marginals [KRSU*I0]

* Data set: d “public” attributes per person, | “sensitive”

n p—
Pe0ple ai L r‘elease) reconstruction Tl ~ |z
\ - > .
~ ..
d+ 1| attributes .

* |dea: view statistics as noisy linear encoding Mx + e

aixaj

® x| + |e| =

M

* Signal processing: Reconstruction uses geometry of matrix M
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Reconstruction from Marginals

n Ty
People ai 'CE I"e|ease ) reconstruction :,U ~ af;
\ - > .
~ ..
d+ 1| attributes R
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Reconstruction from Marginals

n Ty
People ai 'CE release ) reconstruction x ~ af;
\ - > .
~ ..
d+ 1| attributes R

e Minimize estimated error in Kp

: M o |x|—
» p=2: least singular values H

» p=1:“Euclidean section”
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Reconstruction from Marginals

n Ty
People ai 'CE release ) reconstruction x ~ af;
\ - > .
~ ..
d+ 1| attributes R

* Minimize estimated error in £,
. - = I M ° —
» p=2: least singular values L) = argmin H

» p=1:“Euclidean section”
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Attacks on data Erivacz

* So far:
» Many ad hoc examples
* E.g., Netflix, ...
» Some general principles
» E.g., Composition
» Sophisticated reconstruction attacks
* Draws on theory of coding and signal processing

> Lower bounds for various classes of release mechanisms
* Sometimes based on crypto objects [DNRRY, UV]
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Attacks on data Erivacz

* So far:
» Many ad hoc examples
* E.g., Netflix, ...
» Some general principles
» E.g., Composition
» Sophisticated reconstruction attacks
* Draws on theory of coding and signal processing

> Lower bounds for various classes of release mechanisms
* Sometimes based on crypto objects [DNRRY, UV]

e Still missing:
» Systematic understanding

» Suite of standard attack techniques
(a la differential/linear cryptanalysis?)

Wednesday, September 19, 2012
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Lessons

* Even if releasing only “aggregate” statistics,
we can’t release everything

» We release some information at the expense of other kinds

» Inherent tradeoff very different from “crypto as usual”
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Lessons

* Even if releasing only “aggregate” statistics,
we can’t release everything

» We release some information at the expense of other kinds

» Inherent tradeoff very different from “crypto as usual”

* Even a single “aggregate” statistic can be
hard to reason about

* What does “aggregate” mean?

Wednesday, September 19, 2012
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This talk

e Act l: Attacks
» (Why is privacy hard?)

» Reconstruction attacks

(Act 1E Definitions)

» One approach: “differential” privacy

> Variations on the theme

* Act lll: Algorithms

» Basic techniques: noise addition, exponential sampling
» Answering many queries

» Exploiting “local” sensitivity

34
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This talk

* “Aggregate” = stability to small
e Act l: Attacks changes in input
> (Why is privacy hard?) * Handles arbitrary external

. information
» Reconstruction attacks

—— * Burgeoning field of research
(Act 1E DEfII‘IItIOI‘IS) sEoning

» One approach: “differential” privacy

> Variations on the theme

>
>
>
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This talk

* “Aggregate” = stability to small
e Act l: Attacks changes in input
> (Why is privacy hard?) * Handles arbitrary external

. information
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» One approach:“differlential” privacy

> Variations on the theme

>
>
>

Wednesday, September 19, 2012

34



Differential Privacz [DMNIS2006, Dw2006]

* |ntuition:

» Changes to my data not noticeable by users

» Output is “independent” of my data

Wednesday, September 19, 2012
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Differential Privacz [DMNIS2006, Dw2006]

- L1
f—= i)[ AX)
—> A >
n 7

i
i local random

coins

* Dataset x = (z1,...,x,) € D"
» Domain D can be numbers, categories, tax forms

» Think of x as fixed (not random)

* A = randomized procedure

» A(x) is a random variable

» Randomness might come from adding noise, resampling, etc.

36
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Differential Privacz [DMNIS2006, Dw2006]
- L1 . - L1
i 332 )[ A A(X) > i
n )

X
i/ local random i

coins

0 A AK)

local random
coins

X' is a neighbor of x
if they differ in one data point
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Differential Privacz [DMNIS2006, Dw2006]
- L1 . - L1
i 332 )[ A A(X) > i
n )

X
i/ local random i

0 A AK)

local random
coins

coins

X' is a neighbor of x
if they differ in one data point

Neighboring databases
induce close distributions
on outputs
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Differential Privacz [DMNIS2006, Dw2006]

—
X—— ’[ A Y, %
n x

X
i/ local random i

coins

X' is a neighbor of x

> A AN

local random
coins

if they differ in one data point

Definition: A is e-differentially private ff,
for all neighbors x, x’,
for all subsets S of outputs

Wednesday, September 19, 2012

Pr(A(x) € S) <e°-Pr

Neighboring databases
induce close distributions
on outputs
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Differential Privacz [DMNIS2006, Dw2006]

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs
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Differential Privacz [DMNIS2006, Dw2006]

* This is a condition on the algorithm A

» Saying a particular output is private makes no sense

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs
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Differential Privacz [DMNIS2006, Dw2006]

* This is a condition on the algorithm A

» Saying a particular output is private makes no sense

* Choice of distance measure matters
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Differential Privacz [DMNIS2006, Dw2006]

* This is a condition on the algorithm A

» Saying a particular output is private makes no sense

* Choice of distance measure matters

* What s €!
» Measure of information Ieakage

» Not too small (thlnk —, not ﬁ)

for all neighbors x, x’,
for all subsets S of outputs
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Differential Privacz [DMNIS2006, Dw2006]

* This is a condition on the algorithm A

» Saying a particular output is private makes no sense

* Choice of distance measure matters

* What s €!
» Measure of information Ieakage

» Not too small (thlnk —, not ﬁ)

more on
these later

for all neighbors x, x’,
for all subsets S of outputs
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Definition: A is e-differentially private ff,

Pr(A(x) € S) <e°-Pr(A(x') € S)

Neighboring databases
induce close distributions
on outputs
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
_— L1 (

X xQ t[ A | Ax) =f(x) + noise
1w A

>
xr
i local random

coins

f(x) € RP
Xi € {O, 1}, f(X) = %ZX;
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>
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* Say we want to release a summary f(x) € RP
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( function f

f—a

F—= >[ A | A(x) =f(x) + noise

; >
Ln 4
i local random

coins

* Say we want to release a summary f(x) € RP

> e.g., proportion of diabetics: x; € {0,1}, f(x) = £ Y x;

* Simple approach: add noise to f(x)

> How much noise is needed?

39
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

F—= >[ A | A(x) =f(x) + noise

; >
Ln 4
i local random

coins

* Say we want to release a summary f(x) € RP

> e.g., proportion of diabetics: x; € {0,1}, f(x) = £ Y x;

* Simple approach: add noise to f(x)

> How much noise is needed?

* Intuition: f(x) can be released accurately when f is
insensitive to individual entries T1,Z2,...,Ty,

39
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

SRR
£ xQ >[ A | Ax) =f(x) + noise
n A

>
xr
i local random

coins

[- Global Sensitivity: GSy = max | f(z) = f(z")]1 )

neighbors x,x’

1
> Example: GSproportiOn — n

RN
. —>f(x)
X,
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
1 (

£ xQ t[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

( 65y = max [f@)~ f@) )

neighbors x,x’

1
GSproportion — n
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( function f

SRR
£ xQ >[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

[ * Global Sensitivity: GSy = max ||f(z) — f(z")|] )

neighbors x,x’
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[ Theorem: If A(x) = f(x) + Lap Gsf), then A is e-differentially private.)

€
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

i~ —
) ¢ [ A A(x) = f(x) + noise

>
i/ local random

coins

[ * Global Sensitivity: GSr= max | f(z)— f(a")]| )

neighbors x,x’

» Example: GSproportlon —

1
n
[ Theorem: If A(x) ) + Lap ( ) then A is e-differentially private)

> Laplace distribution Lap(\) has density ,
h(y) oc e~ 191/ (y)

41
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
1 (

£ xQ t[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

neighbors x,x’

[ * Global Sensitivity: GSy = max ||f(z) — f(z")|] )

1
> Example: GSproportiOn — H

[ Theorem: If A(x) = f(x) + Lap (%) then A is e-differentially private)

> Laplace distribution Lap(\) has density

_ h G h
h(y) oc e~ 191/ (y+ GSy) oY)
» Changing one point translates curve >

| I
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
_— L1 (

X xQ t[ A | Ax) =f(x) + noise
1w A

>
xr
i local random

coins

GSproportion —

S|

1
A(x) = proportion + —
en
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
1 (

£ xQ t[ A | Ax) =f(x) + noise
n A

>
xr
i local random

coins

* Example: proportion of diabetics

1
> GSproportion — n

1
> Release A(x) = proportion + —
en
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

p—
) ¢ ‘732 >[ A | A(x) = f(x) + noise
n x

>
T
i/ local random

coins

* Example: proportion of diabetics

1
> GSproportion — n

1
> Release A(x) = proportion + —
en

* |s this a lot!

> If x is a random sample from a large underlying population,

. . 1
then sampling noise ~ NG A(X)

proportion_|
» A(x) “as good as” real proportion
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Using global sensitivitz
(Gsy =, max_ [f(z)— F@)lh )

neighbors x,x’

* Many natural functions have low sensitivity

> e.g., histogram, mean, covariance matrix, distance to a
function, estimators with bounded “sensitivity curve”,
strongly convex optimization problems

* Laplace mechanism can be a programming interface

» Many algorithms can be expressed as a sequence of low-
sensitivity queries [BDMN ’05, FFKN’09, MW’ 0]

» Implemented in several systems [McSherry 09, Roy et al.’ |0,
Haeberlen et al.’ I |, Moharan et al.’ 2]

43
Wednesday, September 19, 2012



Interpreting the definition

Neighboring databases

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs

Pr(A(x) € S) <e°-Pr

Wednesday, September 19, 2012

induce close distributions
on outputs
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Interpreting the definition

* € cannot be negligible

» A(0") and A(I") at distance at most n€

» Need € » |/n to get utility
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Interpreting the definition

* € cannot be negligible
» A(0") and A(I") at distance at most n€
» Need € » |/n to get utility

* Why this distance measure?
» Consider a mechanism that publishes | random person’s data

« Stat. Diff. (A(x),A(x’)) = I/n
> Need a “worst case” distance measure

Neighboring databases
induce close distributions
on outputs

Definition: A is e-differentially private ff,
for all neighbors x, x’,
for all subsets S of outputs

Pr(A(x) € S) <e°-Pr(A(x') € S)
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Interpreting the definition

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs
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Interpreting the definition

- Composition Lemma:
If Ai and A; are €-differentially private,

then joint output (A,A2) is 2&-differentially private.

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs
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Interpreting the definition

- Composition Lemma:
If Ai and A; are €-differentially private,

then joint output (A,A2) is 2&-differentially private.

* Meaningful in the presence of arbitrary external information

Definition: A is e-differentially private ff,
for all neighbors x, X,
for all subsets S of outputs

Wednesday, September 19, 2012

Pr(A(x) € S) <e°-Pr

Neighboring databases
induce close distributions
on outputs

45
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* A naive hope:

Your beliefs about me are the same
after you see the output as they were before
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Interpreting Differential Privac

* A naive hope:

- Yourbeliefs-ahout me-are-tiresame
e the output as they w

* Suppose you know that | smoke
» A public health study could teach you that | am at risk for cancer
» But it didn’t matter whether or not my data was part of it.

* Theorem [DN’06, KM’| | ]: Learning things about individuals is
unavoidable in the presence of external information
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Interpreting Differential Privac

* A naive hope:

- Yourbeliefs-ahout me-are-tiresame
e the output as they w

* Suppose you know that | smoke

» A public health study could teach you that | am at risk for cancer
» But it didn’t matter whether or not my data was part of it.

* Theorem [DN’06, KM’| | ]: Learning things about individuals is
unavoidable in the presence of external information

* Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me
whether or not my data is used

» This has a clean Bayesian interpretation [GKS 08]

46
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Features or bugs?

* May not protect sensitive global information, e.g.
» Clinical data: Smoking and cancer
» Financial transactions: firm-level trading strategies

» Social data: what if my presence affects everyone else? [KM’I ]

* The annoying colleague example

» Exact (deterministic) information about this data set

* E.g., | know the differences in population between all 50 states

* Differentially private release allows my to learn the populations exactly

* Leakage accumulates

» € adds up with many releases
> Inevitable in some form?

» How do we set €

47
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Variations on the aeeroach

* Predecessors [DDN’03,EGS’03,DN’04,BDMN’05]

(€,0)- differential privacy
> Require Pr(A(x) € S) <e-Pr(A(x) €S)+9
> Similar semantics to (€,0)- diffe.p. when 0 « I/n

» Computational variants [MPRV09,MMPRTV10,GKY | 1]
e Distributional variants [RHMS'09,BBGLT’ 1 1,...]

» Assume something about adversary’s prior distribution

» Deterministic releases

» Poor composition guarantees

* Generalizations
» [BLR’08, GLP’| I] simulation-based definitions
» [KM’12] “Pufferfish”: vast generalization, tricky to instantiate

* Crowd-blending privacy [GHLP’'12]
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What can we compute privately?

- L1

t—=— A
n £

i
i local random

coins
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What can we compute privately?

- L1 . - L1
i 37 2 )|. A A(X) > i 37 2 > A A(X)
7 A

X L A
i local random i local random

coins coins

* “Privacy” = change in one input leads to small change in
output distribution
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What can we compute Erivatelz?
- L1 - L1
—
i %2 *[ A AK) > X
n K

X
i/ local random i

coins

> A AN

local random
coins

* “Privacy” = change in one input leads to small change in
output distribution

What computational tasks can we achieve privately?
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* “Privacy” = change in one input leads to small change in
output distribution
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* General tools for reasoning about leakage
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What can we compute Erivatelz?
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i/ local random i

coins

0 A AK)

local random
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* “Privacy” = change in one input leads to small change in
output distribution

What computational tasks can we achieve privately?
* General tools for reasoning about leakage

* Lots of recent work, interesting questions

» STOC,FOCS,SODA, PODS, SIGMOD,VLDB, KDD, CCS, S&P, Usenix Sec.,
NIPS, COLT, Crypto/Eurocrypt, TCC, SIGCOMM, JSM, JASA ...
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This talk

e Act l: Attacks
» (Why is privacy hard?)
» Reconstruction attacks

e Act Il: Definitions

» One approach: “differential” privacy

> Variations on the theme

* Act lll: Algorithms

» Basic techniques: noise addition, exponential sampling
» Answering many queries

» Exploiting “local” sensitivity

50
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This talk

* Act I: Attacks
» (Why is privacy hard?)
» Reconstruction attacks
* Act lI: Definitions

» One approach: “differential” privacy

> Variations on the theme

(_ Act llI: Algorithms /

» Basic techniques: noise addition, exponential sampling
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Differentially Private Algorithms

* Tools and Techniques
» Laplace Mechanism
» Exponential Mechanism

» Algorithms for many queries

» Local Sensitivity-based techniques

* Theoretical Foundations
> Feasibility results: Learning, optimization, synthetic data, statistics

» Connections to game theory, learning, robustness

* Domain-specific algorithms

» Networking, clinical data, social networks, ...

e Systems

» Programming Languages, Query Languages, Attacks
Wednesday, September 19, 2012
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Differentiallx Private Algorithms

* Tools and Techniques

» Laplace Mechanism

—, S g

» Exponential Mechanism ~N—

» Algorithms f i -
gorithms for many queries "/_’
» Local Sensitivity-based techniques

* Theoretical Foundations
> Feasibility results: Learning, optimization, synthetic data, statistics

» Connections to game theory, learning, robustness

* Domain-specific algorithms

» Networking, clinical data, social networks, ...

e Systems

» Programming Languages, Query Languages, Attacks
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

SRR
£ xQ >[ A | Ax) =f(x) + noise
n A

>
xr
i local random

coins

[- Global Sensitivity: GSy = max | f(z) = f(z")]1 )

neighbors x,x’

1
> Example: GSproportiOn — n

RN
. —>f(x)
X,
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
1 (

£ xQ t[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

( 65y = max [f@)~ f@) )

neighbors x,x’

1
GSproportion — n
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

SRR
£ xQ >[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

[ * Global Sensitivity: GSy = max ||f(z) — f(z")|] )

neighbors x,x’

» Example: GSproportion —

[ Theorem: If A(x) = f(x) + Lap Gsf), then A is e-differentially private.)

€
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

( function f

i~ —
) ¢ [ A A(x) = f(x) + noise

>
i/ local random

coins

[ * Global Sensitivity: GSr= max | f(z)— f(a")]| )

neighbors x,x’

» Example: GSproportlon —

1
n
[ Theorem: If A(x) ) + Lap ( ) then A is e-differentially private)

> Laplace distribution Lap(\) has density ,
h(y) oc e~ 191/ (y)
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Examp|e: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

function f
1 (

£ xQ t[ A | Ax) =f(x) + noise
7 A

>
xr
i local random

coins

neighbors x,x’

[ * Global Sensitivity: GSy = max ||f(z) — f(z")|] )

1
> Example: GSproportiOn — H

[ Theorem: If A(x) = f(x) + Lap (%) then A is e-differentially private)

> Laplace distribution Lap(\) has density

_ h G h
h(y) oc e~ 191/ (y+ GSy) oY)
» Changing one point translates curve >

| I
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Examele: Histograms

f(x) = (n1,n2,...,nq) where nj = #{i : x; in j-th bin}

Lap(1/e)

0 1/d 1
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Examele: Histograms

* Say xi,X2,...,.Xn in domain D
» Partition D into d disjoint bins
» f(x) = (n1,ng2,...,nq) where nj = #{i : x; in j-th bin}
» GSr= |
> Sufficient to add noise Lap(1/¢) to each count

v

0 1/d 1
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Examele: Histograms

* Say xi,X2,...,.Xn in domain D
» Partition D into d disjoint bins
» f(x) = (n1,ng2,...,nq) where nj = #{i : x; in j-th bin}
» GSr= |
> Sufficient to add noise Lap(1/¢) to each count

* Examples

» Histogram on the line

» Populations of 50 states )
» Marginal tables -

* bins = possible combinations of attributes

v

0 1/d 1
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Marginal Tables

* Work horse of releases from US statistical agencies

» Frequencies of combinations of set of categorical attributes

* Treat as a “histogram”
> Eight bins (O+,0-,...,AB+,AB-)

ABOType RhType How Many Have It

0 positive 38% =
0 negative 7% i
» Add constant noise to counts 8 positive | % |
. . . . A negative 6%
to achieve differential privacy 8 positve | % |
1 8 negative 2% -
» Change to proportions is O(5) AB | positve | 3%
AB negative 1%
[ ) PrObIemS for Practice: (Scurce: Amencan Association of Blood Banks)

» Some entries may be negative. Multiple tables inconsistent.

» [BCDKMTO7] Multiple noisy tables can be “rounded” to a
consistent set of tables corresponding to real data.

Wednesday, September 19, 2012
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Variants in other metrics

» Consider f : D" — R¢
* Global Sensitivity: [GSf = max |f(z)— f(iU/)Ha-z\

neighbors x,x’

[Theorem: If A(x) = f(x) —I—DD—FGTS“)J, then A is gdifferentially private.j
. (0’ (Gsf-g-6 ln(1/5))2> (e, 5)

* Example: Ask for counts of d predicates

» f(x) = vector of counts.
> GSf = \/E
> Add noise V/d1n(1/9) per entry instead of d

€ €

57
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Exponential Sampling [McSherry-Talwar 2007]

* Sometimes noise addition makes no sense
> mode of a distribution
» minimum cut in a graph

> classification rule

* [MTO07] Motivation: auction design
» Differential privacy implies approximate truthfulness

» Generated line of work on privacy and game theory

* Subsequently applied very broadly

Wednesday, September 19, 2012
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Examele:Voting

 Data: xi = {websites visited by student i today}

* Range: Y = {website names}

* For each name y, let q(y; x) = #{i : xi contains y}

* Goal: output the most frequently visited site
[Mechanism: Given X, J

* Output website yyp with probability r, (1) oc exp(eq(y;x))

* Ultility: Popular sites exponentially
more likely than rare ones

* Privacy: One person changes
websites’ scores by <|
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Examele:Voting

Mechanism: Given x,
- Output website yp with probability m(y) & exp(eq(y;x))

* Claim: Mechanism is 2¢&-differentially private

. Proof: ry(y) _ e€4(y;x) .ZzEY e€a(zx') o 2
re(y)  ecawx) N7 eea(zx) T

* Claim: If most popular website has score T, then
Elq(yo; z)] = T — (log [Y']) /€

* Proof: Output y is bad if gq(y;x) <T - k

> Pr(bad outputs) _ |Y]es(T—F)
Pr(bad outputs) < <
r(bad outputs) < Pr(best output) — ecT

< elog|Y|—ek

» Get expectation bound via formula E(Z) = >, ,Pr(Z > k)
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Exeonential Samellng

Ingredients:
* Set of outputs Y with prior distribution p(y)

* Score function q(y;x) such that
for all outputs y, neighbors x,x: |q(y;x) - q(y;x’)| = |

{Mechanism: Given X,

 QOutput yp fromY with probability 7x(y) p(y)e_“I(y;X) J
* Example [KLNRS'08]:

» Y= set of possible classifiers (say, discretized half-planes)
» q(y;x) = -(error rate of classifier y on data x)

» Output a classifier with expected
error rate (OPT + log|Y| /€ n)

* Corollary: Every PAC learnable class
is privately PAC learnable.

Wednesday, September 19, 2012



Exeonential Sameling

Ingredients:
* Set of outputs Y with prior distribution p(y)

* Score function q(y;x) such that
for all outputs y, neighbors x,x: |q(y;x) - q(y;x’)| = |

Mechanism: Given x,
 QOutput yp fromY with probability 7x(y) p(y)e_“I(y;X)

* Example [KLNRS'08]:

» Y= set of possible classifiers (say, discretized half-planes)

» q(y;x) = -(error rate of classifier y on data x) 0O
> Output a classifier with expected © 0 P
error rate (OPT + log|Y| /€ n) ; ‘_——". ®
» Corollary: Every PAC learnable class .-==" . .' o’

is privately PAC learnable.
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Using Exeonential Sameling

* Mechanism above very general
» Every differentially private mechanism is an instance!

» Still a useful design perspective

* Perspective used explicitly for
» Learning discrete classifiers [KLNRS 08]
» Synthetic data generation [BLR’08,HLM’10]
» Convex Optimization [CM’08,CMS’ 0]
» Frequent Pattern Mining [BLST’ 0]
» Genome-wide association studies [FUS’| |]

» High-dimensional sparse regression [KST’[2]

Wednesday, September 19, 2012
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Releasing Many Functions
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Linear Queries

Data £ = multi-set in domain D

__ #occurrences of ¢ in x
n

o Represent as vector Z € RIPl: Z(4)

Linear Queries are functions f : D — [0, 1],

o Answer of f on z is > ., f(7) = <f, :T:>

@ Special cases: Subset queries (with right representation),
most low-sensitivity queries people use

Goal: given queries fi, .., fm, release fi, ..., f;, to minimize

error = Mmax ‘JE — (f;, :v>|
J

How low can error be in terms of m, n, |D|?

1/4
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Linear Queries

Goal: given queries fi, .., f;m, minimize error = max;

]ACJ' o <f7733>)

Laplace mechanism 4+ composition results

o error = O(—mlf,fm or O(\/mloggblog(l/é))

o Time O(mn)
o Only useful if m < n?.

2 /4
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Linear Queries

]ACJ' o <f7733>)

Goal: given queries fi, .., f;m, minimize error = max;
Laplace mechanism 4+ composition results

o error = O(—mlf,fm or O(\/mloggblog(l/é))

o Time O(mn)
o Only useful if m < n?.
Is this the best possible error?

@ Yes, when n > m [KRSU10,HT10]

e For m > n, reconstruction attacks rule out error o(1/y/n).

e Randomly sampling ¢ people from z gives error O(lo%m)...
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Linear Queries

Goal: given queries fi, .., f;m, minimize error = max;

]ACJ' o <f7733>’

Laplace mechanism 4+ composition results

@ error = O(—mlf,fm or O(Jmloggblog(l/é))

o Time O(mn)
o Only useful if m < n?.
Is this the best possible error?

@ Yes, when n > m [KRSU10,HT10]

e For m > n, reconstruction attacks rule out error o(1/y/n).

e Randomly sampling ¢ people from z gives error O(lo%m)...

... but shafts t people.
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Linear Queries

]ACJ' o <f7733>)

Goal: given queries fi, .., f;m, minimize error = max;
Laplace mechanism 4+ composition results

o error = O(—mlf,fm or O(\/mloggblog(l/é))

o Time O(mn)
o Only useful if m < n?.

Is this the best possible error?
@ Yes, when n > m [KRSU10,HT10]

e For m > n, reconstruction attacks rule out error o(1/y/n).
e Randomly sampling ¢ people from z gives error O(lo%m)...

... but shafts t people.
o [BLR’08,DNNRV’09,RR’10,HR’10,HLM’11,GRU’11,JT"12]:
Error O (log m - log \D|> or O <log m - log | D| - log(1/5)>.
(en)1/3 (en)1/4
» Useful even when m > n )
o Time O(|D|m)

» Sometimes exponential :(
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Linear Queries

]ACJ' o <f7733>)

Goal: given queries fi, .., f;m, minimize error = max;
Laplace mechanism 4+ composition results

o error = O(—mlf,fm or O(\/mloggblog(l/é))

o Time O(mn)
o Only useful if m < n?.

Is this the best possible error?
@ Yes, when n > m [KRSU10,HT10]

e For m > n, reconstruction attacks rule out error o(1/y/n).
e Randomly sampling ¢ people from z gives error O(lo%m)...

... but shafts t people.
o [BLR’08,DNNRV’09,RR’10,HHR’10,HLM’11,GRU’11,JT"12]:
Error O (log m - log \D|> or O <log m - log | D| - log(1/5)>.
(en)1/3 (en)1/4
» Useful even when m > n )
o Time O(|D|m)

» Sometimes exponential :(
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Idea: Learn the Data [DNRRV09,HR10,...]

T >

A

EM +
Laplace
mech’s

Learner

Release mechanism tries to “learn” x through diffe.p. interface

o Output Z to minimize error(z) = max; | (f;, Z) — (f;, x) |-

(Generally do not have z =~ z.)

Traditional learning

Privacy

Parameters of linear classifier
Training data
Gradient computations

Data zx
User’s Queries f;
Actual data access

Wednesday, September 19, 2012
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Idea: Learn the Data [DNRRV09,HR10,...]

T >

A

EM +
Laplace
mech’s

Learner

Release mechanism tries to “learn” x through diffe.p. interface

o Output Z to minimize error(z) = max; | (f;, Z) — (f;, x) |-

(Generally do not have z =~ z.)

Traditional learning

Privacy

Parameters of linear classifier
Training data
Gradient computations

Data zx
User’s Queries f;
Actual data access

@ Learner computes a sequence of estimates xg, x1, ... 74, ...

o Gradient: Verror(2:) = £f; where f; maximizes error

| <f77§6> R <f],33> |

Wednesday, September 19, 2012
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HLM Algorithm (a la “multiplicative weights”)

e Start with 7y = uniform on D.

e Update Step for t =0,1..., T":
©Q EM to get j ~ argmax; | (fj, z) - (fi, Tt) |
@ Use Laplace mechanism to ask d; = di = (f;, z) — (f;, 2¢)
@ Update §3H1(Z') = :lA?t(Z) . ehli(i)/2

© Normalize 21

4 /4
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HLM Algorithm (a la “multiplicative weights”)

e Start with 7y = uniform on D.
e Update Step for t =0,1..., T":
©Q EM to get j ~ argmax; | (fj, z) - (fi, Tt) |
@ Use Laplace mechanism to ask d; = di = (f;, z) — (f;, 2¢)
(3 Update Z/I\fH_l(Z.) — fl\ft(Z) . 6dtfj(z)/2
© Normalize 241

Analysis Idea (following [HR’10]):

@ Measure convergence of Z; to z via ¥y = KL(x||2:).
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@ Use Laplace mechanism to ask d; = di = (f;, z) — (f;, 2¢)
(3 Update Z/I\fH_l(Z.) — fl\ft(Z) . 6dtfj(z)/2
© Normalize 241

Analysis Idea (following [HR’10]):
@ Measure convergence of Z; to z via ¥y = KL(x||2:).

e Main utility claim: ¥, — U, | ~ error(2;)*/2.
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HLM Algorithm (a la “multiplicative weights”)

e Start with 7y = uniform on D.

e Update Step for t =0,1..., T":
©Q EM to get j ~ argmax; | (fj, z) - (fi, Tt) |
@ Use Laplace mechanism to ask d; = di = (f;, z) — (f;, 2¢)
@ Update :%Hl(i) = :lA?t(Z) . ehli(i)/2
© Normalize 21

Analysis Idea (following [HR’10]):
e Measure convergence of Z; to x via Wy = KL(x||2).
e Main utility claim: ¥, — U, | ~ error(2;)*/2.

o As long as error > «, can reduce KL by ~ o?/2
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HLM Algorithm (a la “multiplicative weights”)

e Start with 7y = uniform on D.

e Update Step for t =0,1..., T":
©Q EM to get j ~ argmax; | (fj, z) - (fi, Tt) |
@ Use Laplace mechanism to ask d; = di = (f;, z) — (f;, 2¢)
@ Update :%Hl(i) = :lA?t(Z) . ehli(i)/2
© Normalize 21

Analysis Idea (following [HR’10]):
e Measure convergence of Z; to x via Wy = KL(x||2).
e Main utility claim: ¥, — U, | ~ error(2;)*/2.

o As long as error > «, can reduce KL by ~ o?/2
D]

e Since KL(z||Zy) < log|D|, error drops below « after 10i2
updates.
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Concrete Problem: Parametric Estimators

2

statistic f

$—

<
N Users
A |~

ABO T Type | Rh Type How Many Have It

(o} positive 38%
45%

o negat 7%

A positi 34%
40%

A negati' 6%

B positi 9%
1%

B negati 2%

AB positi 3%
4%

AB negat 1%

(Source: American A: i 1 of Blood Banks)
. .
Contingency table Fitted parameters of

Wednesday, September 19, 2012
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Concrete Problem: Parametric Estimators

o
ji: 2

statistic f

<
N Users
A |~

A statistic or estimator is a function f : (data sets) — RP, e.g.

d Rh Blood

equ the Unit
ABO T Type | Rh Type How Many Have It
(o} positive 38%
45%
o negative 7%
A positive 34%
40%
A gat 6%
B positive 9%
1%
B negative 2%
AB positive 3%
4%
AB negative 1%
(Source: American A: i 1 of Blood Banks)
. .
Contingency table Fitted parameters of

mixture of gaussians

Goal: differentially private approximation to f.

Wednesday, September 19, 2012
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Use the Laplace Mechanism?

@ Recall: A(X) = f(X) + Lap (%)

> Global sensitivity GS; measures how much f varies when
one data point changes

@ Works well for proportions

» Private statistic has nearly same distribution as true
statistic

e For which statistics is this possible?

2/ 181
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Asymptotically Normal Statistics

For many statistics f and distributions P, we know:
If X =X4,...,X, isdrawn i.i.d. from P, then

f(X) = (normal random variable)

Wednesday, September 19, 2012
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Asymptotically Normal Statistics

For many statistics f and distributions P, we know:
If X =X4,...,X, isdrawn i.i.d. from P, then

f(X) = (normal random variable)

o Sums & averages (Central Limit Theorem) ~

h

r T T T T T 1
70 80 80 100 110 120 130
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Asymptotically Normal Statistics

For many statistics f and distributions P, we know:
If X =X4,...,X, isdrawn i.i.d. from P, then

f(X) = (normal random variable)

0.04

o Sums & averages (Central Limit Theorem) S

1

r T T T T T 1
70 80 80 100 110 120 130

@ Maximum likelihood estimators

0.02 0.03

@ Regression parameters: linear and logistic
regression, SVM

0.00 0.01
L 1
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Asymptotically Normal Statistics

For many statistics f and distributions P, we know:
If X =X4,...,X, isdrawn i.i.d. from P, then

f(X) = (normal random variable)

0.04

o Sums & averages (Central Limit Theorem) S

@ Maximum likelihood estimators

0.02 0.03

@ Regression parameters: linear and logistic

1

0.00 0.01
L 1

regression, SVM

T T T T T T 1
70 80 80 100 110 120 130

@ “M-estimators”
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.
Consequence: estimators with optimal rate 1/4/n for

@ sample mean
@ sample median
o maximum likelihood estimator for nice models

@ regression coefficients
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

o The transformation from f to A is (almost) black box.

» No need to “understand” structure of f.
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

o The transformation from f to A is (almost) black box.

» No need to “understand” structure of f.

Free lunch!
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A General Result

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

o The transformation from f to A is (almost) black box.

» No need to “understand” structure of f.

FEreeluneh!

e Caveat: Performance degrades with dimension p and
privacy parameter ¢.

» Result holds for p < n° for constant ¢ ~ 1/6.
» Reconstruction attacks imply some degradation is necessary.

o/ lo1
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Previous Work

Theorem [S., "11]

For every f : (data sets) — RP and € > 0,
there exists a e-diffe.p. algorithm A such that

A(X) = f(X) as n grows

whenever™ X ~ P™ and f is asymptotically normal at P.

Relative to previous work, we contribute:

o Generality, simplicity (previous aproaches were
problem-specific)
e Improved convergence guarantees for order statistics and

linear regression (O(n%) versus O(n%+7) [DL’09]).

6/ 199
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Technigque: Sample and
aggregate

Wednesday, September 19, 2012
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Why Not Laplace Mechanism?

Why not release

A(X) = f(X) + Lap (

Wednesday, September 19, 2012



Why Not Laplace Mechanism?

Why not release

A(X) = f(X) + Lap (

@ Need to understand f

» trusted code?
» new functions every day...

e Global sensitivity can be too high
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

o o © o
o o
o o
°© o %o °© o %o
o o
o o
o %o o %o
® ®
° o ° 5 o o © o0
o o o o
o o o o
°© o %o °© o og © o %o °© o og
o o o o
o o o o
o °o o °o o °o o °o

Global sensitivity of component means is roughly the diameter
of the space.
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter
of the space.
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter
of the space.
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter
of the space.

e If clustering is “good”, means should be insensitive.

Wednesday, September 19, 2012
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

Global sensitivity of component means is roughly the diameter
of the space.

e If clustering is “good”, means should be insensitive.

@ [Nissim, Raskhodnikova, S’07]: add less noise to “nice” data

Wednesday, September 19, 2012
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Getting Around High Global Sensitivity Nrso7

Local sensitivity of f at z: how much does f vy ﬂ(y’)
vary among neighbors of z? r\

/ i) )
LSp(z) = max |[f(z) — f(z)]2
z’ neighbor of o f\o\o
INRS’07] Goal: add noise proportional to X f f(x)
local sensitivity. (data sets) RP

101
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Getting Around High Global Sensitivity Nrso7

Local sensitivity of f at z: how much does f vy ﬂ(y’)
vary among neighbors of z? r\

/ i) )
LSp(z) = max |[f(z) — f(z)]2
z’ neighbor of o f\o\o
INRS’07] Goal: add noise proportional to X f f(x)
local sensitivity. (data sets) RP

e Problem: Using local sensitivity is not private (noise leaks)
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Getting Around High Global Sensitivity Nrso7

Local sensitivity of f at x: how much does f y’ h(y’)
vary among neighbors of z7? r\

/ i) )
LSp(z) = max |[f(z) — f(z)]2
z’ neighbor of o f\o\o
INRS’07] Goal: add noise proportional to X f f(x)
local sensitivity. (data sets) RP

e Problem: Using local sensitivity is not private (noise leaks)
e Solution 1: Use smoothed local sensitivity

» Order statistics (median, quantiles, ...)

» Stats for social networks (MST cost, subgraph frequencies)
[Karwa, Rashodnikova, Yaroslavtsev, S, ’11]

» Problem: often computationally difficult

103
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Getting Around High Global Sensitivity Nrso7

Local sensitivity of f at x: how much does f y’ h(y’)
vary among neighbors of z7? r\

/ i) )
LSp(z) = max |[f(z) — f(z)]2
z’ neighbor of o f\o\o
INRS’07] Goal: add noise proportional to X f f(x)
local sensitivity. (data sets) RP

e Problem: Using local sensitivity is not private (noise leaks)
e Solution 1: Use smoothed local sensitivity

» Order statistics (median, quantiles, ...)

» Stats for social networks (MST cost, subgraph frequencies)
[Karwa, Rashodnikova, Yaroslavtsev, S, ’11]

» Problem: often computationally difficult

e Solution 2: “Sample and aggregate”

104
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Sample-and-Aggregate Framework [Nrs07)

Intuition: Replace f with a less sensitive function f.

e Break z into k samples of n/k points
e Compute f on each block
e Run differentially private algorithm B:

flz) = B(f(blocky), f(blocks), . .., f(blocky))

//\

Tiy g Tjryeens Thy s« - - 5 Ty
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Sample-and-Aggregate Framework [Nrs07)

Intuition: Replace

f with a less sensitive function f.

e Break z into k samples of n/k points
e Compute f on each block
e Run differentially private algorithm B:

f(z) =

B(f(blocky), f(blocks), . .., f(blocky))

//\

lej.-o

Tjryeens i N

Lk

t

Always differentially private!
Many possible variants.

Wednesday, September 19, 2012
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Application 1: Normal Statistics

o Suppose f is asymptotically normal at z. /’ / \
o If block length 7 large enough, then ® @ ®
B

f(blocky), f(blocks), ..., f(blocky) ~ normal.

@ Design aggregation B for estimating mean of
approximately normal random variables.

» One aggregation works for all asymptotically normal
random variables.

» Getting optimal noise requires extra insight into
bias/variance tradeoff

107
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Toy variant: Averaging

Suppose Range(f) C [0, 1]
e Randomly break x into k samples of n/k points

o f(z) = avg(f(block:), f(blocks), ..., f(blocky))
o Output f(z) + Lap(2).

= average

noise O(Z;) —>é|_>—> output

108
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Toy variant: Averaging

Why is this useful? i 5 |
. —/
o If most samples give roughly the [Fooom] [ o] -
same answer, get @ 0 0

]_ ) @ = average

(that answer) + O (5_k noise O(L/A) Héﬂoutpu’c

-~

added noise

J/

» Not garbage!

» But do we only get the
“quality” of n/k samples?

» How to choose k7

109
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Toy variant: Averaging

Why is this useful? i 5 |
. —/
o If most samples give roughly the [Fooom] [ o] -
same answer, get @ 0 0

]_ ) @ = average

(that answer) + O (5_k noise O(L/A) Héﬂoutpu’c

-~

added noise

J/

» Not garbage!

» But do we only get the
“quality” of n/k samples?

» How to choose k7

@ [NRS'07] Generic aggregator, works for many types of data
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Toy variant: Averaging

Why is this useful? i 5 |
. —/
e If most samples give roughly the [l [Boo56] -
same answer, get @ @ 6
]_ @ = average
(that answer) :|: 0 (8_k‘> noise O(1/k) —»é—» output

J/

-~

added noise

» Not garbage!

» But do we only get the
“quality” of n/k samples?

» How to choose k7

@ [NRS07] Generic aggregator, works for many types of data
@ [S.’11] Tighter results for normal statistics

» Take advantage of low bias of typical estimators
» Roughly: get the “quality” of all n points

111
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]
(- o V()

Given: X=| - ———— 1 —————|andy= |y

- o Y

p “features”

112
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]
(- o V()

Given: X=| ———— 1z, —————|andy= |y

- o Y

p “features”
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]

Given: X =

p “features”

and y =

Linear Regression: find § such that X6 ~ g
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Sparse Linear Regression: find 9 such that X6 ~ @’
and 6 has at most s nonzero entries.
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(- o V()

Given: X=| ———— 1z, —————|andy= |y

S o )

p “features”

Sparse Linear Regression: find 9 such that X6 ~ @’
and 6 has at most s nonzero entries.

Typical setting: p > n.
@ Solvable nonprivately roughly when n > slogp
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]
(- o V()

Given: X=| ———— 1z, —————|andy= |y

S o )

p “features”

Sparse Linear Regression: find 9 such that X6 ~ @’
and 6 has at most s nonzero entries.

Typical setting: p > n.

@ Solvable nonprivately roughly when n > slogp
e Private algorithm?

» Noise addition fails because of high dimension
(noise p/n per coefficient)
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]
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find relevant features. LIMMERCY b SRS R

e Apply previous algorithms on 2 ® D
those features 5
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Application 2: Sparse Regression [Kifer,S, Thakurta *12]

[KST’12] | _ |
e Use sample and aggegrate to . ‘ﬁ / -
find relevant features. e
e Apply previous algorithms on 2 ® D
those features 5

In each block:
e Run nonprivate algorithm to get candidate list of s features

Aggregation: Privately choose features selected most often
e Use “exponential sampling” [McSherry, Talwar ’07,
Bhaskar, Laxman, S, Thakurta '10].
Sample s features randomly, where

Pr(7) o« exp(e - (# blocks where ¢ was selected)).

o Produces good estimates when n > s°log p.

e Open question: match nonprivate bound
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Sample-and-aggregate

Two applications: | z |

o Asymptotically normal statistics [@—#] [Bo%] -

@ Sparse regression ® ® D
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Sample-and-aggregate

Two applications: | z |

o Asymptotically normal statistics [@—#] [Bo%] -

@ Sparse regression ® ® D

Produces algorithms with interesting properties,
regardless of privacy

e Stability: robust to small changes in input

» Guarantees good generalization error
» Deterministic stable sparse learning impossible [Xu et al.,’11]

e Streaming: algorithms require little space (=~ \/n)
» Useful for very large data sets

Implemented by [Moharan et al., SIGMOD 2012
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Postscript:
Systems and Implementation
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Differential Privacz in “Practice”

* Currently, differential private algorithms hard to use

> noise
> can’t use out-of-the-box software

» requires fresh thinking for each new problem, etc

* Several systems to make use easier

» [McSherry’09] PINQ: variation on LINQ with differential privacy
enforced by query mechanism

» [Haeberlen et al.’| I] Programming language with privacy enforced by
type system

» [Roy et al.’|0, Moharan et al.’12] Systems for restricted classes of
queries, focus usability with legacy code

* Hard to get right!
» [Haeberlen et al.’| |7 Timing attacks
» [Mironov ‘12] Leakage via numerical errors
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A Elaz in three acts

125

Wednesday, September 19, 2012



A Elaz in three acts

° Act I: Attacks
» (Why is privacy hard?)

» Reconstruction attacks
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A Elaz in three acts

 Act I: Attacks
» (Why is privacy hard?)
» Reconstruction attacks

e Act lI: Definitions

» One approach: “differential” privacy

> Variations on the theme

125

Wednesday, September 19, 2012



A Elaz in three acts

 Act I: Attacks
» (Why is privacy hard?)
» Reconstruction attacks

e Act Il: Definitions

» One approach: “differential” privacy

> Variations on the theme

* Act lll: Algorithms

» Basic techniques: noise addition, exponential sampling
» Exploiting “local” sensitivity

» Answering many queries
125
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Things | did not cover

* Multiparty models
» What if data are distributed?

* Computational considerations

» “Require” distributed models to exploit

* Graph data

» Hard to pin down which data are “mine”
* Information-theoretic definitions

* Lower bounds specific to differential privacy

And More!
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* Define privacy in terms of my effect on output
» Meaningful despite arbitrary external information

> | should participate if | get benefit
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Conclusions

* Define privacy in terms of my effect on output
» Meaningful despite arbitrary external information

> | should participate if | get benefit

* What can we compute with rigorous guarantees?
» Basic Tools

» More advanced examples

* Future work
» Other definitions: How can we exploit uncertainty?
» Applications: genetics, finance, ...

» How can we reason about privacy, more broadly?
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Further resources

 Aaron Roth’s lecture notes

» http://www.cis.upenn.edu/~aaroth/courses/privacyF| | .html

* 2010 course by Sofya Raskhodnikova and me
» http://www.cse.psu.edu/~asmith/privacy598

* DIMACS Workshop on Data Privacy
» October 24-26,2012 (immediately after FOCS)
» http://dimacs.rutgers.edu/Workshops/DifferentialPrivacy/
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