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Privacy in Statistical Databases

Large collections of personal information
• census data
• medical/public health data
• social networks
• recommendation systems
• trace data: search records, etc
• intrusion-detection systems

Recently:
• larger data sets
• more types of data
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Privacy in Statistical Databases
• Two conflicting goals

ØUtility: Users can extract “aggregate” statistics

Ø “Privacy”: Individual information stays hidden

• How can we define these precisely?
ØVariations on model studied in

• Statistics (“statistical disclosure control”)

• Data mining / database (“privacy-preserving data mining” *)

Ø Since ~2002: Rigorous foundations & analysis
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Privacy & Crypto
• No bright lines

ØCrypto: psychiatrist and patient

ØData privacy: have to release some 
data at the expense of others

• Different from secure function 
evaluation
Ø SFE: how do we securely distribute 

a computation we’ve agreed on?

ØData privacy: what computation 
should we perform?
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Privacy & Crypto
• How can crypto contribute?

ØModeling

ØAttacks (“cryptanalysis”)
• More hacking!

• Coherent principles

ØDistributed models

• How can crypto benefit?
ØTheory of “moderate” security 

ØApplicable to areas such as anonymous communication, voting?
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External Information

• Users have external information sources
ØCan’t assume we know the sources

ØCan’t ignore them!

• Anonymization schemes are regularly broken

8
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• Warm-up: fine-grained releases 
ØNetflix

ØComposition

• Reconstruction attacks
ØBased on approximate linear statistics

ØBased on synthetic data

9
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Netflix Data Release [Narayanan, Shmatikov 2008]
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Item M
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• Ratings for subset of 
movies and users

• Usernames replaced 
with random IDs

• Some additional 
perturbation

Image credit: Arvind Narayanan
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Netflix Data Release [Narayanan, Shmatikov 2008]
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Netflix Data Release [Narayanan, Shmatikov 2008]
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Alice
Bob
Charlie
Danielle
Erica
Frank

Anonymized 
NetFlix data

Public, incomplete 
IMDB data

Identified NetFlix Data

=
Alice
Bob
Charlie
Danielle
Erica
Frank

On average, 
four movies 
uniquely 
identify user

Second round 
of Netflix 
competition 
postponed

Image credit: Arvind Narayanan
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]
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“Composition” Attacks [Ganta, Kasiviswanathan, S., KDD 2008]

• Example: two hospitals serve overlapping populations
Ø What if they independently release “anonymized” statistics?

• Composition attack: Combine independent releases 
Ø Popular anonymization schemes leak lots of information
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Other attacks
• Reidentifying individuals based on external sources, e.g.

Ø Social networks [Backstrom, Dwork, Kleinberg ’07, NS’09]

ØComputer networks 
[Coull, Wright, Monrose, Collins, Reiter ’07, 
Ribeiro, Chen, Miklau, Townsley 08]

ØGenetic data (GWAS) [Homer et al. ’08, ...]

ØAdvertising systems [Korolova]

14
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Is the problem granularity?
• Examples so far: releasing individual information

• Problems:
ØComposition

• Average salary before/after professor resigns

Ø “Global” result can reveal specific values: 
• “Support Vector Machine” output 

depends on only a few inputs 

Ø Statistics may together encode data
• Reconstruction attacks: 

Too many, “too accurate” stats  ⇒ reconstruct the data

• Robust even to fairly significant noise

15
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Reconstruction Attacks [DiNi03]Reconstruction Attacks [Dinur-Nissim03]

• Concrete setting: n users, each with secret x(i) ! 

{-1,+1}.

• Subset queries: for S " {1,...,n}, 
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Can we release all subset queries?

[DiNi03]
# queries m 2n

Error dHamming(x̂, x) 4αn
α = maxi |f̂Si − fSi (x)|
Running time 2n

Attack successful for any nontrivial error α = o(1).
Algorithm:

For y ∈ {0, 1}n , write Hamming distance in terms of subset
queries:

dHamming(y, x) = n · fS0(x) +|S1| − n · fS1(x)

d̂y = n · f̂S0 +|S1| − n f̂S1

Output x̂ = arg miny∈{0,1}n d̂y

2 / 4
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A few subset queries? [DiNi03,DMT07,DY08]

[DiNi03] [DiNi03,DMT07,DY08]
# queries m 2n n

Error dHamming(x̂, x) 4αn 2(α√
n)n

α = maxi |f̂Si − fSi (x)|
Running time 2n O(n log n)

Attack successful for error α = o(1/
√

n).
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A few subset queries? [DiNi03,DMT07,DY08]

[DiNi03] [DiNi03,DMT07,DY08]
# queries m 2

n n
Error dHamming(x̂, x) 4αn 2(α√

n)n
α = maxi |f̂Si − fSi (x)|
Running time 2

n O(n log n)

Algorithm:
Queries come from the rows of ±1 Hadamard matrix:

� H1 =
�
1
�

Hn =
�

Hn/2 Hn/2
Hn/2 −Hn/2

�

� Hn has all eigenvalues ±
√

n.

Using n subset queries (one per row), can derive

z = 1
n
Hnx + e where �e�∞ ≤ 2α

Compute x̂ � = (n · H −1
n )z = x + e�

where �e��2 ≤ 2αn
Round to {0, 1}n

to get x̂

4 / 4
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Beyond Subset Queries
• These attacks can be extended

ØHandle some very distorted queries

ØExploit sparsity of secret vector

• So far: unnatural queries
ØAlgebraically defined or uniformly random

ØRequire “naming rows”

• Natural, symmetric queries? Yes! 
Ø [KRSU’10] marginal tables

• Each person’s data is a row in a table

• k-way marginal: distribution of some k attributes

Ø [KRS’12] regression analysis, decision tree classifiers, ...

28
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Reconstruction from Marginals [KRSU‘10] 

• Data set: d “public” attributes per person, 1 “sensitive”

• Suppose release allows learning 2-way marginals

Ø2-way marginals are subset queries! 

Ø If ai are uniformly random and d > n, then 
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Reconstruction from Marginals [KRSU‘10] 

• Data set: d “public” attributes per person, 1 “sensitive”

• Suppose release allows learning 2-way marginals

Ø2-way marginals are subset queries! 

Ø If ai are uniformly random and d > n, then 

• Theorem: With k-way marginals,                  suffices 

29

n 
people

}

xai

d� n
1

k−1

release}

d+1 attributes

reconstruction ≈x̂ x

dHam(x̂, x) = o(n)
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• Data set: d “public” attributes per person, 1 “sensitive”

• Idea: view statistics as noisy linear encoding Mx + e

• Signal processing: Reconstruction uses geometry of matrix M 

Reconstruction from Marginals [KRSU‘10] 
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Reconstruction from Marginals
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Reconstruction from Marginals

• Minimize estimated error in

Øp=2: least singular values

Øp=1: “Euclidean section”
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Reconstruction from Marginals

• Minimize estimated error in

Øp=2: least singular values

Øp=1: “Euclidean section”
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Attacks on data privacy
• So far:

ØMany ad hoc examples
• E.g., Netflix, ...

Ø Some general principles
• E.g., Composition

Ø Sophisticated reconstruction attacks
• Draws on theory of coding and signal processing

ØLower bounds for various classes of release mechanisms
• Sometimes based on crypto objects [DNRRV, UV]
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Attacks on data privacy
• So far:

ØMany ad hoc examples
• E.g., Netflix, ...

Ø Some general principles
• E.g., Composition

Ø Sophisticated reconstruction attacks
• Draws on theory of coding and signal processing

ØLower bounds for various classes of release mechanisms
• Sometimes based on crypto objects [DNRRV, UV]

• Still missing: 
Ø Systematic understanding

Ø Suite of standard attack techniques 
(à la differential/linear cryptanalysis?)

32
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Lessons
• Even if releasing only “aggregate” statistics,

we can’t release everything
ØWe release some information at the expense of other kinds

Ø Inherent tradeoff very different from “crypto as usual”
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Lessons
• Even if releasing only “aggregate” statistics,

we can’t release everything
ØWe release some information at the expense of other kinds

Ø Inherent tradeoff very different from “crypto as usual”

• Even a single “aggregate” statistic can be 
hard to reason about

• What does “aggregate” mean?

33
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ØBasic techniques: noise addition, exponential sampling

ØAnswering many queries 

ØExploiting “local” sensitivity

• “Aggregate” ≈ stability to small 

changes in input

• Handles arbitrary external 

information

• Burgeoning field of research
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Differential Privacy [DMNS2006, Dw2006]

• Intuition:
ØChanges to my data not noticeable by users

ØOutput is “independent” of my data

35
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Differential Privacy [DMNS2006, Dw2006]
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• Data set  x 
ØDomain D can be numbers, categories, tax forms

ØThink of x as fixed (not random)

• A = randomized procedure
ØA(x) is a random variable

ØRandomness might come from adding noise, resampling, etc.
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xn
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local random 
coins

A A(x)x2

= (x1, ..., xn) ∈ Dn
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• This is a condition on the algorithm  A
Ø Saying a particular output is private makes no sense

• Choice of distance measure matters

• What is ε?
ØMeasure of information leakage
ØNot too small (think    , not      )
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

39
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function f
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• Say we want to release a summary 
Øe.g., proportion of diabetics:  

• Simple approach: add noise to f(x)
ØHow much noise is needed?
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Say we want to release a summary 
Øe.g., proportion of diabetics:  

• Simple approach: add noise to f(x)
ØHow much noise is needed?

• Intuition:  f(x) can be released accurately when f is 
   insensitive to individual entries

39

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

xi ∈ {0, 1}, f(x) = 1
n

�
xi

x1, x2, . . . , xn

f(x) ∈ Rp
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• Global Sensitivity: 

Ø Example:   

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

40

GSf = max
neighbors x,x�

�f(x)− f(x�)�1
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Ax2 A(x) = f(x) + noise

function f
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x’

f(x)

f(x’)
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• Global Sensitivity: 

Ø Example:   

•  

ØLaplace distribution             has density 
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Global Sensitivity: 

Ø Example:   

•  

ØLaplace distribution             has density 

ØChanging one point translates curve
41

GSf = max
neighbors x,x�

�f(x)− f(x�)�1

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

h(y)
Lap(λ)

h(y) ∝ e−|y|/λ

Theorem: If A(x) = f(x) + Lap
�

GSf

�

�
, then A is �-differentially private.

h(y + GSf )
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]
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function f
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Example: proportion of diabetics
Ø   

ØRelease 

42
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function f
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Example: proportion of diabetics
Ø   

ØRelease 

• Is this a lot?
Ø If x is a random sample from a large underlying population, 

then sampling noise 

ØA(x) “as good as” real proportion

42

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

≈ 1√
n

A(x) = proportion± 1

�n
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0.8
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Using global sensitivity

• Many natural functions have low sensitivity
Ø e.g.,  histogram, mean, covariance matrix, distance to a 

function, estimators with bounded “sensitivity curve”, 
strongly convex optimization problems

• Laplace mechanism can be a programming interface

ØMany algorithms can be expressed as a sequence of low-
sensitivity queries [BDMN ’05, FFKN’09, MW’10]

Ø Implemented in several systems [McSherry ’09, Roy et al. ’10, 
Haeberlen et al. ’11, Moharan et al. ’12]

43

GSf = max
neighbors x,x�

�f(x)− f(x�)�1
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Interpreting the definition
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Interpreting the definition

• ε cannot be negligible
ØA(0n) and A(1n) at distance at most nε
ØNeed ε ≫ 1/n to get utility

• Why this distance measure?
ØConsider a mechanism that publishes 1 random person’s data

• Stat. Diff. (A(x),A(x’)) = 1/n 

ØNeed a “worst case” distance measure
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then joint output (A1,A2) is 2ε-differentially private.
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Interpreting the definition
• Composition Lemma: 

If A1 and A2 are ε-differentially private,
then joint output (A1,A2) is 2ε-differentially private.

• Meaningful in the presence of arbitrary external information

45
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Ø A public health study could teach you that I am at risk for cancer
Ø But it didn’t matter whether or not my data was part of it.
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Interpreting Differential Privacy
• A naïve hope:

Your beliefs about me are the same 
after you see the output as they were before 

• Suppose you know that I smoke
Ø A public health study could teach you that I am at risk for cancer
Ø But it didn’t matter whether or not my data was part of it.

• Theorem [DN’06, KM’11]: Learning things about individuals is 
     unavoidable in the presence of external information

• Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me 
whether or not my data is used

ØThis has a clean Bayesian interpretation [GKS’08] 
46
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Features or bugs?
• May not protect sensitive global information, e.g.

ØClinical data: Smoking and cancer

Ø Financial transactions: firm-level trading strategies

Ø Social data: what if my presence affects everyone else? [KM’11]
• The annoying colleague example

ØExact (deterministic) information about this data set
• E.g., I know the differences in population between all 50 states

• Differentially private release allows my to learn the populations exactly

• Leakage accumulates
Ø ε adds up with many releases
Ø Inevitable in some form?

ØHow do we set ε?
47
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• (ε,δ)- differential privacy
Ø Require

Ø Similar semantics to (ε,0)- diffe.p. when δ ≪ 1/n
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Ø Similar semantics to (ε,0)- diffe.p. when δ ≪ 1/n

• Computational variants [MPRV09,MMPRTV10,GKY11]

• Distributional variants [RHMS’09,BBGLT’11,...]

Ø Assume something about adversary’s prior distribution

Ø Deterministic releases

Ø Poor composition guarantees
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Variations on the approach
• Predecessors [DDN’03,EGS’03,DN’04,BDMN’05] 

• (ε,δ)- differential privacy
Ø Require

Ø Similar semantics to (ε,0)- diffe.p. when δ ≪ 1/n

• Computational variants [MPRV09,MMPRTV10,GKY11]

• Distributional variants [RHMS’09,BBGLT’11,...]

Ø Assume something about adversary’s prior distribution

Ø Deterministic releases

Ø Poor composition guarantees

• Generalizations
Ø [BLR’08, GLP’11] simulation-based definitions

Ø [KM’12] “Pufferfish”: vast generalization, tricky to instantiate

• Crowd-blending privacy [GHLP’12] 
48
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This talk

• Act I: Attacks

Ø (Why is privacy hard?)

ØReconstruction attacks

• Act II: Definitions

ØOne approach: “differential” privacy

ØVariations on the theme

• Act III: Algorithms

ØBasic techniques: noise addition, exponential sampling

ØAnswering many queries 

ØExploiting “local” sensitivity
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Differentially Private Algorithms
• Tools and Techniques

Ø Laplace Mechanism

Ø Exponential Mechanism

ØAlgorithms for many queries 

Ø Local Sensitivity-based techniques

• Theoretical Foundations
Ø Feasibility results: Learning, optimization, synthetic data, statistics

ØConnections to game theory, learning, robustness 

• Domain-specific algorithms
ØNetworking, clinical data, social networks, ...

• Systems 
Ø Programming Languages, Query Languages, Attacks 51
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Basic Technique 1: 
Noise Addition

52
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• Global Sensitivity: 

Ø Example:   

Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

53

GSf = max
neighbors x,x�

�f(x)− f(x�)�1

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

x

x’

f(x)

f(x’)
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• Global Sensitivity: 

Ø Example:   

•  
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GSf = max
neighbors x,x�

�f(x)− f(x�)�1

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

Theorem: If A(x) = f(x) + Lap
�

GSf

�

�
, then A is �-differentially private.
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Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Global Sensitivity: 

Ø Example:   

•  

ØLaplace distribution             has density 

54

GSf = max
neighbors x,x�

�f(x)− f(x�)�1

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

h(y)
Lap(λ)

h(y) ∝ e−|y|/λ

Theorem: If A(x) = f(x) + Lap
�

GSf

�

�
, then A is �-differentially private.

Wednesday, September 19, 2012



Example: Noise Addition [Dwork, McSherry, Nissim, S. 2006]

• Global Sensitivity: 

Ø Example:   

•  

ØLaplace distribution             has density 

ØChanging one point translates curve
54

GSf = max
neighbors x,x�

�f(x)− f(x�)�1

x1

xn

...

local random 
coins

Ax2 A(x) = f(x) + noise

function f

GSproportion = 1
n

h(y)
Lap(λ)

h(y) ∝ e−|y|/λ

Theorem: If A(x) = f(x) + Lap
�

GSf

�

�
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h(y + GSf )
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Example: Histograms

55

Lap(1/�)

1/d0 1

f(x) = (n1, n2, . . . , nd) where nj = #{i : xi in j-th bin}
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Example: Histograms
• Say x1,x2,...,xn in domain D

ØPartition D into d disjoint bins

Ø  

ØGSf = 1

Ø Sufficient to add noise                to each count

55

Lap(1/�)

1/d0 1
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Example: Histograms
• Say x1,x2,...,xn in domain D

ØPartition D into d disjoint bins

Ø  

ØGSf = 1

Ø Sufficient to add noise                to each count

• Examples
ØHistogram on the line

ØPopulations of 50 states

ØMarginal tables
• bins = possible combinations of attributes

55

Lap(1/�)

1/d0 1

f(x) = (n1, n2, . . . , nd) where nj = #{i : xi in j-th bin}

Wednesday, September 19, 2012



Marginal Tables
• Work horse of releases from US statistical agencies

Ø Frequencies of combinations of set of categorical attributes

• Treat as a “histogram”
ØEight bins (O+,O-,...,AB+,AB-)

ØAdd constant noise to counts 
to achieve differential privacy

ØChange to proportions is 

• Problems for practice:
Ø Some entries may be negative. Multiple tables inconsistent.

Ø [BCDKMT07] Multiple noisy tables can be “rounded” to a 
consistent set of tables corresponding to real data.

56

O( 1
n )
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• Consider 

• Global Sensitivity: 

• Example:  Ask for counts of d predicates 
Ø f(x) = vector of counts. 

Ø  

ØAdd noise                     per entry instead of 

Variants in other metrics

57

GSf = max
neighbors x,x�

�f(x)− f(x�)�1

Theorem: If A(x) = f(x) + Lap
�

GSf
�

�d
, then A is �-differentially private.

f : Dn → Rd

2

√
d ln(1/δ)

�

GSf =
√

d

(�, δ)

d
�

N

�
0,

�GSf · 3 ·
�

ln(1/δ)
�

�2
�
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Basic Technique 2:
Exponential Sampling
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Exponential Sampling [McSherry-Talwar 2007]

• Sometimes noise addition makes no sense
Ømode of a distribution

Øminimum cut in a graph

Ø classification rule

• [MT07] Motivation: auction design
ØDifferential privacy implies approximate truthfulness

ØGenerated line of work on privacy and game theory 

• Subsequently applied very broadly

59
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Example: Voting

• Data: xi = {websites visited by student i today}
• Range:  Y = {website names}
• For each name y, let q(y; x) = #{i : xi contains y}
• Goal: output the most frequently visited site
Mechanism: Given x,
• Output website y0 with probability

• Utility: Popular sites exponentially 
more likely than rare ones

• Privacy: One person changes 
websites’ scores by ≤1

60

q(y; x)
rx(y)

rx�(y)

rx(y) ∝ exp(�q(y; x))
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Example: Voting

Mechanism: Given x,

• Output website y0 with probability

• Claim: Mechanism is 2ε-differentially private

• Proof:

• Claim: If most popular website has score T, then 

• Proof: Output y is bad if q(y;x) < T - k
Ø  

ØGet expectation bound via formula 

rx(y) ∝ exp(�q(y; x))

rx(y)
rx�(y)

=
e�q(y;x)

e�q(y;x�)
·
�

z∈Y e�q(z;x�)

�
z∈Y e�q(z;x)

≤ e2�

Pr(bad outputs) ≤ Pr(bad outputs)
Pr(best output)

≤ |Y |e�(T−k)

e�T
≤ elog |Y |−�k

E[q(y0;x)] ≥ T − (log |Y |)/�

E(Z) =
�

k>0 Pr(Z ≥ k)
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Exponential Sampling 
Ingredients:
• Set of outputs Y with prior distribution p(y)
• Score function q(y;x) such that 

   for all outputs y, neighbors x,x’:   |q(y;x) - q(y;x’)| ≤ 1

Mechanism: Given x,
• Output y0 from Y with probability

• Example [KLNRS’08]:
ØY= set of possible classifiers (say, discretized half-planes)
Øq(y;x) = -(error rate of classifier y on data x)
ØOutput a classifier with expected 

error rate (OPT + log|Y| /ε n)

• Corollary: Every PAC learnable class 
is privately PAC learnable. 

rx(y) ∝ p(y)e−�q(y;x)
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Using Exponential Sampling
• Mechanism above very general

ØEvery differentially private mechanism is an instance!

Ø Still a useful design perspective

• Perspective used explicitly for
ØLearning discrete classifiers [KLNRS’08]

Ø Synthetic data generation [BLR’08,HLM’10]

ØConvex Optimization [CM’08,CMS’10]

Ø Frequent Pattern Mining [BLST’10]

ØGenome-wide association studies [FUS’11]

ØHigh-dimensional sparse regression [KST’12]
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Releasing Many Functions
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Linear Queries

Data x = multi-set in domain D
Represent as vector �x ∈ R|D|

: �x(i) = #occurrences of i in x
n

Linear Queries are functions f : D → [0, 1],
Answer of f on x is

�
i∈x f (i) =

�
�f ,�x

�

Special cases: Subset queries (with right representation),

most low-sensitivity queries people use

Goal: given queries f1, .., fm , release f̂1, ..., f̂m to minimize

error = max
j

���f̂j − �fj , x�
���

How low can error be in terms of m, n, |D|?

1 / 4
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Linear Queries
Goal: given queries f1, .., fm , minimize error = maxj

���f̂j − �fj , x�
���

Laplace mechanism + composition results
error = O(m log m

εn or O(
√

m log m log(1/δ)
εn )

Time O(mn)
Only useful if m � n2.

Is this the best possible error?
Yes, when n � m [KRSU10,HT10]

For m ≥ n, reconstruction attacks rule out error o(1/
√

n).
Randomly sampling t people from x gives error O( log m√

t )...
... but shafts t people.

[BLR’08,DNNRV’09,RR’10,HR’10,HLM’11,GRU’11,JT’12]:

Error O

�
log m · log |D|

(εn)1/3

�
or O

�
log m · log |D| · log(1/δ)

(εn)1/4

�
.

� Useful even when m � n :)

Time Õ(|D|m)
� Sometimes exponential :(
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Idea: Learn the Data [DNRRV’09,HR’10,...]

x
EM + 
Laplace 
mech’s

Learner x̂
A

Release mechanism tries to “learn” x through diffe.p. interface

Output x̂ to minimize error(x̂) = maxj | �fj , x̂� − �fj , x� |.
(Generally do not have x̂ ≈ x.)

Traditional learning Privacy

Parameters of linear classifier Data x
Training data User’s Queries fj

Gradient computations Actual data access

Learner computes a sequence of estimates x0, x1, ...xt , ...

Gradient: ∇error(x̂t) = ±fj where fj maximizes error

| �fj , x̂� − �fj , x� |.
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HLM Algorithm (à la “multiplicative weights”)

Start with x̂0 = uniform on D.
Update Step for t = 0, 1..., T :

1 EM to get j ≈ arg maxj | �fj , x� − �fj , x̂t� |
2 Use Laplace mechanism to ask d̂t ≈ dt = �fj , x� − �fj , x̂t�
3 Update x̂t+1(i) = x̂t(i) · edt fj(i)/2

4 Normalize x̂t+1

Analysis Idea (following [HR’10]):
Measure convergence of x̂t to x via Ψt = KL(x�x̂t).
Main utility claim: Ψt − Ψt+1 ≈ error(x̂t)2/2.
As long as error ≥ α, can reduce KL by ≈ α2/2
Since KL(x�x̂0) ≤ log |D|, error drops below α after log |D|

α2

updates.
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Local and Smooth
Sensitivity
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Concrete Problem: Parametric Estimators

1

Privacy in Statistical Databases

Large collections of personal information
• census data
• medical/public health data
• social networks
• recommendation systems
• trace data: search records, etc
• intrusion-detection systems

UsersA

Tuesday, June 7, 2011

X1

X2
...
Xn

statistic f

≈ f (X)

A statistic or estimator is a function f : (data sets)→ Rp, e.g.

Contingency table Fitted parameters of
mixture of gaussians

Goal: differentially private approximation to f .
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Use the Laplace Mechanism?

Recall: A(X) = f (X) + Lap
�GSf
ε

�

� Global sensitivity GSf measures how much f varies when
one data point changes

Works well for proportions
� Private statistic has nearly same distribution as true

statistic
For which statistics is this possible?

-1.5 -1 -0.5 0 0.5 1 1.5

0.8

f (X)A(X)
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Asymptotically Normal Statistics

For many statistics f and distributions P, we know:
If X = X1, ...,Xn is drawn i.i.d. from P, then

f (X) ≈ (normal random variable)

Sums & averages (Central Limit Theorem)
Maximum likelihood estimators
Regression parameters: linear and logistic
regression, SVM

“M-estimators”
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A General Result
Theorem [S., ’11]
For every f : (data sets)→ Rp and ε > 0,
there exists a ε-diffe.p. algorithm A such that

A(X) ≈ f (X) as n grows

whenever* X ∼ Pn and f is asymptotically normal at P.

* Some conditions (on bias and third moment) apply.
Consequence: estimators with optimal rate 1/√n for

sample mean
sample median
maximum likelihood estimator for nice models
regression coefficients
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A General Result
Theorem [S., ’11]
For every f : (data sets)→ Rp and ε > 0,
there exists a ε-diffe.p. algorithm A such that

A(X) ≈ f (X) as n grows

whenever* X ∼ Pn and f is asymptotically normal at P.

The transformation from f to A is (almost) black box.
� No need to “understand” structure of f .

Free lunch!

Caveat: Performance degrades with dimension p and
privacy parameter ε.

� Result holds for p < nc for constant c ≈ 1/6.
� Reconstruction attacks imply some degradation is necessary.
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Previous Work
Theorem [S., ’11]
For every f : (data sets)→ Rp and ε > 0,
there exists a ε-diffe.p. algorithm A such that

A(X) ≈ f (X) as n grows

whenever* X ∼ Pn and f is asymptotically normal at P.

Relative to previous work, we contribute:
Generality, simplicity (previous aproaches were
problem-specific)
Improved convergence guarantees for order statistics and
linear regression (O(n 1

2 ) versus O(n 1
2 +γ) [DL’09]).

6 / 192
Wednesday, September 19, 2012



Technique: Sample and
aggregate
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Why Not Laplace Mechanism?

Why not release

A(X) = f (X) + Lap
�GSf
ε

�
?

Need to understand f
� trusted code?
� new functions every day...

Global sensitivity can be too high
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High global sensitivity

Example: fitting a mixture of two Gaussians
Database entries: points in a the plane.

x

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜

✉❡
✉❡

✫✪
✬✩

x�

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜ �❜�❜ �❜�❜ �❜ �❜
�❜�❜�❜�❜ �❜�❜

�❜

✉❡
✉❡

✫✪
✬✩

Global sensitivity of component means is roughly the diameter
of the space.

If clustering is “good”, means should be insensitive.
[Nissim, Raskhodnikova, S’07]: add less noise to “nice” data
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Getting Around High Global Sensitivity [NRS’07]

Local sensitivity of f at x: how much does f
vary among neighbors of x?

LSf (x) = max
x� neighbor of x

�f (x)− f (x �)�2

[NRS’07] Goal: add noise proportional to

local sensitivity.

x

x’
f

y

y’

f(y)
f(x’)

f(x)

f(y’)

(data sets) Rp

Problem: Using local sensitivity is not private (noise leaks)

Solution 1: Use smoothed local sensitivity

� Order statistics (median, quantiles, ...)

� Stats for social networks (MST cost, subgraph frequencies)

[Karwa, Rashodnikova, Yaroslavtsev, S, ’11]
� Problem: often computationally difficult

Solution 2: “Sample and aggregate”
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Sample-and-Aggregate Framework [NRS’07]

Intuition: Replace f with a less sensitive function f̃ .
Break x into k samples of n/k points
Compute f on each block
Run differentially private algorithm B:

f̃ (x) = B
�
f (block1), f (block2), . . . , f (blockk)

�

✏✏✏✏✏✏✮
✁

✁☛

�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

B

❄

Always differentially private!
Many possible variants.
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Application 1: Normal Statistics

Suppose f is asymptotically normal at x.

If block length
n
k large enough, then

f (block1), f (block2), . . . , f (blockk) ≈ normal.

Subsample-and-Aggregate Framework [NRS ’07]

Intuition: Replace f with a less sensitive function f̃ .
Break x into k subsamples of n/k points
Compute f on each block
Run differentially private algorithm B:

f̃ (x) = B
�
f (sample1), f (sample2), . . . , f (samplek)

�

✏✏✏✏✏✏✮
✁

✁☛

�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

B

❄

Always differentially private!
Many possible variants.

11 / 11

Design aggregation B for estimating mean of

approximately normal random variables.

� One aggregation works for all asymptotically normal

random variables.

� Getting optimal noise requires extra insight into

bias/variance tradeoff
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Toy variant: Averaging
Suppose Range(f ) ⊆ [0, 1]

Randomly break x into k samples of n/k points

f̃ (x) = avg(f (block1), f (block2), . . . , f (blockk))
Output f̃ (x) + Lap( 1

kε).

✏✏✏✏✏✏✮
✁

✁☛

�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

g = average

❄
✲ ✲♠+noise O( 1

εk ) output
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Toy variant: Averaging

Why is this useful?

If most samples give roughly the

same answer, get

(that answer) ± O

�
1

εk

�

� �� �
added noise

� Not garbage!

� But do we only get the

“quality” of n/k samples?

� How to choose k?

Variant 1: Averaging
Suppose Range(f ) ⊆ [0,Λ]

Randomly break x into k subsamples of n/k points

f̃ (x) = avg(f (sample1), f (sample2), . . . , f (samplek))
Output f̃ (x) + Lap( Λ

kε).

✏✏✏✏✏✏✮
✁

✁☛

�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

g = average

❄
✲ ✲♠+noise O(1/k) output

13 / 15

[NRS’07] Generic aggregator, works for many types of data

[S. ’11] Tighter results for normal statistics

� Take advantage of low bias of typical estimators

� Roughly: get the “quality” of all n points
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Application 2: Sparse Regression [Kifer,S,Thakurta ’12]

Given: X =





−−−−− x1 −−−−−
...

−−−−− xi −−−−−
...

−−−−− xn −−−−−





� �� �
p “features”

and �y =





y1
...

yi
...

yn





Sparse Linear Regression: find �θ such that X�θ ≈ �y
and �θ has at most s nonzero entries.

Typical setting: p � n.
Solvable nonprivately roughly when n � s log p
Private algorithm?

� Noise addition fails because of high dimension
(noise p/n per coefficient)
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Application 2: Sparse Regression [Kifer,S,Thakurta ’12]

[KST’12]
Use sample and aggegrate to

find relevant features.

Apply previous algorithms on

those features

Subsample-and-Aggregate Framework [NRS ’07]

Intuition: Replace f with a less sensitive function f̃ .
Break x into k subsamples of n/k points
Compute f on each block
Run differentially private algorithm B:

f̃ (x) = B
�
f (sample1), f (sample2), . . . , f (samplek)

�

✏✏✏✏✏✏✮
✁

✁☛

�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

B

❄

Always differentially private!
Many possible variants.

11 / 11

In each block:

Run nonprivate algorithm to get candidate list of s features

Aggregation: Privately choose features selected most often

Use “exponential sampling” [McSherry, Talwar ’07,
Bhaskar, Laxman, S, Thakurta ’10].

Sample s features randomly, where

Pr(i) ∝ exp(ε · (# blocks where i was selected)).
Produces good estimates when n � s2 log p.

Open question: match nonprivate bound
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Sample-and-aggregate

Two applications:
Asymptotically normal statistics
Sparse regression

Subsample-and-Aggregate Framework [NRS ’07]

Intuition: Replace f with a less sensitive function f̃ .
Break x into k subsamples of n/k points
Compute f on each block
Run differentially private algorithm B:

f̃ (x) = B
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f (sample1), f (sample2), . . . , f (samplek)
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✏✏✏✏✏✏✮
✁
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�������

❄ ❄ ❄
❍❍❍❍❍❍❍❥

❇
❇
❇❇◆

✟✟✟✟✟✟✟✙

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

⑥ ⑥ ⑥
⑥

♠ ♠ ♠
♠

f f f

B

❄

Always differentially private!
Many possible variants.

11 / 11

Produces algorithms with interesting properties,
regardless of privacy

Stability: robust to small changes in input
� Guarantees good generalization error
� Deterministic stable sparse learning impossible [Xu et al.,’11]

Streaming: algorithms require little space (≈ √n)
� Useful for very large data sets

Implemented by [Moharan et al., SIGMOD 2012]
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Postscript:
Systems and Implementation
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Differential Privacy in “Practice”

124

• Currently, differential private algorithms hard to use
Ø noise

Ø can’t use out-of-the-box software

Ø requires fresh thinking for each new problem, etc

• Several systems to make use easier
Ø [McSherry’09] PINQ: variation on LINQ with differential privacy 

enforced by query mechanism

Ø [Haeberlen et al. ’11] Programming language with privacy enforced by 
type system

Ø [Roy et al. ’10, Moharan et al. ’12] Systems for restricted classes of 
queries, focus usability with legacy code

• Hard to get right!
Ø [Haeberlen et al. ’11] Timing attacks

Ø [Mironov ‘12] Leakage via numerical errors
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A play in three acts
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A play in three acts

• Act I: Attacks

Ø (Why is privacy hard?)

ØReconstruction attacks

• Act II: Definitions

ØOne approach: “differential” privacy

ØVariations on the theme

• Act III: Algorithms

ØBasic techniques: noise addition, exponential sampling

ØExploiting “local” sensitivity

ØAnswering many queries

Wednesday, September 19, 2012



Things I did not cover
• Multiparty models

ØWhat if data are distributed?

• Computational considerations
Ø “Require” distributed models to exploit

• Graph data
ØHard to pin down which data are “mine”

• Information-theoretic definitions

• Lower bounds specific to differential privacy

• And More!
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ØMeaningful despite arbitrary external information
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Conclusions
• Define privacy in terms of my effect on output

ØMeaningful despite arbitrary external information

Ø I should participate if I get benefit

• What can we compute with rigorous guarantees?
ØBasic Tools

ØMore advanced examples

• Future work
ØOther definitions: How can we exploit uncertainty?

ØApplications: genetics, finance, ...

ØHow can we reason about privacy, more broadly?

127
Wednesday, September 19, 2012



Further resources
• Aaron Roth’s lecture notes

Øhttp://www.cis.upenn.edu/~aaroth/courses/privacyF11.html

• 2010 course by Sofya Raskhodnikova and me
Øhttp://www.cse.psu.edu/~asmith/privacy598

• DIMACS Workshop on Data Privacy
ØOctober 24-26, 2012 (immediately after FOCS)

Øhttp://dimacs.rutgers.edu/Workshops/DifferentialPrivacy/
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