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ABSTRACT
We consider degree bounded network design problems with
element and vertex connectivity requirements. In the degree
bounded Survivable Network Design (SNDP) problem, the in-
put is an undirected graph G = (V,E) with weights w(e) on
the edges and degree bounds b(v) on the vertices, and con-
nectivity requirements r(uv) for each pair uv of vertices.
The goal is to select a minimum-weight subgraph H of G
that meets the connectivity requirements and it satisfies the
degree bounds on the vertices: for each pair uv of vertices, H
has r(uv) disjoint paths between u and v; additionally, each
vertex v is incident to at most b(v) edges in H. We give the
first (O(1), O(1)· b(v)) bicriteria approximation algorithms
for the degree-bounded SNDP problem with element con-
nectivity requirements and for several degree-bounded SNDP
problems with vertex connectivity requirements. Our algo-
rithms construct a subgraph H whose weight is at most O(1)
times the optimal such that each vertex v is incident to at
most O(1)· b(v) edges in H. We can also extend our ap-
proach to network design problems in directed graphs with
out-degree constraints to obtain (O(1), O(1)· b+(v)) bicrite-
ria approximation.

1. INTRODUCTION
Network design is an important area in combinatorial op-

timization and approximation algorithms with several prac-
tical applications. Many problems that arise in real-world
networks can be modeled as follows: we are given a weighted
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graph and the goal is to choose a minimum weight subgraph
that meets certain connectivity requirements between pairs
of vertices. This framework captures well-studied problems
such as the Minimum Spanning Tree, the Minimum Steiner
Tree and Forest, and their generalizations to higher connec-
tivity. A central problem in this area is the Survivable Net-
work Design (SNDP) problem in which the input is an undi-
rected edge-weighted graphG = (V,E) together with integer
connectivity requirements r(uv) for each pair uv of vertices.
The objective is to select a minimum weight subgraph H of
G that satisfies the connectivity requirements for all pairs of
vertices. In the edge connectivity SNDP (EC-SNDP) prob-
lem, the subgraph H satisfies the connectivity requirements
if, for each pair uv of vertices, H contains r(uv) edge disjoint
paths between u and v. In the vertex connectivity SNDP
(VC-SNDP) problem, the paths are required to be internally
vertex disjoint. In addition to edge and vertex connectivity,
another notion of connectivity that plays an important role
in this area is the notion of element connectivity. In this
setting, the vertices of the graph are partitioned into two
sets, the set R of reliable vertices and the set W of unre-
liable vertices. The vertices of W and the edges are called
elements. The element connectivity of a pair uv of vertices
is the maximum number of element-disjoint paths from u to
v; these paths do not share any unreliable nodes or edges,
but they may share reliable nodes. In the element connec-
tivity SNDP (Elem-SNDP) problem, the paths are required
to be element disjoint.

Survivable network design problems have received consid-
erable attention over the years and their study has led to
the development of powerful algorithmic tools based on pri-
mal dual and iterated rounding. In a celebrated paper [11],
Jain gave a 2-approximation for EC-SNDP based on iterated
rounding, which was later extended to element connectiv-
ity by Fleischer et al. [4]. Vertex connectivity network de-
sign problems such as the Rooted k-Connectivity problem, k-
Connected Subgraph, and VC-SNDP have been studied exten-
sively over the past decade, leading to several breakthroughs
in terms of both algorithms and hardness.

In this paper, we consider the degree bounded variants of
these problems in which we are additionally given a degree
bound b(v) for each vertex v and the goal is to select a
minimum weight subgraph H that satisfies the connectivity
requirements and moreover the degree in H of each vertex v
is at most its degree bound b(v). A classical problem in this
setting is the degree bounded MST problem. A simple re-
duction from the Hamiltonian Path problem shows that it is
NP-complete to decide whether there is a tree that satisfies



the degree constraints and thus the problem is inapprox-
imable. A long line of work has focused on designing bicri-
teria approximation algorithms that construct a low weight
spanning tree that violates the degree bounds by a small
amount (see [9, 12, 13, 10, 19] and references thereof). This
sequence of results culminated with the result of Singh and
Lau [19] that settled the approximability of the problem; the
algorithm of [19] constructs a spanning tree with weight at
most the optimal that violates each degree constraint by at
most one, and it is based on iterated rounding.

In a subsequent breakthrough, Lau et al. [14] and Lau
and Singh [16] extended the iterated rounding framework
to degree bounded SNDP problems. An important contri-
bution of the work of [14, 16] is the development of iter-
ated rounding techniques that can simultaneously handle
covering constraints corresponding to the SNDP problem
and packing constraints corresponding to the degree bounds.
These techniques have led to several powerful results for de-
gree bounded network design problems; we refer the reader
to the recent book of Lau, Ravi, and Singh [15] for an
overview of these results. We remark that these results fo-
cus almost entirely on edge connectivity problems, and the
iterated rounding techniques of [14, 16] are not sufficient for
the element and vertex connectivity settings. It was only
recently that Nutov gave the first approximation algorithms
for several degree bounded network design problems with
element and vertex connectivity requirements [18]. We re-
mark that these algorithms lead to degree violations that
are exponential in the maximum requirement k of any pair.
Shortly after, Fukunaga et al. [8, 7] significantly improved
the best guarantees for these problems in which the degree
violations are only polynomial in k.

1.1 Our techniques and contributions
The main question left open by the recent work on degree

bounded network design problems with element and vertex
connectivity requirements is whether we can simultaneously
achieve a constant factor approximation in both the weight
of the solution and the violation on the degrees. In this
paper, we answer this question affirmatively for the degree
bounded Elem-SNDP problem and several vertex connectiv-
ity problems. Our work closes the gap between several edge
connectivity problems and their element or vertex counter-
parts by providing approximation algorithms that nearly
match the best guarantees for the edge connectivity setting.
As it is common in this area, we use iterated rounding tech-
niques but our analyses are a departure from the approach
of Fukunaga and Ravi [8] and Fukunaga, Nutov, and Ravi
[7]. Our main technical insight is inspired by the work of
Nutov [18] and it takes advantage of the special structure
of the SNDP problem. More precisely, our algorithms con-
sider the problem of covering biset functions that belong to
a proper sub-class of skew bisupermodular functions; this
sub-class is general enough to allow us to use the iterated
rounding framework but it has additional structure that we
exploit in the analysis. This is a departure from most of the
previous work — including the work on edge connectivity
problems — that solves the more general problem of cover-
ing an arbitrary skew (bi)supermodular function; we defer
the definitions related to biset functions to Section 2. We
now give the precise statements of our main results.

In the following, we say that an algorithm achieves an
(α, βb(v)+γ) bicriteria approximation if it always constructs

a solution H whose weight is at most α times the weight of
the optimal solution such that the degree in H of each vertex
v is at most βb(v) + γ.

Our first result is an (O(1), O(1)· b(v)) bicriteria approxi-
mation for the degree bounded Elem-SNDP problem.

Theorem 1.1. There is a polynomial time approximation
algorithm for the degree bounded Elem-SNDP problem in
undirected graphs that achieves an (O(1), O(1)· b(v)) bicri-
teria approximation.

By combining the result above with the reduction of
Chuzhoy and Khanna [3], we obtain the following result for
the degree bounded VC-SNDP.

Corollary 1.2. There is a polynomial time ap-
proximation algorithm for the degree bounded VC-
SNDP problem in undirected graphs that achieves an
(O(k3 logn), O(k3 logn)· b(v)) bicriteria approximation.

Our next result is for the k-Connected Subgraph problem. An
undirected graph G is k-vertex-connected (or k-connected
for short) if it has at least k + 1 vertices and the removal
of any set of k − 1 vertices leaves a connected graph. In
the k-Connected Subgraph problem, we are given an edge-
weighted undirected graph G = (V,E) and the goal is to
select a minimum-weight spanning subgraph H = (V,E′) of
G such that H is k-connected.

The k-Connected Subgraph problem has been studied ac-
tively over the last decade; we refer the reader to the work
of Cheriyan of Vegh [2] for an overview of the approximation
results that are known for the problem. In a recent break-
through result, Cheriyan and Vegh [2] gave the first constant
factor approximation for instances of the k-Connected Sub-
graph problem in which the number of vertices n is not too
small compared to k. In this paper, we extend the result of
[2] to the degree-bounded setting.

Theorem 1.3. There is a polynomial time approxima-
tion algorithm for the degree bounded k-Connected Sub-
graph problem in undirected graphs that achieves an
(O(1), O(1)· b(v)) bicriteria approximation when |V | ≥ (k −
1)3 − k.

The Rooted k-Connectivity problem is a well-studied problem
that has several applications in combinatorial optimization.
The input consists of an edge-weighted undirected graph
G = (V,E), an integer k, and a vertex r called the root.
The goal is to select a minimum-weight spanning subgraph
H = (V,E′) of G such that H contains k internally ver-
tex disjoint paths from r to v for each vertex v ∈ V − {r}.
Frank and Tardos [6] gave an exact polynomial time algo-
rithm for the directed version of the problem, which implies
a 2-approximation for the undirected problem. In this pa-
per, we give the first (O(1), O(1)· b(v)) approximation for
the degree bounded Rooted k-Connectivity problem.

Theorem 1.4. There is a polynomial time approximation
algorithm for the degree bounded Rooted k-Connectivity prob-
lem in undirected graphs that achieves an (O(1), O(1)· b(v))
bicriteria approximation.

We note that our approach can be extend to degree-bounded
network design problems in directed graphs, such as a di-
rected counterpart of the Rooted k-Connectivity problem. We
defer these results to a longer version of this paper.



Theorem 1.5. There is a polynomial time approxi-
mation algorithm for the degree bounded Rooted k-
Outconnectivity problem in directed graphs that achieves an
(O(1), O(1)· b+(v)) bicriteria approximation.

Table 1 summarizes our main results and the best approxi-
mations for the problems we consider that were given in pre-
vious work. We refer the reader to [8] for additional results
and references on degree bounded network design problems
with element and vertex connectivity requirements.

1.2 Related work
Survivable network design problems have been studied ex-

tensively, and the edge connectivity problems have received
the most attention. In a seminal paper [11], Jain gave a
2-approximation for EC-SNDP based on iterated rounding.
The EC-SNDP problem can be viewed as a cut covering prob-
lem. By Menger’s theorem, a subgraph H is a feasible so-
lution for the EC-SNDP instance if and only if, for any cut
(S, V −S), there are f(S) = maxu∈S, v∈V−S r(uv) edges ofH
that are crossing the cut. Thus the problem is equivalent to
finding a minimum-weight subgraph H that covers this set
function f , that is, |δH(S)| ≥ f(S) for each set S. Jain’s al-
gorithm is based on a natural LP relaxation for the problem
of covering such a set function f using a graph. He showed
that, if the function f satisfies certain uncrossing proper-
ties, any basic solution to the LP for covering f has an edge
variable whose fractional value is at least 1/2 (or there is an
edge variable whose fractional value is zero, in which case we
can simply remove the edge from the graph). The algorithm
iteratively rounds up variables with fractional value at least
1/2 and resolves the LP for the residual problem until the
resulting integral solution becomes feasible.

Fleischer et al. [4] generalized Jain’s result to the Elem-
SNDP problem. The element connectivity problem requires
us to work with a function f that is defined on pairs of sets
(or bisets) instead of sets; we defer the precise definitions
to Section 2. Fleischer et al. proved an analogous result
on the structure of basic solutions to the LP relaxation for
covering a function f defined on pairs of sets. This result
also crucially relies on certain uncrossing properties of the
function f and it gives a 2-approximation for Elem-SNDP
via iterated rounding.

Vertex connectivity problems such as the k-Connected
Subgraph problem and VC-SNDP are considerably more chal-
lenging than their edge and element counterparts. One
of the reasons for this discrepancy is that our current it-
erated rounding techniques are unsuitable for this setting,
since the uncrossing properties that play a key role for edge
and element connectivity do not hold for vertex connectiv-
ity. Aazami et al. [1] showed that there exist basic solutions
for the natural LP relaxation for the k-Connected Subgraph
problem in which each variable is at most Θ(1/

√
k). Most

of the algorithmic results for vertex connectivity problems
are obtained via reductions to element connectivity (or more
generally, to the problem of covering a skew bisupermodu-
lar function). Chuzhoy and Khanna [3] showed that the
VC-SNDP problem can be reduced to solving O(k3 logn) in-
stances of the Elem-SNDP problem, where n is the number of
vertices in the graph; this reduction gives an O(k3 logn) ap-
proximation for the vertex connectivity problem. An inter-
esting and challenging open question in this area is whether
there is an algorithm for VC-SNDP that achieves an approx-
imation guarantee that depends only on k; the logn factor is

unavoidable using the techniques of Chuzhoy and Khanna
and new insights are needed to resolve this question. In
particular, it seems fruitful to understand whether we can
extend some of the iterated rounding techniques to the ver-
tex connectivity setting, and we hope that the work in this
paper will provide some insights in this direction.

The study of degree bounded network design problems has
led to the development of new and powerful iterated round-
ing techniques. Lau et al. [14] and Lau and Singh [16] ex-
tended the iterated rounding approach of Jain to the setting
in which we have mixed covering and packing constraints;
the former are the cut covering constraints capturing the
EC-SNDP problem and the latter are degree bound con-
straints on the vertices. The breakthrough results of Lau
et al. [14] and Lau and Singh [16] give a (2, 2b(v) + 3) ap-
proximation and a (2, b(v) + O(k)) approximation for the
degree bounded EC-SNDP problem. The former result was
improved to (2, 2b(v) + 2) by Louis and Vishnoi [17]. The
techniques developed in these papers have been extended to
a variety of problems with edge connectivity requirements;
we refer the reader to [15] for more details. The element
and vertex connectivity problems have proved to be more
challenging with these techniques. The results of [14] and
[16] can be extended to the element connectivity setting pro-
vided that the degree bounds are only on the terminals1 and
removing this restriction required additional insights.

Recently, Nutov [18] considered several degree bounded
network design problems with element and vertex connec-
tivity requirements. Nutov showed that one can combine
the augmentation framework of Williamson et al. [20] with
iterated rounding techniques in order to construct a solu-
tion that violates the degree bounds by a multiplicative
factor that is exponential in k. Some of Nutov’s results
include an (O(log k), O(2k)b(v)) approximation for Elem-
SNDP and Rooted k-Connectivity, and an (O(k), O(2k)b(v))
approximation for k-Connected Subgraph; the latter result
holds for all values of k. Shortly after, Fukunaga and
Ravi [8] significantly improved the approximation guaran-
tees for these problems; their algorithms are based on it-
erated rounding and their analyses use a novel technical in-
sight. The results of [8] include an (O(k), O(k)b(v)) approxi-
mation for Elem-SNDP, a (4, 2b(v)+O(k)) approximation for
Rooted k-Connectivity, a (2, 2b+(v) + O(k)) approximation
for Rooted k-Outconnectivity, and an (O(k), b(v) + O(k2))
approximation for k-Connected Subgraph; the latter re-
sult holds for all values of k. In joint work with Nutov
[7], the authors of [8] strengthened their analysis and ob-
tained an (O(1), O(1)b(v) + O(k)) approximation for Elem-
SNDP. By combining the approach of Cheriyan and Vegh
[2] for the k-Connected Subgraph problem without degree
bounds with the algorithm of [8] for the degree bounded
Rooted k-Connectivity problem and the algorithm of [7]
for the degree bounded Elem-SNDP problem, one obtains
an (O(1), O(1)b(v) + O(k)) approximation for the degree
bounded k-Connected Subgraph problem when the number
of nodes is at least (k − 1)3 − k.

2. PRELIMINARIES

2.1 Bisets and biset functions
1A vertex is a terminal if it participates in a pair with non-
zero connectivity requirement.



Problem Previous work This paper

Elem-SNDP (O(1), O(1)b(v) +O(k)) [7] (O(1), O(1)b(v))

k-Connected Subgraph (n = Ω(k3)) (O(1), O(1)b(v) +O(k)) [8, 7, 2] (O(1), O(1)b(v))
Rooted k-Connectivity (O(1), O(1)b(v) +O(k)) [8] (O(1), O(1)b(v))

VC-SNDP (O(k3 logn), O(k3 logn)(b(v) +O(k)) [7] (O(k3 logn), O(k3 logn)b(v))

Rooted k-Outconnectivity (O(1), O(1)b+(v) +O(k)) [8, 7] (O(1), O(1)b+(v))

Figure 1: Summary of results.

In this section, we introduce some definitions and nota-
tion; we follow the conventions used in previous work such
as [18]. We start with some definitions related to bisets and
biset functions.

Let V be a ground set. A biset A = (A,A′) is a pair
of sets such that A ⊆ A′ ⊆ V . We refer to A and A′ as
the inner and outer parts of A, respectively. We refer to
the set A′ − A as the boundary of A and we use bd(A) to
denote the set A′ − A. We define the intersection, union,
and difference of two bisets A = (A,A′) and B = (B,B′) as
follows: A∩B = (A∩B,A′ ∩B′), A∪B = (A∪B,A′ ∪B′),
A− B = (A−B′, A′ −B).

We define a partial order ⊆ on bisets as follows. If A =
(A,A′) and B = (B,B′) are two bisets, we have A ⊆ B if
and only if A ⊆ B and A′ ⊆ B′. If A ⊆ B, we say that A is
contained in B. Note that A∩B ⊆ A, A∩B ⊆ B, A−B ⊆ A,
and B− A ⊆ B.

Two bisets A = (A,A′) and B = (B,B′) are disjoint if
A ∩ B is empty; if A and B are not disjoint, they are in-
tersecting. They are strongly disjoint if A′ ∩ B and A ∩ B′
are both empty; if A and B are not strongly disjoint, they
are overlapping. A family of bisets is bilaminar if, for any
two bisets A and B in the family, one of the following holds:
A ⊆ B, B ⊆ A, or A and B are disjoint. A family of bisets
is strongly bilaminar if, for any two bisets A and B in the
family, one of the following holds: A ⊆ B, B ⊆ A, or A and
B are strongly disjoint.

Let f : 2V ×2V → Z be a function on bisets. The function
f is bisupermodular if, for any two bisets A and B, we have

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B).

The function is intersecting bisupermodular if the inequality
above holds for any two bisets A and B that intersect. The
function is positively bisupermodular if the inequality above
holds for any two bisets A and B such that f(A) > 0 and
f(B) > 0. The function is positively intersecting bisuper-
modular if the inequality above holds for any two bisets A
and B such that A and B intersect, f(A) > 0, and f(B) > 0.
The function f is bisubmodular if −f bisupermodular.

The function f is binegamodular if, for any two bisets A and
B, we have

f(A) + f(B) ≤ f(A− B) + f(B− A).

The function f is biposimodular if −f is binegamodular.

The function f is skew bisupermodular if, for any two bisets
A and B, we have

f(A)+f(B) ≤ max{f(A∩B)+f(A∪B), f(A−B)+f(B−A)}.

The function is positively skew bisupermodular if the in-
equality holds for any two bisets A and B such that f(A) > 0
and f(B) > 0.

If F is a set of undirected edges, we let δF (A) be the set of all
edges e ∈ F such that e has one endpoint in A and the other
endpoint in V − A′. We let χ(δF (A)) be the characteristic
vector of δF (A), i.e., the |F |-dimensional vector that has an
entry for each edge e ∈ F that is equal to 1 if e ∈ δF (A) and
0 otherwise.

The following lemmas are well-known (see e.g., [15]).

Lemma 2.1. For any set F of edges and any positive
weight function w on F , the function f(A) = w(δF (A)) is
both bisubmodular and biposimodular. That is, for any two
bisets A and B, we have
• w(δF (A)) +w(δF (B)) ≥ w(δF (A∩B)) +w(δF (A∪B)),

and
• w(δF (A))+w(δF (B)) ≥ w(δF (A−B))+w(δF (B−A)).

The proof of the following lemma is a straightforward case
analysis.

Lemma 2.2. For any two bisets A and B, we have
• |bd(A)|+ |bd(B)| = |bd(A ∩ B)|+ |bd(A ∪ B)|, and
• |bd(A)|+|bd(B)| = |bd(A−B)|+|bd(B−A)|+2|bd(A)∩

bd(B)|.

2.2 Problem definitions
In this section, we formally define the problems we con-

sider in this paper. Using Menger’s theorem, we formu-
late the problems as covering certain biset functions. Let
G = (V,E) be an undirected graph and let f : 2V × 2V → R
be a biset function. We say that G covers f if we have
|δG(A)| ≥ f(A) for each biset A. When the vertex set V is
clear from the context, we simply say that a set F of edges
covers f , i.e., we have |δF (A)| ≥ f(A) for each biset A .

In the following, if H is an undirected graph and v is a
vertex in H, we let δH(v) denote the set of edges of H that
are incident to v. If H is a directed graph and v is a vertex
of H, we let δ−H(v) and δ+H(v) denote the set of all arcs of H
that are entering and leaving v, respectively.

Degree-bounded Elem-SNDP. Let G = (V,E) be an
undirected graph with weights w(e) on the edges and de-
gree bounds b(v) on the nodes. The vertices of V are parti-
tioned into two sets, the set R of reliable vertices and the set
W of unreliable vertices. The vertices of W and the edges
are called elements. The element-connectivity of a pair uv
of nodes is the maximum number of element-disjoint paths
from u to v; these paths do not share any unreliable nodes
or edges, but they may share reliable nodes. Two vertices u
and v are `-element-connected if their element connectivity
is at least `. In the Degree-bounded Elem-SNDP problem,
in addition to the graph G, we are given integer require-
ments r(uv) on pairs of vertices such that r(uv) > 0 only
if {u, v} ⊆ R. The goal is to select a minimum-weight sub-
graph H of G such that each pair uv ∈ V × V of vertices is



r(uv)-element-connected in H and |δH(v)| ≤ b(v) for each
vertex v.

Let relt : 2V × 2V → Z+ be a biset function such that
relt(A) = maxu∈A,v∈V−A′ r(uv) if bd(A) ⊆W and relt(A) =
0 otherwise. Let felt : 2V×2V → Z be the biset function such
that felt(A) = relt(A) − |bd(A)|. By Menger’s theorem, a
subgraph H satisfies the element connectivity requirements
if and only if |δH(A)| ≥ felt(A) for each biset A.

Lemma 2.3 (Fleischer et al. [4]). The functions
relt and felt are positively skew bisupermodular.

Degree-bounded VC-SNDP. Let G = (V,E) be an undi-
rected graph with weights w(e) on the edges and degree
bounds b(v) on the nodes. The vertex-connectivity of a pair
uv of vertices is the maximum number of paths between
u and v that are internally vertex disjoint. Two vertices u
and v are `-vertex-connected if their vertex connectivity is at
least `. In the Degree-bounded VC-SNDP problem, in addi-
tion to the graph G, we are given integer requirements r(uv)
for each pair uv of vertices. The goal is to select a minimum-
weight subgraph H of G such that each pair uv ∈ V × V of
vertices is r(uv)-vertex-connected in H and |δH(v)| ≤ b(v)
for each vertex v.

Degree-bounded k-Connected Subgraph. Let G =
(V,E) be an undirected graph with weights w(e) on the
edges and degree bounds b(v) on the vertices. A graph H
is k-vertex-connected if each pair uv of vertices is k vertex
connected in H. In the Degree-bounded k-Connected Sub-
graph problem, the goal is to select a minimum-weight span-
ning subgraph H = (V,E′) of G such that H is k-vertex-
connected and |δH(v)| ≤ b(v) for each vertex v.

Let rsg : 2V × 2V → Z+ be the following biset function:
rsg(A) = k if A 6= ∅ and A′ 6= V , and rsg(A) = 0 otherwise.
Let fsg : 2V × 2V → Z be the biset function such that
fsg(A) = rsg(A) − |bd(A)| for each biset A. By Menger’s
theorem, a subgraph H is k-vertex-connected if and only if
|δH(A)| ≥ fsg(A) for each biset A.

Degree-bounded Rooted k-Connectivity. Let G =
(V,E) be an undirected graph with weights w(e) on the
edges and degree bounds b(v) on the vertices. A vertex r is k-
vertex-connected in H to each other vertex if, for any vertex
v ∈ V − {r}, the pair rv is k-vertex-connected in H. In the
Degree-bounded Rooted k-Connectivity problem, we are given
a root vertex r and the goal is to select a minimum-weight
subgraph H of G such that the root r is k-vertex-connected
in H to every other vertex and |δH(v)| ≤ b(v) for each vertex
v.

Let rrc : 2V × 2V → Z+ be a biset function such that
rrc(A) = k if A 6= ∅ and r ∈ V −A′, and rrc(A) = 0 otherwise.
Let frc : 2V × 2V → Z be the biset function such that
frc(A) = rrc(A)−|bd(A)|. By Menger’s theorem, the root is
k-vertex-connected in H to every other vertex if and only if
|δH(A)| ≥ frc(A) for each biset A. The following lemma is
well-known, see for instance [5, 18].

Lemma 2.4 ([5]). The functions rrc and frc are posi-
tively intersecting bisupermodular.

Degree-bounded Rooted k-Outconnectivity. Let G =
(V,E) be a directed graph with weights w(e) on the edges
and out-degree bounds b+(v) on the vertices. In the Degree-
bounded Rooted k-Outconnectivity problem, we are given a

root vertex r and the goal is to select a minimum-weight
subgraph H of G such that, for each vertex v ∈ V − {r},
there are k internally vertex disjoint paths in H from r to v
and, for each vertex v ∈ V , |δ+H(v)| ≤ b+(v).

3. MAIN TECHNICAL RESULTS AND AP-
PLICATIONS

In this section, we state our main technical results and
their applications to the degree-bounded network design
problems that we consider in this paper.

Our algorithms for network design problems in undirected
graphs use the following abstract problem as a subroutine.

Definition 3.1 (Degree-bounded Residual Cover).
Let G = (V,E) be an undirected graph with weights
w(e) on the edges and degree bounds b(v) on the ver-
tices. In the Degree-bounded Residual Cover problem,
we are given a function f : 2V × 2V → Z satisfying
f(A) = r(A)− |bd(A)| − |δF (A)| for each biset A, where r is
a biset function and F ⊆ E is a set of edges, and the goal is
to select a minimum weight set F ′ ⊆ E − F of edges such
that |δF ′(A)| ≥ f(A) for each biset A and |δF ′(v)| ≤ b(v)
for each vertex v.

One of our main contributions is an iterated rounding algo-
rithm for the Degree-bounded Residual Cover problem that
achieves an (O(1), O(1)b(v)) approximation provided that
the requirement function r satisfies a certain technical con-
dition. The following theorem states our main result for
undirected graphs. We prove the theorem in Section 4.

Theorem 3.2. Consider an instance of the Degree-
bounded Residual Cover problem in which the function f sat-
isfies f(A) = r(A)−|bd(A)|− |δF (A)|, where r is an integer-
valued biset function and F ⊆ E is a set of edges. Let OPT
be the weight of an optimal solution for the instance. Sup-
pose that r and f satisfy the following conditions:
• For each biset (A,A′) and each vertex v ∈ A′ −A, we

have r((A,A′)) ≤ r((A,A′ − v)).
• The function f is positively skew bisupermodular.

Then there is a polynomial time iterated rounding algorithm
that selects a set F ′ ⊆ E − F of edges such that w(F ′) ≤
3OPT and |δF ′(v)| ≤ |δF (v)|+ 6b(v) + 5 for each vertex v.

We remark that the requirement function arising from in-
stances of SNDP satisfies the technical conditions imposed
by Theorem 3.2, since the requirement of a biset is the max-
imum requirement of a pair separated by the biset and thus
removing a vertex from the boundary of a biset cannot de-
crease the requirement. We use this observation to show
that Theorem 3.2 immediately implies an (O(1), O(1)b(v))
approximation for Elem-SNDP.

In order to get a (O(1), O(1)b(v)) approximation for the
Elem-SNDP problem, we apply Theorem 3.2 with F = ∅,
f = felt, and r = relt, where felt and relt are the functions
defined in Section 2.2. It is straightforward to verify that
relt satisfies the first condition of the theorem. Additionally,
felt satisfies the second condition by Lemma 2.3. Therefore
we have the following result.

Theorem 3.3. There is a polynomial time (3, 6b(v) + 5)
approximation for the Degree-bounded Elem-SNDP problem
in undirected graphs.



We can also prove an analogue of Theorem 3.2 for directed
graphs; we defer this result to a longer version of this paper.
As a corollary, we obtain the following result.

Theorem 3.4. There is a polynomial time (3, 6b+(v) +
3) approximation for the Degree-bounded Rooted k-
Outconnectivity problem in directed graphs.

We can reduce the degree-bounded Rooted k-Connectivity
problem in undirected graphs to the degree-bounded Rooted
k-Outconnectivity problem in directed graphs as follows. We
first make the graph directed by bidirecting each edge; more
precisely, we replace each undirected edge uv by two directed
edges,

⇀
uv and

⇀
vu, and we set w(

⇀
uv) = w(

⇀
vu) = w(uv). For

each vertex v, we set b+(v) = b(v). Note that the result-
ing instance of the degree-bounded Rooted k-Outconnectivity
problem has a solution of weight at most 2OPT that sat-
isfies the out-degree constraints, where OPT is the weight
of the optimal solution for the degree-bounded Rooted k-
Connectivity instance. Thus, using Theorem 3.4, we can
find in polynomial time a set F of directed edges such that
w(F ) ≤ 6OPT and |δ+F (v)| ≤ 6b+(v) + 3 for each vertex
v. Let F ′ be the set of undirected edges corresponding to
F . We can show that F ′ is a (6, 7b(v) + 3)-approximate
solution to the initial Rooted k-Connectivity instance as fol-
lows. The set F ′ has weight at most 6OPT and it k-connects
each vertex to the root. Thus it suffices to show that each
vertex v has degree at most 7b(v) + 3 in F ′. We have
|δF ′(v)| ≤ |δ−F (v)|+ |δ+F (v)| ≤ |δ−F (v)|+ 6b(v) + 3. It is well-
known that, in an inclusion-minimal solution to the Rooted
k-Outconnectivity problem, all in-degrees are at most k (each
vertex other than the root has in-degree exactly k). Thus
we have |δ−F (v)| ≤ k ≤ b(v) and hence |δF ′(v)| ≤ 7b(v) + 3.

Theorem 3.5. There is a polynomial time (6, 7b(v) + 3)
approximation for the Degree-bounded Rooted k-Connectivity
problem in undirected graphs.

Now we turn our attention to the k-Connected Subgraph
problem in undirected graphs. In the following, we show
how to extend the algorithm of Cheriyan and Vegh [2] for
the k-Connected Subgraph problem to the degree-bounded
setting. We start with a high-level overview of the algo-
rithm of [2].

Recall from Section 2.2 that the k-Connected Subgraph
problem is equivalent to covering a biset function fsg sat-
isfying fsg(A) = rsg(A) − |bd(A)| for each biset A. The
requirement rsg(A) of a biset A is equal to k if A is a non-
trivial biset (A 6= ∅ and A′ 6= V ) and it is equal to zero
otherwise. If the function fsg was positively skew bisuper-
modular, we could use the algorithm of Fleischer et al. [4] to
construct a 2-approximate cover of the function. Unfortu-
nately, the function fsg is not positively skew bisupermod-
ular (since rsg is not positively skew bisupermodular). The
key insight in [2] is that, if the number of nodes is large2

compared to k, we can partially cover some of the bisets
so that the residual function becomes positively skew bisu-
permodular. More precisely, Cheriyan and Vegh show that
we can find a set F ⊆ E of edges such that the function
g(A) = rsg(A) − |bd(A)| − |δF (A)| is positively skew bisu-
permodular. Once we have F , we can use the algorithm of

2Cheriyan and Vegh [2] showed that n ≥ k3(k − 1) + k
suffices. Fukunaga et al. gave a simple proof that shows
that n ≥ (k − 1)3 − k suffices [7].

Fleischer et al. [4] to select a set F ′ ⊆ E − F of edges that
cover the residual function g. The set F ∪ F ′ is a feasible
cover of fsg. The preprocessing phase that constructs the
set F of edges proceeds in two steps which we now sketch.

In the first step, we pick an arbitrary subset R1 consisting
of k vertices. Once we have R1, we construct an instance of
the Rooted k-Outconnectivity problem as follows. We start
with our (undirected) graph G and we make it directed by
bidirecting each of its edges; each undirected edge is replaced
by two directed edges, one in each direction, each of which
has the same weight as the original edge. Then we introduce
a root vertex r1 and we add a directed edge from r1 to each
vertex in R1; these edges receive weight zero. This gives
us an instance of the Rooted k-Outconnectivity problem with
root r1, and we use an algorithm for the problem — such
as the algorithm of Frank and Tardos [6] — to find a set
F1 of directed edges that provide k internally vertex disjoint
paths from r1 to each vertex in V ; the set F1 corresponds
to a set F ′1 ⊆ E in the undirected graph G.

Once we have the set F ′1, we proceed to the second step.
Let R2 be an appropriately chosen set consisting of k ver-
tices; we will describe how to choose R2 later. Now we
construct a second instance of the Rooted k-Outconnectivity
problem as follows. We start with the graph G. We set the
weight of each edge in F ′1 to zero (the weights of the edges
in E − F ′1 remain unchanged). Finally, we make the graph
directed by bidirecting each of the edges. We add a root r2
and a zero-weight edge from r2 to each vertex in R2. We
solve the resulting instance of the Rooted k-Outconnectivity
problem and find a set F2 of directed edges that provide k
internally vertex disjoint paths from r2 to each vertex in V ;
the set F2 corresponds to a set F ′2 ⊆ E − F ′1 of undirected
edges.

If the number of nodes is large, for any set R1 of k vertices
and any solution F1 for the first Rooted k-Outconnectivity
instance, we can find in polynomial time a set R2 of k ver-
tices satisfying the following key property. Consider the
second Rooted k-Outconnectivity instance that we construct
based on F1, and let F2 be a solution for this instance.
Let F ′1 and F ′2 be the undirected edges corresponding to
F1 and F2, respectively. Let g be the function such that
g(A) = rsg(A)−|bd(A)|−|δF ′

1∪F
′
2
(A)|. Then the function g is

positively skew bisupermodular. The second preprocessing
step uses such a set R2. This completes our overview of the
preprocessing phase and thus of the algorithm of Cheriyan
and Vegh.

Now we turn our attention to the degree bounded k-
Connected Subgraph problem. Consider an instance of the
degree bounded problem in which the number of nodes in
the graph is at least (k − 1)3 − k. Let F ∗ be an optimal
solution for the instance and let OPT be its weight. The
algorithm follows the high level outline described above. We
first perform the following preprocessing phase. We proceed
in two steps.

In the first step, we pick an arbitrary set R1 consisting of
k vertices and we define the first instance of the Rooted k-
Outconnectivity problem as before. Additionally, we assign
out-degree bounds to the vertices as follows: b+(v) = b(v)
for each vertex v. Using the algorithm in Theorem 3.4,
we construct a solution F1 for the resulting instance of the
degree-bounded Rooted k-Outconnectivity problem. Let F ′1
be the set of undirected edges corresponding to F1. We have
w(F ′1) ≤ w(F1) ≤ 6OPT and |δF ′

1
(v)| ≤ 7b(v) + 3 for each



Undir-LP 〈〈Input: (G = (V,E), f,X, b)〉〉

min
∑
e∈E

w(e)x(e)

s.t. x(δE(A)) ≥ f(A) ∀A : f(A) > 0

x(δE(v)) ≤ b(v) ∀v ∈ X
0 ≤ x(e) ≤ 1 ∀e ∈ E

Figure 2: LP relaxation for the Degree-bounded Resid-
ual Cover problem in undirected graphs.

vertex v.
In the second step, we pick a set R2 consisting of k ver-

tices; we construct R2 using the approach of Cheriyan and
Vegh [2] mentioned above. We define the second instance of
the Rooted k-Outconnectivity problem as before. Addition-
ally, we assign out-degree bounds to the vertices as follows:
b+(v) = b(v) for each vertex v. Using the algorithm in Theo-
rem 3.4, we construct a solution F2 for the resulting instance
of the degree-bounded Rooted k-Outconnectivity problem.
Let F ′2 be the set of undirected edges corresponding to F2.
We have w(F ′2) ≤ w(F2) ≤ 6OPT and |δF ′

2
(v)| ≤ 7b(v) + 3

for each vertex v. This completes the preprocessing phase.
Let g be the biset function such that g(A) = rsg(A) −
|bd(A)|− |δF ′

1∪F
′
2
(A)| for each biset A. Note that F ∗− (F ′1∪

F ′2) covers g. As mentioned above, we choose R2 in such a
way that the function g is positively skew bisupermodular.
Additionally, it is straightforward to verify that rsg satisfies
the first condition of Theorem 3.2. Thus we can apply The-
orem 3.2 with F = F ′1 ∪ F ′2, f = g, r = rsg, and degree
bounds given by b in order to get a cover F ′3 of g. We have
w(F ′3) ≤ 3OPT and |δF ′

3
(v)| ≤ |δF ′

1∪F
′
2
(v)| + 6b(v) + 5 ≤

2(7b(v) + 3) + 6b(v) + 5 for each vertex v. Our final solution
is F = F ′1 ∪ F ′2 ∪ F ′3.

It follows from the discussion above that F is a feasible
cover of fsg of weight at most 15OPT. Moreover, we have
|δF (v)| ≤ 4(7b(v) + 3) + 6b(v) + 5 for each vertex v.

Theorem 3.6. There is a polynomial time (15, 34b(v) +
17) approximation for the Degree-bounded k-Connected Sub-
graph problem in undirected graphs with at least (k− 1)3−k
nodes.

4. ITERATED ROUNDING ALGORITHM
FOR UNDIRECTED GRAPHS

In this section, we prove Theorem 3.2. Our algorithm for
the Degree-bounded Residual Cover problem is based on a
standard iterated rounding approach; we give the algorithm
in Figure 3. Our main contribution is the following key
theorem that shows that the algorithm terminates with a
feasible solution.

Theorem 4.1. Consider an iteration of Undir-algo. Let
G′ = (V,E′) be the residual subgraph at the beginning of this
iteration. Let F ′ be the set of edges selected in the previous
iterations. Let X ′ be the set of vertices that have degree
bounds, and let b′ : X ′ → R be the degree bounds on X ′ at
the beginning of this iteration. Let f ′ : 2V × 2V → Z be the
function satisfying f ′(A) = r(A)− |A′ −A| − |δF∪F ′(A)| for

Undir-Algo 〈〈Input: 〈G = (V,E), r, F,X, b〉〉〉

Let E′ ← E − F , F ′ ← ∅, X ′ ← X
Let b′(v)← b(v) for each v ∈ X

While E′ is non-empty
Let f ′ : 2V × 2V → Z such that
f ′(A) = r(A)− |bd(A)| − |δF∪F ′(A)| for each biset A

Compute an optimal basic solution to Undir-LP
for the input (G′ = (V,E′), f ′, X ′, b′)

If there is an edge e ∈ E′ such that x(e) = 0
E′ ← E′ − {e} 〈〈Remove e from the graph〉〉

If there is an edge e = uv ∈ E′ such that x(e) ≥ 1/3
F ′ ← F ′ ∪ {e} 〈〈Add e to the solution〉〉
E′ ← E′ − {e} 〈〈Remove e from the graph〉〉
If u ∈ X ′

b′(u)← b′(u)− x(e)
If v ∈ X ′

b′(v)← b′(v)− x(e)
Else

Let v ∈ X ′ be a vertex such that
|δE′(v)| ≤ |δF (v)|+ 3b(v) + 5

X ′ ← X ′ − {v} 〈〈Drop degree bound on v〉〉
Return F ′

Figure 3: Iterated rounding algorithm for the
Degree-bounded Residual Cover problem in undirected
graphs.

each biset A. If x is a basic solution to Undir-LP for the
input (G′, f ′, X ′, b′), one of the following holds:
• There is an edge e ∈ E′ such that x(e) = 0.
• There is an edge e ∈ E′ such that x(e) ≥ 1/3.
• There is a vertex v ∈ X ′ such that |δE′(v)| ≤ |δF (v)|+

3b(v) + 5.

Our proof of Theorem 4.1 is inspired by the approach of
Nutov [18]. The proof of the theorem is quite technical and
we omit it from this extended abstract; at the end of this
section, we give a simpler proof that shows a weaker version
of the theorem with larger constants. We remark that the
weaker theorem suffices to show (O(1), O(1)b(v)) approxi-
mations for all the problems we consider.

Using Theorem 4.1, we can analyze the iterated rounding
algorithm as follows. It follows that the algorithm termi-
nates and it outputs a feasible cover of f . Additionally,
since each edge added to the solution satisfies x(e) ≥ 1/3, it
is straightforward to verify that the weight of the solution is
at most 3OPT. Thus it suffices to upper bound the degree
of each vertex in the final solution. The proof of the follow-
ing lemma is straightforward and it is based on the fact that
each edge that is added to the solution satisfies x(e) ≥ 1/3.

Lemma 4.2. Consider an iteration of Undir-algo. Let F ′

be the set of edges selected in the previous iterations, let
X ′ be the set of vertices that have degree bounds, and let
b′ : X ′ → R be the degree bounds on X ′ at the beginning of



the iteration. For each vertex v ∈ X ′, we have |δF ′(v)| ≤
3(b(v)− b′(v)), where b(v) is the initial degree bound on v.

Using Theorem 4.1 and a straightforward inductive argu-
ment, we get the following theorem.

Theorem 4.3. Let F ′ be the solution constructed by
Undir-algo. The set F ′ satisfies the following:
• |δF ′(A)| ≥ f(A) for each biset A.
• The total weight of F ′ is at most 3OPT.
• For each vertex v, |δF ′(v)| ≤ |δF (v)|+ 6b(v) + 5.

Theorem 3.2 is an immediate corollary of Theorem 4.3. Thus
it only remains to prove Theorem 4.1. In the following sub-
section, we prove a weaker version of the theorem that high-
lights the main ideas behind the proof.

4.1 A weaker version of Theorem 4.1
In this section, we prove the following weaker version

of Theorem 4.1. We consider the variant of Undir-algo
that removes the degree bound constraint of a vertex v if
|δE′(v)| ≤ 4|δF (v)| + 12b(v) + 12. We refer to the modified
algorithm as Undir-algo-weaker. The two algorithms only
differ in the body of the Else statement.

Theorem 4.4. Consider an iteration of Undir-algo-
weaker. Let G′ = (V,E′) be the residual subgraph at the
beginning of this iteration. Let F ′ be the set of edges selected
in the previous iterations. Let X ′ be the set of vertices that
have degree bounds, and let b′ : X ′ → R be the degree bounds
on X ′ at the beginning of this iteration. Let f ′ : 2V ×2V → Z
be the function satisfying f ′(A) = r(A)−|A′−A|−|δF∪F ′(A)|
for each biset A. If x is a basic solution to Undir-LP for the
input (G′, f ′, X ′, b′), one of the following holds:
• There is an edge e ∈ E′ such that x(e) = 0.
• There is an edge e ∈ E′ such that x(e) ≥ 1/3.
• There is a vertex v ∈ X ′ such that |δE′(v)| ≤ 4|δF (v)|+

12b(v) + 12.

We devote the rest of this section to the proof of Theo-
rem 4.4. We start with the following theorem whose proof
is based on a standard uncrossing argument [4].

Theorem 4.5 (Corollary 4.6 in [4]). Let x be a ba-
sic solution to Undir-LP for an input (G = (V,E), f,X, b).
If f is positively skew bisupermodular, there is a collection
L of bisets and a set C ⊆ X of vertices with the following
properties:
• For each biset A ∈ L, x(δE(A)) = f(A) > 0.
• For each vertex v ∈ C, x(δE(v)) = b(v).
• The family L is strongly bilaminar.
• |L|+ |C| = |E|.
• The vectors {χ(δE(A)) | A ∈ L} ∪ {χ(δE(v)) | v ∈ C}

are linearly independent.

Note that the function f ′ is positively skew bisupermodu-
lar. To see this, recall that f ′(A) = f(A)− |δF ′(A)| for each
biset A, where f is the input function for the Degree-bounded
Residual Cover instance. As stated in Theorem 3.2, the func-
tion f is positively skew bisupermodular. By Lemma 2.1,
the function |δF ′(· )| is bisubmodular and biposimodular.

Thus we can apply Theorem 4.5 to x and (G′ =
(V,E′), f ′, X ′, b′) in order to get a collection L of tight
bisets and a set C of tight vertices. (A biset A is tight

if x(δE′(A)) = f ′(A), and a vertex v ∈ X ′ is tight if
x(δE′(v)) = b′(v).)

We assume for contradiction that we have 0 < x(e) < 1/3
for each edge e ∈ E′ and |δE′(v)| > 4|δF (v)| + 12b(v) +
12 for each vertex v ∈ X ′. We use L and C to derive a
contradiction as follows. Note that we may assume that L is
non-empty, since otherwise we already have a contradiction.
We have two tokens for each edge in E′; the total number
of tokens is therefore 2|E′|. Our goal is to show that we
can rearrange the tokens so that each biset in L gets at
least 2 tokens, each vertex in C gets at least 2 tokens, and
each maximal biset in L gets at least 4 tokens. If we can
reassign the tokens so that these conditions are satisfied, it
would then follow that the number of tokens is greater than
2(|L|+ |C|) = 2|E′|, which is a contradiction.

We view L as a rooted forest. A biset B is a child of
a biset A 6= B if B ⊆ A and there does not exist a biset
C ∈ L − {A,B} such that B ⊆ C ⊆ A. A biset B is a
descendant of a biset A if B ⊆ A (note that a biset is a
descendant of itself); B is a proper descendant of A if B is
a descendant of A and B 6= A. A biset is a leaf if it does
not have any proper descendants and it is a root if it is a
maximal biset of L. (A biset A is a maximal biset of L if
there does not exist a biset B ∈ L − {A} such that A ⊆ B.)

We will need the following standard lemma, which follows
from the fact that the vectors {χ(δE′(S)) | S ∈ L} are lin-
early independent, f ′ is integer valued, and 0 < x(e) < 1/3
for each edge e ∈ E′.

Lemma 4.6. Let A be a biset that has a unique child B in
L. Then one of the following holds:
• δE′(A)−δE′(B) or δE′(B)−δE′(A) has at least 4 edges.
• δE′(A) − δE′(B) and δE′(B) − δE′(A) are both non-

empty.

Now we turn our attention to the token argument. We start
by assigning the tokens to L ∪ C as follows. For each biset
A ∈ L, let in(A) be the set of all edges e with one endpoint
in A and the other in A′. Since L is strongly bilaminar, for
each edge e ∈ E′ there is at most one minimal biset A ∈ L
such that e ∈ in(A). Additionally, for each vertex v, there is
at most one minimal biset of L that contains v in its inner
part.

Initial token assignment. Each edge e = uv ∈ E′ has
two tokens te,u and te,v, one for each endpoint. The edge e
distributes its tokens to L ∪ C as follows.

(Rule A) If u ∈ C, the token te,u is assigned to u (similarly
for the case v ∈ C).

(Rule B) If u /∈ C, the token te,u is assigned to the minimal
biset A = (A,A′) ∈ L such that e ∈ δE′(A) and
u ∈ A. If there does not exist such a biset, the
token te,u is assigned to the minimal biset B such
that e ∈ in(B) (similarly for the case v /∈ C).

It follows from the discussion above that each token is as-
signed to at most one member of L ∪ C. We will reassign
some of the tokens in two stages. We will need the following
key definition.

Definition 4.7. A biset A ∈ L is relevant for a vertex
v ∈ V if all of the following conditions hold:
• A is not a leaf of L and it has only one child in L.



• The vertex v is on the boundary of A but not on the
boundary of the child of A.

Lemma 4.8. Let v be a vertex in V . If L is a bilaminar
family, the relevant bisets of v are pairwise disjoint.

Proof: Let A1 and A2 be two bisets in L that are relevant
bisets for v. Suppose for contradiction that A1 and A2 are
not disjoint. Since L is bilaminar, we have A1 ⊆ A2 or
A2 ⊆ A1. Without loss of generality, assume A2 ⊆ A1. Let
B1 be the unique child of A1 in L. Suppose for contradiction
that A2 ⊆ B1. Since A2 ⊆ B1 ⊆ A1 and v is on the boundary
of both A1 and A2, it follows that v is on the boundary of
B1. But this contradicts the fact that A1 is a relevant biset
for v. Therefore A2 6⊆ B1. Since L is bilaminar, either A2

and B1 are disjoint or B1 ⊆ A2. If B1 and A2 are disjoint,
A1 has at least two children, which contradicts the fact that
A1 is relevant for v (each relevant biset has only one child).
Therefore we must have B1 ⊆ A2 ⊆ A1. Since B1 is a child
of A1 and A1 6= A2, we must have B1 = A2. But this cannot
happen, since v is on the boundary of A2 but v is not on the
boundary of B1. 2

Our token argument relies on the following key theorem that
we prove at the end of the section.

Theorem 4.9. Let v be a vertex in C. Let ρ(v) be the
number of bisets in L that are relevant for v. We have
2ρ(v) + 6 ≤ |δE′(v)|.

Once we have Theorem 4.9, we can rearrange the tokens as
follows.

First token reassignment. After the initial token assign-
ment, each vertex in C receives |δE′(v)| tokens. For each
vertex v ∈ C, we reassign some of the tokens of v as follows.
For each biset A ∈ L that is relevant for v, the vertex v
gives two tokens to A. Additionally, v gives 4 tokens to the
minimal biset A = (A,A′) ∈ L such that v ∈ A.

Note that each vertex v gives 2ρ(v)+4 tokens, where ρ(v)
is the number of bisets in L that are relevant for v. By
Theorem 4.9, each vertex v ∈ C has at least 2 tokens left
over after the first token reassignment.

Second token reassignment. Now we consider the bisets
in L. Each biset in L has some tokens that were assigned by
the initial token assignment and the first token reassignment.
We show that we can rearrange these tokens so that each
biset in L has at least two tokens and each maximal biset in
L has at least 4 tokens.

Theorem 4.10. We can rearrange the tokens of the bisets
in L such that each biset gets at least 2 tokens and each
maximal biset in L gets at least 4 tokens.

Proof Sketch: Recall that we view L as a rooted forest.
We consider each tree of L separately. Let T be a tree of
L. We prove the theorem by induction on the height of the
tree T .

Let A = (A,A′) be a leaf biset of T . Since x(δE′(A)) =
f ′(A) ≥ 1 and x(e) < 1/3 for each edge, we have |δE′(A)| ≥
4. Consider an edge e ∈ δE′(A) and let v be the endpoint of
e that is in A. If v ∈ C, A receives 4 tokens from v in the
first token reassignment. Otherwise, A receives the token
te,v in the initial token assignment (by (Rule B)). It follows
that A has at least 4 tokens.

Let A = (A,A′) be a non-leaf biset of T . For each child
B of A, it follows by induction that we can rearrange the
tokens in the subtree rooted at B in such a way that each
biset in the subtree gets at least 2 tokens and B gets at least
4 tokens. A child B of A has 4 tokens and it gives 2 of them
to A. If A has at least two children, it receives at least 4
tokens from its children and we are done.

Therefore we may assume that A has only one child B.
The biset A receives 2 tokens from B and therefore it suffices
to show that A received 2 other tokens. In the following, we
show that A received 2 additional tokens in the initial token
assignment and the first token reassignment.

Let E1 = δE′(A)− δE′(B) and E2 = δE′(B)− δE′(A). By
Lemma 4.6, one of the following holds: |E1| ≥ 4, |E2| ≥ 4,
or E1 and E2 are both non-empty. We consider each of these
cases in turn.

Suppose that |E1| ≥ 4. Consider an edge e ∈ E1 and let
u be the endpoint of e that is in A. If u ∈ C, A receives 4
tokens from u in the first token reassignment, since A is the
minimal biset of L that contains u in its inner part. If u /∈ C,
A receives the token te,u in the initial token assignment (by
(Rule B)). Thus A receives at least 4 additional tokens.

Suppose that |E2| ≥ 4. Consider an edge e ∈ E2 and let
v be the endpoint of e that is in A′ − B′. Note that A is
the minimal biset such that e ∈ in(A). Since L is strongly
bilaminar and B is the unique child of A, one can verify
that there does not exist a biset S = (S, S′) ∈ L such that
e ∈ δE′(S) and v ∈ S. Thus, if v /∈ C, A receives the
token te,v in the initial token assignment (by (Rule B)). If
v ∈ C, A receives at least 2 tokens from v in the first token
reassignment: if v is on the boundary of A, A is a relevant
biset for v; otherwise, A is the minimal biset such that v ∈ A.
Therefore A receives at least 2 additional tokens.

Finally, suppose that E1 and E2 are both non-empty. Let
e be an edge in E1 and let u be the endpoint of e that is
in A. If u ∈ C, A receives 4 tokens from u in the first
token reassignment, since A is the minimal biset of L that
contains u in its inner part. If u /∈ C, A receives the token
te,u in the initial token assignment (by (Rule B)). Let e′

be an edge in E2 and let v be the endpoint of e′ that is in
A′ − B′. If v ∈ C, A receives at least 2 tokens from v in
the first token reassignment: if v is on the boundary of A,
A is a relevant biset for v; otherwise, A is the minimal biset
such that v ∈ A. If v /∈ C, A receives the token te′,v in the
initial token assignment (by (Rule B)); this follows from the
fact that there does not exist a biset S = (S, S′) such that
e′ ∈ δE′(S) and v ∈ S. Thus A receives at least 2 additional
tokens. 2

Thus, after reassigning the tokens, each vertex in C has at
least 2 tokens, each biset in L has at least 2 tokens, and
each maximal biset in L has at least 4 tokens. Since L is
non-empty, the total number of tokens is strictly greater
than 2(|L|+ |C|) = 2|E′|, which is a contradiction. Thus it
only remains to prove Theorem 4.9; we give the proof in the
remainder of the section.

Proof of Theorem 4.9. Consider a vertex v ∈ C. We par-
tition the bisets that are relevant for v into two categories:
(i) bisets A such that |in(A) ∩ δE′(v)| ≥ 4, and (ii) bisets
A such that |in(A) ∩ δE′(v)| < 4. Let ρ1(v) and ρ2(v) de-
note the number of bisets in the first and second category,
respectively. We upper bound ρ1(v) and ρ2(v) separately.



Proposition 4.11. Let v be a vertex in C. Let ρ1(v) be
the number of bisets A such that A is relevant for v and
|in(A) ∩ δE′(v)| ≥ 4. Then ρ1(v) ≤ |δE′(v)|/4.

Proof: By Lemma 4.8, any two bisets that are rele-
vant for v are disjoint. Therefore the edge sets {in(A) ∩
δE′(v) | A is relevant for v} are pairwise disjoint. Thus we
have ρ1(v) ≤ |δE′(v)|/4. 2

Lemma 4.12. Let v be a vertex in C. Let ρ2(v) be the
number of bisets A such that A is relevant for v and |in(A)∩
δE′(v)| < 4. Then ρ2(v) ≤ |δF∪F ′(v)| and thus ρ2(v) ≤
(|δE′(v)| − 12)/4.

Note that Theorem 4.9 follows from Proposition 4.11 and
Lemma 4.12. We devote the rest of this section to the proof
of Lemma 4.12.

A key insight is that, if A is a biset in the second category,
then in(A) contains an edge of δF∪F ′(v). More precisely, we
have the following lemma. We remark that this is the only
place where we use the fact that the requirement function r
satisfies r((A,A′)) ≤ r(A,A′ − v) for each biset (A,A′) and
each vertex v ∈ A′ −A.

Lemma 4.13. Let v be a vertex and let A = (A,A′) be a
tight biset that contains v on its boundary. If δF∪F ′(v) ∩
in(A) is empty, |δE′(v) ∩ in(A)| ≥ 4.

Proof Sketch: Let B = (A,A′ − {v}). We claim that
x(δE′(B)) − x(δE′(A)) ≥ 1. To see this, note that we have
x(δE′(B))−x(δE′(A)) ≥ f ′(B)−f ′(A), since x is feasible and
A is tight. One can verify that f ′(B)− f ′(A) ≥ 1 as follows.
Recall that f ′(S) = r(S)−|bd(S)|− |δF∪F ′(S)| for each biset
S. We have r(B) ≥ r(A) (see the statement of Theorem 3.2).
Additionally, |bd(B)| = |bd(A)| − 1. Therefore

f ′(B)− f ′(A) ≥ 1 + |δF∪F ′(A)| − |δF∪F ′(B)|.

Since δF∪F ′(v) ∩ in(A) is empty, we have δF∪F ′(A) =
δF∪F ′(B) and thus f ′(B)− f ′(A) ≥ 1.

Since x(δE′(B))− x(δE′(A)) ≥ 1 and x(e) < 1/3 for each
edge e ∈ E′, one can verify that |δE′(B)−δE′(A)| ≥ 4. Since
δE′(B)− δE′(A) ⊆ δE′(v) ∩ in(A), the lemma follows. 2

Proof of Lemma 4.12: By Lemma 4.13, for each biset A in
the second category, in(A)∩δF∪F ′(v) is non-empty. Since the
bisets in the second category are disjoint (by Lemma 4.8),
we have ρ2(v) ≤ |δF∪F ′(v)|.

To complete the proof, we note that |δF∪F ′(v)| ≤ |δF (v)|+
3b(v) ≤ (|δE′(v)| − 12)/4: since Undir-algo-weaker only se-
lects edges whose fractional value is at least 1/3, we have
|δF ′(v)| ≤ 3b(v); additionally, by our assumption on the
vertices of C, we have |δE′(v)| > 4|δF (v)|+ 12b(v) + 12. 2
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