
CS591 E2: Optimization Methods and their Applications – Fall 2016

Homework 1
Due date: Thursday, October 6, 2016

Homework Policy and Guidelines

You are encouraged to collaborate on the solution of the homeworks and to consult any materials, but
you must write up your own answers and you must acknowledge all of your collaborators and sources.

The problems marked with a (∗) are more challenging. You may not be able to completely solve
some of the more challenging problems, that is completely normal!

Some of the problems ask you to fill in a proof that we did not cover in class; the readings will often
have these proofs, you are free to consult them but you must write up a complete proof in your own
words. In general it may be good to keep in mind that some of the proofs in the textbooks may leave
some steps to the reader, and it is very important to make sure that you know how to fill in those missing
steps. Also, thinking about those proofs on your own will help you understand the material better.

Notation. For x ∈ Rn and p ∈ R, we use ‖x‖p to denote the `p-norm of x, i.e., ‖x‖p = (
∑n

i=1 |xi|p)1/p.

Problem 1 (Some famous inequalities) The Cauchy-Schwartz inequality states that, for all vectors
a and b in Rn,

| 〈a, b〉 | ≤ ‖a‖2‖b‖2.

(a) Prove the Cauchy-Schwartz inequality.
Hint. Consider the following function g : R→ R, where g(t) = ‖a+ tb‖22 for all t ∈ R. This function
is nonnegative for all t. What is the minimum value mint∈R g(t) of g?

(b) Use Cauchy-Schwartz to show that, for any x ∈ Rn,

‖x‖1 ≤
√
n‖x‖2.

Problem 2 (Equivalence of convexity definitions) In class we have seen that a differentiable func-
tion f : Rn → R is convex if and only if, for any x, y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 .

In class we proved this equivalence for the one-dimensional case n = 1. Use this proof to show the
equivalence for the general case.

Problem 3 (First-order optimality condition.) Let f : Rn → R be a convex function and X ⊆ Rn

be a closed convex set over which f is differentiable. Then

x∗ ∈ argminx∈X f(x)

if and only if we have
〈∇f(x∗), x∗ − y〉 ≤ 0 ∀y ∈ X .

Problem 4 ((∗) Projection on the `1 and `2 balls) Recall that the `p-ball of radius r centered at a
point x0 is the set Bp(x0, r) = {x ∈ Rn | ‖x− x0‖p ≤ r}. Recall that the `2 projection of a point z onto
a set X is the point ΠX (z) = argminx∈X ‖z − x‖22. Show how to compute the projection of a point onto
the `1 and `2 balls B1(x0, r) and B2(x0, r).
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Problem 5 Prove the following property of the projection ΠX onto X that we saw in class. Let x and
y be two points in Rn. Show that

‖ΠX (y)− x‖ ≤ ‖y − x‖.

Problem 6 ((∗) Maximum of a convex function over a polyhedron) A polyhedron P ⊆ Rn is
the set of all points that are convex combinations of finitely many points v1, v2, . . . , vk ∈ Rn; we write
P = conv({v1, . . . , vk}) and we refer to the points vi as the vertices of P. Show that the maximum of a
convex function f over the polyhedron P = conv({v1, . . . , vk}) is achieved at one of its vertices, i.e.,

sup
x∈P

f(x) = max
i=1,...,k

f(vi).

(A stronger statement is: the maximum of a convex function over a closed bounded convex set is achieved
at an extreme point, i.e., a point in the set that is not a convex combination of any other points in the
set. You do not need to prove the stronger statement.)

Problem 7 (Bregman divergence) A convex function f is strictly convex if f(θx + (1 − θ)y) <
θf(x) + (1 − θ)f(y) for all x 6= y and all 0 < θ < 1 (the convex inequality holds with strict inequality).
Let f : Rn → R be strictly convex and differentiable. The Bregman divergence associated with f is the
function

Df : Rn × Rn → R, Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 .

(a) Show that Df (x, y) ≥ 0 for all x, y ∈ dom(f), where dom(f) is the domain of f .

(b) Show that, if f = ‖ · ‖22, Df (x, y) = ‖x− y‖22.

(c) Show that, if f(x) =
∑n

i=1 xi log(xi) with dom(f) = Rn
+ (with 0 log 0 taken to be 0), then

Df (x, y) =

n∑
i=1

(xi log(xi/yi)− xi + yi).

f is called the negative entropy and Df is the Kullback-Leibler divergence.

(d) (Bregman projection). The previous parts suggest that Bregman divergences can be viewed as gen-
eralized “distances,” i.e., functions that measure how similar two vectors are. Explain whether the
following problem is a convex optimization problem, where X is a convex set and y is a given point:
minx∈X Df (x, y).
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