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Privacy for Network Data

Many types of data can be represented as graphs where

* nodes correspond to individuals
* edges capture relationships “ ' t, -
“Friendships” in online social network g s ,
* Financial transactions } @ N
 Email communication PYANE e
 Health networks (of doctors and patients) ~\Q/_/,,,-—: 2 Sl
* Romantic relationships ' ‘

3 Such graphs contain
2 ) potentially sensitive
= information.

This paper: Algorithms for learning complex,
nonparametric generative graph models
subject to
strong, node-level privacy guarantees

Goal: Estimation of Graphons

Graphons provide a complex generative model for graphs

* Extremely general

* Includes stochastic block models as special cases

* Deep connections to limits of graph sequences (e.g., [BCLSV’08,’12])

A graphon is a function W:[0,1]> » R*.Typical examples
* k-block graphons (constant on the cells of a k X k grid)
* Smooth graphons (e.g., Holder continuous)

“W-random”,
(a.k.a. “latent
position”)
A graphon W defines a family of distributions on graphs: FEEIE

* Given a size n and target density p € R*, define G, (pWW):
— Select &4, ..., &, € [0,1] uniformly, i.i.d.
— Form matrix H € [0,1]™", where H;; = min(1, p W(fi,fj))

— For each i,j € [n] add edge (i,)) to G with prob H;; (independently)

W -random graphs provide a rich, nonparametric model for graphs
* The set [0,1] can model any set of “vertex types”
* Captures all exchangeable graph

distributions in the limit

> Similar the role of IID distributions

in de Finetti’s theorem [D)’09]

Goal: given G ~ G,,(pW),
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* G and G’ are neighbors if they differ in one person’s data

* Neighboring datasets induce close distributions on outputs

Definition [DMNS’06]: Randomized algorithm A is e-differentially private if,

for all data sets G and G’ that “differ in one element” and
for all events S,

Pr[A(G) € S] < e€ - Pr[A(G") € S].

Edge- vs node-level privacy [HLM|'09]
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Two graphs are neighbors if one can be obtained from the other by
deleting one node and its adjacent edges.

Node privacy is stronger, but few node-private algorithms are known.

Why strong guarantees?

Anonymized data isn’t.

Some attacks in the literature (citations in paper)

Reidentifying individuals based on external sources
» Social networks
» Computer networks
Composition attacks
Reconstruction attacks
Membership attacks
Node-level differential private alg’s provably resist all of these.

Previous work on private graph analysis

Many works on edge privacy [NRS’07]

» Wide variety of functionalities: cut estimation, subgraph counts, ...

» Estimators for high-dimensional models, starting with [MW’[ 3]

Few works on node privacy

> Initial results assume known degree bound for privacy [GHLP’|2]

» Existing works focus on subgraph counts [BBDS’ 13, KNRS’13,CZ’| 3]
» Estimation of degree distribution [RS’15]

Main challenge for node private algorithms: sensitivity

> In sparse graphs, most natural analyses can be completely disrupted by
adding a vertex with arbitrary set of edges

» Private algorithms must be insensitive even in worst case

queries ) Government, businesses,
<

Node-differentially private estimator A, that is
consistent for every bounded graphon:

P
A (Gr(ppW)) > W as n -
as long as average degree np,, = w(logn).

First estimation result of this generality even without privacy.
» Previous results made additional assumptions on W

Measuring Convergence: §, metric

Many graphons generate the same distribution on graphs
» Relabeling the points in [0,1] doesn’t change G, (W)
Distance on graphons is defined up to “permutations” of [0, ]

"N — . b _ /
5,(W, W") ooy Iwe=w,

measure—preserving,1—1

Here W® denotes map (x,y) » W(¢p(x), p(»))

Oracle and sampling errors

Our algorithm approximates W using a block graphon
» Goal: compete with best k-block approximation to W

E}(CO) (W) = inf  8,(B,W) Oracle” error: no
k—block better block
graphons B

. , S
Our algorithm approximates H, then W approximation

» Goal: compete with approximation to W provided by matrix H
En(W) = 52(1_]; W)

* Real definition more complicated; see paper.
For every graphon W, these errors go to 0

> E,((O)(W) — 0 as k » oo and en(W)EiO as n — oo,

“Sampling” error.
This random
variable depends

on €1r 20075 fn

Precise bounds

Our algorithm takes inputs

> €:privacy parameter

» A:upper bound on W

» k: number of blocks in estimated graphon

» G:input graph, assumed to be drawn from G,,(pW)

Theorem |:Let W:[0,1]?> - [0, A] be a graphon, € (0, 1) such that
pA < 1 and pn > 6log n,and assume k < minz Jp/2, el 2) Then

5,(W, W) < P (W) + 26,(W) + 0p (4 Alogk | p [*Zlogn A >

pn ne npe

* In paper: better bound for a nonprivate version of our algorithm

» Improves previously known nonprivate bounds [OWV ‘[ 4]
» Recently improved by [KTV ‘15]

* For specific families of graphons, bounds on ¢;; )(W) and €,,(W) :
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Techniques and Proof Conclusions & Consequences

Least squares estimator

* We introduce and study a restricted least squares estimator

» This nonprivate algorithm forms basis of our private algorithm
On input €, A k, G:
> p < ||G||; (average density of input)

> B « 5,(B,G)

5, is a “finite” version of &,
where we minimize over
assignments of vertices in G
argmin to the blocks of B
k—block graphons B
with entries S pA

> Return W « %l?.

0,(B,G) = n:mm]l_f}[k]”Bn — G|,

Previous work [OW ‘14] studied maximum likelihood estimator, which is
unstable when Wtakes small, nonzero values (not suitable for our setting)

Applying the “exponential mechanism”

Exponential mechanism [MT°07] : generic method for private optimization

Replace “argmin” with sampling from Gibbs-like measure

Naive application in our case: Pr(B = B) « exp (—% . 6,(B, G))

Challenge: For privacy, parameter A needs to upper bound changes in 8,

Node privacy requires limiting the influence of any single node

We need A > 5,(B,G) — 5,(B, G’
e nee G,G’differmegt)t(bylnodel 2( ) 2( )l

Minimal value of A is huge, so mechanism returns useless results

» We make several changes to achieve small A

Lipschitz extensions for node stability

Main technical tool: Lipschitz extensions of graph statistics
» Let G be the set of all labeled, finite, undirected graphs
> Let G; € G be set of graphs of maximum degree d

» Partially ordered set under vertex-induced inclusion

» Metric structure: d(G,G') =number of vertices that must be deleted
from G and/or G' to get identical graphs (“‘vertex distance”)

Lemma [KNRS‘I3]:If f:G; — R is monotone and c-Lipschitz, then there
exists f': G = R such that

> f' agrees with f on G,
> f'is monotone and c-Lipschitz.

Proof outline of main result

Run exponential mechanism using Lipschitz extension of 6, (B, G) as score
» Also restrict to matrices with entries bounded by pA

Main steps

» Show uniform concentration of scores around expectation

» Show bound on effect of Lipschitz extension

> Show expectation of &, (B, G) “close” to 8,(B, W) with high probability
Novel aspects

> Explicit relation to €, (W) and €, )(W)

PennState
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Private consistent graphon estimation is possible

» Graphon estimators can be robust to changes in individual

nodes

* Design of robust private estimator led to
better nonprivate estimation in sparse graphs

» Improved [OW] for small p and removed requirement that

densities be high

Cuts and other estimation tasks

* §, bounds other metrics on graphons and graphs

* Estimation in §, metric allows for estimation of

» Subgraph frequencies (number of triangles, clustering coefficient, ...)
» Density of every multi-way cut [BCCZ’14]

Open Questions

Can our bounds be achieved efficiently?

» Best current algorithms take exponential time

» Private algorithms [this paper]

» Non private algorithms [OWV ‘14, this paper, KTV ‘| 5]

» Known efficient algorithms are not private and have higher error, e.g.,

[C’15, AS'I5]

* Can private algorithms achieve nonprivate rates!?

» Independent work [KTV ‘15] gave optimal nonprivate algorithms for

several parameter ranges

» Private algorithms are currently worse by polynomials in k, n
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estimate p and W
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There were no previously known node-private algorithms
for fitting high-dimensional network models
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