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Privacy in Statistical Databases

Large collections of personal information
• census data
• medical/public health data
• social networks
• recommendation systems
• trace data: search records, etc
• intrusion-detection systems

Recently:
• larger data sets
• more types of data
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Privacy in Statistical Databases

• Published “statistics” may be tables, graphs, microdata, 

decision trees, neural networks, confidence intervals...

• Data may be numbers, categories, tax forms, web searches...

• May be interactive
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Privacy in Statistical Databases

• What information can be released?
• Two conflicting goals

Utility: Users can extract “global” properties
Privacy (“confidentiality”): Individual information stays hidden

• How can these be formalized? 
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Privacy in Statistical Databases

• Variations on model studied in
 Statistics (“statistical disclosure control”)

 Data mining (“privacy-preserving data mining” *)

• No coherent theory

• Recently: crypto & theoretical CS 
 Focused on rigorous approach to privacy
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How can we formalize “privacy”?

• “Privacy” is harder to reason about than “utility”
 Utility is what we’re used to

• Existing definitions problematic
 Many are not specified precisely

 Fail in the presence of external information
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External Information
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External Information

• Users have external information sources
 Can’t assume we know the sources

• Anonymization schemes regularly broken
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External Information

• Users have external information sources
 Can’t assume we know the sources

• Anonymization schemes regularly broken

• Example: two hospitals independently release statistics about 
overlapping populations
 Combining information “breaks” several current techniques  [Ganta, S.]

7

Internet

Social 
network

Other
anonymized 
data sets

Server/agencyIndividuals Users
x1

x2

xn

...

local random 
coins

A
queries

answers

)( Government,
researchers,
businesses

(or) 
Malicious
adversary



How can we formalize “privacy”?
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How can we formalize “privacy”?

• Goal #1: Rigor
 Raise the bar for how we think about privacy

• Especially external information

 Make clear and refutable statements/conjectures
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How can we formalize “privacy”?

• Goal #1: Rigor
 Raise the bar for how we think about privacy

• Especially external information

 Make clear and refutable statements/conjectures

• Goal #2: Interesting science
 (New) Computational phenomenon

 Unify different approaches 

 Algorithmic, statistical, cryptographic challenges
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This talk

• “Differential” privacy

Handles arbitrary external information

What can we compute privately?

• Example technique: Output perturbation

Calibrating noise to “sensitivity”

 Sample-aggregate methodology
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This talk

• “Differential” privacy

Handles arbitrary external information

What can we compute privately?

• Example technique: Output perturbation

Calibrating noise to “sensitivity”

 Sample-aggregate methodology



Defining Privacy [DiNi,DwNi,BDMN,DMNS]

• Intuition:

Changes to my data not noticeable by users

Output is “independent” of my data
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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• Data set  x 

Domain D can be numbers, categories, tax forms

Think of x as fixed (not random)

• A = randomized procedure run by the agency

A(x) is a random variable distributed over possible outputs

Randomness might come from adding noise, resampling, etc.
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]

• ε cannot be too small (think     , not      )
• Distance measure on distributions matters

• This is a condition on the algorithm (process) A
 Saying “this output is safe” doesn’t take into account how it 

was computed
Common problem in the literature...
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Definition:  A is ε-differentially private if, 
for all neighbors x, x’, 
for all subsets S of outputs

Neighboring databases 
induce close distributions 
on outputs
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Example: Perturbing the Average
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• Data points are binary responses
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release average

• Claim:  If noise                  then A is ε-differentially private 

Laplace distribution             has density

 Sliding property:
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release average

• Claim:  If noise                  then A is ε-differentially private 

Laplace distribution             has density

 Sliding property:

A(x) = blue curve,   A(x’) = red curve


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Why is this a good definition?
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Definition:  A is ε-differentially private if, 
for all neighbors x, x’, 
for all subsets S of transcripts

Neighboring databases 
induce close distributions 
on transcripts

Pr(A(x) ∈ S) ≤ eε · Pr(A(x′) ∈ S)



Why is this a good definition?
• “Composition”: If algorithms A1 and A2 are ε-differentially 

private then the outputting results of both algorithms 
A1(x),A2(x) is 2ε-differentially private

• “Group privacy”:  kε-differential privacy for groups of size ≤ k

• Meaningful in the presence of arbitrary external information
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Why is this a good definition?
• A naïve hope:

Your beliefs about me are the same 
after you see the output as they were before 

• Suppose you know I am the height of average Canadian
 You could learn my height from database! 

But it didn’t matter whether or not my data was part of it.
 Has my privacy been compromised? No!
 Theorem (Dwork-Naor): Learning things about individuals is 

   unavoidable in the presence of external information
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Why is this a good definition?
• A naïve hope:

Your beliefs about me are the same 
after you see the output as they were before 

• Suppose you know I am the height of average Canadian
 You could learn my height from database! 

But it didn’t matter whether or not my data was part of it.
 Has my privacy been compromised? No!
 Theorem (Dwork-Naor): Learning things about individuals is 

   unavoidable in the presence of external information

• [DM] Differential privacy implies:
No matter what you know ahead of time,

You learn the same things about me 
whether or not I am in the database
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Why is this a good definition?
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Why is this a good definition?
• Consider an intruder trying to infer personal information

“Background knowledge” = prior distribution on data x
“Conclusions you draw” = posterior p(∙|output)
Experiment 0: Run A(x)
Experiment i: Run A(x-i) where x-i = (x1,…,xi-1,0,xi+1,…,xn) 
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Why is this a good definition?
• Consider an intruder trying to infer personal information

“Background knowledge” = prior distribution on data x
“Conclusions you draw” = posterior p(∙|output)
Experiment 0: Run A(x)
Experiment i: Run A(x-i) where x-i = (x1,…,xi-1,0,xi+1,…,xn) 

• Lemma: ∀ prior, ∀ output, p0(∙|output) ≈ pi(∙|output)

• Proof:

• Similar lemmas hold for relaxations of definition
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p0(x) =
Pr(A(x) = output) ∗ prior(x)∫
t Pr(A(t) = output) ∗ prior(t)

≈ Pr(A(x−i) = output) ∗ prior(x)∫
t Pr(A(t−i) = output) ∗ prior(t)

= p1(x)



What can we compute privately?
• “Privacy” = change in one input leads to small change in 

output distribution

What computational tasks can we achieve privately?

• Research so far

 Function approximation [DN, DN,BDMN,DMNS,NRS,BCDKMT,BLR]

Mechanism Design [MT]

Learning [BDMN,KLNRS]

 Statistical estimation [S]

 Synthetic Data [MKAGV] 

Distributed protocols [DKMMN,BNO]

 Impossibility results / lower bounds [DiNi,DMNS,DMT]
19
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This talk

• “Differential” privacy

Handles arbitrary external information

What can we compute privately?

• Example technique: Output perturbation

Calibrating noise to “sensitivity”

 Sample-aggregate methodology
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This talk

• “Differential” privacy

Handles arbitrary external information

What can we compute privately?

• Example technique: Output perturbation

Calibrating noise to “sensitivity”

 Sample-aggregate methodology



Output Perturbation, more generally

• May be interactive

Non-interactive: release pre-defined summary stats + noise

 Interactive: respond to user requests

• May be repeated many times

Composition: q releases are jointly qε-differentially private

• How much noise is enough? (How much is too much?)
21
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Global Sensitivity [DMNS06]

• Intuition:  f(x) can be released accurately when f is insensitive 

	 	 to individual entries

• Global Sensitivity: 

• Example:  
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Global sensitivity: noise distribution

Theorem
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Global Sensitivity [DMNS06]
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Global Sensitivity [DMNS06]

24

Global sensitivity: noise distribution
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Global sensitivity: noise distribution

Theorem
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Examples of low global sensitivity
• Many natural functions have low GS, e.g.:

 Sample mean 
Histograms and contingency tables
Covariance matrix
Estimators with uniformly bounded sensitivity curve
Distance to a property
 Functions that can be approximated from a random sample

• [BDMN] Many data-mining and statistical algorithms access the 
data via a sequence of low-sensitivity questions
e.g. perceptron, some EM algorithms, “SQ” learning algorithms

26



• Average:  

 Suppose X1, X2, X3, ...,Xn are i.i.d. random variables

     is a random variable, and 

                             if 

No “cost” to privacy: 

• A(X) is “as good as”     for statistical inference*
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When Does Noise Not Matter?
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When Does Noise Not Matter?
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When Does Noise Not Matter?
• Theorem: For any exponential family, can release 

“approximately sufficient” statistics

 Suff. stats T(X) are sums, add noise        for dimension d 

  

28
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StdDev(T (X))

P−→0

d
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 Suff. stats T(X) are sums, add noise        for dimension d 

  

• Theorem: For any well-behaved parametric family, one 
can construct a private efficient estimator A, if 

A(X) converges to MLE

Requires additional techniques
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When Does Noise Not Matter?
• Theorem: For any exponential family, can release 

“approximately sufficient” statistics

 Suff. stats T(X) are sums, add noise        for dimension d 

  

• Theorem: For any well-behaved parametric family, one 
can construct a private efficient estimator A, if 

A(X) converges to MLE

Requires additional techniques

• Bounds gets worse as dimension increases

What is the “best” private estimator?
28
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Example: Histograms
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Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

29

f(x) = (n1, n2, ..., , nd) where nj = #{i : xi in j-th interval}

Lap(1/ε)

1/d0 1



Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  

 Same as non-private estimator
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) ε ≥ 1
3√n



Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  

 Same as non-private estimator
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f(x) = (n1, n2, ..., , nd) where nj = #{i : xi in j-th interval}

Lap(1/ε)

1/d0 1

arbitrary domain D

into d disjoint “bins”

bin

O( 1
3√n

) ε ≥ 1
3√n



Contingency Tables
• Work horse of releases from US statistical agencies

 Frequencies of combinations of set of categorical attributes

• Treat as a “histogram”
Eight bins (O+,O-,...,AB+,AB-)

Can add constant noise to counts

Change to proportions is 

Below sampling noise if n >> #bins

• Problem for practice:

 Some entries may be negative. Multiple tables inconsistent.

 [BCDKMT] Multiple noisy tables can be “rounded” to a 
consistent set of tables without increasing noise

30

O( 1
n )



Example: Distance to a Property
• Say P = set of “good” databases

e.g. well-clustered databases

• Distance to P =  # points in x that must be 
changed to make x in P

Always has GS = 1

• Examples:

Distance to good clustering

Weight of minimum cut in graph

P
x

distance 
to P



Global Sensitivity Summary
• Simple framework for output perturbation with strong 

privacy guarantees

Noise levels small enough to allow meaningful analysis

• Improved in several respects

Worst case definition: even if f is sensitive on only one input, 
must add lots of noise

• [NRS] Add less noise on “good” instances 

One function at a time: To answer q queries, naive analysis 
suggests making noise increase linearly with q

• [BLR] Simultaneously answer many “simple” questions

 Focus on function approximation: many tasks not so simple
• Auction design [MT], supervised learning [KLNRS]

32
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High Global Sensitivity: Median

34

High global sensitivity: example 1

Example 1: median of x1, . . . , xn ∈ [0, 1]

x = 0 · · · 0︸ ︷︷ ︸
n−1

2

0 1 · · · 1︸ ︷︷ ︸
n−1

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−1

2

1 1 · · · 1︸ ︷︷ ︸
n−1

2

median(x) = 0 median(x′) = 1

GSmedian = 1

• Noise magnitude: 1
ε . Too much noise!

• But for most neighbor databases x, x′,

|median(x) − median(x′)| is small.

• Can we add less noise on ”good” instances?
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High Global Sensitivity: MST Cost
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High global sensitivity: example 2

Example 2: the weight of a minimum spanning tree

Database entries: edge weights in the range [0, 1].
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GSMST-weight = 1
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High global sensitivity: example 2

Example 2: the weight of a minimum spanning tree

Database entries: edge weights in the range [0, 1].

x

! !

! !

MST-weight(x) = 3
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x′
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MST-weight(x) = 2

1 1

1
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0

GSMST-weight = 1
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High Global Sensitivity: Cluster centers
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High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x
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Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
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High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x
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Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
16



High Global Sensitivity: Cluster centers

39

High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x
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Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
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Getting Around Global Sensitivity
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• Local sensitivity measures variability in neighborhood of 

specific data set [Nissim-Raskhodnikova-S, STOC 2007]

Connections to robust statistics 

• Bounded influence function implies expected local sensitivity is small 

Local sensitivity needs to be smoothed

• Interesting algorithmic/geometric problems

Not this talk

• Instead: Generic framework for smoothing functions so 

they have low sensitivity



Sample-and-Aggregate Methodology
Sample-and-Aggregate

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))

! " #

$ $ $

%& '

x

xi1 , . . . , xit xj1 , . . . , xjt . . . xk1 , . . . , xkt

! ! !
!

" " "
"

f f f

gaggregation function

$
( ("+noise calibrated

to sensitivity of f̃
output

30

41

noise calibrated
to sensitivity of g



Example: Efficient Point Estimates
• Given a parametric 

model

• MLE 

• Converges to Normal
Bias(MLE) = O(1/n)

Can be corrected so that
bias(   ) = O(n-3/2)

• Theorem: If model is well-behaved, then sample-
aggregate using    gives efficient estimator if 

• Question: What is the best private estimator?
Error bounds degrade with dimension... 42

For example, if we are estimating a single (one-dimensional) parameter, and we use the mean as

our aggregation function, then

T ∗(x)
def
=

(
1

k

k∑

i=1

θ̂
(
x(i−1)t+1, ..., xit

)
)

+ Lap

(
Λ

kε

)
(1)

where Λ is the diameter of the parameter’s range, and Lap(λ) is a random variable drawn according to
the Laplacian distribution with parameter (standard deviation) λ.
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Figure 1: Sample-and-aggregate

For concreteness, we first analyze the one-dimensional estimator described in (1).

Lemma 2.2 ([1, 2]). For any choice of the number of blocks k, the estimator T ∗ is ε-indistinguishable.

Proof. Fix a particular value of x, and consider the effect of changing a single entry xi to obtain a

database x′ (for any particular index i). At most one of the numbers zj can change, depending on

the block which contains xi. The number zj that changes can go up or down by at most Λ, since the
parameter takes values in [0, Λ]. This means that the mean g(z1, ..., zk) can change by at most Λ/k.

The random variables T ∗(x) and T ∗(x′) are thus Laplacian random variables with identical standard
deviations and means differing by at most Λ/k. By the reasoning in [1], for any measurable set S ⊆ R
with non-zero measure, the ratio Pr(T ∗(x) ∈ S)/ Pr(T ∗(x′) ∈ S) is between e−ε and eε. This is exactly

the requirement of differential privacy.

Theorem 2.3. If the MLE is asymptotically normal and efficient, and ε = ω( 1√
n), then the estimator

T ∗ with θ̂ = θ̂MLE is asymptotically unbiased, normal and efficient, i.e.

√
n · T ∗(X)

P−→ N(θ, If (θ)) if X = X1, ..., Xn ∼ f(·, θ) are i.i.d.

Proof. We will select k as a function of n and ε. For now, assume that t = n
k goes to infinity with n.

Then by Lemma 1.1, each Zi = θ̂MLE
(
X(i−1)t+1, ..., Xit

)
is close to normal, and so the average of the

Zi’s also converges to normal. Specifically:

3

θ̂

θ̂ εn1/4 →∞

{fθ : θ ∈ Θ}
= argmaxθ(fθ(x))



Sample-and-Aggregate Methodology
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Sample-and-aggregate method

Theorem
If f can be approximated on x

from small samples

then f can be released with little noise

28
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Sample-and-aggregate method

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε + negl(n)

28



Sample-and-Aggregate Methodology

• Works in several different metric spaces

• Example application: clustering

 I.i.d. random inputs: parametric estimation of mixture models

Arbitrary inputs: approximate optimal k-means clustering if 

data is “separated” à la [OstrovksyRabaniSchulmanSwamy’06]
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Sample-and-aggregate method

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε + negl(n)

28



Conclusions
• Define privacy in terms of my effect on output

Meaningful despite arbitrary external information

 I should participate if I get benefit

• What can we compute privately?

Lots of recent work

Existing techniques work best for highly structured 
computations. What about graph data, text, searches, ...?

• Data privacy is now (even) more challenging than in past
Data vastly more varied and valuable

 External information more available

How should we think about data privacy? (This is one example.)
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