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• Edge differential privacy

Two graphs are neighbors if they differ in one edge.

• Node differential privacy

Two graphs are neighbors if one can be obtained from the other by 

deleting one node and its adjacent edges.

Node privacy is stronger, but few node-private algorithms are known.
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Privacy for Network Data

Graphons provide a complex generative model for graphs

• Extremely general

• Includes stochastic block models as special cases

• Deep connections to limits of graph sequences (e.g., [BCLSV’08, ’12])

A graphon is a function 𝑊: 0,1 2 → ℝ+. Typical examples

• 𝑘-block graphons (constant on the cells of a 𝑘 × 𝑘 grid)

• Smooth graphons (e.g., Hölder continuous)

A graphon 𝑊 defines a family of distributions on graphs:

• Given a size 𝑛 and target density 𝜌 ∈ ℝ+, define 𝐺𝑛(𝜌𝑊):
– Select 𝜉1, … , 𝜉𝑛 ∈ 0,1 uniformly, i.i.d.

– Form matrix 𝐻 ∈ 0,1 𝑛×𝑛, where 𝐻𝑖𝑗 = min(1, 𝜌 𝑊 𝜉𝑖 , 𝜉𝑗 )

– For each 𝑖, 𝑗 ∈ 𝑛 add edge (𝑖, 𝑗) to 𝐺 with prob 𝐻𝑖𝑗 (independently)

𝑊-random graphs provide a rich, nonparametric model for graphs

• The set [0,1] can model any set of “vertex types”

• Captures all exchangeable graph

distributions in the limit

 Similar the role of IID distributions

in de Finetti’s theorem [DJ’09]

image source http://community.expressor-
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Such graphs contain 

potentially sensitive 

information.
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Why strong guarantees?

Goal: Estimation of Graphons

Differential Privacy for Graphs

This paper: Algorithms for learning complex, 

nonparametric generative graph models 

subject to 

strong, node-level privacy guarantees

Edge- vs node-level privacy [HLMJ’09]

Previous work on private graph analysis

Main Result

Measuring Convergence: 𝜹𝟐 metric

Cuts and other estimation tasks

Least squares estimator
Node-differentially private estimator 𝑨𝝐 that is 

consistent for every bounded graphon:

𝑨𝝐 𝐺𝑛 𝜌𝑛𝑊 →
𝑃

𝑊 as 𝑛 → ∞

as long as average degree 𝑛𝜌𝑛 = 𝜔(log 𝑛).

Oracle and sampling errors 

Acknowledgments

Precise bounds

Applying the “exponential mechanism”

Lipschitz extensions for node stability 

Proof outline of main result

Conclusions & Consequences
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Open Questions

Many types of data can be represented as graphs where
• nodes correspond to individuals
• edges capture relationships

• “Friendships” in online social network
• Financial transactions
• Email communication
• Health networks (of doctors and patients)
• Romantic relationships

• Many works on edge privacy [NRS’07]

 Wide variety of functionalities: cut estimation, subgraph counts, …

 Estimators for high-dimensional models, starting with [MW’13]

• Few works on node privacy

 Initial results assume known degree bound for privacy [GHLP’12]

 Existing works focus on subgraph counts [BBDS’13, KNRS’13, CZ’13]

 Estimation of degree distribution [RS’15]

• Main challenge for node private algorithms: sensitivity

 In sparse graphs, most natural analyses can be completely disrupted by 

adding a vertex with arbitrary set of edges

 Private algorithms must be insensitive even in worst case

• Many graphons generate the same distribution on graphs

 Relabeling the points in [0,1] doesn’t change  𝐺𝑛(𝑊)
• Distance on graphons is defined up to “permutations” of [0,1]

𝛿2 𝑊, 𝑊′ = inf
𝜙: 0,1 → 0,1

measure−preserving,1−1

𝑊𝜙 − 𝑊′
2

• Here 𝑊𝜙 denotes map  x, y ↦ 𝑊 𝜙 𝑥 , 𝜙 𝑦

image source http://scholar.harvard.edu/stanleychan/research

“𝑊-random”, 
(a.k.a. “latent 

position”) 
graphs

Goal: given 𝐺 ∼ 𝐺𝑛 𝜌𝑊 , 
where 𝜌 ∈ 0,1 and 𝑊 1 = 1,
estimate 𝜌 and 𝑊

Graph G

A
queries

answers

Government, businesses, 

researchers

or 

malicious adversary

)(
Trusted
curator Users

• G and G’ are neighbors if they differ in one person’s data

• Neighboring datasets induce close distributions on outputs 

Definition [DMNS’06]: Randomized algorithm 𝐴 is 𝝐-differentially private if,

for all data sets 𝑮 and 𝑮′ that “differ in one element” and

for all events 𝑆,

Pr 𝐴 𝑮 ∈ S ≤ 𝑒𝝐 ⋅ Pr 𝐴 𝑮′ ∈ 𝑆 .

G: G′:

G: G′:

Anonymized data isn’t.
Some attacks in the literature (citations in paper)

• Reidentifying individuals based on external sources

 Social networks

 Computer networks

• Composition attacks

• Reconstruction attacks

• Membership attacks

Node-level differential private alg’s provably resist all of these.

There were no previously known node-private algorithms 
for fitting high-dimensional network models
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University’s Hariri Institute for Computation and Harvard 
University’s Center for Research on Computation and Society.

• 𝛿2 bounds other metrics on graphons and graphs

• Estimation in 𝛿2 metric allows for estimation of

 Subgraph frequencies (number of  triangles, clustering coefficient, …)

 Density of every multi-way cut [BCCZ’14]

• Private consistent graphon estimation is possible

Graphon estimators can be robust to changes in individual 

nodes

• Design of robust private estimator led to 

better nonprivate estimation in sparse graphs

 Improved [OW] for small 𝜌 and removed requirement that 

densities be high 

• Our algorithm approximates 𝑊 using a block graphon

 Goal: compete with best 𝑘-block approximation to 𝑊

𝜖𝑘
𝑂

𝑊 = inf
𝑘−𝑏𝑙𝑜𝑐𝑘

𝑔𝑟𝑎𝑝ℎ𝑜𝑛𝑠 𝐵

𝛿2(𝐵, 𝑊)

• Our algorithm approximates 𝐻, then 𝑊

 Goal: compete with approximation to 𝑊 provided by matrix  𝐻

𝜖𝑛 𝑊 ≈ 𝛿2 𝐻, 𝑊
∗

* Real definition more complicated; see paper.

• For every graphon 𝑊, these errors go to 0

 𝜖𝑘
𝑂

𝑊 → 0 as 𝑘 → ∞ and 𝜖𝑛 𝑊
𝑎.𝑠.

0 as 𝑛 → ∞.

• Our algorithm takes inputs

 𝜖: privacy parameter

 Λ: upper bound on 𝑊

 𝑘:  number of blocks in estimated graphon

 𝐺: input graph, assumed to be drawn from 𝐺𝑛(𝜌𝑊)

Theorem 1: Let 𝑊: 0,1 2 → [0, Λ] be a graphon, let 𝜌 ∈ (0,1) such that 
𝜌Λ < 1 and 𝜌𝑛 > 6log 𝑛, and assume 𝑘 ≤ min 𝑛 𝜌/2, 𝑒𝜌𝑛/2 . Then

𝛿2
 𝑊, 𝑊 ≤ 𝜖𝑘

𝑂
𝑊 + 2𝜖𝑛 𝑊 + 𝑂𝑃

4 Λ2 log 𝑘

𝜌𝑛
+ Λ

𝑘2 log 𝑛

𝑛𝜖
+

Λ

𝑛𝜌𝜖
.

• In paper: better bound for a nonprivate version of our algorithm

 Improves previously known nonprivate bounds [OW ‘14]

 Recently improved by [KTV ‘15]

• For specific families of graphons, bounds on 𝜖𝑘
𝑂

𝑊 and 𝜖𝑛 𝑊 :

“Oracle” error: no 
better block 

approximation 

“Sampling” error. 
This random 

variable depends 
on 𝜉1, … , 𝜉𝑛

• We introduce and study a restricted least squares estimator

 This nonprivate algorithm forms basis of our private algorithm

• On input 𝜖, Λ, 𝑘, 𝐺:

  𝜌 ← 𝐺 1 (average density of input)

  𝐵 ← argmin
𝑘−𝑏𝑙𝑜𝑐𝑘 𝑔𝑟𝑎𝑝ℎ𝑜𝑛𝑠 𝐵

𝑤𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ≲  𝜌Λ

 𝛿2(𝐵, 𝐺)

 Return  𝑊 ←
1

 𝜌
 𝐵.

• Previous work [OW ‘14] studied maximum likelihood estimator, which is 

unstable when 𝑊takes small, nonzero values (not suitable for our setting)

Upper bounds for 𝜖𝑘
𝑂

𝑊 𝜖𝑛 𝑊

𝑘-block graphons 0 𝑂𝑃(4 𝑘/𝑛)

𝛼-Hölder-continuous 𝑂 𝑘−𝛼 𝑂𝑃(𝑛−𝛼/2)

 𝛿2 is a “finite” version of 𝛿2, 
where we minimize over 

assignments of vertices in 𝐺
to the blocks of 𝐵

 𝛿2 𝐵, 𝐺 = min
𝜋: 𝑛 → 𝑘

𝐵𝜋 − 𝐺 2

Exponential mechanism [MT’07] : generic method for private optimization

• Replace “argmin” with sampling from Gibbs-like measure

• Naïve application in our case: Pr  𝐵 = 𝐵 ∝ exp −
𝜖

Δ
⋅  𝛿2 𝐵, 𝐺

Challenge: For privacy,  parameter Δ needs to upper bound changes in  𝛿2

• Node privacy requires limiting the influence of any single node

• We need Δ ≥ max
𝐺,𝐺′𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑦 1 𝑛𝑜𝑑𝑒

 𝛿2 𝐵, 𝐺 −  𝛿2 𝐵, 𝐺′

• Minimal value of Δ is huge, so mechanism returns useless results

 We make several changes to achieve small Δ

• Main technical tool: Lipschitz extensions of graph statistics

 Let 𝒢 be the set of all labeled, finite, undirected graphs

 Let 𝒢𝑑 ⊆ 𝒢 be set of graphs of maximum degree 𝑑

Partially ordered set under vertex-induced inclusion

Metric structure:  𝑑 𝐺, 𝐺′ =number of vertices that must be deleted 

from 𝐺 and/or 𝐺′ to get identical graphs (“vertex distance”) 

• Lemma [KNRS ‘13]: If 𝑓: 𝒢𝑑 → ℝ is monotone and 𝑐-Lipschitz, then there 

exists 𝑓′: 𝒢 → ℝ such that 

 𝑓′ agrees with 𝑓 on 𝒢𝑑

 𝑓′ is monotone and 𝑐-Lipschitz.  

• Run exponential mechanism using Lipschitz extension of  𝛿2(𝐵, 𝐺) as score

 Also restrict to matrices with entries bounded by 𝜌Λ

• Main steps

 Show uniform concentration of scores around expectation

 Show bound on effect of Lipschitz extension 

 Show expectation of  𝛿2(𝐵, 𝐺) “close” to 𝛿2 𝐵, 𝑊 with high probability

• Novel aspects

 Explicit relation to 𝜖𝑛 𝑊 and 𝜖𝑘
(𝑂)

(𝑊)

 Convergence for all bounded graphons

 Use of Lipschitz extension in exponential mechanism

See paper for full discussion of related work and citations.
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• Can our bounds be achieved efficiently?

 Best current algorithms take exponential time

 Private algorithms [this paper]

 Non private algorithms [OW ‘14, this paper, KTV ‘15]

 Known efficient algorithms are not private and have higher error, e.g., 

[C’15,  AS’15]

• Can private algorithms achieve nonprivate rates?

 Independent work [KTV ‘15] gave optimal nonprivate algorithms for 

several parameter ranges

 Private algorithms are currently worse by polynomials in 𝑘, 𝑛

Techniques and Proof

• First estimation result of this generality even without privacy.
 Previous results made additional assumptions on 𝑊

𝜉𝑖 , 𝜉𝑗

𝑊 𝜉𝑖 , 𝜉𝑗

𝑊


