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Sometimes summaries reveal a lot
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Sometimes summaries reveal a lot
• [Homer et al. (2008)] showed 

exact high-dimensional summaries 
allow an attacker 
with knowledge of population
to test membership in a data set
¾Can also find out whether participant 

was case or control, or…
¾Not specific to genetic data

• This paper: strengthened
membership tests
¾Approximate statistics
¾Less side information
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This talk

• Background

• An abstract setting

• Results
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Abstract setting
• Data X : 𝑥ଵ, 𝑥ଶ, … , 𝑥 ∈ 0,1 ௗ

¾ 𝑑 binary attributes for each person
¾ Think: 𝑑 big and 𝑛 moderate

• Summary statistcs
¾ Column averages �̅� 𝑗 = ∑ 𝑥(𝑗), for 𝑗 = 1,… , 𝑑.

• Actual output
¾ Estimates 𝑞 𝑗 ∈ �̅� 𝑗 ± 𝛼

• Goal: 
given 𝑞 and a “target person” 𝑧 ∈ 0,1 ௗ, 

determine if 𝑧 ∈ 𝑋
• Assumptions: 

¾ 𝑥ଵ,… , 𝑥 i.i.d. from distribution 𝑃
¾ Attributes are independent

• 𝑃 = 𝑃ఓ is a described by vector 𝜇ଵ,… , 𝜇ௗ
𝐸∼ഋ 𝑋 = 𝜇

¾ 𝑍 either uniform in sample 𝑿 or fresh from 𝑃
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Two applications
• Deanonymization
• Forensics

Impossible without 
some assumptions



Relation to Previous work
• Membership tests [Sankararaman et al., Nature Genomics 2009] 

assume
¾ Exact statistics are published (𝛼 = 0)
¾Nearly-exact knowledge of distribution

• Fingerprinting codes [Tardos 2003, Bun, Ullman, Vadhan 2014, 
Steinke, Ullman 2015] assume
¾ Robust to perturbed statistics (𝛼 < 1/2)
¾ Artificial distribution, exactly known

• This work
¾ Robust to perturbation: analysis for arbitrary 𝛼 < 1/2

• Same test works for all perturbation mechanisms
• Mathematically, very different from “normal” hypothesis testing

¾ Limited side information
• Reference sample of size 𝑚 ≥ 1 from the population

• Related: Heuristic attacks using more complex statistics 
[Wang, Li, Wang, Tang, Zhou 2009]
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Graphical Model
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Graphical Model: This Work
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Comparison
Previous work This work

Tracer knowledge about 𝑃
Exact parameters 
or large sample 

from 𝑃 (2𝑛 points)
𝑚 ≥ 1 fresh samples from 𝑃

Mechanism 𝑞(𝑿) = ത𝑋

𝑞 𝑗 ∈ ത𝑋 𝑗 ± 𝛼 (for 𝛼 constant) 
and

𝜇 ∼ 𝑝 where the 𝑝 are “smooth” 
(e.g. uniform, Lipschitz differentiable 

density) 

Dimension of released data 𝑑 > 𝑛 𝑑 > 𝑛 + 𝛼ଶ𝑛ଶ + 𝑛ଶ/𝑚

Success probability
(max of FP and FN rates)

1 − exp 𝐶
𝑑
𝑛

1 − 𝑒𝑥𝑝 −𝐶 ௗ
ାఈమమାమ/

if we assume 𝑞 depends only on �̅�
Ω 𝛼ଶ in general
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• Simple test; same test works in many settings
• Matches asymptotic accuracy of differentially 

private release: 𝛼 ≈ 𝑑/(𝜖𝑛) so 𝑑 ≈ 𝛼ଶ(𝜖𝑛)ଶ



Tracing algorithm
• Given 𝑞 ∈ 0,1 ௗ and 𝑧, 𝑦ଵ, … , 𝑦 ∈ 0,1 ௗ

and 𝛿 > 0
¾Compute 

𝑇 = 𝑧 − 𝑦ଵ, 𝑞 − 𝑦ିଵ
¾ If 𝑇 > 3𝛼 𝑑 log(1/𝛿), return “In”

Else return “Out”

• Theorems [see paper]: Under various conditions, 
Pr(𝑇𝑟𝑎𝑐𝑒𝑟 𝑠𝑎𝑦𝑠 “𝐼𝑛” | 𝑂𝑈𝑇) < 𝛿, and 
Pr(𝑇𝑟𝑎𝑐𝑒𝑟 𝑠𝑎𝑦𝑠 “𝐼𝑛” | 𝐼𝑁) > 1 − exp(… ).
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Previous work: Likelihood ratio test

𝑇 ≈ 𝑧 , log ೕ
ଵିೕ

− log ೕ
ଵିೕ



Proof Idea
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This talk

• Background

• An abstract setting

• Results
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Increasing the dimension
• Simulated data
¾ Independent columns

(“linkage equilibrium”)
• Means drawn from

actual distribution
on allele frequencies
(Hapmap CEU)
¾ Following set up from

Sankararaman et al.

• 𝑛 = 100
• 𝑚 = 200
• Published statistics rounded down to multiple of 0.1

Conclusion: Results fit roughly to theory
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Robustness to perturbation 

• 𝑛 = 100
• 𝑚 = 200
• 𝑑 = 5,000
• Two tests
¾LR [Sankararam et al]
¾ IP [this work]

• Two publication mechanisms
¾Rounded to nearest multiple of 0.1 (red / green)
¾Exact statistics (yellow / blue)

Conclusion: IP test is robust. 
Calibrating LR test seems difficult

15

False positive rate
Tr

ue
 p

os
iti

ve
 r

at
e



Shrinking the reference pool
• Rounding to 0.1
• 𝑛 = 100 and 𝑑 = 5,000
• Get reliable signal for 𝑚 above about 25
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What happens when 𝒎 = 𝟏?
• Here 𝑛 = 100 and 𝑚 = 1
• Mechanism rounds down to multiples of 0.1
• Still get a reliable signal for individual’s presence
¾As predicted, much larger dimension is necessary
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Future Work
• Real data
• Optimal test
¾Application: calibrating competitions

• Other types of statistics
¾Preliminary results on pairwise frequencies

Bigger questions
• How common are these problems “in the wild”?
• How should policies adjust?
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