
CS591 E2: Optimization Methods and their Applications – Fall 2016

Homework 3
Due date: November 17, 2016

Homework Policy and Guidelines

You are encouraged to collaborate on the solution of the homeworks and to consult any materials, but
you must write up your own answers and you must acknowledge all of your collaborators and sources.

The problems marked with a (∗) are more challenging. You may not be able to completely solve
some of the more challenging problems, that is completely normal!

Some of the problems ask you to fill in a proof that we did not cover in class; the readings will often
have these proofs, you are free to consult them but you must write up a complete proof in your own
words. In general it may be good to keep in mind that some of the proofs in the textbooks may leave
some steps to the reader, and it is very important to make sure that you know how to fill in those missing
steps. Also, thinking about those proofs on your own will help you understand the material better.

Problem 1. Recall our toy stock market example. Prove that, in the worst case, no deterministic
algorithm can make less than 2M∗(T ) + blog2 nc mistakes, where n is the number of experts and M∗(T )
is the number of mistakes made by the best expert over T rounds.

Problem 2. Recall the learning with expert advice framework. Let n be the total number of experts.
Show that, for any (non-empty) subset U of the experts, the multiplicative weights update method
suffers a total loss L(T ) of at most

L(T ) ≤ max
i∈U

(
T∑
t=1

`ti + η

T∑
t=1

|`ti|

)
+

ln
(
n
|U |

)
η

,

where `ti ∈ [−1, 1] is the loss of expert i in round t and 0 < η ≤ 1/2 is the step size of the multiplicative
weights update method.
Note: this means that the multiplicative weights update method has better performance when there
are many good experts.

Problem 3 (Online Gradient Descent revisited). In this problem, we revisit the Online Gradient Descent
algorithm (OGD). In this problem, we will consider a prediction domain S ⊆ Rd (as usual, S is a convex
set). In class, we used a fixed step size η in the OGD algorithm. In this problem, we allow for varying
step sizes ηt. More precisely, we consider the following algorithm.

Let f1, f2, . . . , fT be a sequence of loss functions. Here we assume that each ft is σt-strongly-convex
with respect to the `2-norm. That is, for all w ∈ S and any subgradient zt ∈ ∂ft(w), the following holds
for all u ∈ S:

ft(u) ≥ ft(w) + 〈zt, u− w〉+
σt
2
‖u− w‖22.

The OGD algorithm starts with an initial point w1 = 0 ∈ S and constructs its predictions according to
the following update rule: wt+1 = ΠS(wt − ηtzt) where zt ∈ ∂ft(wt). As before, ΠS is the projection
onto S.

In the following, we analyze the algorithm and see how to choose the step sizes ηt. Throughout, we
let u be a fixed point in S.

(a) Prove the following regret bound:

RegretT (u) ≤
T∑
i=1

(
1

2ηt

(
‖wt − u‖22 − ‖wt+1 − u‖22

)
+
ηt
2
‖zt‖22 −

σt
2
‖wt − u‖22

)
.

1



(b) Now assume that we have the following bounds on the norms of the vectors in S and the subgradients:
‖u‖2 ≤ B for all u ∈ S and ‖zt‖ ≤ L for all t. Additionally, assume that we pick the step sizes so
that 1

ηt
≥ 1

ηt−1
+ σt (we use the convention 1/η0 = 0). Use the regret bound from part (a) to show

that

RegretT (u) ≤ 2B2

(
1

ηT
−

T∑
t=1

σt

)
+
L2

2

T∑
t=1

ηt.

(c) Let us use the regret bound from (b) in the following simpler setting. Let σ be such that σt ≥ σ > 0
for all t. Show that, if we set the step sizes to ηt = 1∑t

i=1 σi
, we obtain the following bound

RegretT (u) ≤ L2(log(T ) + 1)

2σ
.

Note: this shows logarithmic regret for all strongly convex loss functions, not just quadratics,
provided that the step sizes decay as O(1/t). Note that this bound deteriorates as the strong
convexity deteriorates.

(d) If we do not have strong convexity, we can still set the step sizes to get a meaningful regret bound.
Suppose that σt = 0. Show that, if we set ηt = B

L
√
t
, we obtain

RegretT (u) ≤ 3BL
√
T .

Note: this bound shows that we can get a O(
√
T ) regret even without knowing T in advance.

(e) Let us now use the analysis above to guide our choice of step sizes in a concrete setting. Suppose
that at each step t, we are given a feature vector xt ∈ Rd; there is also a label yt ∈ R that is not
known to us at the beginning of round t, and our task is to predict a vector wt ∈ Rd such that
〈wt, xt〉 is “close” to the true label yt. Suppose that ‖u‖2 ≤ B for all u ∈ S, ‖xt‖ ≤ C, and ‖yt‖ ≤ a.
Consider the following two common loss functions:

• Linear least-squares regression: ft(w) = (yt − 〈w, xt〉)2.
• Regularized SVM: ft(w) = max{0, 1− yt · 〈w, xt〉}+ λ‖w‖22.

Show how to set the step sizes in each of the two scenarios. Write down ηt as a function of a,B,C, t
and upper bound the regret using the analysis above. Please justify your answers.

Problem 4. Show that the entropy regularizer R(w) =
∑d
i=1 wi log(wi) is 1

B -strongly-convex with
respect to the `1-norm over the set S = {w ∈ Rd : w > 0, ‖w‖1 ≤ B}.

Problem 5. Recall the analysis we saw in class for the Follow-the-Regularized-Leader algorithm with
a strongly convex regularizer. Use this analysis to show the following guarantee for the Online Mirror
Descent algorithm.

Let R be a 1
η -strongly-convex function over S with respect to a norm ‖·‖. Suppose we run the Online

Mirror Descent algorithm with a link function

g(x) = argmaxw∈S (〈w, x〉 −R(w)) .

Show that, for all u ∈ S,

RegretT (u) ≤ R(u)−min
v∈S

R(v) + η

T∑
t=1

‖zt‖2∗

where ‖ · ‖∗ is the dual norm of ‖ · ‖: ‖x‖∗ = supy : ‖y‖≤1 〈y, x〉. Show that, if we additionally assume
that each ft is Lt-Lipschitz, we can upper bound ‖zt‖∗ ≤ Lt.

2


