Robust Traceability of Trace Amounts

Cynthia	Adam Smith	Thomas	Salil Madhar	Jonathan
Microsoft	Penn State	Steinke Harv	vaunan vard	Northeastern

Thanks to Chen Sun for help with data

Sometimes summaries reveal a lot

Relax — it can only see metadata.

Sometimes summaries reveal a lot

- [Homer et al. (2008)] showed exact high-dimensional summaries allow an attacker
 with knowledge of population
 to test membership in a data set
 - Can also find out whether participal...
 was case or control, or...
 - > Not specific to genetic data
- This paper: strengthened membership tests
 - > Approximate statistics
 - Less side information

Chromosomal location

- Background
- An abstract setting
- Results

Abstract setting

Data X : x₁, x₂, ..., x_n ∈ {0,1}^d
 d binary attributes for each person
 Think: *d* big and *n* moderate

- Two applications
- Deanonymization
- Forensics

• Summary statistcs

 \succ Column averages $\bar{x}(j) = \sum_i x_i(j)$, for j = 1, ..., d.

Actual output

 \succ Estimates $q(j) \in \bar{x}(j) \pm \alpha$

• Goal:

given q and a "target person" $z \in \{0,1\}^d$, determine if $z \in X$

- Assumptions:
 - $\succ x_1, \dots, x_n$ i.i.d. from distribution P
 - Attributes are independent

•
$$P = P_{\mu}$$
 is a described by vector $\mu_1, ..., \mu_d$
 $E_{X \sim P_{\mu}}(X) = \vec{\mu}$

 $\succ Z$ either uniform in sample X or fresh from P

Impossible without some assumptions

Relation to Previous work

- Membership tests [Sankararaman et al., Nature Genomics 2009] assume
 - \succ Exact statistics are published ($\alpha = 0$)
 - Nearly-exact knowledge of distribution
- Fingerprinting codes [Tardos 2003, Bun, Ullman, Vadhan 2014, Steinke, Ullman 2015] assume
 - \triangleright Robust to perturbed statistics ($\alpha < 1/2$)
 - > Artificial distribution, exactly known

This work

- \succ Robust to perturbation: analysis for arbitrary $\alpha < 1/2$
 - Same test works for all perturbation mechanisms
 - Mathematically, very different from "normal" hypothesis testing
- Limited side information
 - Reference sample of size $m\geq 1$ from the population
- Related: Heuristic attacks using more complex statistics [Wang, Li, Wang, Tang, Zhou 2009]

Graphical Model

"In"

"Out"

Graphical Model: This Work

"In"

"Out"

Comparison

	Previous work	This work
Tracer knowledge about P_p	Exact parameters or large sample from P (2 n points)	$m \ge 1$ fresh samples from P
Mechanism	$q(\boldsymbol{X}) = \bar{X}$	$\begin{array}{l} q(j) \in \bar{X}(j) \pm \alpha \text{ (for } \alpha \text{ constant)} \\ \text{and} \\ \mu_i \sim p_i \text{ where the } p_i \text{ are "smooth"} \\ \text{(e.g. uniform, Lipschitz differentiable} \\ \text{ density)} \end{array}$
Dimension of released data	d > n	$d > n + \alpha^2 n^2 + n^2/m$
Success probability (max of FP and FN rates)	$1 - \exp\left(C\frac{d}{n}\right)$	$1 - exp\left(-C\frac{d}{n+\alpha^2n^2+n^2/m}\right)$ if we assume q depends only on \bar{x} $\Omega(\alpha^2)$ in general

- Simple test; same test works in many settings
- Matches asymptotic accuracy of differentially private release: $\alpha \approx \sqrt{d}/(\epsilon n)$ so $d \approx \alpha^2(\epsilon n)^2$

Tracing algorithm

• Given $q \in [0,1]^d$ and $z, y_1, \dots, y_m \in \{0,1\}^d$ and $\delta > 0$

Compute $T = \langle z - y_1, q - \overline{y_{-1}} \rangle$ If $T > 3\alpha \sqrt{d \log(1/\delta)}$, return "In"
Else
return "Out"

• **Theorems** [see paper]: Under various conditions, $Pr(Tracer \ says "In" \mid OUT) < \delta$, and $Pr(Tracer \ says "In" \mid IN) > 1 - exp(...)$.

Previous work: Likelihood ratio test $T \approx \left(z , \log\left(\frac{q_j}{1-q_j}\right) - \log\left(\frac{p_j}{1-p_j}\right) \right)$

Proof Idea

- Background
- An abstract setting
- Results

Increasing the dimension

- Simulated data
 - Independent columns ("linkage equilibrium")
- Means drawn from actual distribution on allele frequencies (Hapmap CEU)
 - Following set up from Sankararaman et al.
- d = 10,000 1.0 d = 5,000 0.8 True positive rate d = 1,0000.6 d = 200 0.4 200, auc = 0.6182 1000, auc = 0.8185 0.2 5000, auc = 0.9596 d = 10000, auc = 0.9993 0.0 0.2 04 0.6 0.8 0.0

False positive rate

- *n* = 100
- *m* = 200
- Published statistics rounded down to multiple of 0.1 Conclusion: Results fit roughly to theory

Robustness to perturbation

- *n* = 100
- *m* = 200
- *d* = 5,000
- Two tests
 ➤ LR [Sankararam et al]
 ➤ IP [this work]

- Two publication mechanisms
 - Rounded to nearest multiple of 0.1 (red / green)
 - Exact statistics (yellow / blue)

Conclusion: IP test is robust. Calibrating LR test seems difficult

Shrinking the reference pool

- Rounding to 0.1
- n = 100 and d = 5,000
- Get reliable signal for *m* above about 25

What happens when m = 1?

- Here n = 100 and m = 1
- Mechanism rounds down to multiples of 0.1
- Still get a reliable signal for individual's presence

> As predicted, much larger dimension is necessary

Future Work

- Real data
- Optimal test

> Application: calibrating competitions

Other types of statistics

> Preliminary results on pairwise frequencies

Bigger questions

- How common are these problems "in the wild"?
- How should policies adjust?