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Abstract

We study an integral counterpart of the classical Maximum Concurrent Flow problem, that we
call Integral Concurrent Flow (ICF). In the basic version of this problem (basic-ICF), we are given an
undirected n-vertex graph G with edge capacities c(e), a subset T of vertices called terminals, and a
demand D(t, t′) for every pair (t, t′) of the terminals. The goal is to find a maximum value λ, and a
collection P of paths, such that every pair (t, t′) of terminals is connected by bλ·D(t, t′)c paths in P,
and the number of paths containing any edge e is at most c(e). We show an algorithm that achieves
a poly log n-approximation for basic-ICF, while violating the edge capacities by only a constant
factor. We complement this result by proving that no efficient algorithm can achieve a factor
α-approximation with congestion c for any values α, c satisfying α · c = O(log log n/ log log log n),
unless NP ⊆ ZPTIME(npoly logn).

We then turn to study the more general group version of the problem (group-ICF), in which we are
given a collection {(S1, T1), . . . , (Sk, Tk)} of pairs of vertex subsets, and for each 1 ≤ i ≤ k, a demand
Di is specified. The goal is to find a maximum value λ and a collection P of paths, such that for
each i, at least bλ·Dic paths connect the vertices of Si to the vertices of Ti, while respecting the edge
capacities. We show that for any 1 ≤ c ≤ O(log log n), no efficient algorithm can achieve a factor

O
(
n1/(2

2c+3)
)

-approximation with congestion c for the problem, unless NP ⊆ DTIME(nO(log logn)).

On the other hand, we show an efficient randomized algorithm that finds a poly log n-approximate
solution with a constant congestion, if we are guaranteed that the optimal solution contains at least
D ≥ k poly log n paths connecting every pair (Si, Ti).
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1 Introduction

Multicommodity flows are ubiquitous in computer science, and they are among the most basic and
extensively studied combinatorial objects. Given an undirected n-vertex graph G = (V,E) with capac-
ities c(e) > 0 on edges e ∈ E, and a collection {(s1, t1), . . . , (sk, tk)} of source-sink pairs, two standard
objective functions for multicommodity flows are: Maximum Multicommodity Flow, where the goal is to
maximize the total amount of flow routed between the source-sink pairs, and Maximum Concurrent Flow,
where the goal is to maximize a value λ, such that λ flow units can be simultaneously sent between
every pair (si, ti).

Many applications require however that the routing of the demand pairs is integral, that is, the
amount of flow sent on each flow-path is integral. The integral counterpart of Maximum Multicommodity Flow
is the Edge Disjoint Paths problem (EDP), where the goal is to find a maximum-cardinality collection
P of paths connecting the source-sink pairs with no congestion. It is a standard practice to define the
EDP problem on graphs with unit edge capacities, so a congestion of any solution P is the maximum
number of paths in P sharing an edge. EDP is a classical routing problem that has been studied exten-
sively. Robertson and Seymour [RS90] have shown an efficient algorithm for EDP when the number k of
the demand pairs is bounded by a constant, but the problem is NP-hard for general values of k [Kar72].
The best currently known approximation algorithm, due to Chekuri, Khanna and Shepherd [CKS06],
achieves an O(

√
n)-approximation. The problem is also known to be Ω(log1/2−ε n)-hard to approxi-

mate for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [AZ05, ACG+10]. A standard technique for
designing approximation algorithms for routing problems is to first compute a multi-commodity flow
relaxation of the problem, where instead of connecting the demand pairs with integral paths, we are
only required to send flow between them. Such a fractional solution can usually be computed using
linear programming, and it is then rounded to obtain an integral solution to the routing problem. For
the EDP problem, the corresponding flow relaxation is the Maximum Multicommodity Flow problem.
However, the ratio of the Maximum Multicommodity Flow solution value to the EDP solution value can
be as large as Ω(

√
n) in some graphs [CKS06]. Interestingly, when the value of the global minimum

cut in G is Ω(log5 n), Rao and Zhou [RZ10] have shown a poly log n-approximation algorithm for EDP,
by rounding the multicommodity flow relaxation.

Much better results are known if we slightly relax the problem requirements by allowing a small con-
gestion. Andrews [And10] has shown an efficient randomized algorithm that w.h.p. routes Ω(OPT/ poly log n)
of the demand pairs with congestion poly(log log n), where OPT is the value of the optimal solution
with no congestion for the given EDP instance, and Chuzhoy [Chu11] has shown an efficient random-
ized algorithm that w.h.p. routes Ω(OPT/poly log k) of the demand pairs with a constant congestion.
In fact the number of demand pairs routed by the latter algorithm is within a poly log k-factor of the
Maximum Multicommodity Flow value.

Assume now that we are given an instance where every demand pair (si, ti) can simultaneously
send D flow units to each other with no congestion. The algorithm of [Chu11] will then produce a
collection P of Ω(Dk/ poly log k) paths connecting the demand pairs, but it is possible that some pairs
are connected by many paths, while some pairs have no paths connecting them. In some applications
however, it is important to ensure that every demand pair is connected by many paths.

In this paper, we propose to study an integral counterpart of Maximum Concurrent Flow, called
Integral Concurrent Flow (ICF). We study two versions of ICF. In the simpler basic version (basic-ICF),
we are given an undirected n-vertex graph G = (V,E) with non-negative capacities c(e) on edges
e ∈ E, a subset T ⊆ V of k vertices called terminals, and a set D of demands over the terminals,
where for each pair (ti, tj) ∈ T , a demand D(ti, tj) is specified. The goal is to find a maximum value
λ, and a collection P of paths, such that for each pair (ti, tj) of terminals, set P contains at least
bλ ·D(ti, tj)c paths connecting ti to tj , and for each edge e ∈ E, at most c(e) paths in P contain e.

The second and the more general version of the ICF problem that we consider is the group version
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(group-ICF), in which we are given an undirected n-vertex graph G = (V,E) with edge capacities
c(e) > 0, and k pairs of vertex subsets ((S1, T1), . . . , (Sk, Tk)). For each pair (Si, Ti), we are also given
a demand Di. The goal is to find a maximum value λ, and a collection P of paths, such that for each
1 ≤ i ≤ k, there are at least bλ · Dic paths connecting the vertices of Si to the vertices of Ti in P,
and every edge e ∈ E belongs to at most c(e) paths. It is easy to see that group-ICF generalizes both
the basic-ICF and the EDP problems1. As in the EDP problem, we will sometimes relax the capacity
constraints, and will instead only require that the maximum edge congestion - the ratio of the number
of paths containing the edge to its capacity - is bounded. We say that a set P of paths is a solution
of value λ and congestion η, iff for every 1 ≤ i ≤ k, at least bλ ·Dic paths connect the vertices of Si
to the vertices of Ti, and every edge e ∈ E participates in at most η · c(e) paths in P. Throughout
the paper, we denote by λ∗ the value of the optimal solution to the ICF instance, when no congestion
is allowed. We say that a solution P is an α-approximation with congestion η iff for each 1 ≤ i ≤ k,
at least bλ∗ ·Di/αc paths connect the vertices of Si to the vertices of Ti, and the congestion due to
paths in P is at most η.

Given a multicommodity flow F , we say that it is a fractional solution of value λ to the group-ICF
instance, iff for each demand pair (Si, Ti), at least λ·Di flow units are sent from the vertices of Si to the
vertices of Ti, and the total amount of flow sent via any edge e is at most ce. Throughout the paper, we
denote by λOPT the value of the optimal fractional solution to the ICF problem instance. The value λOPT

can be efficiently computed by solving an appropriate LP-relaxation of the problem, for both basic-ICF
and group-ICF. Observe that for basic-ICF, this is equivalent to solving the Maximum Concurrent Flow
problem.

In addition to designing approximation algorithms for the ICF problem, an interesting question
is the relationship between the optimal fractional and the optimal integral solutions for ICF. For
example, suppose we are given a multicommodity flow, where for each 1 ≤ i ≤ k, the vertices of Si
send D flow units to the vertices of Ti simultaneously with no congestion. What is the maximum value
λ, for which we can find an integral solution where for each pair (Si, Ti) at least bλDc paths connect
the vertices of Si to the vertices of Ti?

We start by showing a randomized algorithm for basic-ICF that w.h.p. produces a solution of value
λOPT/ poly log n and constant congestion. We also show that for any values η, α, such that η · α ≤
O(log log n/ log log log n), no efficient algorithm can find an α-approximate solution with congestion
η to basic-ICF unless NP ⊆ ZPTIME(npoly logn). We then turn to the more challenging group-ICF
problem. It is easy to see that when no congestion is allowed, the ratio of the optimal fractional to the
optimal integral solution can be as large as Ω(

√
n) for group-ICF, even when k = 2. Moreover, even if

we allow congestion c− 1, this ratio can still be as large as Ω(n1/c), (see section A in the Appendix).

We show that for any 0 < η ≤ O(log log n) and any α = O
(
n1/22η+3

)
, no efficient algorithm can

find α-approximate solutions with congestion η for group-ICF unless NP ⊆ DTIME(nO(log logn)). Given
an optimal integral solution P to the group-ICF problem instance, let D = mini {bλ∗ ·Dic} be the
minimum number of paths connecting any pair (Si, Ti) in this solution. Our hardness result only holds
for the regime where D << k. We show that if D > k poly log n, then there is an efficient algorithm
that finds a (poly log n)-approximate solution with constant congestion. The value of the solution is
in fact λOPT/ poly log n, where λOPT is the value of the optimal fractional solution. Therefore, when
we allow a constant congestion, the ratio of the optimal fractional to the optimal integral solution
becomes only polylogarithmic if D > k poly log n.

Our Results and Techniques Our first result is an approximation algorithm for the basic-ICF
problem.

1To reduce EDP to group-ICF, make D disjoint copies of the EDP instance. For each 1 ≤ i ≤ k, let Si contain all
copies of si and Ti contain all copies of ti. If we can find λD paths for every group (Si, Ti), then some copy of the EDP
instance will contain a solution of value at least λk.
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Theorem 1 There is an efficient randomized algorithm, that, given any instance of basic-ICF, w.h.p.
produces an integral solution of value λOPT/ poly log n and constant congestion, where λOPT is the value
of the optimal fractional solution with no congestion to the ICF instance.

The main technical tool that our algorithm uses is a graph decomposition similar to the one pro-
posed by Andrews [And10]. Assume first that the value of the minimum cut in graph G is polylogarith-
mic. We can then define poly log n new graphs G1, . . . , Gr, where for each 1 ≤ j ≤ r, V (Gj) = V (G),
and the edges in graphs Gj form a partition of the edges in G. If the value of the minimum cut in G is
large enough, we can furthermore ensure that the value of the minimum cut in each resulting graph Gj
is Ω(log5 n). We can then use the algorithm of Rao and Zhou [RZ10] to find λ∗ ·

∑
iDi/ poly log n paths

connecting the source-sink pairs in each graph Gj separately. By appropriately choosing the subsets
of source-sink pairs for each graph Gj to connect, we can obtain a polylogarithmic approximation for
the basic-ICF problem instance.

Unfortunately, it is possible that the global minimum cut in graph G is small. Andrews [And10]
in his paper on the EDP problem, suggested to get around this difficulty as follows. Let L = poly log n
be a parameter. For any subset C of vertices in G, let out(C) = E(C, V \ C) be the set of edges
connecting the vertices of C to the vertices of V \ C. We say that a subset C of vertices is a large
cluster iff | out(C)| ≥ L, and otherwise we say that it is a small cluster. Informally, we say that cluster
C has the bandwidth property iff we can send 1/| out(C)| flow units between every pair of edges in
out(C) with small congestion inside the cluster C. Finally, we say that C is a critical cluster iff it is a
large cluster, and we are given a partition π(C) of its vertices into small clusters, such that on the one
hand, each cluster in π(C) has the bandwidth property, and on the other hand, the graph obtained
from G[C] by contracting every cluster in π(C) is an expander. The key observation is that if C is
a critical cluster, then we can integrally route demands on the edges of out(C) inside C, by using
standard algorithms for routing on expanders. The idea of Andrews is that we can use the critical
clusters to “hide” the small cuts in graph G.

More specifically, the graph decomposition procedure of Andrews consists of two steps. In the
first step, he constructs what we call a Q-J decomposition (Q,J ) of graph G. Here, Q is a collection
of disjoint critical clusters and J is a collection of disjoint small clusters that have the bandwidth
property, and Q∪J is a partition of V (G). This partition is computed in a way that ensures that every
cut separating any pair of clusters in Q is large, containing at least poly log n edges, and moreover we
can connect all edges in

⋃
C∈J out(C) to the edges of

⋃
C∈Q out(C) by paths that together only cause

a small congestion.
Given a Q-J decomposition (Q,J ), Andrews then constructs a new graph H, whose vertices are

{vQ | Q ∈ Q}, and every edge e = (vQ, vQ′) in H is mapped to a path Pe in G connecting some vertex
of Q to some vertex of Q′, such that the total congestion caused by the set {Pe | e ∈ E} of paths in
graph G is small. Moreover, graph H preserves, to within a polylogarithmic factor, all cuts separating
the clusters of Q in graph G. In particular, the size of the global minimum cut in H is large, and
any integral routing in graph H can be transformed into an integral routing in G. This reduces the
original problem to the problem of routing in the new graph H. Since the size of the minimum cut in
graph H is large, we can now apply the algorithm proposed above to graph H.

We revisit the Q-J decomposition and the construction of the graph H from [And10], and obtain
an improved construction with better parameters. In particular, it allows us to reduce the routing
congestion to constant, and to reduce the powers of the logarithms in the construction parameters.
The Q-J decomposition procedure of [And10] uses the tree decomposition of Räcke [Räc02] as a black
box. We instead perform the decomposition directly, thus improving some of its parameters. We also
design a new well-linked decomposition procedure that may be of independent interest.

Our next result shows that basic-ICF is hard to approximate, using a simple reduction from the
Congestion Minimization problem.
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Theorem 2 Given an n-vertex graph G with unit edge capacities, a collectionM = {(s1, t1), . . . , (sk, tk)}
of source-sink pairs, and integers c, D, such that Dc ≤ O( log logn

log log logn), no efficient algorithm can dis-

tinguish between the following two cases unless NP ⊆ ZPTIME(npoly logn): (i) There is a collection P
of paths that causes congestion 1, with D paths connecting si to ti for each 1 ≤ i ≤ k; and (ii) Any
collection P of paths, containing, for each 1 ≤ i ≤ k, at least one path connecting si to ti, causes
congestion at least c.

We then turn to the group-ICF problem, and prove that it is hard to approximate in the following
theorem.

Theorem 3 Suppose we are given an n-vertex graph G = (V,E) with unit edge capacities, and a
collection of pairs of vertex subsets (S1, T1), . . . , (Sk, Tk). Let c be any integer, 0 < c ≤ O(log log n) and

let D = O
(
n1/22c+3

)
. Then unless NP ⊆ DTIME(nO(log logn)), no efficient algorithm can distinguish

between the following two cases: (i) There is a collection P∗ of paths that causes congestion 1, and
contains, for every 1 ≤ i ≤ k, D paths connecting the vertices of Si to the vertices of Ti; and (ii) Any
set P∗ of paths, containing, for each 1 ≤ i ≤ k, at least one path connecting a vertex of Si to a vertex
of Ti, causes congestion at least c.

The proof of Theorem 3 establishes a connection between group-ICF and the Machine Minimization
Scheduling problem, and then follows the hardness of approximation proof of [CN06] for the scheduling
problem. Finally, we show an approximation algorithm for the group-ICF problem.

Theorem 4 Suppose we are given an instance of group-ICF, and let D = mini {λOPT ·Di} be the
minimum amount of flow sent between any pair (Si, Ti) in the optimal fractional solution. Assume
further that D ≥ ∆′, where ∆′ = k poly log n is a parameter whose value we set later. Then there is an
efficient randomized algorithm that finds a solution of value λOPT/poly log n with constant congestion
for the group-ICF instance.

We now give a high-level overview of the proof of Theorem 4. We say that a Q-J decomposition
is good iff no flow path in the optimal fractional solution is contained in any small cluster in X =

J ∪
(⋃

Q∈Q π(Q)
)

. We show an algorithm that finds a (poly log n)-approximate solution with constant

congestion for instances where a good Q-J decomposition is given. This algorithm is similar to the
algorithm from Theorem 1 for basic-ICF. Therefore, if we succeed in finding a good Q-J decomposition
for instance (G,D), we would have been done. However, we do not know how to obtain a good Q-J
decomposition directly, so our algorithm instead partitions the input graph into a number of sub-
instances. Each sub-instance either admits a good Q-J decomposition, or corresponds to what we
call a split instance, which can be solved using the algorithm of [Chu11], together with a standard
randomized rounding procedure, as a subroutine.

Organization We start with Preliminaries in Section 2, and present the improved Q-J decomposi-
tion together with the construction of the graph H in Section 3. We show an algorithm for basic-ICF in
Section 4, and hardness of basic-ICF and group-ICF in Sections 5 and 6 respectively. An algorithm for
group-ICF appears in Section 7. For convenience, a list of the main parameters is given in Section G
of the Appendix.

2 Preliminaries

In all our algorithmic results, we first solve the problem for the special case where all edge capacities
are unit, and then extend our algorithms to general edge capacities. Therefore, in this section, we
only discuss graphs with unit edge capacities.
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2.1 Demands and Routing

Given any subset S ⊆ V of vertices in graph G, denote by outG(S) = EG(S, V \ S). We omit the
subscript G when clear from context. Let P be any collection of paths in graph G. We say that paths
in P cause congestion η, iff for each edge e ∈ E(G), the number of paths in P containing e is at most
η.

Given a graph G = (V,E), and a set T ⊆ V of terminals, a set D of demands is a function
D : T ×T → R+, that specifies, for each unordered pair t, t′ ∈ T of terminals, a demandD(t, t′). We say
that a set D of demands is γ-restricted, iff for each terminal t ∈ T , the total demand

∑
t′∈T D(t, t′) ≤ γ.

Given any partition G of the terminals in T , we say that a set D of demands is (γ,G)-restricted iff
for each group U ∈ G,

∑
t∈U

∑
t′∈T D(t, t′) ≤ γ. We say that a demand set D is integral iff D(t, t′) is

integral for all t, t′ ∈ T .
Given any set D of demands, a fractional routing of D is a flow F , where each pair t, t′ ∈ T , of

terminals sends D(t, t′) flow units to each other. Given an integral set D of demands, an integral
routing of D is a collection P of paths, that contains D(t, t′) paths connecting each pair (t, t′) of
terminals. The congestion of this integral routing is the congestion caused by the set P of paths in G.
Any matching M on the set T of terminals defines an integral 1-restricted set D of demands, where
D(t, t′) = 1 if (t, t′) ∈M , and D(t, t′) = 0 otherwise. We do not distinguish between the matching M
and the corresponding set D of demands.

Given any two subsets V1, V2 of vertices, we denote by F : V1  η V2 a flow from the vertices of
V1 to the vertices of V2 where each vertex in V1 sends one flow unit, and the congestion due to F is
at most η. Similarly, we denote by P : V1  η V2 a collection of paths P = {Pv | v ∈ V1}, where each
path Pv originates at v and terminates at some vertex of V2, and the paths in P cause congestion at
most η. We define flows and path sets between subsets of edges similarly. For example, given two
collections E1, E2 of edges of G, we denote by F : E1  η E2 a flow that causes congestion at most
η in G, where each flow-path has an edge in E1 as its first edge, and an edge in E2 as its last edge,
and moreover each edge in E1 sends one flow unit (notice that it is then guaranteed that each edge
in E2 receives at most η flow units due to the bound on congestion). We will often be interested in
a scenario where we are given a subset S ⊆ V (G) of vertices, and E1, E2 ⊆ out(S). In this case, we
say that a flow F : E1  η E2 is contained in S, iff for each flow-path P in F , all edges of P belong
to G[S], except for the first and the last edges that belong to out(S). Similarly, we say that a set
P : E1  η E2 of paths is contained in S, iff all inner edges on paths in P belong to G[S].

Edge-Disjoint Paths We use the algorithm of [Chu11] for EDP, summarized in the following the-
orem.

Theorem 5 ( [Chu11]) Let G be any graph with unit edge capacities and a setM = {(s1, t1), . . . , (sk, tk)}
of source-sink pairs. Assume further that there is a multicommodity flow where the pairs in M al-
together send OPT flow units to each other, with no congestion, and at most one flow unit is sent
between each pair. Then there is an efficient randomized algorithm that w.h.p. finds a collection P
of paths, connecting at least OPT/αEDP of the demand pairs, such that the congestion of P is at most
ηEDP = 14, where αEDP = poly log k.

2.2 Sparsest Cut and the Flow-Cut Gap

Given a graph G = (V,E) with a subset T of vertices called terminals, the sparsity of any partition

(A,B) of V is |E(A,B)|
min{|A∩T |,|B∩T |} . The goal of the sparsest cut problem is to find a partition (A,B) of V

with minimum sparsity. Arora, Rao and Vazirani [ARV09] have shown an O(
√

log k)-approximation
algorithm for the sparsest cut problem. We denote byAARV this algorithm and by αARV(k) = O(

√
log k)

its approximation factor.
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Sparsest cut is the dual of the Maximum Concurrent Flow problem, where for each pair (t, t′) of
terminals, the demand D(t, t′) = 1/k. The maximum possible ratio, in any graph, between the value
of the minimum sparsest cut and the value λ of the maximum concurrent flow, is called the flow-cut
gap. The flow-cut gap in undirected graphs, that we denote by βFCG(k) throughout the paper, is
Θ(log k) [LR99, GVY95, LLR94, AR98]. In particular, if the value of the sparsest cut in graph G is α,
then every pair of terminals can send at least α

kβFCG(k) flow units to each other simultaneously with no
congestion. Moreover, any 1-restricted set D of demands on the set T of terminals can be fractionally
routed with congestion at most 2βFCG(k)/α in G.

2.3 Well-linkedness

Given any subset S ⊆ V of vertices, we say that S is α-well-linked, iff for any partition (A,B) of S, if
we denote TA = out(S) ∩ out(A) and TB = out(S) ∩ out(B), then |E(A,B)| ≥ α ·min {|TA|, |TB|}.

Given a subset S of vertices, we can sub-divide every edge e ∈ out(S) by a vertex ze, and set
T ′ = {ze | e ∈ out(S)}. Let GS be the sub-graph of the resulting graph induced by S ∪ T ′. Then S is
α-well-linked (for α ≤ 1) in G iff the value of the sparsest cut in graph GS for the set T ′ of terminals
is at least α. In particular, if S is α-well-linked, then any 1-restricted set D of demands on out(S) can
be fractionally routed inside S with congestion at most 2βFCG(k)/α.

Similarly, given any graph G = (V,E) with a subset T of vertices called terminals, we say that G
is α-well-linked for T iff for any partition (A,B) of V , |EG(A,B)| ≥ α ·min {|T ∩A|, |T ∩B|}.

Let L = poly log n be a parameter to be fixed later. (We use different values of L in different
algorithms.) We say that a cluster X ⊆ V (G) is small iff | out(X)| ≤ L, and we say that it is large
otherwise.

A useful tool in graph routing algorithms is a well-linked decomposition [CKS05, Räc02]. This is
a procedure that, given any subset S of vertices, produces a partition W of S into well-linked subsets.
In the following theorem we describe a new well-linked decomposition. In addition to the standard
properties guaranteed by well-linked decompositions, we obtain a collection of paths connecting the
edges of

⋃
R∈W out(R) to the edges of out(S), with a small congestion. We defer the proof of the

theorem to Section B of the appendix.

Theorem 6 (Extended well-linked decomposition)
There is an efficient algorithm, that, given any set S of vertices, with | out(S)| = k′, produces a
partition W of S with the following properties.

• For each set R ∈ W, | out(R)| ≤ k′. If R is a large cluster, then it is αW = Ω
(
1/ log1.5 n

)
-well-

linked. If R is a small cluster, then it is αS = Ω
(
1/(log log n)1.5

)
-well-linked.

• Let E∗ =
(⋃

R∈W out(R)
)
\out(S). Then we can efficiently find a set N = {τe | e ∈ E∗} of paths

called tendrils contained in G[S], where tendril τe connects edge e to some edge of out(S), each
edge in out(S) participates in at most one tendril, and the total congestion caused by N is at
most 3.

• |E∗| ≤ 0.4| out(S)|.

The Grouping Technique The grouping technique was first introduced by Chekuri, Khanna and
Shepherd [CKS04], and it is widely used in algorithms for network routing [CKS05, RZ10, And10], in
order to boost network connectivity and well-linkedness parameters. We summarize it in the following
theorem.

Theorem 7 Suppose we are given a connected graph G = (V,E), with weights w(v) on vertices v ∈ V ,
and a parameter p. Assume further that for each v ∈ V , 0 ≤ w(v) ≤ p, and

∑
v∈V w(v) ≥ p. Then we
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can find a partition G of the vertices in V , and for each group U ∈ G, find a tree TU ⊆ G containing
all vertices of U , such that for each group U ∈ G, p ≤ w(U) ≤ 3p, where w(U) =

∑
v∈U w(v), and the

trees {TU}U∈G are edge-disjoint.

2.4 Bandwidth Property and Critical Clusters

Given a graph G, and a subset S of vertices of G we say that the modified bandwidth condition holds
for S, iff S is αBW-well-linked if it is a large cluster, and it is αS-well-linked if it is a small cluster,

where αS = Ω
(
1/(log log n)1.5

)
, and αBW = αW · αS = Ω

(
1

(logn log logn)1.5

)
. For simplicity, we will use

“bandwidth property” instead of “modified bandwidth property” from now on.
Given a subset S of vertices of G, and a partition π of S, let HS be the following graph: start

with G[S], and contract each cluster C ∈ π into a super-node vC . Set the weight w(vC) of vC to
be | outG(C)| (notice that the weight takes into account all edges incident on C, including those in

out(S)). We use the parameter λ = αBW
8αARV(n) = Ω

(
1

log2 n·(log logn)1.5

)
.

Definition 1 Given a subset S of vertices of G and a partition π of S, we say that (S, π) has
the weight property with parameter λ′, iff for any partition (A,B) of V (HS), |EHS (A,B)| ≥ λ′ ·
min

{∑
v∈Aw(v),

∑
v∈B w(v)

}
. If the weight property holds for the parameter λ = λ′, then we simply

say that (S, π) has the weight property.

Definition 2 Given a subset S of vertices and a partition π of S, we say that S is a critical cluster
iff (1) S is a large cluster and it has the bandwidth property; (2) Every cluster R ∈ π is a small cluster
and it has the bandwidth property; and (3) (S, π) has the weight property. Additionally, if S = {v},
and the degree of v is greater than L, then we also say that S is a critical cluster.

Let η∗ = 2βFCG(L)
αS

= O((log log n)2.5). We say that a cut (S, S) in G is large iff |E(S, S)| ≥ L
4η∗ .

Note that we somewhat abuse the notation: We will say that a cluster S is large iff | out(S)| > L, but
we say that a cut (S, S) is large iff |E(S, S)| ≥ L

4η∗ .
In the next lemma we show that if we are given any large cluster S that has the bandwidth property,

then we can find a critical sub-cluster Q of S. Moreover, there is a subset of at least L/4 edges of
out(Q) that can be routed to the edges of out(S). One can prove a similar lemma using the Räcke
decomposition as a black-box. Since we use slightly different parameters in the definitions of small
and critical clusters, we prove the lemma directly.

Lemma 1 Let S be any large cluster that has the bandwidth property. Then we can efficiently find a
critical cluster Q ⊆ S, a subset EQ ⊆ out(Q) of L/4 edges, and a set PQ : EQ  η∗ out(S) of paths,
which are contained in S \Q, such that for each edge e ∈ out(S), at most one path of PQ terminates
at e.

Proof: Let G′ be a graph obtained from G as follows: subdivide every edge e ∈ out(S) with a vertex
ve, and let T ′ = {ve | e ∈ out(S)}. Graph G′ is the sub-graph of G induced by T ′ ∪ S.

Throughout the algorithm, we maintain a collection π of disjoint subsets of vertices of S, together
with a corresponding contracted graph Z, which is obtained from graph G′, by contracting every
cluster C ∈ π into a super-node vC . We say that π is a good collection of clusters, iff each cluster
C ∈ π is small and has the bandwidth property. The value W (π) of the collection π of clusters is the
number of edges in the corresponding contracted graph Z. We notice that some vertices of S may not
belong to any cluster in π. Our initial collection is π = ∅.

We say that a cluster S′ ⊆ S is canonical for the collection π iff for every cluster C ∈ π, either
C ⊆ S′, or C ∩ S′ = ∅.
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Throughout the algorithm, we also maintain an active large cluster S′ ⊆ S (the initial cluster
S′ = S). We will ensure that S′ is canonical w.r.t. the current collection π of good clusters, and it has
the bandwidth property. We perform a number of iterations. In each iteration, one of the following
three things happens: we either find a new good collection π′ of clusters, with W (π′) < W (π), or find
a critical cluster Q as required, or select a sub-cluster S′′ ( S′ as our next active cluster. In the latter
case, we will guarantee that S′′ is canonical for the current collection π of good clusters, and it has
the bandwidth property. An execution of an iteration is summarized in the next lemma whose proof
appears in the Appendix C.1. The proof uses arguments similar in spirit to the analysis of the Räcke
decomposition [Räc02].

Lemma 2 Let π be a good collection of clusters, and let S′ ⊆ S be a large cluster with the bandwidth
property, such that S′ is canonical for π. Assume additionally that there is a set ES′ ⊆ out(S′) of L/4
edges, and a set PS′ : ES′  η∗ out(S) of paths in graph G, contained in S \ S′, where each edge in
out(S) is an endpoint of at most one path. Then there is an efficient algorithm, whose output is one
of the following:

• Either a good collection π′ of clusters with W (π′) < W (π).

• Or establishes that S′ is a critical cluster, by computing, if |S′| > 1, a partition π∗ of S′ into
small clusters that have bandwidth property, such that (S′, π∗) has the weight property.

• Or a sub-cluster S′′ ( S′, such that S′′ is large, canonical for π, has the bandwidth property, and
there is a set ES′′ ⊆ out(S′′) of L/4 edges, and a set PS′′ : ES′′  η∗ out(S) of paths in graph G,
contained in S \ S′′, where each edge in out(S) is an endpoint of at most one path.

We now complete the proof of Lemma 1. We start with S′ = S and an initial collection π = ∅. We
then iteratively apply Lemma 2 to the current cluster S′ and the current partition π. If the lemma
returns a good collection π′ of clusters, whose value W (π′) is smaller than the value W (π) of π, then
we replace π with π′, set the current active cluster to be S′ = S, and continue. Otherwise, if it returns
a sub-cluster S′′ ( S′, then we replace S′ with S′′ as the current active cluster and continue. Finally, if
it establishes that S′ is a critical cluster, then we return S′, π∗, the set ES′ of edges, and the collection
PS′ of paths. It is easy to verify that the algorithm terminates in polynomial time: we partition the
algorithm execution into phases. A phase starts with some collection π of clusters, and ends when we
obtain a new collection π′ with W (π′) < W (π). Clearly, the number of phases is bounded by |E(G)|.
In each phase, we perform a number of iterations, where in each iteration we start with some active
cluster S′ ⊆ S, and replace it with another cluster S′′ ( S′. Therefore, the number of iterations in
each phase is bounded by n.

Suppose we are given a collection C of disjoint vertex subsets in graph G. We say that a cut (A,B)
in graph G is canonical w.r.t. C, iff for each C ∈ C, either C ⊆ A, or C ⊆ B. We say that it is a
non-trivial canonical cut, iff both A and B contain at least one cluster in C.

2.5 Routing across Small and Critical Clusters

We use the following theorem from [Chu11] to route demands across small clusters.

Theorem 8 Let G be any graph and T any subset of k vertices called terminals, such that G is α-
well-linked for T . Then we can efficiently find a partition G of the terminals in T into groups of size
poly log k

α , such that, for any (1,G)-restricted set D of demands on T , there is an efficient randomized
algorithm that w.h.p. finds an integral routing of D in G with edge congestion at most 15.

Suppose we are given a small cluster S that has the bandwidth property. Since | out(S)| ≤
poly log n, and S is αS-well-linked, we can use Theorem 8 to find a partition GS of the edges of out(S)
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into sets of size poly log log n, such that any (1,GS)-restricted set D of demands can be integrally
routed inside S with congestion 15 w.h.p. We also need the following simple observation.

Observation 1 Let G be any partition of the set T of terminals, and let D be any set of (γ,G)-
restricted integral demands. Then we can efficiently find 4γ sets D1, . . . ,D4γ of (1,G)-restricted integral

demands, such that any routing of the demands in set
⋃4γ
i=1Di gives a routing of the demands in D

with the same congestion, and moreover, if the former routing is integral, so is the latter.

Proof: Let G = {T1, . . . , Tr}. Our first step is to modify the set D of demands, so that it does not
contain demand pairs that belong to the same set Ti. Specifically, for every pair (u, v) ∈ D, where
u, v ∈ Ti for some 1 ≤ i ≤ r, we replace the demand (u, v) with a pair of demands (u, x), (v, x), where
x is any vertex in set Ti+1 (if i = r, then x is any vertex in T1). Let D′ be the resulting set of demands.
Clearly, any routing of D′ gives a routing of D with the same congestion, and if the routing of D′ is
integral, so is the corresponding routing of D. It is also easy to see that D′ is (2γ,G)-restricted.

Our second step is to decompose D′ into 4γ demand sets D1, . . . ,D4γ , such that each set Dj of

demands is (1,G)-restricted, and
⋃4γ
j=1Dj = D′. We construct a multi-graph graph H with vertices

v1, . . . , vr corresponding to the groups T1, . . . , Tr of G. For every pair (u, v) ∈ D′, with u ∈ Ti, v ∈ Tj ,
we add an edge (i, j) to graph H. Finding the decomposition D1, . . . ,D4γ of the set D′ of demands
then amounts to partitioning the edges of H into 4γ matchings. Since the maximum vertex degree in
H is at most 2γ, such a decomposition can be found by a simple greedy algorithm.

Combining Theorem 8 with Observation 1, we obtain the following corollary for routing across
small clusters.

Corollary 1 Given any small cluster S that has the bandwidth property, we can efficiently find a
partition GS of the edges of out(S) into groups of size at most z = poly log log n, such that, for any
γ ≥ 1, given any (γ,GS)-restricted set D of demands on the edges of out(S), there is an efficient
randomized algorithm, that w.h.p. finds an integral routing of D inside S with congestion at most 60γ.

The following theorem gives an efficient algorithm for integral routing across critical clusters. The
theorem is stated in slightly more general terms, and works for clusters that are “almost” critical,
since we also use it in such settings later. The proof of the theorem appears in Appendix C.2.

Theorem 9 Suppose we are given any cluster S, together with a partition π of S into small clusters,
such that every cluster C ∈ π is αS/3-well-linked, and (S, π) has the weight property with parameter
λ/3. Then we can efficiently find a partition G of the edges of out(S) into groups of size at least
Z = O(log4 n) and at most 3Z, such that, for any set D of (1,G)-restricted demands on out(S), there
is an efficient randomized algorithm that w.h.p. routes D integrally in G[S] with congestion at most
721.

3 Graph Decomposition and Splitting

In this section we present the main technical tools that our algorithms use: the Q-J decomposition,
the construction of the graph H, and the splitting of H into sub-graphs. We start with the Q-J
decomposition.

3.1 Graph Decomposition

We assume that we are given a non-empty collection Q0 of disjoint critical clusters in graph G, with
the following property: if (A,B) is any non-trivial canonical cut in graph G w.r.t. Q0, then it is a
large cut. For motivation, consider the basic-ICF problem, and assume that every cut separating the
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terminals in T is a large cut. Then we can set Q0 = {{t} | t ∈ T }. For the group-ICF problem, we will
compute Q0 differently, by setting Q0 = {Q} where Q is an arbitrary critical cluster in G.

Suppose we are given a collection Q of disjoint critical clusters, and a collection J of disjoint
small clusters, such that Q ∪ J is a partition of V (G). Let EQ =

⋃
Q∈Q out(Q), and let EJ =(⋃

J∈J out(J)
)
\ EQ. We say that (Q,J ) is a valid Q-J decomposition, iff Q0 ⊆ Q, and:

P1. Every cluster J ∈ J is a small cluster with the bandwidth property, and every cluster Q ∈ Q is
a critical cluster.

P2. There is a set N =
{
τe | e ∈ EJ

}
of paths, called tendrils, where path τe connects e to some edge

in EQ, each edge in EQ is an endpoint of at most one tendril, and the total congestion caused
by N is at most 3. Moreover, the tendrils do not use edges e = (u, v) where both u and v belong
to clusters in Q.

P3. If (S, S) is any cut in graph G, which is non-trivial and canonical w.r.t. Q, then it is a large cut.

We refer to the clusters in Q as the Q-clusters, and to the clusters in J as the J-clusters. We note
that Andrews [And10] has (implicitly) defined the Q-J decomposition, and suggested an algorithm
for constructing it, by using the graph decomposition of Räcke [Räc02] as a black-box. The Räcke
decomposition however gives very strong properties - stronger than one needs to construct a Q-J
decomposition. We obtain a Q-J decomposition with slightly better parameters by performing the
decomposition directly, instead of using the Räcke decomposition as a black-box. For example, the
tendrils in N only cause a constant congestion in our decomposition, instead of a logarithmic one,
the well-linkedness of the J-clusters is poly log log n instead of poly log n, and we obtain a better
relationship between the parameter L and the size of the minimum cut separating the Q-clusters. The
algorithm for finding a Q-J decomposition is summarized in the next theorem.

Theorem 10 There is an efficient algorithm, that, given any graph G, and a set Q0 of disjoint
critical clusters, such that any non-trivial canonical cut w.r.t. Q0 in G is large, produces a valid Q-J
decomposition of G.

Proof: For each edge e ∈ EJ , if v is the endpoint of the tendril τ(e) that belongs to some Q-cluster
in Q, then we say that v is the head of the tendril τ(e). We also set Q∗ =

⋃
Q∈QQ.

We build the clusters in Q gradually. The algorithm performs a number of iterations. We start
with Q = Q0, and in each iteration, we add a new critical cluster Q to Q. In the last iteration, we
produce the set J of the J-clusters, and their tendrils, as required.

We now proceed to describe an iteration. Let Q be the set of current Q-clusters, and let Q∗ =⋃
Q∈QQ. Let S0 = V \Q∗.

We start by performing the extended well-linked decomposition of the set S0 of vertices, using
Theorem 6. Let W be the resulting decomposition, and N the corresponding set of tendrils. If all sets
in W are small, then we set J = W, and finish the algorithm, so the current iteration becomes the
last one. The output is (Q,J ), and the final set of tendrils is N . We will later show that it has all
required properties. Assume now that W contains at least one large cluster, and denote it by S. Let
NS be the set of tendrils originating at edges of out(S).

We use Lemma 1 to find a critical sub-cluster Q ⊆ S, together with the subset EQ ⊆ out(Q) of
L/4 edges, and the set PS : EQ  η∗ out(S) of paths, that are contained in S \ Q. Let P ′S : EQ  η∗

out(S0) be a collection of paths obtained by concatenating the paths in PS with the set NS of tendrils
originating at the edges of out(S). Notice that each edge of out(S0) serves as an endpoint of at most
one such path, and |P ′S | = L/4. We then add Q to Q, and continue to the next iteration. This
concludes the description of an iteration. Consider the final collections Q,J of clusters produced by
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the algorithm. It is immediate to see that Properties (P1)–(P2) hold for it. We only need to establish
Property (P3).

Consider any cut (S, S) in graph G, such that for each cluster Q ∈ Q, either Q ⊆ S, or Q ⊆ S,
and assume that both S and S contain at least one cluster in Q. We say that the vertices of S are red
and the vertices of S are blue.

If both S and S contain clusters from Q0, then the cut (S, S) must be large by our initial assump-
tion. Assume w.l.o.g. that all clusters in Q0 are red. Let Q be the first cluster that has been added to
Q over the course of the algorithm, whose vertices are blue. Recall that we have a set P ′Q of L/4 paths
connecting the edges of out(Q) to the edges of out(S0) with congestion at most η∗. Therefore, there
must be at least L

4η∗ edges in the cut, so (S, S) is a large cut. This concludes the proof of Theorem 10.

Given a valid Q-J decomposition, it is not hard to construct a graph H with the desired properties.
The following theorem mostly follows the construction of [And10], with some minor changes. We defer
its proof to Section D of the Appendix.

Theorem 11 Assume that L ≥ Ω(log6 n), and suppose we are given a valid Q-J decomposition (Q,J )
for graph G. Then there is an efficient randomized algorithm to construct a graph H with V (H) =
{vC | C ∈ Q}, and for each edge e = (vC1 , vC2) ∈ E(H), define a path Pe in graph G, connecting some
vertex of C1 to some vertex of C2, such that for some value α∗ = O(log4 n poly log log n), the following
properties hold w.h.p. for graph H:

C1. For every cut (A,B) in graph H, there is a cut (A′, B′) in graph G, such that for each Q ∈ Q,
if vQ ∈ A then Q ⊆ A′, and if vQ ∈ B then Q ⊆ B′, and |EG(A′, B′)| ≤ α∗ · |EH(A,B)|.

C2. The value of the minimum cut in H is at least L
α∗ .

C3. The paths in set PEH = {Pe | e ∈ E(H)} cause a constant congestion in graph G.

C4. For each critical cluster C ∈ Q, let GC be the grouping of the edges of out(C) given by Theorem 9.
Then for each group U ∈ GC , at most two paths in PEH contain an edge of U as their first or last
edge.

3.2 Graph Splitting

Once we compute the graph H, we can split it into graphs H1, . . . ,Hx, as follows. For each 1 ≤ j ≤ x,
the set of vertices V (Hj) = V (H). The sets of edges E(H1), . . . , E(Hx) are constructed as follows.
Each edge e ∈ E(H) independently chooses an index j ∈ {1, . . . , x} uniformly at random. Edge
e is then added to graph Hj , where j is the index chosen by e. We use the following theorem (a
re-statement of Theorem 2.1 from [Kar99]).

Theorem 12 ([Kar99]) Let G = (V,E) be any n-vertex graph with minimum cut value C. Assume
that we obtain a sub-graph G′ = (V,E′), by adding every edge e ∈ E with probability p to E′, and
assume further that C · p > 48 lnn. Then with probability at least 1 − O(1/n2), for every partition

(A,B) of V, |EG′(A,B)| ≥ p|EG(A,B)|
2 .

Therefore, if we select L so that L
xα∗ > 48 lnn, then we can perform the graph splitting as described

above, and from Theorem 12, for each 1 ≤ j ≤ x, for each partition (A,B) of V (H), |EHj (A,B)| ≥
|EH(A,B)|

2x w.h.p.
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4 An Algorithm for basic-ICF

The goal of this section is to prove Theorem 1. We start by proving the theorem for the special
case where all demands are uniform, and all edge capacities are unit. That is, we are given a subset
M⊆ T ×T of the terminal pairs, and for each pair (t, t′) ∈M, D(t, t′) = D, while all other demands
are 0. We extend this algorithm to handle arbitrary demands and edge capacities in Section F of the
Appendix. We set the parameter L = Θ(log20 n poly log log n), and we define its exact value later.

4.1 The Algorithm

Assume first that in the input instance G, every cut separating the set T of terminals has value at
least L. We show in the next theorem, that in this case we can find an integral solution of value
λOPT/ poly log n with constant congestion to instance (G,D). The proof of the next theorem appears
later in Section 4.2.

Theorem 13 Let G be an instance of basic-ICF with unit edge capacities and a set D of uniform
demands over the set T of terminals. Assume that every cut separating the terminals in T has size at
least L = Θ(log20 n poly log log n). Then there is an efficient randomized algorithm that w.h.p. finds
an integral solution of value λOPT/β with constant congestion, where β = O(log26 n poly log log n) and
λOPT is the value of the optimal fractional solution.

In general, graph G may contain small cuts that separate its terminals. We get around this problem
as follows. For each subset S ⊆ V of vertices, let TS = S ∩ T be the subset of terminals contained
in S. We say that S is a good subset iff (1) Any cut in graph G[S] separating the terminals in TS
has value at least L; and (2) | out(S)| ≤ L log k. We first show that we can efficiently compute a
good set S of vertices in graph G. We then decompose the set D of demands into two subsets: DS
containing the demands for all pairs contained in TS , and D′ containing the demands for all other
pairs. Next, we apply Theorem 13 to instance (G[S],DS), obtaining a collection P ′ of paths, and solve
the problem recursively on instance (G,D′), obtaining a collection P ′′ of paths. Our final step is to
carefully combine the two sets of paths to obtain the final solution P. We start with the following
lemma that allows us to find a good subset S of vertices efficiently.

Lemma 3 Let (G,D) be a basic-ICF instance with uniform demands and unit edge capacities, and a
set T of terminals, where |T | ≤ k. Then there is an efficient algorithm that either finds a good set
S ⊆ V (G) of vertices, or establishes that every cut (A,B) separating the terminals of T in G has value
|EG(A,B)| ≥ L.

Proof: We start with S = V (G), and then perform a number of iterations. Let G′ = G[S], and
let TS = T ∩ S. Let (A,B) be the minimum cut separating the terminals in TS in graph G′, and
assume w.l.o.g. that |A ∩ TS | ≤ |B ∩ TS |. If |EG′(A,B)| < L, then we set S = A, and continue to the
next iteration. Otherwise, we output S as a good set. (If S = V (G), then we declare that every cut
separating the terminals in T has value at least L.)

Clearly, if S is the final set that the algorithm outputs, then every cut in graph G[S] separating
the set T ∩ S of terminals has value at least L. It only remains to show that | outG(S)| ≤ L log k.
Since |T | ≤ k, and the number of terminals contained in set S goes down by a factor of at least 2
in every iteration, there are at most log k iterations. In each iteration, at most L edges are deleted.
Therefore, | outG(S)| ≤ L log k.

We use the following theorem, whose proof appears below in Section 4.3, to combine the solutions
to the two sub-instances. In this theorem, we assume that we are given a good vertex set S, TS =
T ∩ S, and MS ⊆ M is the subset of the demand pairs contained in S. We assume w.l.o.g. that
MS = {(s1, t1), . . . , (sk′ , tk′)}.
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Theorem 14 Suppose we are given a good vertex set S, and MS ⊆ M as above. Assume further
that for each 1 ≤ i ≤ k′, we are given a set Pi of N paths connecting si to ti, such that all paths
in set P ′ =

⋃k′

i=1 Pi are contained in G[S], and set P ′ causes congestion at most γ in G[S]. Let P ′′
be any set of paths in graph G, where each path in P ′′ connects some pair (s, t) ∈ M \MS, and the
congestion caused by the paths in P ′′ is at most γ. Then we can efficiently find, for each 1 ≤ i ≤ k′,
a subset P∗i ⊆ Pi of at least N − 2Lγ log n paths, and for each P ∈ P ′′, find a path P̃ connecting the

same pair of vertices as P , such that the total congestion caused by the set
(⋃k′

i=1 P∗i
)
∪
{
P̃ | P ∈ P ′′

}
of paths is at most γ in graph G.

We denote this algorithm by Reroute(P ′,P ′′), and its output is denoted by P̃ ′ =
⋃k′

i=1 P∗i , and

P̃ ′′ =
{
P̃ | P ∈ P ′′

}
. We now complete the description of our algorithm, that we call RecursiveR-

outing.
We assume that we are given a graph G, a set T of at most k terminals, a set M of demand

pairs, and a real number D > 0, such that for each pair (t, t′) ∈ M, we can send λOPT ·D flow units
simultaneously in G with no congestion. If no cut of size less than L separates the terminals of T ,
then we use Theorem 13 to find a set P of paths and return P. Otherwise, we find a good vertex
set S ⊆ V (G) using Lemma 3. Let TS = T ∩ S, MS ⊆ M the subset of pairs contained in TS ,
M′ =M\MS . We then apply Theorem 13 to (G[S],MS , D) to obtain a collection P ′ of paths, and
invoke RecursiveRouting on (G,M′, D) to obtain a set P ′′ of paths. Finally, we apply procedure
ReRoute to sets P ′,P ′′ of paths to obtain the collections P̃ ′, P̃ ′′ of paths, and return P = P̃ ′ ∪ P̃ ′′.

Let β be the parameter from Theorem 13, and let γ be the congestion it guarantees. We can
assume w.l.o.g. that λOPT

β D ≥ 4Lγ log n, since otherwise b λOPT
4βLγ lognDc = 0, and P = ∅ is a (poly log n)-

approximate solution to the problem. We now prove that procedure RecursiveRouting produces a
solution of value λOPT

4β and congestion at most γ.

Lemma 4 Let P be the output of procedure RecursiveRouting. Then for every pair (s, t) ∈M, at
least bλOPT

4β Dc paths connect s to t in P, and the paths in P cause congestion at most γ in G.

Proof: The proof is by induction on the recursion depth. In the base case, when no cut of size less
than L separates the terminals of T in G, the correctness follows directly from Theorem 13.

Otherwise, consider the set P ′ of paths. For each pair (s, t) ∈ MS , let P ′(s, t) ⊆ P ′ be the subset
of paths connecting s to t in P ′. From Theorem 13, we are guaranteed that |P ′(s, t)| ≥ bλOPT

β Dc for

each (s, t) ∈MS , and the paths in P ′ cause congestion at most γ in G[S].
Consider now the set P ′′ of paths. For each pair (s, t) ∈ M′, let P ′′(s, t) ⊆ P ′′ be the subset of

paths connecting s to t in P ′′. From the induction hypothesis, |P ′′(s, t)| ≥ bλOPT
4β Dc for all (s, t) ∈M′,

and the paths in P ′′ cause congestion at most γ in G.
Consider now the final set P = P̃ ′ ∪ P̃ ′′ of paths returned by the algorithm. From Theorem 14,

the paths in P cause congestion at most γ, as required. For each pair (s, t) ∈MS , the set P̃ ′ of paths
contains at least bλOPT

β Dc − 2Lγ log n ≥ bλOPT
4β Dc paths. For each pair (s, t) ∈ MS , if P̃ ′′(s, t) is the

subset of paths of P̃ ′′ connecting s to t, then |P̃ ′′(s, t)| = |P ′′(s, t)| ≥ bλOPT
4β Dc, since each path in P ′′

is replaced by a path connecting the same pair of vertices in P̃ ′′. Therefore, each pair (s, t) ∈ M is
connected by at least bλOPT

4β Dc paths in P.
This completes the proof of Theorem 1 for uniform demands and unit edge capacities, except for

the proofs of Theorems 13 and 14 that appear below. In Section F of the Appendix we extend this
algorithm to arbitrary edge capacities and demands using standard techniques.

4.2 Proof of Theorem 13

We assume that we are given a collection M⊆ T × T of terminal pairs and a value D > 0, such that
for each pair (t, t′) ∈M, D(t, t′) = 1, and all other demands are 0.
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We start by applying Theorem 11 to graph G, where we use the threshold L from the statement
of Theorem 13 for the definition of small clusters, and the initial set of critical clusters is Q0 =
{{t} | t ∈ T }. It is easy to see that each cluster in Q0 is a critical cluster, and any cut separating the
clusters in Q0 in graph G is large. Let H be the resulting graph guaranteed by Theorem 11.

Since every terminal in T is mapped to a separate vertex of H, we can view D as a set of demands
for graph H. We now focus on finding a solution to the ICF problem instance in graph H, and later
transform it into a solution in the original graph G. We use the following theorem, due to Rao and
Zhou [RZ10].

Theorem 15 ([RZ10]) Let G′ be any n-vertex graph, and let M′ = {(s1, t1), . . . , (sk, tk)} be any set
of source-sink pairs in G′. Assume further that the value of the global minimum cut in graph G′ is
at least LRZ = Ω(log5 n), and there is a fractional multi-commodity flow, where for each 1 ≤ i ≤ k,
source si sends fi ≤ 1 flow units to sink ti,

∑k
i=1 fi = F , and the flow causes no congestion in G′.

Then there is an efficient randomized algorithm that w.h.p. finds a collection M∗ ⊆ M′ of at least
F/αRZ demand pairs, and for each pair (s, t) ∈ M∗, a path P (s, t) connecting s to t in G′, such that
the paths in the set P∗ = {P (s, t) | (s, t) ∈M∗} are edge-disjoint, and αRZ = O(log10 n).

Let x = 8αRZ · log n = O(log11 n). We set L = 2α∗ · x · LRZ = O(log20 n poly log log n).
We split graph H into x graphs H1, . . . ,Hx, as follows. For each 1 ≤ i ≤ x, we set V (Hi) = V (H).

In order to define the edge sets of graphs Hi, each edge e ∈ E, chooses an index 1 ≤ i ≤ x independently
uniformly at random, and is then added to E(Hi). This completes the definition of the graphs Hi.
Given any partition (A,B) of the vertices of V (H), let cutG(A,B) denote the value of the minimum
cut |EG(A′, B′)| in graph G, such that for each vQ ∈ A, Q ⊆ A′, and for each vQ ∈ B, Q ⊆ B′. Recall
that Theorem 11 guarantees that the size of the minimum cut in H is at least L/α∗, and for each
partition (A,B) of V (H), cutG(A,B) ≤ α∗ · |EH(A,B)|. From Theorem 12, w.h.p., for each 1 ≤ i ≤ x,
we have that:

• The value of the minimum cut in Hi is at least L
2α∗x = LRZ.

• For any cut (A,B) of V (Hi), |EHi(A,B)| ≥ cutG(A,B)
2xα∗ .

From now on we assume that both properties hold for each graph Hi. We then obtain the following
observation.

Observation 2 For each 1 ≤ i ≤ x, there is a fractional solution to the instance (Hi,D) of basic-ICF
of value λOPT

2xα∗βFCG
and no congestion.

Proof: Assume otherwise. Then the value of the maximum concurrent flow in graph Hi for the set
D of demands is less than λOPT

2xα∗βFCG
.

Recall that in the non-uniform sparsest cut problem, we are given a graph G and a set D of
demands. The goal is to find a cut (A,B) in G of minimum sparsity, where the sparsity of the cut

(A,B) is |E(A,B)|
DG(A,B) . Here, DG(A,B) is the sum of demands D(s, t) for all pairs (s, t) with s ∈ A, t ∈ B.

This problem is the dual of the maximum concurrent flow problem in graph G with the set D of
demands. In particular, if the value of the maximum concurrent flow is at most λ, then the value of
the minimum sparsest cut is at most λ · βFCG.

We set up an instance of the non-uniform sparsest cut problem on graph Hi with the set D of

demands. Then there is a cut (A,B) in graph Hi, with
|EHi (A,B)|
DHi (A,B) < λOPT

2xα∗ . Let (A′, B′) be the

minimum cut in graph G, where for each vQ ∈ A, Q ⊆ A′, and for each vQ ∈ B, Q ⊆ B′. Then
|EG(A′, B′)| = cutG(A,B) ≤ 2xα∗|EHi(A,B)|, while DG(A′, B′) = DHi(A,B). Therefore,

|EG(A′, B′)|
DG(A′, B′)

≤ 2xα∗
|EHi(A,B)|
DHi(A,B)

< λOPT.
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This is impossible, since we have assumed that the value of the optimal fractional solution to the
ICF instance (G,D) is λOPT.

In the rest of the algorithm, we apply the algorithm of Rao-Zhou to each of the graphs H1, . . . ,Hx

in turn. For each 1 ≤ i ≤ x, in the ith iteration we define a subset Mi ⊆ M of pairs of terminals
(that are not satisfied yet), and we define the set Di of demands to be Di(t, t

′) = D if (t, t′) ∈Mi, and
Di(t, t

′) = 0 otherewise. For the first iteration, M1 =M. We now describe an execution of iteration
i ≥ 1.

Suppose we are given a set Mi of terminal pairs and a corresponding set Di of demands. We
construct a new collection M′i of source-sink pairs, where the demand for each pair is 1, as follows.
For each pair (t, t′) ∈Mi, we add N = b λOPT

2xα∗βFCG
·Dc copies of the pair (t, t′) to M′i. We then apply

Theorem 15 to the resulting graph and the set M′i of demand pairs. From Observation 2, there is
a flow of value at least Fi = N · |Mi| = |M′i| in the resulting graph. Therefore, from Theorem 15,
w.h.p. we obtain a collection Pi of paths connecting the demand pairs inMi with no congestion, and
|Pi| ≥ Fi

αRZ
≥ N ·|Mi|

αRZ
. We say that a pair (t, t′) ∈ Mi of terminals is satisfied in iteration i, iff the

number of paths in Pi connecting t to t′ is at least N
2αRZ

. We then let Mi+1 ⊆ Mi be the subset of
terminal pairs that are not satisfied in iteration i. This concludes the description of our algorithm for
routing on graph H. The key in its analysis is the following simple claim.

Claim 1 For each 1 ≤ i ≤ x, |Mi+1| ≤
(

1− 1
2αRZ

)
|Mi|.

Proof: Let M∗i ⊆Mi be the subset of demand pairs that are satisfied in iteration i. It is enough to
prove that |M∗i | ≥ 1

2αRZ
|Mi|. Assume otherwise. A pair (t, t′) ∈ M∗i contributes at most N paths to

Pi, while a pair (t, t′) ∈ Mi \M∗i contributes less than N
2αRZ

paths. Therefore, if |M∗i | < 1
2αRZ
|Mi|,

then:

|Pi| < |M∗i | ·N + |Mi \M∗i | ·
N

2αRZ

<
N

αRZ

|Mi|,

a contradiction.
Therefore, after x = 8αRZ · log n iterations, we will obtain Mx+1 = ∅, and all demand pairs are

satisfied. Recall that a demand pair is satisfied iff there are at least N
2αRZ

= Ω
(

λOPT
αRZxα∗βFCG

·D
)

=

Ω
(

λOPT

log26 n poly log logn
D
)

paths connecting them. Therefore, we have shown an integral solution to the

ICF instance (H,D) of value Ω
(

λOPT

log26 n poly log logn

)
and no congestion.

We now show how to obtain an integral solution to the ICF instance (G,D), of the same value and
constant congestion. Let P∗ be the set of paths in graph H that we have obtained. We transform
each path P ∈ P∗ into a path P ′ connecting the same pair of terminals in graph G. Recall that all
terminals in T are vertices in both G and H. For each edge e = (vQ, vQ′) on path P , we replace e with
the path Pe, connecting some vertex u ∈ Q to some vertex u′ ∈ Q′, guaranteed by Property (C3) of
graph H. Once we process all edges on all paths P ∈ P∗, we obtain, for each cluster Q ∈ Q, a set DQ
of demands on the edges of out(Q), that need to be routed inside the cluster Q. From Property (C4),
this set of demands must be (2,GQ)-restricted. Combining Observation 1 with Theorem 9, we obtain
an efficient randomized algorithm that w.h.p. routes the set DQ of demands integrally inside Q with
constant congestion. For each path P ∈ P∗, we can now combine the paths Pe for e ∈ P with the
resulting routing inside the clusters Q for each vQ ∈ P to obtain a path P ′ in graph G connecting the
same pair of terminals as P . Since the set {Pe | e ∈ E(H)} of paths causes a constant congestion in
graph G from Property (C3), the resulting set of paths causes a constant congestion in G.
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4.3 Proof of Theorem 14

We use the following lemma as a subroutine.

Lemma 5 Let G′ be any graph, and let S1,S2 be two sets of paths in G′, where the paths in each
set are edge-disjoint (but the paths in S1 ∪ S2 may share edges). Assume further that all paths in S1

originate at the same vertex s. Then we can efficiently find a subset S ′1 ⊆ S1 of at least |S1| − 2|S2|
paths, and for each path P ∈ S2, another path P̃ connecting the same pair of vertices as P , such that,

if we denote S ′2 =
{
P̃ | P ∈ S2

}
, then:

1. All paths in S ′1 ∪ S ′2 are edge-disjoint.

2. Let E′ and Ẽ be the sets of edges used by at least one path in S1 ∪ S2 and S ′1 ∪ S ′2 respectively.
Then Ẽ ⊆ E′.

In other words, the lemma re-routes the paths in S2, using the paths in S1, and then chooses S ′1 to
be the subset of paths in S1 that do not share edges with the new re-routed paths in S ′2. The rerouting
guarantees that re-routed paths only overlap with at most 2|S2| paths in S1.

Proof: [Of Lemma 5]
The proof is very similar to arguments used by Conforti et al. [CHR03]. Given any pair (P, P ′) of

paths, we say that paths P and P ′ intersect at edge e, if both paths contain edge e, and we say that
P and P ′ intersect iff they share any edge.

We set up an instance of the stable matching problem in a multi-graph. In this problem, we are
given a complete bipartite multigraph G = (A,B,E), where |A| = |B|. Each vertex v ∈ A∪B specifies
an ordering Rv of the edges adjacent to v in G. A complete matching M between the vertices of A
and B is called stable iff, for every edge e = (a, b) ∈ E \M , the following holds. Let ea, eb be the
edges adjacent to a and b respectively in M . Then either a prefers ea over e, or b prefers eb over
e. Conforti et al. [CHR03], generalizing the famous theorem of Gale and Shapley [GS62], show an
efficient algorithm to find a perfect stable matching M in any such multigraph.

Given the sets S1,S2 of paths, we set up an instance of the stable matching problem as follows. Set
A contains a vertex a(P ) for each path P ∈ S1. For each path P ∈ S2, if x, y are the two endpoints
of P , then we add two vertices b(P, x) and b(P, y) to B. In order to ensure that |A| = |B|, we add
dummy vertices to B as needed.

For each pair P ∈ S1, P ′ ∈ S2 of paths, for each edge e that these paths share, we add two edges
(a(P ), b(P ′, x)) and (a(P ), b(P ′, y)), where x and y are the endpoints of P ′, and we think of these new
edges as representing the edge e. We add additional dummy edges as needed to turn the graph into a
complete bipartite graph.

Finally, we define preference lists for vertices in A and B. For each vertex a(P ) ∈ A, the edges
incident to a(P ) are ordered according to the order in which they appear on path P , starting from s.
The dummy edges incident to a(P ) are ordered arbitrarily at the end of the list.

Consider now some vertex b(P, x) ∈ B. We again order the edges incident to b(P, x) according to
the order in which their corresponding edges appear on the path P , when we traverse P starting from
x. The dummy edges incident on b(P, x) are added at the end of the list in an arbitrary order. The
preference list of the vertex b(P, y) is defined similarly, except that now we traverse P starting from
y. Finally, the preference lists of the dummy vertices are arbitrary.

Let M be any perfect stable matching in the resulting graph. We let S ′1 ⊆ S1 be the subset of
paths that are matched to the dummy vertices. Clearly, |S ′1| ≥ |S1| − 2|S2|. For each path P ∈ S2,
we now define a path P̃ , as follows. Let x, y be the two endpoints of P . If at least one of the vertices
b(P, x), b(P, y) participates in M via a dummy edge, then we let P̃ = P , and we say that P is of type 1.
Otherwise, let e, e′ be the edges of M incident on b(P, x) and b(P, y), respectively, and let P1, P2 ∈ S1
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be two paths such that a(P1) is the other endpoint of e and a(P2) is the other endpoint of e′. Let
e1, e2 be the edges of the original graph that the edges e, e′ represent. Let σ1(P ) be the segment of P
from x to e; σ2(P ) the segment of P1 from e to s; σ3(P ) the segment of P2 from s to e′; and σ4(P ) the
segment of P from e′ to y. We set P̃ be the concatenation of σ1(P ), σ2(P ), σ3(P ), σ4(P ), and we say

that P is of type 2. Let S ′2 =
{
P̃ | P ∈ S2

}
. It now only remains to show that all paths in S ′1 ∪ S ′2

are edge-disjoint. It is immediate that the paths in S ′1 are edge-disjoint, since the paths in S1 were
edge-disjoint. We complete the proof in the following two claims.

Claim 2 All paths in S ′2 are edge-disjoint.

Proof: Assume otherwise, and let P̃ , P̃ ′ ∈ S ′2 be any pair of paths that share an edge, say e. First, it is
impossible that both P and P ′ are of type 1, since then P, P ′ ∈ S2, and so they must be edge-disjoint.
So at least one of the two paths must be of type 2. Assume w.l.o.g. that it is P , and consider the four
segments σ1(P ), σ2(P ), σ3(P ), σ4(P ) of P̃ , and the two edges e1, e2 that we have defined above. Let
P1 and P2 be the paths in S1 on which the segments σ2(P ), σ3(P ) lie.

If P ′ is of type 1, then it can only intersect σ2(P ) or σ3(P ), as the paths P and P ′ are edge-disjoint.
Assume w.l.o.g. that P ′ intersects σ2(P ), and let e′ be any edge that they share. Let x′ be the endpoint
of P ′ such that the edge incident to b(P ′, x′) in M is a dummy edge. Then b(P ′, x′) prefers e′ to its
current matching, and a(P1) prefers e′ to its current matching as well, as e′ lies before e1 on path P ′,
a contradiction.

Assume now that P ′ is of type 2, and consider the segments σ1(P ′), σ2(P ′), σ3(P ′), σ4(P ′) of P̃ ′.
Since the sets S1,S2 of paths are edge-disjoint, the only possibilities are that either one of the segments
σ1(P ), σ4(P ) intersects one of the segments σ2(P ′), σ3(P ′), or one of the segments σ1(P ′), σ4(P ′)
intersects one of the segments σ2(P ), σ3(P ). Assume w.l.o.g. that σ1(P ) shares an edge e with
σ2(P ′). Let x be the endpoint of P to which σ1(P ) is adjacent, and let e1 be the last edge on σ1(P ),
and let P1 ∈ S1 be the path that shares e1 with P . Then vertex b(P, x) prefers the edge e to its
current matching, as it appears before e1 on P , starting from x. Similarly, a(P1) prefers e to its
current matching, a contradiction.

Claim 3 Paths in S ′1 and S ′2 are edge-disjoint from each other.

Proof: Assume otherwise, and let P ∈ S ′1, P ′ ∈ S ′2 be two paths that share an edge e. It is impossible
that P ′ is of type 1: otherwise, for some endpoint x of P ′, b(P ′, x) is adjacent to a dummy edge in
M , and a(P ) is also adjacent to a dummy edge in M , while both of them prefer e, a contradiction.
Therefore, P ′ is of type 2. Consider the four segments σ1(P ′), σ2(P ′), σ3(P ′), σ4(P ′). Since the paths
in each set S1 and S2 are edge-disjoint, the only possibility is that e belongs to either σ1(P ′), or to
σ4(P ′). Assume w.l.o.g. that e ∈ σ1(P ′). Let x be the endpoint of P ′ to which σ1(P ′) is adjacent.
Then b(P ′, x) prefers e to its current matching, and similarly a(P ) prefers e to its current matching,
a contradiction.

We are now ready to complete the proof of Theorem 14. We build a graph G′ from graph G, by
replacing each edge of G with γ parallel edges. It is enough to define the subsets P∗i ⊆ Pi, and the
paths P̃ for P ∈ P ′′ in graph G′, such that, in the resulting set P̃ ′ ∪ P̃ ′′, all paths are edge-disjoint.
From now on we focus on finding these path sets in graph G′.

We perform k′ iterations, where in iteration i we process the paths in set Pi, and define a subset
P∗i ⊆ Pi. In each iteration, we may also change the paths in P ′′, by replacing some of these paths with
paths that have the same endpoints as the original paths (we call this process re-routing). We maintain

the invariant that at the beginning of iteration i, the paths in set P ′′ ∪
(⋃i−1

i′=1 P∗i′
)

are edge-disjoint

in G′. We now describe the ith iteration, for 1 ≤ i ≤ k′.
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Let S1 = Pi, and let S2 be the collection of consecutive segments of paths in P ′′ that are contained
in S. The sets S1 and S2 of paths are both edge-disjoint in graph G′, and so we can apply Lemma 5 to
them, obtaining the sets S ′1 and S ′2 of paths. We then set P∗i = S ′1, and modify every path P ′′ ∈ P ′′ by
removing the segments of S2 from it, and adding the corresponding segments of S ′2 instead. Let P ′′ be
the collection of the resulting paths. Clearly, the paths in P ′′ connect the same pairs of terminals as
the original paths, and they continue to be edge-disjoint in G′ (since the re-routing was only performed
inside the graph G′[S]). Moreover, since the paths in all sets P1, . . . ,Pi are edge-disjoint, and we have

only used the edges of the paths in Pi to re-route the paths in P ′′, the paths in set P ′′ ∪
(⋃i

i′=1 P∗i′
)

are edge-disjoint in G′. Finally, observe that |S2| ≤ γL log n, since | outG(S)| ≤ L log n, and every
path in S2 contains at least one edge of outG′(S). Therefore, |P∗i | ≥ |Pi| − 2Lγ log n. Once we process

all sets P1, . . .Pk′ , our output is {P∗i }
k′

i=1, and we output the final set P ′′ that contains a re-routed

path P̃ for each path P in the original set.

5 Hardness of basic-ICF

In this section we prove Theorem 2, by performing a simple reduction from the Congestion Minimiza-
tion problem. We use the following theorem, due to Andrews and Zhang [AZ07].

Theorem 16 Let G be any n-vertex graph with unit edge capacities, and letM = {(s1, t1), . . . , (sk, tk)}
be a collection of source-sink pairs. Then, unless NP ⊆ ZPTIME(npoly logn), no efficient algorithm can
distinguish between the following two cases:

• (Yes-Instance): There is a collection P of paths that causes congestion 1, and for each 1 ≤
i ≤ k, there is a path connecting si to ti in P.

• (No-Instance): For any collection P of paths that contains, for each 1 ≤ i ≤ k, a path
connecting si to ti, the congestion due to P is at least Ω(log log n/ log log log n).

Let G be any n-vertex graph with unit edge capacities and a set M = {(s1, t1), . . . , (sk, tk)} of
source-sink pairs. We build a new graph G′, where we replace every edge in G by D parallel edges.
Observe that if G is a Yes-Instance, then there is a collection P of paths that causes congestion 1
in G, and every demand pair (si, ti) ∈M is connected by a path in P. We then immediately obtain a
collection P ′ of paths in graph G′ that causes congestion 1, and every demand pair (si, ti) is connected
by D paths, by simply taking D copies of each path in P. Assume now that G is a No-Instance,
and assume for contradiction that there is a collection P ′ of paths in graph G′ that causes congestion
at most c, and every demand pair (si, ti) is connected by at least one path in P ′. Then set P ′ of paths
defines a collection P of paths in graph G, that causes congestion at most Dc, and every demand pair
(si, ti) is connected by at least one path in P.

From Theorem 16, no efficient algorithm can distinguish between the case where there is a collection
P ′ of edge-disjoint paths in G′, where every demand pair is connected by D paths, and the case where
any collection P ′ of paths, containing at least one path connecting every demand pair causes congestion
c, for any values D and c with Dc = O(log log n/ log log log n), unless NP ⊆ ZPTIME(npoly logn).

6 Hardness of group-ICF

The goal of this section is to prove Theorem 3. We start by introducing a new scheduling problem,
called Max-Min Interval Scheduling (MMIS), and show that it can be cast as a special case of group-ICF.
We show later that MMIS is hard to approximate.
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6.1 Max-Min Interval Scheduling

In the MMIS problem, we are given a collection J = {1, . . . , n} of n jobs, and for each job j, we are
given a set Ij of disjoint closed intervals on the time line. Given any set I of time intervals, the
congestion of I is the maximum, over all time points t, of the number of intervals in I containing t.
Speaking in terms of scheduling, this is the number of machines needed to execute the jobs during the
time intervals in I. The goal of MMIS is to find, for each job j, a subset I∗j ⊆ Ij of intervals such
that, if we denote I∗ =

⋃n
j=1 I∗j , then the intervals in I∗ are disjoint (or equivalently cause congestion

1). The value of the solution is the minimum, over all jobs j ∈ J , of |I∗j |. Given an instance J of
MMIS, we denote by N(J ) the total number of intervals in

⋃
j∈J Ij . In the following theorem, we

relate MMIS to group-ICF.

Theorem 17 Given any instance J of MMIS, we can efficiently construct an instance (G,D) of
group-ICF on a line graph, such that |V (G)| ≤ 2N(J ) and the following holds:

• If OPT is the value of the optimal solution to J with congestion 1, then there is a collection P∗
of edge-disjoint paths in G, where each pair (Si, Ti) is connected by OPT paths in P∗, and

• Given any set P∗ of paths in G, where every pair (Si, Ti) is connected by at least D′ paths, and
the total congestion cased by P∗ is bounded by c, we can efficiently find a solution I∗ to instance
J of value D′ and congestion c.

Proof: Given an instance of the MMIS problem, we construct an instance of group-ICF on a line graph
as follows. Let J = {1, . . . , n} be the input set of jobs, and let I =

⋃n
j=1 Ij . Let S be the set of

endpoints of all intervals in I. We create a line graph G = (V,E), whose vertex set is S, and the
vertices are connected in the order in which they appear on the time line. Clearly, |V (G)| ≤ 2N(J ).
For each job j, we create a demand pair (Sj , Tj), as follows. Assume w.l.o.g. that Ij = {I1, I2, . . . , Ir},
where the intervals are ordered left-to-right (since all intervals in Ij are disjoint, this order is well-
defined). For each 1 ≤ x ≤ r, if x is odd, then we add the left endpoint of Ix to Sj and its right
endpoint to Tj ; otherwise, we add the right endpoint to Sj and the left endpoint to Tj . Notice that
|Sj | = |Tj | = |Ij |. This concludes the definition of the group-ICF instance. Let OPT be the value of
the optimal solution to the MMIS instance (with no congestion), and let I∗ =

⋃
j∈J I∗j be the optimal

solution to the MMIS problem instance. Notice that for each job j ∈ J , for each interval I ∈ I∗j , one
of its endpoints is in Sj and the other is in Tj . For each interval I ∈ I∗, we add the path connecting
the endpoints of I to our solution. It is immediate to see that each group (Si, Ti) is connected by OPT
paths, and since intervals in I∗ are disjoint, the congestion is bounded by 1.

Assume now that we are given a solution P∗ =
⋃n
j=1 P∗j to the group-ICF instance, where P∗j is the

set of paths connecting Sj to Tj , such that |P∗j | ≥ D′, and the paths in P∗ cause congestion at most
c. We now transform P∗ into a solution of value D′ and congestion c for the original MMIS instance,
as follows.

Consider any path P , whose endpoints are x, y, where one of these two vertices belongs to Sj and
the other to Tj . We say that P is canonical iff x, y are endpoints of some interval I ∈ Ij . If some path
P ∈ P∗j is not canonical, we can transform it into a canonical path, without increasing the overall
congestion, as follows. We claim that path P must contain some interval I ∈ Ij . Indeed, otherwise,
let Sj be the set of endpoints of the intervals in Ij . Then x and y are two consecutive vertices in
Sj , they are not endpoints of the same interval in Ij , and yet one of them belongs to Sj and the
other to Tj . But the sets Sj and Tj were defined in a way that makes this impossible. Therefore, P
contains some interval I ∈ Ij . We truncate path P so that it starts at the left endpoint of I and ends
at the right endpoint of I. Once we process all paths in P∗, we obtain a solution to the group-ICF
problem instance, where all paths are canonical and the congestion is still bounded by c. This solution
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immediately gives us a solution of value D′ and congestion at most c to the MMIS problem instance.

We note that a scheduling problem closely related to MMIS is Machine Minimization Job Scheduling,
where the goal is to select one time interval for every job, so as to minimize the total congestion. This
problem admits an O(log n/ log log n)-approximation via the Randomized LP-Rounding technique of
Raghavan and Thompson [RT87]. Chuzhoy and Naor [CN06] have shown that it is Ω(log log n)-hard
to approximate.

6.2 Hardness of MMIS

In the following theorem, we prove hardness of the MMIS problem, which, combined with Theorem 17,
immediately implies Theorem 3. Its proof very closely follows the hardness of approximation proof
of [CN06] for Machine Minimization Job Scheduling.

Theorem 18 Suppose we are given an instance J of MMIS, and let N = N(J ). Let c be any integer,

0 < c ≤ O(log logN) and let D = O
(
N1/(22c+3)

)
. Then no efficient algorithm can distinguish between

the following two cases:

• (Yes-Instance): the value of the optimal solution with congestion 1 is at least D, and

• (No-Instance): any solution I∗, where for all j ∈ J , |I∗j | ≥ 1, causes congestion at least c.

unless NP ⊆ DTIME(nO(log logn)).

Combining Theorems 18 and 17 immediately gives the proof of Theorem 3. The proof of Theo-
rem 18 is almost identical to the hardness of approximation proof for Machine Minimization Job Scheduling
of [CN06]. The only difference is that we create more intervals for each job, to ensure that the value
of the optimal solution in the Yes-Instance is D.

For completeness, we provide a proof here. Our starting point is exactly the same as in [CN06]: it
is the standard 2-prover verifier for the 3SAT(5) problem, whose properties are summarized below.

The 2-prover Protocol for 3SAT(5)

We perform a reduction from the 3SAT(5) problem, in which we are given a 3SAT formula ϕ with 5n/3
clauses, where each clause contains exactly three distinct literals, and each literal appears in exactly
five different clauses. The following statement is equivalent to the PCP theorem [AS98, ALM+98].

Theorem 19 There is a constant δ > 0 such that it is NP-hard to distinguish between the formula ϕ
that is satisfiable and the one for which any assignment satisfies at most (1−δ) fraction of the clauses.

We say that ϕ is a Yes-Instance if it is satisfiable, and we say that it is a No-Instance if no
assignment satisfies more than a (1− δ)-fraction of the clauses. We use a standard 2-prover protocol
for 3SAT(5), with ` parallel repetitions. In this protocol, there is a verifier and two provers. Given the
input 3SAT(5) formula ϕ, the verifier chooses ` clauses C1, . . . , C` of ϕ independently at random, and
for each i : 1 ≤ i ≤ `, a random variable xi in clause Ci is chosen. The verifier then sends one query to
each one of the two provers. The query to the first prover consists of the indices of clauses C1, . . . , C`,
while the query to the second prover contains the indices of variables x1, . . . , x`. The first prover is
expected to return an assignment to all variables in the clauses C1, . . . , C`, which must satisfy the
clauses, and the second prover is expected to return an assignment to variables x1, . . . , x`. Finally, the
verifier accepts if and only if the answers from the two provers are consistent. Combining Theorem 19
with the parallel repetition theorem [Raz98], we obtain the following theorem:
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Theorem 20 There is a constant γ > 0 such that:

• If ϕ is a Yes-Instance, then there is a strategy of the two provers such that the acceptance
probability of the verifier is 1.

• If ϕ is a No-Instance, then for any strategy of the provers, the acceptance probability of the
verifier is at most 2−γ`.

Let R be the set of all random strings of the verifier, |R| = (5n)`. Denote the set of all possible
queries to the first and second provers by Q1 and Q2 respectively, so |Q1| = (5n/3)` and |Q2| = n`.
For each query q ∈ Q1 ∪ Q2, we denote by A(q), the collection of all possible answers to q (if q ∈ Q1,
then we only include answers that satisfy all clauses in q). Notice that for each q ∈ Q1, |A(q)| = 7`

and for each q ∈ Q2, |A(q)| = 2`. Given a random string r ∈ R chosen by the verifier, we let q1(r) and
q2(r) denote the queries sent to the first and second provers respectively given r.

This protocol defines a set Φ ⊆ Q1 × Q2 of constraints, where (q1, q2) ∈ Φ if and only if for
some random string r ∈ R, q1 = q1(r) and q2 = q2(r). For each constraint (q1, q2) ∈ Φ, we have a
corresponding projection πq1,q2 : A(q1) → A(q2), which specifies the pairs of consistent answers for
constraint (q1, q2).

We define another set Ψ ⊆ Q1 × Q1 of constraints as follows: (q1, q
′
1) ∈ Ψ if and only if there is

a query q2 ∈ Q2 such that (q1, q2) ∈ Φ and (q′1, q2) ∈ Φ. Given a constraint (q1, q
′
1) ∈ Ψ, a pair of

answers a ∈ A(q1), a′ ∈ A(q′1) is a satisfying assignment to this constraint iff πq1,q2(a) = πq′1,q2(a′).
The rest of the reduction consists of two steps. First, we define a basic instance of MMIS. We then

define our final construction, by combining a number of such basic instances together.

The Basic Instance

In this section, we construct instances of MMIS that are called basic instances, and analyze their
properties. A basic instance is determined by several parameters, and the final construction combines
a number of basic instances with different parameters.

Let c and D be parameters that we set later. We set the parameter ` of the Raz verifier to be
` = 3c/γ, where γ is the constant from Theorem 20. A basic instance is determined by the 3SAT(5)
formula ϕ that we reduce from, and the following parameters:

• An integer k;

• For each q ∈ Q1, a collection of k(q) ≤ k subsets of assignments Aq1, . . . ,A
q
k(q) ⊆ A(q), where for

each 1 ≤ i ≤ k(q), |Aqi | ≥ |A(q)| − c.

In order to define the job intervals, we will first define special intervals that we call virtual intervals.
Unlike job intervals, virtual intervals are not part of the problem input, but they will be useful in
defining the actual job intervals. There are three types of virtual intervals.

1. For each query q ∈ Q1, we have a virtual interval representing q and denoted by I(q). This
interval is called a query interval. All query intervals are equal-sized and non-overlapping.

2. Each query interval I(q) is subdivided into k(q) equal-sized non-overlapping virtual intervals
representing the subsets Aqi for 1 ≤ i ≤ k(q). An interval corresponding to set Aqi is denoted by
I(Aqi ).

3. Finally, each interval I(Aqi ) is subdivided into |Aqi | non-overlapping virtual intervals, where each
such interval represents a distinct assignment a ∈ Aqi . We denote this interval by Iqi (a), and
we call such intervals assignment intervals. Observe that the same assignment a may appear in
several subsets Aqi , and will be represented by a distinct interval for each such subset.
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The set J of jobs for the basic instance is defined as follows. For each constraint (q, q′) ∈ Ψ,

for each pair i : 1 ≤ i ≤ k(q), i′ : 1 ≤ i′ ≤ k(q′) of indices, there is a job j(Aqi ,A
q′

i′ ) in J if and

only if there is no pair a, a′ of assignments such that a ∈ A(q) \ Aqi , a′ ∈ A(q′) \ Aq
′

i′ , and (a, a′) is

a satisfying assignment for the constraint (q, q′). If the job j = j(Aqi ,A
q′

i′ ) exists, we define a set Ij
of D(|Aqi | + |A

q′

i′ |) intervals for j, as follows. For each assignment a ∈ Aqi , we construct D intervals,

which are completely contained in Iqi (a), and add them to Ij . Similarly, for each assignment a′ ∈ Aq
′

i′ ,

we construct D intervals that are completely contained in Iq
′

i′ (a
′), and add them to Ij .

Consider some query q ∈ Q1, index 1 ≤ i ≤ k(q), and assignment a ∈ Aqi . Let I ′ be the set of
indices of all job intervals that need to be contained in Iqi (a). We then create |I ′| equal-sized non-
overlapping sub-intervals of Iqi (a), and they serve as the intervals corresponding to the indices in I ′.
This finishes the definition of the basic instance. Notice that all intervals in set

⋃
j∈J Ij are mutually

disjoint. We note that the basic instance is defined exactly like in [CN06], except that we create D
intervals for each job j inside each relevant assignment interval Iqi (a), while in [CN06] only one such
interval is created. In other words, the construction in [CN06] is identical to our construction with
D = 1.

In the next two lemmas, we summarize the properties of the basic instance. The lemmas and their
proofs are mostly identical to [CN06].

Lemma 6 Assume that ϕ is a Yes-Instance. For each q ∈ Q1, let f(q) denote the assignment to
q obtained from the strategy of the provers, for which the acceptance probability of the verifier is 1.
Then we can select, for each job j ∈ J , a subset I∗j ⊆ Ij of D intervals, such that only intervals of
the form Iqi (a) for a = f(q) are used in the resulting solution

⋃
j∈J I∗j .

Proof: Consider some job j = j(Aqi ,A
q′

i′ ). Let a = f(q) and a′ = f(q′), so a and a′ are consistent.

Due to the way we define the jobs, either a ∈ Aqi or a′ ∈ Aq
′

i′ . Assume w.l.o.g. that it is the former
case. Then we let I∗j be the set of D intervals of job j that are contained in Iqi (a).

Let I∗ be any solution to the basic instance. We say that the interval I(Aqi ) is used by I∗, iff
there is some job interval I ∈ I∗, such that I ⊆ I(Aqi ). We say that a query q ∈ Q1 is good iff for all
i : 1 ≤ i ≤ k(q), interval I(Aqi ) is used by the solution. The following lemma is identical to Claim 4.6
in [CN06], and its proof follows from [CN06].

Lemma 7 Assume that ϕ is a No-Instance. Then for any solution I∗ that contains at least one
interval for each job, at least half of the queries are good.

Construction size: Recall that |Q1| = (5n/3)`, and each query q ∈ Q1 has at most k subsets Aqi
of assignments. For each such query q, there are 15` possible queries q′ ∈ Q1 such that (q, q′) ∈ Ψ.
Therefore, there are at most (5n/3)` ·k2 ·15` jobs in the basic instance. For each job j, |Ij | ≤ 2 ·7` ·D,
and so the total number of intervals in the basic instance is bounded by 2 · (5n/3)` · k2 · 15` · 7` ·D =
n` · 2O(`) · k2 ·D.

Notice that each query interval I(q) contains at most k2 · 15` · 7` ·D = k2 · 105` ·D job intervals.

The Final Construction

We combine c copies of the basic instance together to obtain the final construction. For 1 ≤ h ≤ c, we
will refer to the jobs and the job intervals from the hth instance as layer-h jobs or intervals. We will
use different sets of parameters for different copies of the basic instance, and we denote the parameter
k for the hth instance by kh.
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We start by defining, for each query q ∈ Q1, a virtual interval I(q) on the real line. All intervals
I(q) are disjoint and equal-sized. For each query q ∈ Q1, interval I(q) is used as the virtual interval
representing q in all c basic instances that we construct.

Our final instance consists of c layers, where each layer is just a basic instance with carefully selected
parameters. We maintain the following invariant: let Iqi (a) be any assignment interval, representing
some assignments a to query q, at layer h. Then for each layer h′ < h, there is precisely one virtual
interval Ĩqi′(a

′) that contains Iqi (a), and Iqi (a) is disjoint from all other assignment intervals at level h′.
Moreover, a 6= a′ must hold.

Layer 1 is a basic instance with the parameters k1 = 1 and Aq1 = A(q) for all q ∈ Q1.
Assume now that we have defined layers 1, . . . , h − 1, and we now define layer h. In order to do

so, we specify, for each query q ∈ Q1, a collection Aq1, . . . ,A
q
k(q) of subsets of assignments to q, and for

each such subset Aqi , we define the corresponding virtual interval I(Aqi ). We then plug in the basic
instance with these new parameters, and the pre-specified virtual intervals I(Aqi ), that becomes the
level-h instance.

Specifically, for each query q ∈ Q1, for each job interval I ′ ⊆ I(q) that belongs to layer h − 1,
we define a new set A(I ′) ⊆ A(q) of assignments. The virtual interval corresponding to A(I ′) is
I ′ itself. The subset A(I ′) is defined as follows. Recall that for each layer h′ < h, interval I ′ is
completely contained in some assignment interval Iqi (a) of level h′. Let a1, . . . , ah−1 ∈ A(q) be the
assignments corresponding to these assignment intervals, where ah′ is the assignment at level h′. We
define A(I ′) = A(q) \ {a1, . . . , ah−1}.

We have therefore defined, for each query q ∈ Q1, a collection Aq1, . . . ,A
q
k(q) of subsets of assign-

ments to q, and for each such subset Aqi , we have defined a corresponding virtual interval I(Aqi ). We
now complete the construction of layer h by building a basic instance with the above parameters,
using the virtual intervals I(Aqi ). This completes the description of layer h. Notice that for each query
q ∈ Q1, for each 1 ≤ i ≤ k(q), we have |Aqi | ≥ |A(q)| − c as required.

Let kh be the maximum, over all queries q ∈ Q1 of k(q). Notice that kh is precisely the maximum
number of job intervals contained in any query interval I(q) at level h− 1 (since for each such interval
we define a subset Aqi ). The number of such job intervals is bounded by k2

h−1 · 105` · D, and so

kh ≤
(
D · 105`

)2h+1

for all h. In particular, kc ≤ D2c+1 · 2O(`·2c) = D2c+1 · 2O(2c) by the choice of
` = 3c/γ. The final number of job intervals is therefore bounded by

N ≤ n` · 2O(`) · k2
c ·D ≤ nO(c) · 2O(2c) ·D2c+2

.

We denote by J the set of jobs in the final instance. Assume first that the parameter c is fixed.
We then choose D to be large enough to ensure that D2c+2 ≥ nO(c) · 2O(2c). It is easy to see that

D = Ω
(
N1/2c+3

)
.

We can fix c to be any integer between 1 and O(log log n). This will ensure that N = nO(log logn).
Finally, notice that log logN = O(c + log log n), so c takes values between 1 and O(log logN), as
required.

We conclude our analysis with the following two lemmas, that are identical to the analysis in [CN06].

Lemma 8 If ϕ is a Yes-Instance, then for each job j ∈ J , there is a subset I∗j ⊆ Ij of D, such
that I∗ =

⋃
j I∗j causes congestion 1.

Proof: We apply Lemma 6 to each layer of the construction. For each job j ∈ J , let I∗j be the subset
of D intervals of j returned by Lemma 6, and let I∗ =

⋃
j I∗j . We claim that all intervals in I∗ are

mutually disjoint. Indeed, assume for contradiction that some pair I, I ′ ∈ I∗ of intervals overlap. By
construction, I, I ′ ⊆ I(q) for some query q ∈ Q1, and they belong to different layers. Assume w.l.o.g.
that I belongs to layer h, and let Iqi (a) be the assignment interval for layer h in which it is contained,
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and I ′ belongs to layer h′ < h, and let Iqi′(a
′) be the assignment interval for layer h′ in which I ′ is

contained. Then by our construction a 6= a′ must hold. This contradicts Lemma 6, which ensures that
f(q) = a = a′.

Lemma 9 If ϕ is a No-Instance, then any collection I∗ of job intervals, that contains at least one
interval for each job, causes congestion at least c/2.

Proof: Let I∗ be any collection of job intervals as above, and for each 1 ≤ h ≤ c, let I∗h ⊆ I∗ be the
subset of intervals that lie in layer h. Recall that if ϕ is a No-Instance, then for each layer h, at least
half of the queries are good for I∗h. Therefore, at least one query must be good for at least c/2 layers.
Denote such query by q. We let h1, . . . , hc/2 be indices of c/2 layers for which q is good. For each
x = 1, . . . , c/2, we select a job interval Ix at layer hx as follows. Let I1 be any job interval I ⊆ I(q)
that belongs to I∗h1 . Assume now that intervals I1, . . . , Ix−1 have been defined, and we define Ix. By
our construction, layer hx must contain some virtual interval I(Aqi′), that is completely contained in
Ix−1. Since query q is good at layer hx, I(Aqi′) is used by I∗hx , so there is a job interval I ′ ⊆ I(Aqi′) in
I∗x. We choose Ix = I ′.

We have therefore defined a collection I1, . . . , Ic/2 of job intervals, such that I1 ⊇ I2 ⊇ . . . ⊇ Ic/2,
and all these intervals belong to I∗. Therefore, the congestion of I∗ is at least c/2.

7 An Algorithm for group-ICF

We again start with a special case of the problem, where all edge capacities are unit, and all demands
are uniform. By appropriately scaling the demands, we can then assume w.l.o.g. that λOPT = 1, and
the demand for each pair (Si, Ti) is D. Let m = d16 log ne be a parameter. We later define a parameter
∆ = k poly log n, and we assume throughout the algorithm that:

D ≥ 640∆mαEDP ln2 n = k poly log n, (1)

by setting ∆′ = 640∆mαEDP ln2 n.
We say that a group-ICF instance (G,D) is a canonical instance iff for all 1 ≤ i ≤ k, Si ={

si1, . . . , s
i
mD

}
, Ti =

{
ti1, . . . , t

i
mD

}
, and there is a set of paths

P =
{
P ij | 1 ≤ i ≤ k, 1 ≤ j ≤ mD

}
where path P ij connects sij to tij , and the paths in P cause congestion at most 2m in G. We denote

by Mi =
{

(sij , t
i
j)
}mD
j=1

the set of pairs corresponding to (Si, Ti) for each 1 ≤ i ≤ k, and we associate

a canonical fractional solution f∗ with such an instance, where we send 1/(2m) flow units along each
path P ij . The value of such a solution is D/2 - the total amount of flow sent between each pair (Si, Ti).

Let M =
⋃k
i=1Mi. The following lemma allows us to assume w.l.o.g. that an input instance is

canonical.

Lemma 10 Given any instance (G,D) of group-ICF with unit edge capacities and uniform demands
Di = D for all 1 ≤ i ≤ k, where the value of the optimal solution λOPT = 1, there is a randomized
efficient algorithm that w.h.p. computes a canonical instance (G,D′,P), where for each 1 ≤ i ≤ k,
|Pi| = Dm. Moreover, any integral solution to the canonical instance gives an integral solution of the
same value and congestion to the original instance.

Proof: Let (G,D) be an instance of group-ICF with uniform demands and unit edge capacities, and
let f be the optimal fractional solution, whose congestion is at most 1. For each 1 ≤ i ≤ k, let fi be
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the flow in f that originates at the vertices of Si and terminates at the vertices of Ti. Recall that fi
sends D flow units from the vertices of Si to the vertices of Ti.

For each 1 ≤ i ≤ k, we select a set Pi =
{
P i1, . . . P

i
mD

}
of mD flow-paths connecting the vertices

in Si to the vertices of Ti, as follows. Each path P ij , for 1 ≤ j ≤ mD, is selected independently
at random, from the set of paths carrying non-zero flow in fi, where each path P is selected with
probability fi(P )/D, (here fi(P ) is the amount of flow on path P ). Once the set Pi of paths for each
1 ≤ i ≤ k is selected, we define a new fractional solution f ′, where for each 1 ≤ i ≤ k, we send 1

2m flow
units on each path in Pi. It is easy to see that for each 1 ≤ i ≤ k, the amount of flow routed between
Si and Ti is exactly D/2. Moreover, using the standard Chernoff bounds, it is easy to see that w.h.p.
flow f ′ causes congestion at most 1 in G.

From now on, we will assume that the input instance is a canonical one, and that the set P of
paths is given. Throughout this section, the parameter L in the definition of small and critical clusters
is set to L = O(log25 n), and we set the precise value of L later.

7.1 Split Instances and Good Q-J Decompositions

In this section we introduce two special cases of the group-ICF problem and show efficient algorithms
for solving them. In the following section we show an algorithm for the general problem, which
decomposes an input instance of group-ICF into several sub-instances, each of which belongs to one of
the two special cases described here.

Split Instances The first special case that we define is a split instance. Suppose we are given a
canonical instance (G,D) of the group-ICF problem, with the corresponding set P of paths connecting
the demand pairs in

⋃k
i=1Mi. Assume further that we are given a collection C = {C1, . . . , C`} of

disjoint vertex subsets of G, such that each path P ∈ P is completely contained in one of the sets
Ch. For each 1 ≤ i ≤ k, for each 1 ≤ h ≤ `, let Pi(Ch) ⊆ Pi be the subset of paths contained
in Ch. We say that instance (G,D) is a split instance iff for each 1 ≤ i ≤ k, for each 1 ≤ h ≤ `,
|Pi(Ch)| ≤ D

64αEDP·ln2 n
= D

poly logn .

Theorem 21 Let (G,D) be a canonical split instance as described above. Then there is an efficient
randomized algorithm that finds a collection R of paths that cause a congestion of at most ηEDP in G,
and for each 1 ≤ i ≤ k, at least D

4αEDP·lnn = D
poly logn paths connect the vertices of Si to the vertices of

Ti in R w.h.p.

Proof: For each 1 ≤ h ≤ `, let P(Ch) ⊆ P be the subset of paths contained in Ch, and letM(Ch) ⊆M
be the set of pairs of terminals that these paths connect. Recall that the paths in set P(Ch) cause a
congestion of at most 2m in graph G[Ch]. Therefore, if we route 1/(2m) flow units along each path
P ∈ P(Ch), then we obtain a feasible fractional solution to the EDP instance on graph G[Ch] and the

set M(Ch) of demands, where the value of the solution is |M(Ch)|
2m .

Let N = 2mαEDP · lnn. We partition the set M(Ch) into N subsets M1(Ch), . . . ,MN (Ch), and
for each 1 ≤ z ≤ N , we find a collection Rz(Ch) of paths contained in graph G[Ch] that connect the
demands in Mz(Ch) and cause congestion at most ηEDP.

We start with the set M(Ch) of demands, and apply Theorem 5 to input (G[Ch],M(Ch)). Since

there is a fractional solution of value |M(Ch)|
2m , we obtain a collection R1(Ch) of paths connecting a

subset M1(Ch) ⊆ M(Ch) of at least |M(Ch)|
2mαEDP

demand pairs. We then remove the pairs in M1(Ch)
from M(Ch) and continue to the next iteration. Clearly, after N iterations, every pair in the original
set M(Ch) belongs to one of the subsets M1(Ch), . . . ,MN (Ch). For each such subset Mz(Ch), we
have computed an integral routing Rz(Ch) of the pairs in Mz(Ch) inside G[Ch], with congestion at
most ηEDP. We now choose an index z ∈ {1, . . . , N} uniformly at random, and setM′(Ch) =Mz(Ch),

25



and R(Ch) = Rz(Ch). We view R(Ch) as the final routing of pairs in M′(Ch) inside the cluster Ch,
and we say that all pairs in M′(Ch) are routed by this solution. Notice that the probability that a
pair in M(Ch) is routed is 1/N . The output of the algorithm is R =

⋃`
h=1R(Ch).

We say that a demand pair (Si, Ti) is satisfied iff R contains at least mD
2N = D

4αEDP·lnn paths
connecting the vertices of Si to the vertices of Ti. We now show that w.h.p. every demand pair (Si, Ti)
is satisfied.

Indeed, consider some demand pair (Si, Ti). Recall that |Pi| = Dm, and for each cluster Ch ∈ C,
Pi(Ch) ⊆ Pi is the subset of paths contained in Ch. Let Mi(Ch) ⊆ Mi be the set of pairs of
endpoints of paths in Pi(Ch). Denote D∗ = D

64αEDP ln2 n
, and recall that we |Mi(Ch)| ≤ D∗ must

hold. We now define a random variable yi,h as follows. Let ni,h be the number of pairs of vertices

in Mi(Ch) that are routed by R(Ch). Then yi,h =
ni,h
D∗ . Observe that the variables {yi,h}`h=1 are

independent random variables that take values in [0, 1]. Let Yi =
∑`

h=1 yi,h. Then the expectation of

Yi is µi = mD
D∗·N = 64mαEDP ln2 n

2mαEDP·lnn = 32 lnn.

The probability that (Si, Ti) is not satisfied is the probability that Yi <
mD

2D∗·N = µi/2. By standard

Chernoff bounds, this is bounded by e−µi/8 ≤ e−4 lnn = 1/n4. From the union bound, with probability
at least (1− 1/n3), all pairs (Si, Ti) are satisfied.

Good Q-J Decompositions Suppose we are given a canonical instance (G,D) of the group-ICF
problem, and any valid Q-J decomposition (Q,J ) of the graph G. Recall that for each critical cluster
Q ∈ Q, we are given a partition π(Q) of Q into small clusters that have the bandwidth property.

Let X = J ∪
(⋃

Q∈Q π(Q)
)

. We say that the Q-J decomposition (Q,J ) is good iff Q 6= ∅, and no

demand pair (sij , t
i
j) is contained in a single cluster in X . In other words, for each 1 ≤ i ≤ k, for each

1 ≤ j ≤ mD, vertices sij and tij must belong to distinct clusters in X . We show that if we are given a
good Q-J decomposition for G, then we can efficiently find a good integral solution for it.

For technical reasons that will become apparent later, we state the next theorem for canonical
instances with non-uniform demands.

Theorem 22 Assume that we are given a graph G, and for 1 ≤ i ≤ k, two collections Si ={
si1, . . . , s

i
Di

}
, Ti =

{
ti1, . . . , t

i
Di

}
of vertices, where Di ≥ Ω

(
L2 log11 n

)
. Assume further that we

are given a set of paths,
P =

{
P ij | 1 ≤ i ≤ k, 1 ≤ j ≤ Di

}
,

where path P ij connects sij to tij, and the paths in P cause congestion at most 2m in G. Assume
also that we are given a good Q-J decomposition (Q,J ) for G. Then there is an efficient randomized
algorithm that w.h.p. finds an integral solution to the group-ICF instance, whose congestion is at most
cgood, and for each 1 ≤ i ≤ k, at least

⌊
Di/αgood

⌋
paths connect vertices of Si to vertices of Ti. Here,

αgood = O(log60 n poly log log n), and cgood is a constant.

Proof: Recall that we are given a canonical fractional solution, together with a collection

P =
{
P ij : 1 ≤ i ≤ k, 1 ≤ j ≤ Di

}
of paths, such that path P ij connects sij to tij , and no path in P

has its two endpoints in the same cluster X ∈ X , where X = J ∪
(⋃

Q∈Q π(Q)
)

. We view each path

P ij ∈ P as starting at vertex sij and terminating at tij . We will repeatedly use the following claim,
whose proof follows from the standard Chernoff bound.

Claim 4 Let P ′ be any collection of paths in G, and let (P ′1, . . . ,P ′k) be any partition of P ′. Assume
that we are given another partition G of the set P ′ of paths into groups of size at most q each,
and assume further that for each 1 ≤ i ≤ k, |P ′i| ≥ 32q log n. Let P ′′ ⊆ P ′ be a subset of paths,
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obtained by independently selecting, for each group U ∈ G, a path PU ∈ U uniformly at random, so

P ′′ = {PU | U ∈ G}. Then for each 1 ≤ i ≤ k, |P ′i ∩ P ′′| ≥
|P ′i|
2q with high probability.

We say that a path P ∈ P is critical iff it is contained in some critical cluster Q ∈ Q. We say that
a pair (Si, Ti) is critical iff the number of paths in Pi that are critical is at least |Pi|/2. Otherwise,
we say that (Si, Ti) is a regular pair. We first show how to route the critical pairs, and then show an
algorithm for routing regular pairs.

Routing Critical Pairs Let P̃ ⊆ P be the set of all critical paths, and let XQ =
⋃
Q∈Q π(Q).

For each cluster X ∈ XQ, we define two sets of paths: U1(X), containing all paths in P̃ whose first
endpoint belongs to X, and U2(X), containing all paths in P̃ whose last endpoint belongs to X. Since
cluster X cannot contain both endpoints of any path in P̃, and the paths in P̃ cause congestion at
most 2m, while | out(X)| ≤ L, we have that |U1(X)|, |U2(X)| ≤ 2mL for all X ∈ XQ. For each cluster
X ∈ XQ, we then select, uniformly independently at random, one path P1(X) ∈ U1(X), and one
path P2(X) ∈ U2(X). We then let P̃ ′ ⊆ P̃ be the subset of paths P that were selected twice in this
process. That is, P̃ ′ =

{
P1(X) | X ∈ XQ

}
∩
{
P2(X) | X ∈ XQ

}
. Notice that both {U1(X)}X∈XQ and

{U2(X)}X∈XQ are partitions of P̃ into subsets of size at most 2mL. Therefore, from Claim 4, for each

1 ≤ i ≤ k, |Pi ∩ P̃ ′| ≥ |Pi|
16m2L2 w.h.p.

We now fix some critical cluster Q ∈ Q. Let PQ ⊆ P̃ ′ denote the subset of paths in P̃ ′ that are
contained in Q, let MQ be the set of pairs of their endpoints, and TQ the subset of terminals that
serve as endpoints to the paths in PQ. Recall that each small cluster C ∈ π(Q) contains at most
two terminals from T ′. We augment the graph G, by adding, for every terminal t ∈ TQ, an edge et
connecting t to a new vertex t′. Let GQ denote this new graph (but note that the new vertices t′ do
not belong to Q). We now show that Q still has the weight property in this new graph, and each
cluster C ∈ π(Q) still has the bandwidth property (with slighter weaker parameters). We can then
use Theorem 9 for routing on critical clusters, to route the pairs in MQ.

Claim 5 Each cluster C ∈ π(Q) is (αS/3)-well-linked in graph GQ, and (Q, π(Q)) has the weight
property with parameter λ′ = λ/3.

Proof: Consider any small cluster C ∈ π(Q). Cluster C contains at most two endpoints of paths in
PQ, so for any subset A ⊆ C, | outG(A)| ≤ | outGQ(A)| ≤ | outG(A)|+ 2. Since C is αS-well-linked in
graph G, it is immediate that C is αS/3-well-linked in graph GQ.

Consider now the graph HQ, where we start with GQ[Q], and contract each cluster C ∈ π into a
super-node vC , whose original weight w(vC) is | outG(C)|, and the new weight w′(vC) is | outGQ(C)|.
Notice that w(vC) ≤ w′(vC) ≤ w(vC) + 2 ≤ 3w(vC). Since (Q, π(Q)) has the weight property with
parameter λ in graph G, for any partition (A,B) of V (HQ),

|EHQ(A,B)| ≥ λmin

{∑
v∈A

w(v),
∑
v∈B

w(v)

}
≥ λ

3
·min

{∑
v∈A

w′(v),
∑
v∈B

w′(v)

}
.

Therefore, (Q, π(Q)) has the weight property with parameter λ′ = λ/3.
We can now use Theorem 9 to find a grouping GQ of the terminals in TQ into groups of size O(Z) =

O(log4 n), such that for any set D of (1,GQ)-restricted demands, there is an efficient randomized
algorithm that w.h.p. routes D integrally in G[Q] with constant congestion. Grouping GQ defines two
partitions G1

Q,G2
Q of the paths in PQ, as follows: for each group U ∈ GQ, we have a subset P1(U) ⊆ PQ

of paths whose first endpoint belongs to U , and a subset P2(U) ⊆ PQ of paths whose last endpoint
belongs to U . We let G1

Q = {P1(U) | U ∈ GQ}, and G2
Q = {P2(U) | U ∈ GQ}. For each group U ∈ G,

we randomly sample one path in P1(U) and one path in P2(U). We let P ′Q be the set of all paths that
have been selected twice, once via their first endpoint and once via their last endpoint, and we let
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P̃ ′′ =
⋃
Q∈Q P ′Q. From Claim 4, for each critical (Si, Ti) pair, |Pi ∩ P̃ ′′| ≥ Ω

(
|Pi|

m2L2Z2

)
= Ω

(
|Pi|

L2 log10 n

)
w.h.p. For each Q ∈ Q, letM′Q be the set of pairs of endpoints of paths in P ′Q. ThenM′Q defines a set
of (2,GQ)-restricted demands on the set TQ of terminals, and from Theorem 9, there is a randomized
algorithm to route these demands in G[Q] with constant congestion.

Routing Regular Pairs We use the graph H, given by Theorem 11. The algorithm consists of two
steps. In the first step, we route some of the terminals to the boundaries of the critical clusters, and
create what we call “fake terminals”. This step is very similar to the algorithm of Andrews [And10].
In this way, we transform the problem of routing the original terminal pairs in graph G into a problem
of routing the new fake terminal pairs in graph H. The second step is very similar to the proof
of Theorem 13: we split graph H into x = poly log n sub-graphs H1, . . . ,Hx using standard edge
sampling, and route a subset of the fake demand pairs in each graph Hj using the algorithm of Rao
and Zhou [RZ10].

Since we now focus on regular pairs only, to simplify notation, we assume that we are given a

collection {(Si, Ti)}ki=1 of regular demand pairs, and a collection P =
{
P ij

}
1≤i≤k,

1≤j≤D′i
of paths, where

D′i = Di/2, such that path P ij connects sij to tij . We assume that all paths P ij are regular. For each

1 ≤ i ≤ k, Si =
{
si1, . . . , s

i
D′i

}
, and Ti =

{
ti1, . . . , t

i
D′i

}
. Let T =

⋃k
i=1(Si ∪ Ti) be the set of all

terminals, and for 1 ≤ i ≤ k, let Mi =
{

(sij , t
i
j)
}D′i
j=1

be the set of the pairs of endpoints of paths in

set Pi =
{
P i1, . . . , P

i
Di

}
. Denote by T J and T Q the sets of all terminals contained in the J- and the

Q-clusters respectively, that is, T J = T ∩
(⋃

C∈J C
)
, and T Q = T ∩

(⋃
C∈QC

)
.

Step 1: Defining fake terminal pairs The goal of this step is to define new pairs of terminals,
that we call fake terminal pairs, in graph H, so that a good routing of the fake terminal pairs in
graph H immediately translates into a good routing of the original pairs in graph G. This step largely
follows the ideas of [And10]. Let EQ =

⋃
Q∈Q out(Q). Our first step is to route all terminals in T to

the edges of EQ. This is done using the following three lemmas.

Lemma 11 There is an efficient algorithm to find a partition GJ of the set T J of terminals into
groups of size at most 48m, such that for any (2,GJ)-restricted subset T ′ ⊆ T J of terminals, there is
an efficient algorithm to find a set PJ : T ′  12 E

Q of paths in G.

Proof: Let EJ =
⋃
J∈J out(J). Since no pair of endpoints of paths in P is contained in a single

cluster J ∈ J , there is a set P1 : T J  4m EJ of paths, connecting every terminal t ∈ T J to some
edge in EJ . The collection P1 of paths is obtained as follows: let t ∈ T be the endpoint of some path
P ∈ P, and assume that t ∈ C, where C is a J-cluster. Let e ∈ out(C) be the first edge on path P
that is not contained in C. We then add the segment of P between t and e to the set P1 of paths.
This defines the set P1 : T J  4m EJ of paths.

Recall that we are also given a set N of paths called tendrils, N : EJ  3 E
Q. Combining the two

sets of paths, we obtain a collection P2 : T J  16m EQ.
We now use the standard grouping technique from Theorem 7, to partition the terminals in T J

into groups of size at least 16m and at most 48m. Let GJ be this resulting grouping. Since each group
can simultaneously send one flow unit to the edges of EQ with congestion 1, it is immediate to see
that for any (1,GJ)-restricted subset T ′ ⊆ T J of terminals, there is a flow FJ : T ′  2 E

Q. From the
integrality of flow, there must be a set P ′J : T ′  2 E

Q of paths, which can be computed efficiently.
Finally, using Observation 1, we conclude that for any (2,GJ)-restricted subset T ′ ⊆ T J of terminals,
we can efficiently find a set PJ : T ′  12 E

Q of paths.
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Lemma 12 We can efficiently find a partition GQ of the set T Q of terminals into groups of size
at most 48m, such that for any (2,GQ)-restricted subset T ′ ⊆ T Q of terminals, there is an efficient
algorithm to find a set PQ : T ′  12 E

Q of paths G.

Proof: We start by showing that there is a collection P2 : T Q  2m EQ of paths in G, which is
constructed as follows. Let t ∈ T be the endpoint of some path P ∈ P, and assume that t ∈ C, where
C is a Q-cluster. Since P is a regular path, it is not completely contained in C. Let e ∈ out(C) be
the first edge on path P that is not contained in C. We then add the segment of P between t and e
to the set P2 of paths. Since the paths in P cause congestion at most 2m, the total congestion due
to paths in P2 is bounded by 4m. The rest of the proof is identical to the proof of Lemma 11: we
compute a grouping GQ of the terminals in T Q into groups of size at least 4m and at most 12m, using
the standard grouping technique. It is then immediate to see that for any for any (1,GQ)-restricted
subset T ′ ⊆ T Q of terminals, there is a flow FQ : T ′  2 E

Q, and hence a set P ′Q : T ′  2 E
Q of paths.

Using Observation 1, we conclude that for any (2,GQ)-restricted subset T ′ ⊆ T Q of terminals, we can
efficiently find a set PQ : T ′  12 E

Q of paths.
Let G = GQ ∪ GJ be the partition of terminals in T obtained from Lemmas 11 and 12. For each

group U ∈ G of terminals, we define two subsets of paths: P1(U) ⊆ P contains all paths whose first
endpoint belongs to U , and P2(U) ⊆ P contains all paths whose last endpoint belongs to U . We then
select, independently uniformly at random, two paths P1(U) ∈ P1(U) and P2(U) ∈ P2(U). Let P ′ ⊆ P
be the subset of paths that have been selected twice, that is, P ′ = {P1(U) | U ∈ G}∩{P2(U) | U ∈ G}.
Since both {P1(U)}U∈G and {P2(U)}U∈G define partitions of the paths in P into sets of size at most

48m, from Claim 4, for each 1 ≤ i ≤ k, |Pi ∩ P ′| ≥ |Pi|
4608m2 w.h.p.

Let T ′ ⊆ T be the set of terminals that serve as endpoints for paths in P ′. Since set T ′ is (2,G)-
restricted, from Lemmas 11 and 12, there is a collection R : T ′  24 E

Q of paths in graph G. For each
terminal t ∈ T ′, set R contains a path Pt, connecting t to some edge et ∈ EQ. We define a mapping
f : T ′ → EQ, where f(t) = et.

Recall that for each critical cluster Q ∈ Q, Theorem 9 gives a partition G(Q) of the edges of out(Q)
into subsets of size at most 3Z = O(log4 n).

Consider some edge e ∈ EQ. If there is a single critical cluster Q ∈ Q such that e ∈ out(Q), then
we say that e belongs to Q. Otherwise, if there are two such clusters Q1, Q2 ∈ Q, then we select one
of them arbitrarily, say Q1, and we say that e belongs to Q1. We will view G(Q) as a partition of only
those edges in out(Q) which belong to Q, and we will ignore all other edges. Let G′ =

⋃
Q∈Q G(Q), so

G′ is a partition of EQ. Our final step is to sample the paths in P ′, such that for each group U ∈ G′,
there are at most two paths whose endpoints are mapped to the edges of U .

For each group U ∈ G′, we define a subset P1(U) ⊆ P ′ of paths, containing all paths whose first
endpoint t is mapped to an edge of U , that is, f(t) ∈ U , and similarly, a subset P2(U) ⊆ P ′ of
paths, containing all paths whose last endpoint is mapped to an edge of U . We then select, uniformly
independently at random, a path P1(U) ∈ P1(U), and a path P2(U) ∈ P2(U), and let P ′′ ⊆ P ′ be the
subset of paths that have been selected twice, that is, {P1(U) | U ∈ G} ∩ {P2(U) | U ∈ G}. Since each

set |P1(U)|, |P2(U)| ≤ 3Z = O(log4 n), from Claim 4, for each 1 ≤ i ≤ k, |Pi ∩ P ′′| ≥ Ω
(

Di
m2Z2

)
=

Ω
(

Di
log10 n

)
w.h.p.

Let T ′′ ⊆ T be the set of terminals that serve as endpoints of paths in P ′′, and let R′′ ⊆ R be
their corresponding subset of paths, R′′ : T ′′  24 E

Q. For each 1 ≤ i ≤ k, let P ′′i = Pi ∩ P ′′, and let
M′′i be the set of pairs of endpoints of the paths in P ′′i .

Let H be the graph given by Theorem 11. We are now ready to define fake demand pairs for
the graph H. For each 1 ≤ i ≤ k, we define a set M̃i of demand pairs, and the sets S̃i, T̃i of fake
terminals, as follows: for each pair (s, t) ∈M′′i , if Q1 ∈ Q is the critical cluster to which f(s) belongs,
and Q2 ∈ Q the critical cluster to which f(t) belongs, then we add (vQ1 , vQ2) to M̃i, and we add vQ1
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to S̃i and vQ2 to T̃i. Notice that we allow M̃i, S̃i and T̃i to be multi-sets. This finishes the definition
of the fake demand pairs. In order to complete Step 1, we show that any good integral solution to
this new group-ICF instance will give a good integral solution to the original group-ICF instance.

Lemma 13 Let P̃ be any collection of paths in graph H that causes congestion at most γ. For each
1 ≤ i ≤ k, let ni be the number of paths in P̃ connecting the fake terminals in S̃i to the fake terminals
in T̃i. Then we can efficiently find a collection P∗ of paths in the original graph G, such that for each
1 ≤ i ≤ k, there are ni paths connecting the terminals of Si to the terminals of Ti in P∗, and the
congestion caused by paths in P∗ is at most c0γ for some constant c0.

Proof: Consider some path P̃ ∈ P̃, and let (vQ1 , vQ2) ∈ M̃ be the endpoints of path P̃ . Let (s, t) ∈M
be the original pair of terminals that defined the pair (vQ1 , vQ2) of fake terminals. We transform the
path P̃ into a path P connecting s to t in graph G. In order to perform the transformation, we start
with the path P̃ , and replace its endpoints and edges with paths in graph G. Specifically, we replace
vQ1 with the path Ps ∈ R′′ that connects s to some edge in out(Q1), and we replace vQ2 with the
path Pt ∈ R′′, connecting some edge in out(Q2) to t. Additionally, for each edge e = (vQ, vQ′) on
path P , we replace e by the path Pe connecting some edge in out(Q) to some edge in out(Q′), given
by Theorem 11. So far, each path P̃ ∈ P̃ is replaced by a sequence of paths (that we call segments)
in graph G. For each pair σ, σ′ of consecutive segments, there is a critical cluster Q ∈ Q, such that
the last edge of σ and the first edge of σ′ belong to out(Q). For each critical cluster Q ∈ Q, we now
define a set D(Q) of demands on the edges of out(Q), as follows: for each path P̃ ∈ P̃, for each pair
(σ, σ′) of consecutive segments that we have defined for path P̃ , where the last edge e of σ, and the
first edge e′ of σ′ belong to out(Q), we add the demand pair (e, e′) to D(Q). We allow D(Q) to be a
multi-set.

Since the paths in P̃ cause congestion at most γ, from Property C4, and from the fact that the
terminals in T ′′ are (2,G)-restricted, we get that for each critical cluster Q ∈ Q, the set D(Q) of
demands is (2γ + 2)-restricted. Combining Observation 1 with Theorem 9, we get that the set D(Q)
of demands can be routed inside Q with congestion at most 547 · (6γ + 6). For each path P̃ ∈ P̃,
we now combine the segments we have defined for P̃ with the routings we have computed inside the
critical clusters to connect these segments, to obtain the final path P in graph G.

Step 2: Routing in graph H In this step, we find a solution for the group-ICF problem defined
on graph H and the set of fake terminal pairs. For each 1 ≤ i ≤ k, let D̃i = |M̃i|, and recall that

D̃i = Ω
(

Di
log10 n

)
. For each 1 ≤ i ≤ k, we will route a polylogarithmic fraction of the demand pairs in

M̃i, with no congestion in graph H. This step is almost identical to the proof of Theorem 13, except
that we use different parameters. For simplicity, we assume w.l.o.g. in this step that all values D̃i

are equal. In order to achieve this, let D be the minimum value of D̃i over all 1 ≤ i ≤ k. For each
1 ≤ i ≤ k, we partition the demand pairs in M̃i into subsets, containing D pairs each (except possibly
the last subset). If one of the resulting subsets contains fewer than D pairs, we simply disregard all

pairs in this subset. In this way, we define a new collection of demand pairs
{
M̃′i′

}
, where 1 ≤ i′ ≤ k′.

Notice that it is now enough to find a collection P̃ of paths, such that for each new group M̃′i′ , at least
a poly-logarithmic fraction of the pairs in M̃′i′ are connected by paths in P̃. To simplify notation, we
now assume w.l.o.g. that for each 1 ≤ i ≤ k, D̃i = D.

Let αRZ = O(log10 n), LRZ = Θ(log5 n) be the parameters from Theorem 15. Let x = 16mαRZ ·
log n = O(log12 n). We set L = 2α∗ · x · LRZ = O(log25 n poly log log n).

We split graph H into x graphs H1, . . . ,Hx, as follows. For each 1 ≤ j ≤ x, we have V (Hj) =
V (H). In order to define the edge sets of graphs Hj , each edge e ∈ E, chooses an index 1 ≤ j ≤ x
independently uniformly at random, and is then added to E(Hj). This completes the definition of the
graphs Hj .
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For convenience, we define a new graph G′, which is obtained from the original graph G by
contracting each cluster Q ∈ Q into a super-node vQ. Notice that the set M̃ of fake terminal pairs is
also a set of pairs of vertices in graph G′, so we can also view M̃ as defining a set of demand pairs in
graph G′.

Given any partition (A,B) of the vertices of V (H), let cutG′(A,B) denote the value of the minimum
cut |EG′(A′, B′)| in graph G′, such that A ⊆ A′, B ⊆ B′. Theorem 11 guarantees that the size
of the minimum cut in H is at least L/α∗, and for each partition (A,B) of V (H), cutG′(A,B) ≤
α∗ · |EH(A,B)|. From Theorem 12, for each graph Hj , for 1 ≤ j ≤ x, w.h.p. we have that: (i) The
value of the minimum cut in Hj is at least L

2α∗x = LRZ; and (ii) For any partition (A,B) of V (Hj),

|EHj (A,B)| ≥ cutG′ (A,B)
2xα∗ .

We need the following lemma.

Lemma 14 For each 1 ≤ j ≤ x, there is a fractional solution to the instance (Hj ,M̃) of group-ICF,
where each demand pair in M̃ sends 1

6mxα∗βFCG
flow units to each other with no congestion.

Proof: Assume otherwise. Then the value of the maximum concurrent flow in graph Hi for the set
M̃ of demands is less than 1

6mxα∗βFCG
.

We set up an instance of the non-uniform sparsest cut problem on graph Hj with the set M̃
of demand pairs. Then there is a cut (A,B) in graph Hj , with

|EHj (A,B)|
DHj (A,B) < 1

6mxα∗ . Let (A′, B′)

be the minimum cut in graph G′, where A ⊆ A′, B ⊆ B′. Then |EG′(A′, B′)| = cutG′(A,B) ≤
2xα∗|EHj (A,B)|, while DG′(A

′, B′) = DHj (A,B). Therefore,
|EG′ (A′,B′)|
DG′ (A

′,B′) ≤ 2xα∗
|EHj (A,B)|
DHj (A,B) < 1

3m . We

next show that there is a concurrent flow, in graph G′, of value 1
3m and no congestion, between the

pairs of the fake terminals in M̃. This contradicts the fact that the value of the sparsest cut in graph
G′ is less than 1

3m .
In order to find the concurrent flow in graph G′, it is enough to show that, for every pair

(vQ, vQ′) ∈ M̃ of fake terminals, we can send one flow unit from some vertex of Q to some ver-
tex of Q′ simultaneously with congestion at most 3m in graph G. Scaling this flow down by factor 3m
will define the desired flow in graph G′.

Consider some pair (vQ, vQ′) ∈ M̃ of fake terminals and let (s, t) ∈ M be the original demand
pair that defined the pair (vQ, vQ′). Recall that there is a path P ∈ P connecting s to t, and paths
Ps, Pt ∈ R′′, where Ps connects s to some vertex u ∈ Q, and Pt connects t to some vertex u′ ∈ Q′. The
concatenation of these three paths gives a path that connects u to u′ in graph G. Since the paths in P
cause congestion at most 2m, while the paths in R′′ cause congestion at most 24, the total congestion
caused by these flow-paths is at most 2m+ 24 < 3m. We conclude that there is a concurrent flow in
graph G′ of value 1

3m between the pairs of terminals in M̃, contradicting our former conclusion that
the value of the sparsest cut in G′ is less than 1

3m .
In the rest of the algorithm, we apply the algorithm of Rao-Zhou to each of the graphs H1, . . . ,Hx

in turn, together with some subset M̃j ⊆ M̃ of the fake demand pairs. The output of the iteration
is a collection P̃j of edge-disjoint paths in graph Hj connecting some demand pairs in M̃j . We say
that a pair (S̃i, T̃i) is satisfied in iteration j, iff P̃j contains at least D

48mxα∗βFCGαRZ
paths connecting

demand pairs in M̃i.
We now fix some 1 ≤ j ≤ x and describe the execution of iteration j. Let I ⊆ {1, . . . , k} be the

set of indices i, such that (S̃i, T̃i) was not satisfied in iterations 1, . . . , j − 1. Let M̃′ =
⋃
i∈I M̃i.

From Lemma 14, there is a fractional solution F in graph Hj , where every demand pair in M̃′ sends
1

6mxα∗βFCG
flow units to each other with no congestion. We transform instance (Hj ,M̃′) of group-ICF

into a canonical instance, obtaining, for each i ∈ I, a collection P̃ ′i of b D
6xα∗βFCG

c paths, such that the

set
⋃
i∈I P̃ ′i of paths causes congestion at most 2m in graph Hj . Let M̃j be the collection of pairs of

31



endpoints of paths in
⋃
i∈I P̃ ′i. We apply Theorem 15 to the EDP instance defined by the graph Hj and

the set M̃j of the demand pairs. Let P̃j be the output of the algorithm. Then w.h.p., |P̃j | ≥ |M̃j |
2mαRZ

,

and the paths in P̃j are edge-disjoint.
It is easy to verify that at least 1

8mαRZ
-fraction of pairs (S̃i, T̃i) for i ∈ I become satisfied in

iteration j. This is since |P̃j | ≥ |M̃j |
2mαRZ

≥ |I|·D
24mαRZxα∗βFCG

, each unsatisfied pair contributes at most
D

48mαRZxα∗βFCG
paths to P̃j , and each satisfied pair contributes at most D

6xα∗βFCG
paths. Therefore,

after x = 16mαRZ · log n iterations, all demand pairs are satisfied.
Let P̃ =

⋃x
j=1 P̃j denote the final collection of paths. For each demand pair (S̃i, T̃i), set P̃ must

contain at least D̃i
48mxα∗βFCG·αRZ

= Ω
(

Di
log42 n poly log logn

)
paths connecting the vertices of S̃i to the ver-

tices of T̃i, and the paths in P̃ are edge-disjoint. Applying Lemma 13, we obtain a collection P∗ of paths

in graph G, that cause a constant congestion, and for each 1 ≤ i ≤ k, at least Ω
(

Di
log42 n poly log logn

)
paths connect the vertices of Si to the vertices of Ti.

7.2 The Algorithm

We now present an algorithm to solve a general canonical instance. Our algorithm uses the following
parameter:

∆ = max


640kmLαARV(n) log n

αEDP

16mLαgoodcgood

Ω(L2 log11 n)

which gives ∆ = k poly log n. Let T =
⋃k
i=1(Si ∪ Ti) be the set of all terminals. The main idea is

that we would like to find a Q-J decomposition of the graph G, such that each small cluster X ∈ X ,

where X = J ∪
(⋃

Q∈Q π(Q)
)

, contains at most D/poly log n terminals. Suppose we can find such

a decomposition. We then say that a path P ∈ P is of type 1 iff its both endpoints are contained in
some set X ∈ X , and it is of type 2 otherwise. We can then partition the demand pairs (Si, Ti) into
two types: a demand pair (Si, Ti) is of type 1 if most of the paths in Pi are of type 1, and it is of
type 2 otherwise. This partitions the problem instance into two sub-instances: one induced by type-1
demand pairs, and the other induced by type-2 demand pairs. The former is a split instance w.r.t. X ,
while for the latter instance, the current Q-J decomposition is a good decomposition. We can then
solve the two resulting sub-instances using Theorems 21 and 22, respectively.

We are however unable to find such a Q-J decomposition directly. Instead, our algorithm consists
of three steps. In the first step, we find a partition of V (G) into subsets V1, . . . , Vr, and for each
1 ≤ h ≤ r, we let Gh = G[Vh]. This partition guarantees that for each resulting graph Gh, for each
small cut (A,B) in graph Gh, either A or B contain at most ∆ terminals. Moreover, the number
of edges e ∈ E(G) whose endpoints do not lie in the same set Vh is at most D/4. This partition
decomposes our original problem into r sub-problems, where for 1 ≤ h ≤ r, the hth subproblem is
defined over the graph Gh. In the second step, for each graph Gh, we find a Q-J decomposition
(Qh,Jh). Let Xh = Jh ∪ {π(Q) | Q ∈ Qh} be the corresponding set of small clusters. While the Q-J
decomposition is not necessarily good, we ensure that each cluster C ∈ Xh may only contain a small
number of pairs (sij , t

i
j) for all 1 ≤ i ≤ k. We then decompose the demand pairs (Si, Ti) into several

types, and define a separate sub-instance for each of these types. We will ensure that each one of the
resulting instances is either a split instance, or the Q-J decomposition computed in step 2 is a good
decomposition for it.
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Step 1: Partitioning the graph G This step is summarized in the following lemma, whose proof
is similar to the standard well-linked decomposition, and appears in Section E of the Appendix.

Lemma 15 Let (G,D) be a canonical instance of group-ICF with uniform demands. Then there is an
efficient algorithm to find a partition R of V , such that for each R ∈ R, for any partition (A,B) of R,
where |EG[R](A,B)| < 2L, either A or B contain at most ∆ terminals. Moreover,

∑
R∈R | out(R)| ≤

D/4.

We apply Lemma 15 to our instance (G,D), to obtain a partition R = {V1, . . . , Vr} of V (G). We
denote E′ =

⋃
R∈R out(R), and for each 1 ≤ h ≤ r, we denote Gh = G[Vh]. Consider now some

demand pair (Si, Ti). Since |E′| ≤ D/4, and the set Pi of paths causes congestion at most 2m in G,
there are at least mD/2 pairs (sij , t

i
j) ∈ Mi, for which the path P ji is completely contained in some

graph Gh. Let M′i ⊆ Mi be the subset of all such pairs (sij , t
i
j), |M′i| ≥ mD/2, and let P ′i ⊆ Pi be

the subset of their corresponding paths.
For each 1 ≤ h ≤ r, let Mi,h ⊆ M′i be the subset of pairs (sij , t

i
j) for which P ji is contained in

Gh, let Pi,h ⊆ P ′i be the subset of paths connecting such pairs, and let Di,h = |Pi,h|. Notice that∑r
h=1Di,h ≥ Dm/2. For each 1 ≤ h ≤ r, let Ph =

⋃k
i=1 Pi,h, and let fh be the fractional solution

associated with the set Ph of paths, where each path in Ph is assigned 1/(2m) flow units. Then for
each 1 ≤ i ≤ k, flow fh routes Di,h/(2m) flow units between the pairs inMi,h, and the flow fh causes

no congestion in Gh. We let T h be the set of all terminals participating in pairs in
⋃k
i=1Mi,h.

Step 2: constructing Q-J decompositions We say that a graph Gh is small iff |T h| ≤ 8∆, and
otherwise we say that it is large. The goal of this step is to find a Q-J decomposition for each large
graph Gh. In this step we fix some graph G′ = Gh, where Gh is a large graph, and we focus on finding
a Q-J decomposition for it. We denote T ′ = T h to simplify notation. Recall that |T ′| > 8∆.

Suppose we are given a Q-J decomposition (Q,J ) of G′, and let X = J ∪
(⋃

C∈Q π(C)
)
. We say

that this decomposition is non-trivial iff Q 6= ∅. We say that it is successful iff each cluster X ∈ X
contains at most ∆ terminals in T ′. Notice that in general, Lemma 15 ensures that every cluster
X ∈ X contains either at most ∆ or at least |T ′| − ∆ terminals from T ′, since for each X ∈ X ,
| outG′(X)| ≤ L. In order for a decomposition to be successful, we need to ensure that the latter case
never happens.

We will instead achieve a decomposition with slightly weaker properties. Let S∗ ⊆ V (G′) be any
vertex subset containing at most ∆ terminals, with | outG′(S

∗)| ≤ 2L (we do not require that G′[S∗]
is connected). Let GS∗ be the graph obtained from G′ as follows: if | outG′(S

∗)| ≤ L, then we set
GS∗ = G′ \ S∗. Otherwise, L < | outG′(S

∗)| ≤ 2L, and we obtain GS∗ from G′ by contracting the
vertices of S∗ into a super-node vS∗ . In this step, we show an efficient algorithm to find a set S∗ with
| outG′(S

∗)| ≤ 2L, together with a successful non-trivial Q-J decomposition for the graph GS∗ . The
algorithm is summarized in the next theorem, whose proof appears in Section 7.3.

Theorem 23 There is an efficient algorithm to find a cluster S∗ ⊆ V (G′) containing at most ∆
terminals, with | outG′(S

∗)| ≤ 2L, and a successful non-trivial Q-J decomposition for the graph GS∗.

For each graph Gh, if Gh is large, we invoke Theorem 23 to obtain set S∗h and (Qh,Jh), a Q-J

decomposition of graph GS∗h . We denote Xh = Jh ∪
(⋃

Q∈Qh π(Q)
)

, and X ′h = Xh ∪ {S∗h}. Otherwise,

if Gh is small, then we denote X ′h = {V (Gh)}. Finally, let X =
⋃r
h=1X ′h.

Consider some path P ∈ P ′. We say that this path is of type 1 iff it is completely contained in
some cluster X ∈ X . Assume now that the endpoints of P are contained in some cluster X ∈ X , but
P is not completely contained in cluster X. If X = S∗h for some 1 ≤ h ≤ r, then we say that P is of
type 2; otherwise, it is of type 3. All remaining paths are of type 4.
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We partition the demand pairs (Si, Ti) into four types. We say that a demand pair (Si, Ti) is of
type 1, iff at least 1/5 of the paths in P ′i are of type 1; we say that it is of type 2 iff at least 1/5 of the
paths in P ′i are of type 2; similarly, it is of type 3 iff at least 1/5 of the paths in P ′i are of type 3, and
otherwise it is of type 4. If a pair belongs to several types, we select one of the types for it arbitrarily.

Step 3: Routing the demands We route the demands of each one of the four types separately.

Type-1 demands It is easy to see that type-1 demands, together with the collection X of clusters,
define a split instance. This is since each cluster X ∈ X contains at most ∆ demand pairs, and
∆ ≤ D

640mαEDP·ln2 n
from Equation (1). If (Si, Ti) is a type-1 demand, then the number of type-1 paths

in P ′i is at least Dm/10. Therefore, we can apply Theorem 21, and obtain a collection R1 of paths
that cause congestion at most ηEDP in G, and for each type-1 pair (Si, Ti), at least D/poly log n paths
connect the vertices in Si to the vertices in Ti in R1 w.h.p.

Type-2 Demands We show that the set of type-2 demands, together with the collection of vertex
subsets Vh where Gh is large, define a valid split instance. Indeed, for each such subset Vh of vertices,
every type-2 path that is contained in Vh must contain an edge in outGh(S∗h). Since there are at most
2L such edges, and the paths in P cause congestion at most 2m, we get that the number of type-2
paths contained in each such subset Vh is bounded by 4mL < ∆ ≤ D

640mαEDP·log2 n
. For each type-2

demand pair (Si, Ti), there are at least Dm
10 type-2 paths connecting the vertices of Si to the vertices

of Ti in P ′i. Therefore, we can apply Theorem 21, and obtain a collection R2 of paths that cause
congestion at most ηEDP in G, and for each type-2 demand pair (Si, Ti), at least D/poly log n paths
connect the vertices in Si to the vertices in Ti in R2 w.h.p.

Type-3 Demands Let X ∈ X \ {S∗1 , . . . , S∗r}, and consider the set P(X) of type-3 paths whose
both endpoints belong to X. Assume w.l.o.g. that X ⊆ Vh. Since | outGh(X)| ≤ 2L, |P(X)| ≤ 4Lm
must hold. Recall that Gh[X] is a connected graph if X 6∈ {S∗1 , . . . , S∗r}. Let M(X) be the collection
of pairs of endpoints of the paths in P(X). We select one pair (s, t) ∈ M(X) uniformly at random,
and we connect s to t by any path contained in G[X]. Let R3 be the set of all such resulting paths.
Using the same arguments as in Theorem 21, it is easy to see that w.h.p. every type-3 demand pair
(Si, Ti) has at least D/poly log n paths connecting the vertices of Si to the vertices of Ti in R3, since
4mL < D

16 log2 n
.

Type-4 Demands Let (Si, Ti) be any type-4 demand, and let P4
i ⊆ P ′i be the subset of type-4 paths

for (Si, Ti). Recall that |P4
i | ≥ Dm/5. For each 1 ≤ h ≤ r, let P4

i (h) ⊆ P4
i be the subset of paths

contained in the graph Gh. We say that pair (Si, Ti) is light for Gh iff

|P4
i (h)| < max

{
16mLαgoodcgood,Ω(L2 log11 n)

}
.

Otherwise, we say that it is heavy for Gh. We say that a demand pair (Si, Ti) is light iff the total
number of paths in sets P4

i (h), where (Si, Ti) is light for Gh is at least Dm/10. Otherwise, we say
that it is heavy.

Let (Si, Ti) be any demand pair, and let P be any type-4 path connecting a vertex of Si to a vertex
of Ti. Assume w.l.o.g. that P is contained in Gh for some 1 ≤ h ≤ r. We say that P is a light path if
(Si, Ti) is light for Gh, and we say that it is a heavy path otherwise.

We now construct two canonical instances. The first instance consists of light (Si, Ti) demand pairs
of type 4, and their corresponding light type-4 paths in P ′i. It is easy to see that this defines a split in-
stance for the collection of vertex subsets Vh, where Gh is large. This is since for each light pair (Si, Ti),
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for each subset Vh where (Si, Ti) is light for Gh, |P4
i (h)| < max

{
16mLαgoodcgood,Ω(L2 log11 n

}
≤ ∆ ≤

D
640mαEDP·ln2 n

. Therefore, we can use Theorem 21 to find a collection R4 of paths that cause congestion

at most ηEDP, and for each light type-4 pair (Si, Ti), at least D/poly log n paths connect the vertices
of Si to the vertices of Ti in R4 w.h.p.

Finally, consider some heavy type-4 pair (Si, Ti). Let P ′′i ⊆ P ′i be the set of all heavy type-4 paths
in P ′i, and let M′′i be the set of pairs of their endpoints. Recall that |M′′i | ≥ Dm/10, and the paths
in P ′′i cause congestion at most 2m in G. For each 1 ≤ h ≤ r, where Gh is large, let P ′′i (h) ⊆ P ′′i be
the subset of paths contained in Gh, and let M′′i (h) be the set of their endpoints.

Consider some large graph Gh, and consider the sets (S′i, T
′
i ) of demands for 1 ≤ i ≤ k, where

S′i contains the first endpoint and T ′i contains the last endpoint of every path in P ′′i (h). Then the
Q-J decomposition that we have computed in Step 2 is a good decomposition for graph G′S∗h

, where

G′ = Gh, for the set (S′1, T
′
1), . . . , (S′k, T

′
k) of demands. Therefore, we can apply Theorem 22 to find

a collection R5(h) of paths in graph G′S∗h
that cause congestion at most cgood in G′S∗h

, and for each

1 ≤ i ≤ k, at least b |P
′′
i (h)|

2mαgood
c > 4Lcgood paths connect vertices of Si to vertices of Ti in R5(h). Observe

however that it is possible that G′S∗h
is obtained from Gh by contracting the vertices of S∗h into a

supernode vh, and it is possible that some paths in R5(h) contain the vertex vh. However, since the
degree of vh is bounded by 2L, and the congestion due to paths in R5(h) is at most cgood, there are
at most 2Lcgood such paths in R5(h). We simply remove all such paths from R5(h). Since for each
1 ≤ i ≤ k′, R5(h) contains more than 4Lcgood paths connecting Si to Ti, we delete at most half the
paths connecting each pair (Si, Ti) in set R5(h)

Let R5 =
⋃
hR5(h). Then for each heavy type-4 pair (Si, Ti), at least Dm

40mαgood
= D

poly logn paths

connect Si to Ti in R5, since we are guaranteed that for all h, either Di(h) = 0, or Di(h) ≥ 2mαgood.
The congestion due to paths in R5 is bounded by cgood.

Our final solution is P∗ =
⋃5
j=1Rj . From the above discussion, for every pair (Si, Ti), set P∗

contains at least D/poly log n paths connecting Si to Ti, and the congestion due to P∗ is bounded by
a constant.

7.3 Proof of Theorem 23

Our first step is to find an initial critical cluster Q0 in graph G′, that will be used to initialize the set
Q0, that we use as input to Theorem 10 in order to find a non-trivial Q-J decomposition. We start
by finding some large cluster S in graph G′ that has the bandwidth property and then use Lemma 1
to find a critical cluster Q0 ⊆ S. The next claim is formulated for a slightly more general setting, in
which we will use it later.

Claim 6 Let G be any graph, and T̃ be any set of terminals in G with |T̃ | ≥ 4∆, such that for any
partition (A,B) of the vertices of G with |EG(A,B)| ≤ L, either A or B contain at most ∆ terminals.
Then there is an efficient algorithm to find a large cluster S in G that has the bandwidth property.

Proof: We say that a cut (A,B) of V (G) is balanced, iff |T̃ ∩ A|, |T̃ ∩ B| > ∆. We start with some
arbitrary balanced cut (A,B), and assume w.l.o.g. that |T̃ ∩A| ≤ |T̃ ∩B|. We then perform a number
of iterations. In each iteration, we start with a balanced cut (A,B), where |T̃ ∩A| ≤ |T̃ ∩B|. At the
end of the iteration, we either declare that B is a large cluster with the bandwidth property, or find
another balanced cut (A′, B′) with |EG(A′, B′)| < |EG(A,B)|. Therefore, after |E(G)| iterations, the
algorithm must terminate with a large cluster that has the bandwidth property.

We now describe an execution of an iteration. We start with a balanced cut (A,B). Denote
TA = T̃ ∩A and TB = T̃ ∩B, and recall that |TA| ≤ |TB|. Since the cut is balanced, and |TA|, |TB| > ∆,
|EG(A,B)| ≥ L must hold, so B is a large cluster.
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We next run the algorithm AARV on the instance of the sparsest cut problem defined by the graph
G[B], where the set of the terminals is the edges of outG(B). If the output is a cut whose sparsity is
greater than 1

2 , then we are guaranteed that B has the bandwidth property, so we output B. Assume

now that the algorithm produces a cut (X,Y ) whose sparsity is less than 1
2 . Let TX = T̃ ∩ X and

TY = T̃ ∩ Y , and assume w.l.o.g. that |T̃X | ≤ |T̃Y |. Let (A′, B′) be a new partition of V (G), where
A′ = A ∪X, and B′ = Y . It is easy to see that (A′, B′) remains a balanced cut, since |T̃ | ≥ 4∆. It
now only remains to show that |EG(A′, B′)| < |EG(A,B)|.

Indeed, |EG(A′, B′)| = |EG(X,Y )| + |EG(A, Y )|. Since the sparsity of cut (X,Y ) is less than 1
2 ,

|EG(X,Y )| < | outG(X)∩outG(B)|
2 . Therefore,

|EG(A′, B′)| ≤ | outG(X) ∩ outG(B)|
2

+ |EG(A, Y )| < |EG(A,X)|+ |EG(A, Y )| = |EG(A,B)|.

We can now use Lemma 1 to find a critical cluster Q0 ⊆ S, where S is the large cluster returned
by Claim 6. We set Q0 = {Q0}, and use Theorem 10 to find a non-trivial Q-J decomposition
(Q,J ) of graph G′ and set T ′ of terminals. If this decomposition is successful, then we are done.
Assume therefore that some cluster X ∈ X contains at least |T ′| − ∆ terminals of T ′. Notice that
| outG′(X)| ≤ L must hold, as X is a small cluster.

We now perform a number of iterations. In each iteration, we start with a cluster S∗ ⊆ V (G′), with
| outG′(S

∗)| ≤ 2L, that contains at most ∆ terminals of T ′ (for the first iteration, S∗ = V (G′) \X).
The output of the iteration is either a successful non-trivial Q-J decomposition of GS∗ , or a new
cluster S′ containing at most ∆ terminals, with | outG′(S

′)| ≤ 2L, such that |S′| > |S∗|. In the latter
case we replace S∗ with S′ and continue. Clearly, after |V (G′)| iterations, we will find the desired
cluster S∗ together with a successful Q-J decomposition for GS∗ .

We now describe an iteration. Let S∗ be the current cluster, and assume first that | outG′(S
∗)| ≤ L.

Recall that in this case, GS∗ = G′\S∗. Consider any partition (A,B) of GS∗ , such that |EGS∗ (A,B)| ≤
L, and assume w.l.o.g. that A contains fewer terminals than B. Then |EG′(A,B)| ≤ 2L, and so by the
properties of Lemma 15, A contains at most ∆ terminals. Therefore, for any partition (A,B) of the
vertices of GS∗ , where |EGS∗ (A,B)| ≤ L, either A or B will contain at most ∆ terminals. Moreover,
|T ′ \ S∗| ≥ 4∆, since S∗ contains at most ∆ terminals and |T ′| > 8∆. We can now apply Claim 6 to
graph G = GS∗ and a set T̃ = T ′ \ S∗ of terminals, to find a large cluster S in GS∗ . We then find
a critical cluster Q0 ⊆ S using Lemma 1, set Q0 = {Q0}, and use Theorem 10 to find a non-trivial
Q-J decomposition (Q,J ) of GS∗ . If the decomposition is successful, then we are done. Otherwise,
there is a cluster X ∈ X containing more than ∆ terminals. Since | outGS∗ (X)| ≤ L, | outG′(X)| ≤ 2L
must hold, so from Lemma 15, X contains at least |T ′| −∆ terminals. Let V ′ = V (GS∗) \X. Then
| outGS∗ (V

′)| ≤ L, so | outG′(V
′ ∪ S∗)| ≤ 2L, and moreover V ′ ∪ S∗ contain at most ∆ terminals. We

then update S∗ to be S∗ ∪ V ′, and continue to the next iteration.
Assume now that | outG′(S

∗)| > L. Recall that in this case GS∗ is obtained from G′ by contracting
the vertices of S∗ into a super-node vS∗ . Since | outG′(S

∗)| > L, node vS∗ is a critical cluster for GS∗ .
We then set Q0 = {{vS∗}}, and apply Theorem 10 to compute a Q-J decomposition of GS∗ . If the
decomposition is successful, then we are done. Otherwise, we will find a small cluster X in graph GS∗ ,
containing more than ∆ terminals. Moreover, since {vS∗} is a critical cluster in Q, vertex vS∗ does not
belong to X. Therefore, X is also a small cluster in the graph G′, and from Lemma 15, X contains at
least |T ′| −∆ terminals. Let V ′ be the set of all vertices of graph G′ that do not belong to X. Then
we have that S∗ ⊆ V ′, V ′ contains at most ∆ terminals, and | outG′(V

′)| ≤ L. We are also guaranteed
that S∗ 6= V ′, since | outG′(V

′)| ≤ L, while | outG′(S
∗)| > L. We now replace S∗ with V ′ and continue

to the next iteration. This completes the proof of Theorem 23.
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A Gaps Between Fractional and Integral group-ICF

We start by showing that if no congestion is allowed, then the ratio between λOPT - the optimal
fractional solution and λ∗ - the optimal integral solution can be as large as Ω(

√
n) for group-ICF, even

if k = 2.
Our gap example is a slight modification of the D×D grid. We start from a grid G with V (G) =

{v(i, j)|(i, j) ∈ [D]× [D]}, where v(i, j) denotes the vertex on the ith row and jth column. We add
new sets S1 = {s1, . . . , sD}, T1 = {t1, . . . , tD}, S2 = {s′1, . . . , s′D} and T2 = {t′1, . . . , t′D} of vertices (see
Figure 1). For each 1 ≤ j ≤ D, we connect sj to v(j, 1), v(j,D) to tj , v(1, j) to s′j , and v(D, j) to t′j .
Finally, for each i, j ∈ [D], we replace vertex v(i, j) by a gadget that is shown in the figure. Denote
the resulting graph by G′.

Figure 1: The gap example construction

The fractional solution can send D/2 flow units from Si to Ti for i ∈ {1, 2} in G′, where for each
j, sj sends a 1

2 -flow unit to tj using the paths corresponding to the horizontal grid lines, and s′j sends

a 1
2 -flow unit to t′j , using the paths corresponding to the vertical grid lines. It is easy to see that the

value of the integral solution is 0: Assume that an integral solution P contains a path P1 connecting a
vertex of S1 to a vertex of T1, and a path P2 connecting a vertex of S2 to a vertex of T2. Consider the
corresponding paths P ′1, P

′
2 in the D×D grid. Then paths P ′1 and P ′2 must cross at some vertex v(i, j)

of the grid. But then P1 and P2 must share an edge from the gadget corresponding to v(i, j). Since
the number of vertices in G′ is n = O(D2), this shows a gap of Ω(

√
n) between the optimal fractional

and the optimal integral solutions.
Next, we show a gap example when congestion is allowed. Let c be a constant and D be a

parameter. We show an instance where we can fractionally send D = Θ(n1/(2c)) flow units between
each demand pair (Si, Ti), while any integral solution containing at least one path for each (Si, Ti) will
cause congestion at least 2c.

Our construction is iterative. An input to iteration j is a partition Ij−1 of the interval [0, 1] of the
real line into (2Dc)j−1 sub-intervals, that we call level-(j − 1) intervals. At the beginning, I0 consists
of a single level-0 interval [0, 1]. An iteration is executed as follows. Let I ∈ Ij−1 be any level-(j − 1)
interval, and let `, r be its left and right endpoints, respectively. We subdivide interval I into 2cD equal-
length segments by adding 2cD+1 new terminals {s1(I), t1(I), s2(I), t2(I), · · · , scD(I), tcD(I), scD+1(I)},
corresponding to points on the real line, where ` = s1(I) < t1(I) < . . . < scD(I) < tcD(I) = r. We
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then define a new demand (S(I), T (I)), where S(I) = {sh(I)}cD+1
h=1 , T (I) = {th(I)}cDh=1. Each of the

new sub-intervals of I becomes a level-j interval, and serves as the input to the next iteration.
The final construction is the line graph G obtained after 2c iterations. Notice that |V (G)| =

(2cD)2c + 1, and the number of the demand pairs is k =
∑2c−1

j=0 (2cD)j = Θ((2cD)2c−1).
In the fractional solution, for each 1 ≤ j ≤ 2c, for each level-(j − 1) interval I, each sink terminal

th(I) receives 1/(2c) flow units from each of the two source terminals to its right and to its left. Thus,
we send 1

2c · 2cD = D flow units between the vertices of S(I) and the vertices of T (I). The congestion
of this fractional solution is 1, since each edge is contained in at most one interval per level, and we
have 2c levels.

Consider now any integral solution that contains at least one path connecting every demand pair
(S(I), T (I)). We show that the congestion of this solution is 2c. Let I0 be the unique level-0 interval
[0, 1], and consider the path P1 connecting some terminal in S(I0) to some terminal in T (I0). Then
path P must contain some level-1 interval I1. We then consider the path P2 connecting some terminal
of S(I1) to some terminal of T (I1). This path in turn must contain some level-2 interval I2. We
continue like this until we reach level (2c), thus constructing a collection I1, . . . , I2c of nested intervals.
Each such interval is contained in a distinct path that the solution uses. Therefore, the congestion of
the solution is at least 2c.

B Proof of Theorem 6

The main difference of this well-linked decomposition from the standard one is that it is “one-shot”:
given a current set S of vertices, we iteratively find a subset R ⊆ S, where R is well-linked itself, add
R to the partition W, update S to be S \ R, and then continue with the updated set S. Unlike the
standard well-linked decompositions, we do not recurse inside the set R, which is guaranteed to be
well-linked. We will still be able to bound the number of partition edges

∑
R∈W | out(R)| in terms of

| out(S)| as before, and moreover construct the tendrils connecting every edge in
⋃
R∈W out(R) to the

edges of out(S) with constant congestion.
We start with some definitions. We assume that we are given a graph G, and a subset S ⊆ V (G),

with | out(S)| = k′. Given any integer r, let α(r) = 1
10

(
1− 1

log k′

)log r
. Notice that for 1 ≤ r ≤ k′,

1
20e ≤ α(r) ≤ 1

10 .

Definition 3 Let R be any subset of vertices of S, and let (X,Y ) be any partition of R, with TX =
out(R) ∩ out(X), TY = out(R) ∩ out(Y ), and |TX | ≤ |TY |. We say that X is a sparse cut for R, if

|EG(X,Y )| < α(r)|TX |,

where r = |TX |.

Observe that if X is a sparse cut for S, and Y = S \X, then | out(X)|, | out(Y )| ≤ | out(S)|. Notice
also that since α(r) ≥ 1

20e , if set S has no sparse cuts, then it is 1
20e -well-linked.

We now proceed as follows. First, we obtain a non-constructive well-linked decomposition, that
gives slightly weaker guarantees. In particular, it does not ensure that the small clusters are αS-
well-linked. We then turn this decomposition into a constructive one, while slightly weakening its
parameters. Finally, we show an algorithm, that improves the parameters of the decomposition, by
recursively applying it to some of the clusters.

B.1 Non-constructive decomposition

We show an algorithm to construct the decomposition, whose running time is exponential in k′. We
later turn this algorithm into an efficient one, with slightly worse parameters. We note that in the
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current section we do not ensure that every small cluster is αS-well linked, but we obtain this guarantee
in our final decomposition. The decomposition algorithm works as follows.

• Start with W = ∅, S′ = S.

• While S′ contains any sparse cut:

– Let X be a sparse cut minimizing |TX |; if there are several such cuts, choose one minimizing
the number of vertices |X|.

– Add X to W and set S′ := S′ \X.

• Add S′ to W

We now proceed to analyze the algorithm. First, we show that all sets added toW are well-linked,
in the next lemma.

Lemma 16 Every set added to W is 1
80e·log k′ -well linked.

Proof: First, the last set added to W must be 1
20e -well-linked, since S′ does not contain any sparse

cuts at this point.
Consider now some iteration of the algorithm. Let S′ be the current set, X the sparse cut we have

selected, and Y = S′ \X. We denote TX = out(X) ∩ out(S′), TY = out(Y ) ∩ out(S′), Γ = EG(X,Y ),
r = |TX |, and recall that |TX | ≤ |TY |, and |Γ| < r · α(r).

ΓTX
TY

Figure 2: Illustration for Lemma 16

We now show that X is 1
80e log k′ - well linked. Let (A,B) be any partition of X. We can assume

that A and B are not sparse cuts for S′: otherwise, we should have added A or B to W instead of X.
The following claim will then finish the proof.

Claim 7 If X is a sparse cut for S′, (A,B) is a partition of X, and A,B are not sparse cuts for S′,
then

|E(A,B)| ≥ 1

80e · log k′
min {| out(A) ∩ out(X)|, | out(B) ∩ out(X)|} .

Proof: Assume otherwise. We denote T ′X = TX ∩ out(A), T ′′X = TX ∩ out(B), Γ′ = Γ ∩ out(A),
Γ′′ = Γ ∩ out(B), and we assume w.l.o.g. that |T ′X | ≤ |T ′′X | (notice that it is possible that T ′X = ∅).
Let E′ = E(A,B), |T ′X | = r′, and |T ′′X | = r′′ (see Figure 3).

Since B is not sparse for S′, |E′| + |Γ′′| ≥ r′′ · α(r′′), and equivalently, |Γ′′| ≥ r′′ · α(r′′) − |E′| ≥
r′′α(r)− |E′| (since r′′ ≤ r and so α(r′′) ≥ α(r)).
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Figure 3: Illustration for Claim 7

On the other hand, since X is a sparse cut for S′, |Γ′|+|Γ′′| < r ·α(r), so |Γ′| < r′α(r)+|E′|. Notice
that if T ′X = ∅, then |Γ′| < |E′| must hold, contradicting the assumption that (A,B) is a violating cut.
Therefore, we assume from now on that T ′X 6= ∅.

Recall that r′ ≤ r/2, and so log r′ ≤ log r − 1. Therefore,

α(r′) =
1

10

(
1− 1

log k′

)log r′

≥ 1

10

(
1− 1

log k′

)log r−1

= α(r)/

(
1− 1

log k′

)
So α(r) ≤

(
1− 1

log k′

)
· α(r′). We therefore get that:

|Γ′| < r′α(r′) ·
(

1− 1

log k′

)
+ |E′| (2)

Since A is not a sparse cut for S′, |E′|+ |Γ′| ≥ r′ · α(r′), and |Γ′| ≥ r′ · α(r′)− |E′|.
Combining this with Equation (2), we get that

2|E′|+ r′α(r′) ·
(

1− 1

log k′

)
> r′ · α(r′),

and rearranging the sides:

|E′| > r′α(r′)

2 log k′
(3)

Substituting this in Equation (2), we get that:

|Γ′| < r′α(r′) ·
(

1− 1

log k′

)
+ |E′| < r′α(r′) + |E′| < 3|E′| log k′

and so

|E′| > |Γ′|
3 log k′

(4)

Combining Equations (3) and (4), we get that

|E′| > |Γ′|
6 log k′

+
r′α(r′)

4 log k′
>
|Γ′|+ r′

80e · log k′
.

We conclude that

|E(A,B)| ≥ 1

80e · log k′
| out(A) ∩ out(X)|,

a contradiction.
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Constructing the tendrils The next lemma will be useful in constructing the tendrils.

Lemma 17 Let X be any sparse cut added toW during the execution of the algorithm, TX = out(X)∩
out(S′), where S′ is the current set, and Γ = E(X,S′ \X). Then there is a flow F in G[X] with the
following properties:

• Each edge in Γ sends one flow unit.

• Each edge in TX receives 1/10 flow unit.

• Congestion at most 1.

Proof: We set up the following single source-sink network. Start with graph G, and for each edge
e ∈ out(X), subdivide e by a vertex te. Let H be the sub-graph of the resulting graph induced by
X ∪ {te | e ∈ outG(X)}. Unify all vertices te for e ∈ TX into a source s, and unify all vertices te with
e ∈ Γ into a sink t. The capacities of all edges are unit, except for the edges adjacent to the source,
whose capacities are 1/10. Let H ′ denote the resulting flow network. The existence of the required
flow in G[X] is equivalent to the existence of an s-t flow of value |Γ| in H ′.

Assume for contradiction that such flow does not exist. Then there is a cut (A,B) in H ′ with s ∈ A,
t ∈ B, and |E(A,B)| < |Γ|. Let T1 = E(A,B) ∩ TX , T2 = TX \ T1, and similarly, Γ1 = E(A,B) ∩ Γ,
Γ2 = Γ \ Γ1. Let E′ = E(A,B) \ (Γ1 ∪ T1).

E�

A

BT1

T2
Γ1

Γ2

Figure 4: Illustration for Lemma 17

We then have that |T1|/10 + |Γ1|+ |E′| < |Γ|. We claim that (A \ {s}) is a sparse cut for S′, and
so it should have been chosen instead of X. Indeed, since |T1|/10 < |Γ|, and |TX | ≥ 10|Γ|, T2 6= ∅. Let
|T1| = r′, |T2| = r′′. In order to prove that (A \ {s}) is a sparse cut, it is enough to prove that:

|E′|+ |Γ1| < r′′α(r′′).

Recall that |E′| + |Γ1| < |Γ| − r′/10 < rα(r) − r′/10, since |Γ| < r · α(r), because X is sparse for
S′. Since α(r) ≤ 1

10 , we get that r′/10 ≥ r′α(r). We conclude that |E′| + |Γ1| < rα(r) − r′α(r) =
r′′α(r) ≤ r′′α(r′′), a contradiction.

Corollary 2 LetW be the final partition of S produced by the algorithm, and let E∗ =
(⋃

R∈W out(R)
)
\

out(S) be the set of the new edges of the partition. Then there is a flow F : E∗  out(S) in graph
G[S] ∪ out(S), where each edge in E∗ sends one flow unit, each edge in out(S) receives at most 0.2
flow units, and the total congestion is at most 1.2.

Proof: For each edge e ∈ E∗ ∪ out(S), we will define a flow Fe, connecting e to the edges in out(S),
and the final flow F will be the union of these flows over all edges e ∈ E∗. At the beginning, each
edge e ∈ out(S) sends one flow unit to itself.

We now follow the decomposition algorithm, and maintain the following invariant: at each step
of the algorithm, for each edge e ∈

(⋃
R∈W out(R)

)
, the flow Fe is already defined. In particular, if
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S′ is the current set, then for each edge e ∈ out(S′), the flow Fe is already defined. Consider a step
of the algorithm, where we find a sparse cut X for S′, and add X to W. Let Γ = E(X,S′ \X), and
let TX = out(X) ∩ out(S′). From Lemma 17, there is a flow F1 : Γ  TX , where each edge e ∈ Γ
sends one flow unit, each edge in TX receives at most 0.1 flow unit, the congestion is 1, and the flow
is contained in G[X]. Consider some edge e ∈ Γ. Flow Fe is defined as follows: we use all flow-paths
originating in e in F1. For each such flow-path P , if e′ ∈ TX is the other endpoint of P , then we
concatenate P with Fe′ , scaled down by factor c(e′) ≤ 0.1, where c(e′) is the total flow that edge e′

receives in F1. Notice that Fe is a valid unit flow from e to out(S).
This completes the description of the flow F . In order to bound the amount of flow that each edge

e ∈ out(S) receives, notice that this flow forms a geometric progression: namely, if E1 is the set of
edges that send flow directly to e, E2 is the set of edges that send flow directly to edges of E1, and so
on, then the total flow that e receives from E1 is at most 0.1, the total flow that it receives from E2

is at most 0.01 and so on. Therefore, the total flow that every edge in out(S) receives is bounded by
0.2. Congestion on edges is bounded by 1.2 similarly.

The next corollary follows from Corollary 2 and the integrality of flow.

Corollary 3 There is a collection N = {τe | e ∈ E∗} of paths (called tendrils) in graph G[S], where
each path τe connects e to some edge in out(S), the total congestion caused by path in N is at most 2,
and each edge in S serves as an endpoint of at most one tendril.

B.2 Constructive Version

In order to obtain an efficient algorithm for finding the decomposition, we use an approximation
algorithm AARV for the Sparsest Cut problem. As before, we start with W = ∅, and S′ = S. We then
perform a number of iterations, which are executed as follows. We set up an instance of the sparsest
cut problem on graph G[S′], with the set out(S′) of edges acting as terminals (imagine placing a
terminal te on each edge e ∈ out(S′)). We then apply algorithm AARV to the resulting instance of
the sparsest cut problem. Let (X,Y ) be the output of algorithm AARV, and assume w.l.o.g. that
| out(X)∩out(S′)| ≤ | out(Y )∩out(S′)|. If |E(X,Y )| ≥ 1

20e | out(A)∩out(S′)|, then we are guaranteed
that set S′ is 1

20e·αARV(k′) -well linked. In this case, we simply add S′ to W, and finish the algorithm.

Assume now that |E(X,Y )| < 1
20e | out(X) ∩ out(S′)|. Clearly, this means that X is a sparse cut

for S′. Let TX = out(X) ∩ out(S′), and Γ = E(X,Y ). We say that a flow F : Γ  TX is a good
flow iff every edge in Γ sends one flow unit, every edge in TX receives at most 0.1 flow units, the
flow is contained in G[X], and it causes congestion at most 1. If we are to add X to W, we would
like to ensure that X is well-linked, and a good flow F exists for X. In the next theorem we show
that if this is not the case, then we can find another sparse cut A ⊆ X for S′, such that either
| out(A) ∩ out(S′)| < | out(X) ∩ out(S′)|, or | out(A) ∩ out(S′)| = | out(X) ∩ out(S′)| and |A| < |X|.

Lemma 18 Assume that X is a sparse cut for S′. Then either X is 1
80e·log k′·αARV(k′) -well-linked and

has a good flow F , or we can efficiently find another sparse cut A ⊆ X for S′, such that either
| out(A) ∩ out(S′)| < | out(X) ∩ out(S′)|, or | out(A) ∩ out(S′)| = | out(X) ∩ out(S′)| and |A| < |X|.

We prove the lemma below, but we first complete the description of the algorithm. Let αW (k′) =
1

80e·log k′αARV(k′) . Once we find a sparse cut X for S′, we apply Lemma 18 to X. If the outcome is that

X is well-linked and has a good flow, then we simply add X to W, set S′ := S′ \X, and continue to
the next iteration of the decomposition. Otherwise, if we have found a sparse cut A ⊆ X as above,
then we replace X by A, and repeat this step again. We continue applying Lemma 18 to the current
set X, until we obtain a set that is αW (k′)-well-linked and contains a good flow. We then add X to
W. Since at every step we are guaranteed that either |TX | decreases, or |TX | stays the same but |X|
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decreases, we are guaranteed that after at most k′n applications of Lemma 18 we will obtain a set X
that can be added to W. We now give a proof of Lemma 18.

Proof: [of Lemma 18] The proof consists of two steps. First, we try to find a good flow from Γ to
TX exactly as in Lemma 17. We build a flow network H ′ exactly as in the proof of Lemma 17. If
such flow does not exist, then we obtain a cut (A,B) as before. From the proof of Lemma 18, in
this case A is a sparse cut for S′, and moreover either | out(A) ∩ out(S′)| < | out(X) ∩ out(S′)|, or
| out(A) ∩ out(S′)| = | out(X) ∩ out(S′)| and |A| < |X|. So if X does not contain a good flow, we can
return a cut A as required. If X contains a good flow, then we perform the following step.

We run the algorithm AARV on the graph G[X], where the edges of out(X) serve as terminals.
Let (A,B) be the resulting cut. If |E(A,B)| ≥ 1

80e·log k′ min {| out(A) ∩ out(X)|, | out(B) ∩ out(X)|},
then we are guaranteed that X is 1

80e·log k′·αARV(k′) -well-linked as required. Otherwise, from the proof

of Claim 7, either A or B must be a sparse cut for S′, satisfying the conditions of the lemma.
We summarize the algorithm, which we call from now on the basic well-linked decomposition, in

the next theorem.

Theorem 24 (Basic well-linked decomposition) There is an efficient algorithm, that, given a set
S of vertices, with | out(S)| = k′, produces a partition W of S with the following properties.

• For each set R ∈ W, | out(R)| ≤ k′ and R is αW (k′) = Ω
(
1/ log1.5 k′

)
-well-linked.

• Let E∗ =
(⋃

R∈W out(R)
)
\ out(S). Then there is a flow F : E∗  out(S), in G[S], where each

edge in E∗ sends one flow unit, each edge in out(S) receives at most 0.2 flow units, and the
congestion is at most 1.2.

As before, from the integrality of flow, we can build a set N = {τe | e ∈ E∗} of tendrils contained
in G[S], where each tendril τe connects edge e to some edge of out(S), each edge in out(S) participates
in at most one tendril, and the total congestion caused by N is at most 2.

Extended Well-Linked Decomposition

We would like to obtain a well-linked decomposition similar to Theorem 24 with one additional prop-
erty: if R ∈ W is a small cluster, then it is Ω(1/(log log n)1.5)-well-linked.

In order to achieve this, given a set S, we first perform a basic well-linked decomposition as
in Theorem 24. Let W be the resulting decomposition, E∗ =

(⋃
R∈W out(R)

)
\ out(S), and let

F : E∗  out(S) be the resulting flow.
For each small cluster R ∈ W, we then perform another round of basic well-linked decomposition

on the set R (notice that now k′ = | out(R)| ≤ L). LetWR be the resulting partition, E∗R the resulting
set of partition edges (excluding the edges of out(R)), and FR the resulting flow.

We build the final partition W ′ as follows. Start from W, and replace each small set R ∈ W
by the sets in WR. Let E∗∗ =

(⋃
R∈W ′ out(R)

)
\ out(S). We extend the flow F : E∗  out(S) to

flow F ′ : E∗∗  out(S) as follows. Consider a small set R ∈ W. Recall that we have defined a flow
FR : E∗R  out(R) inside R, where each edge in E∗R sends one flow unit, and each edge in out(R)
receives at most 0.2 flow units. We concatenate this flow with the flow originating from the edges of
out(R) in F (after scaling it appropriately, by the factor of at most 0.2). After we process all small sets
R ∈ W, we obtain the final flow F ′. Every edge in E∗∗ now sends one flow unit, every edge in out(S)
receives at most 0.4 flow units, and total congestion is at most 3. As before, from the integrality of
flow, we can build a set N = {τe | e ∈ E∗∗} of tendrils, where each tendril τe connects edge e to some
edge of out(S), each edge in out(S) participates in at most one tendril, and the total congestion caused
by N is at most 3. This concludes the proof of Theorem 6.
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C Proofs Omitted from Section 2

C.1 Proof of Lemma 2

If |S′| = 1, then clearly S′ is a critical cluster, so we stop the algorithm and return S′. We assume
from now on that |S′| > 1. Our algorithm consists of two steps. In the first step, we try to find a
large canonical cluster S′′ ⊆ S′ that has the bandwidth property. In the second step, we either find a
subset ES′′ ⊆ out(S′′) of L/4 edges, and a set PS′′ : ES′′  η∗ out(S) of paths as required, or compute
a new collection π′ of good clusters with W (π′) < W (π). We now turn to describe the two steps.

Step 1. We construct a partition π1 of the vertices of S′ into small clusters, as follows. Start with
π1 = {C ∈ π | C ⊆ S′}. Let S̃′ be the subset of vertices of S′ that do not belong to any cluster of π1.
If any vertex v ∈ S̃′ has a degree greater than L in graph G, then we set S′′ = {v} and proceed to
the second step (Clearly, S′′ is a large cluster with the bandwidth property). Assume now that every
vertex v ∈ S̃′ has degree at most L in G. We then add every vertex of S̃′ as a separate cluster to π1.

That is, the set of the new clusters that we add to π1 is
{
{v} | v ∈ S̃′

}
. Observe that π1 now defines

a partition of the vertices of S′ into small clusters that all have the bandwidth property.
Our next step is to establish whether (S′, π1) has the weight property. We construct the graph

HS′ , which is obtained from G[S′] by contracting every cluster C ∈ π1 into a super-node vC . We set
the weight of vC be w(vC) = | outG(C)|. We then run the algorithm AARV to find an approximate
sparsest cut (A,B) in graph HS′ .

If |EHS′ (A,B)| ≥ λ ·αARV(n) ·min
{∑

v∈Aw(v),
∑

v∈B w(v)
}

, then we are guaranteed that for every

partition (Ã, B̃) of the vertices of HS′ ,

|EHS′ (Ã, B̃)| ≥ λ ·min

∑
v∈Ã

w(v),
∑
v∈B̃

w(v)

 ,

and so the weight property holds for the current partition π1. We then return S′ as a critical
cluster, together with the partition π∗ = π1.

We assume from now on that |EHS′ (A,B)| < λ · αARV(n) · min
{∑

v∈Aw(v),
∑

v∈B w(v)
}

. Let A′

be the subset of vertices obtained from A, after we un-contract all clusters in π1, and let B′ be the set
obtained similarly from B. So (A′, B′) is a partition of S′. Denote TA = | outG(A′) ∩ outG(S′)|, and
TB = | outG(B′) ∩ outG(S′)|. Recall that there is a one-to-one correspondence between EHS′ (A,B)
and EG(A′, B′). We therefore do not distinguish between these two sets of edges and denote both of
them by Γ. We assume w.l.o.g. that |TA| ≤ |TB|. As observed before,

|Γ| ≤ λ · αARV(n) ·
∑
v∈A

w(v) (5)

On the other hand, from the bandwidth property of the cluster S′, we get that |Γ| ≥ αBW · |TA|,
and so | outG(A′)| = |Γ|+ |TA| ≤

(
1 + 1

αBW

)
· |Γ| ≤ 2

αBW
|Γ|.

Combining this with equation (5), we get that:∑
v∈A

w(v) ≥ |Γ|
λ · αARV(n)

≥ | outG(A′)| αBW

2λ · αARV(n)
≥ 4| outG(A′)| (6)

since λ = αBW
8αARV(n) .

We now construct a new graph H from graph G, as follows. First, we sub-divide every edge
e ∈ outG(A′) by a vertex ve, and we let T ′′ = {ve | e ∈ outG(A′)}. We then let H be the sub-graph
of G induced by A′ ∪ T ′′, after we contract all clusters C ∈ π that are contained in A′. Observe that
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H is identical to HS′ [A], except for the edges adjacent to the vertices in T ′′ that are added in graph
H. In particular, V (H) \ T ′ = A. We perform the extended well-linked decomposition of the set A of
vertices in graph H, using Theorem 6, obtaining a decomposition W ′. We now consider two cases.

Case 1: The first case happens if all clusters in W ′ are small. In this case, for each cluster R ∈ W ′,
let R′ be the set of vertices obtained from R after we un-contract all clusters in π. We run another
round of extended well-linked decomposition on each such cluster R′, obtaining a partition WR′ of
R′, and we let W∗ =

⋃
R∈W ′WR′ be the resulting partition of all vertices in A′. Observe that we

are guaranteed that every cluster in W∗ is small and has the bandwidth property. We obtain a new
good collection π′ of clusters from π, by first removing from π all clusters C ⊆ A′, and then adding
all clusters from W∗. Since

∑
C∈π1:
C⊆A′

| outG(C)| ≥ 4| outG(A′)|, while∑
C∈W∗

| out(C)| ≤
∑
R∈W ′

1.4| outH(R)| ≤ 1.96| outH(A)| = 1.96| outG(A′)|,

we are guaranteed that W (π′) < W (π). We then stop the algorithm and return π′.

Case 2: In the second case, there is at least one large cluster S̃ ∈ W ′. Let S′′ be the subset of
vertices obtained from S̃ after we un-contract every cluster C ∈ π1. Then S′′ ( S′ is a large canonical
cluster w.r.t. π. We claim that S′′ has the bandwidth property. Assume otherwise, and let (X,Y )
be a violating partition of S′′. Let TX = out(X) ∩ out(S′′), TY = out(Y ) ∩ out(S′′), E′ = EG(X,Y ),
and assume w.l.o.g. that |TX | ≤ |TY |. Since (X,Y ) is a violating partition, |E′| < αBW · |TX |. Let
π′′ ⊆ π be the collection of clusters contained in S′′. We now modify the partition (X,Y ) of S′′, so
that for every cluster C ∈ π′′, either C ⊆ X or C ⊆ Y holds. Consider any such cluster C ∈ π′′, and
let E′C = EG(C ∩X,C ∩ Y ). We partition the edges in outG(C) into four subsets, EX , EY , EXY , and
EY X , as follows. Let (u, v) ∈ outG(C) with u ∈ C. If u, v ∈ X, then e is added to EX ; if u, v ∈ Y ,
then e is added to EY ; if u ∈ X, v ∈ Y , then e is added to EXY ; otherwise it is added to EY X . If
|EX | + |EXY | ≤ |EY | + |EY X |, then we move all vertices of C to Y , and otherwise we move them to
X. Assume w.l.o.g. that |EX | + |EXY | ≤ |EY | + |EY X |, so we have moved the vertices of C to Y .
The only new edges added to the cut are the edges of EX , and since C is a small cluster with the
bandwidth property, |E′C | ≥ αS · |EX |. We charge the edges of E′C for the edges of EX , where the
charge to every edge of E′C is at most 1/αS .

Let (X ′, Y ′) be the final partition, obtained after all clusters C ∈ π′′ have been processed. Notice
that the vertices of T ′′ do not belong to any cluster C ∈ π′′, so the partition of T ′′ induced by (X ′, Y ′)
is the same as the partition induced by (X,Y ). From the above charging scheme, since in the original
partition, |EG(X,Y )| < αBW · |TX |, in the new partition |EG(X ′, Y ′)| ≤ 1

αS
|EG(X,Y )| < αW · |TX |,

since αBW = αS · αW . Finally, notice that partition (X ′, Y ′) of S′′ naturally defines a partition (X̃, Ỹ )
of S̃, where for each cluster C ∈ π′′, vC ∈ X̃ iff C ⊆ X ′. But then |EH(X̃, Ỹ )| = |EG(X ′, Y ′)| <
αW min

{
| outH(X̃) ∩ outH(S̃)|, | outH(Ỹ ) ∩ outH(S̃)|

}
, contradicting the fact that S̃ is αW -well-linked

in H. We conclude that S′′ has the bandwidth property.

Step 2. We now assume that we are given a large cluster S′′ ⊆ S′ that has the bandwidth property,
and S′′ is canonical for π. The goal of this step is to find a collection ES′′ ⊆ outG(S′′) of L/4 edges,
and the set PS′′ of paths as required. If we fail to find such a collection of paths, then we will compute
a new good collection π′ of clusters, such that W (π′) < W (π).

We set up the following flow network. Let S̃ be the set of vertices of Z, obtained from S′′ by
replacing every cluster C ∈ π with C ⊆ S′′, by the super-node vC . Start with the current contracted
graph Z, and contract all vertices of S̃ into the source s. Contract all vertices in T ′ (recall that these
are the vertices {ve | e ∈ out(S)}) into the sink t. Let N be the resulting flow network. We now try
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to find a flow F ′ of value L/4 from s to t in N . Assume first that such flow can be found. From the
integrality of flow, there is a set ES′′ ⊆ outG(S′′) of L/4 edges, and a set P ′ of L/4 edge-disjoint paths,
where each path connects a distinct edge of ES′′ to a distinct vertex of T ′ in graph Z, and the paths in
P ′ cause congestion 1 in Z. We now show how to find a flow F ∗ : ES′′  η∗ out(S) in graph G, where
each edge in out(S) receives at most one flow unit. The flow-paths in F ∗ will follow the paths in P ′,
except that we need to specify the routing inside the clusters C ∈ π. For each such cluster C, the set
P ′ of paths defines a set DC of integral 1-restricted demands on the edges of outG(C). Since each such
cluster C is αS-well-linked, and it is a small cluster, this set of demands can be routed inside C with
congestion at most 2βFCG(L)

αS
≤ η∗. From the integrality of flow, we can find a set P∗ : ES′′  η∗ out(S)

of paths in G[S \ S′′], where each edge in out(S) serves as an endpoint of at most one such path. We
return S′′, ES′′ and P∗ as our output.

Finally, assume that such flow does not exist. From the min-cut/max-flow theorem, we can find a
cut R in graph Z, with | out(R)| < L/4, and S̃ ⊆ R. Since S′′ is a large cluster,

∑
v∈R | outZ(v)| ≥ L.

Let R′ be the subset of vertices of G obtained by un-contracting all clusters C ∈ π that are contained
in R. We perform the extended well-linked decomposition of R′, using Theorem 6. Let W ′′ be
the resulting decomposition. Since | outZ(R)| < L/4, all clusters in W ′′ are small. We obtain a new
collection π′ of good clusters from π, by first removing all clusters contained in R′, and then adding the
clusters in W ′′. Since

∑
C∈W ′′ | outG(C)| ≤ 2| outG(R′)| < L/2, while

∑
v∈R | outZ(v)| ≥ | outG(S′′)| >

L, we are guaranteed that W (π′) < W (π).

C.2 Proof of Theorem 9

We build the following auxiliary graph G′. Start from graph G, and subdivide every edge e ∈ out(S)
by a terminal te. Let T ′ = {te | e ∈ outG(S)}. Graph G′ is the sub-graph of G induced by S ∪ T ′.
Instead of routing demands over the edges of out(S), we can now equivalently route pairs of terminals
in T ′, in graph G′.

Let T be any spanning tree of G′. We use the standard grouping technique to group the terminals
in T ′ along the tree T into groups of size at least Z and at most 3Z. Let U1, . . . , Ur denote these groups.
Let G′ be the resulting partition of the terminals in T ′. This partition defines the final partition G of
the edges in out(S). Assume now that we are given any (1,G)-restricted set D of demands on the set
out(S) of edges. Let D′ be the corresponding set of demands on the set T ′ of terminals. It is enough
to prove that the demands in D′ can be routed in graph G′ with congestion at most 721. We assume
w.l.o.g. that r is even, and that D′ = {(t1, t2), (t3, t4), . . . , (tr−1, tr)}, where for each 1 ≤ i ≤ r, ti ∈ Ui.

Our first step is to extend the set D′ of demands as follows. For each 1 ≤ i ≤ r, let U ′i ⊆ Ui be
any subset of exactly Z terminals. For each 1 ≤ j ≤ r/2, let Mj be any complete matching between

U ′2j−1 and U ′2j . The new set D+ of demands is D+ =
⋃r/2
j=1Mj .

Let π be the given partition of S into small sub-clusters, where each cluster C ∈ π is αS/3-well-
linked, and (S, π) has the weight property with parameter λ/3. We define another auxiliary graph H ′,
as follows. Start from graph G′, and contract every cluster C ∈ π into a super-node vC . The rest of
the proof consists of two steps. First, we show that the set D+ of demands can be fractionally routed
with small congestion on short paths in graph H ′. Next, we use the Lovasz Local Lemma to transform
this fractional routing into an integral routing of the set D′ of demands in graph G′.

Step 1: Routing on short paths in H ′

Definition 4 We say that a graph G = (V,E) is an α-expander, iff minX:|X|≤|V |/2

{
|E(X,X)|
|X|

}
≥ α

We will use the result of Leighton and Rao [LR99], who show that any demand that is routable
on an expander graph with no congestion, can also be routed on relatively short paths with small
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congestion. In order to use their result, we need to turn H ′ into a constant-degree expander. We do
so as follows.

Recall that the vertices of the graph H ′ are of two types: terminals of T ′, and super-nodes vC for
C ∈ π. Moreover, from the weight property, for any partition (A,B) of V (H ′),

|EH′(A,B)| ≥ λ

3
·min


∑
vC∈A:

C∈π

dH′(vC),
∑
vC∈B:

C∈π

dH′(vC)


We process the vertices vC of H ′ that correspond to the super-nodes one-by-one. Let v be any such

vertex, let d be its degree, and let e1, . . . , ed be the edges adjacent to v. We replace v with a degree-3
expander Xv on d vertices, whose expansion parameter is some constant α′. Each edge e1, . . . , ed now
connects to a distinct vertex of Xv. Let H ′′ denote the graph obtained after each super-node of H ′

has been processed. Notice that the maximum vertex degree in H ′′ is bounded by 4, T ′ ⊆ V (H ′′),
and any fractional routing of the set D+ of demands in graph H ′′ on paths of length at most ` gives
a routing of the same set of demands in H ′, with the same congestion, on paths of length at most `.
We next show that graph H ′′ is an α-expander, for α = λα′/12.

Claim 8 Graph H ′′ is an α-expander, for α = λα′/12.

Proof: Assume otherwise, and let (A,B) be a violating cut, that is, |EH′′(A,B)| < α ·min {|A|, |B|}.
Notice that for each terminal t ∈ T ′, there is exactly one vertex vt ∈ V (H ′′) adjacent to t, and we can
assume w.l.o.g. that both t and vt belong to the same set, A or B (otherwise t can be moved to the
other set, and the sparsity of the cut will only go down).

We use the cut (A,B) to define a partition (A′, B′), where A′, B′ 6= ∅, of the vertices of H ′, and

show that |EH′(A′, B′)| < λ
3 ·min

{∑
vC∈A′:
C∈π

dH′(vC),
∑

vC∈B′:
C∈π

dH′(vC)

}
, thus contradicting the weight

property of (S, π).
Partition (A′, B′) is defined as follows. For each terminal t ∈ T ′, if t ∈ A, then we add t to A′;

otherwise it is added to B′. For each super-node vC , if at least half the vertices of XvC belong to A,
then we add vC to A′; otherwise we add vC to B′.

We claim that |EH′(A′, B′)| ≤ |EH′′(A,B)|/α′. Indeed, consider any super-node vC ∈ V (H ′),
and consider the partition (AvC , BvC ) of the vertices of XvC defined by the partition (A,B), that is,
AvC = A ∩ V (XvC ), BvC = B ∩ V (XvC ). Assume w.l.o.g. that |AvC | ≤ |BvC |. Then the contribution
of the edges of XvC to EH′′(A,B) is at least α′ · |AvC |. After vertex vC is processed, we add at most
|AvC | edges to the cut. Therefore,

|EH′(A′, B′)| ≤
|EH′′(A,B)|

α′
≤ α

α′
·min {|A|, |B|} =

λ

12
min {|A|, |B|}

Assume w.l.o.g. that
∑

vC∈A′ dH′(vC) ≤
∑

vC∈B′ dH′(vC). Consider the set A of vertices of H ′′,
and let A1 ⊆ A be the subset of vertices, that belong to expanders XvC , where |V (XvC ) ∩ A| ≤
|V (XvC ) ∩ B|. Notice that from the expansion properties of graphs XvC , |EH′′(A,B)| ≥ α′|A1|, and

so |A1| ≤ |EH′′ (A,B)|
α′ ≤ α

α′ |A| ≤
|A|
8 . Each non-terminal vertex in A \ A1 contributes at least 1 to

the summation
∑

vC∈A′ dH′(vC), and for each terminal t ∈ T ′, its unique neighbor belongs to A, so

|T ′ ∩A| ≤ |A|/2, and |A \ (A1 ∪ T ′)| ≥ 3
8 |A|. Therefore,

∑
vC∈A′ dH′(vC) ≥ 3

8 |A|. We conclude that:

|EH′(A′, B′)| ≤
λ

12
|A| ≤ 2λ

9

∑
vC∈A′

dH′(vC) <
λ

3
·
∑
vC∈A′

dH′(vC)

contradicting the weight property of (S, π).
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The following theorem easily follows from the results of Leighton and Rao [LR99], and its proof
can be found in [Chu11].

Theorem 25 Let G be any n-vertex α-expander with maximum vertex degree Dmax, and let M be any
partial matching over the vertices of G. Then there is an efficient randomized algorithm that finds, for
every pair (u, v) ∈ M , a collection Pu,v of m = Θ(log n) paths of length O(Dmax log n/α) each, such
that the set P =

⋃
(u,v)∈M Pu,v of paths causes congestion O(log2 n/α) in G. The algorithm succeeds

with high probability.

We now apply Theorem 25 to the set D+ of demands in graph H ′′. For every pair (u, v) of
terminals with D+(u, v) = 1, we obtain a set P ′u,v of m = O(log n) paths in graph H ′′, of length

at most ` = O(log n/λ) = O(log3 n poly log log n) each, and the paths in
⋃

(u,v):D+(u,v)=1 P ′u,v cause

congestion at most η̃ = O(log2 n/λ) = O(log4 n poly log log n) in graph H ′′. As observed before, for
each pair (u, v) of terminals with D+(u, v) = 1, the set P ′u,v of paths in graph H ′′ gives a set Pu,v
of paths in graph H ′, connecting u to v, such that the length of each path in Pu,v is at most `. Let
P =

⋃
(u,v):D+(u,v)=1 Pu,v. Then the paths in P cause congestion at most η̃ in H ′. This concludes the

first step of the algorithm.

Step 2: Integral routing in G′ For each 1 ≤ j ≤ r/2, let Bj be the union of the sets of paths
Pu,v ⊆ P where u ∈ U2j−1, v ∈ U2j . We call the set Bj of paths a bundle.

Let c = 13. We set Z = 2η̃
1+ 2

c−1 ·z1+
2
c−1 ·`

1
c−1

m = O((log n)3+ 11
c−1 · poly log log n) = O(log4 n), where z

is the parameter from Corollary 1.
For each small cluster C ∈ π, let GC be the partition of the edges of outG(C) guaranteed by

Corollary 1. We will select one path from each bundle Bj , such that for each small cluster C ∈ π,
for each group U ∈ GC , at most c of the selected paths contain edges of U . We do so, using the
constructive version of the Lovasz Local Lemma by Moser and Tardos [MT10]. The next theorem
summarizes the symmetric version of the result of [MT10].

Theorem 26 ([MT10]) Let X be a finite set of mutually independent random variables in some
probability space. Let A be a finite set of bad events determined by these variables. For each event
A ∈ A, let vbl(A) ⊆ X be the unique minimal subset of variables determining A, and let Γ(A) ⊆ A
be a subset of bad events B, such that A 6= B, but vbl(A) ∩ vbl(B) 6= ∅. Assume further that for each
A ∈ A, |Γ(A)| ≤ D, Pr [A] ≤ p, and ep(D + 1) ≤ 1. Then there is an efficient randomized algorithm
that w.h.p. finds an assignment to the variables of X, such that none of the events in A holds.

For each bundle Bj , we randomly choose one of the paths Pj ∈ Bj . Let xj be the random variable
indicating which path has been chosen from Bj .

For each small cluster C ∈ π, for each group U ∈ GC , we define a bad event βC,U to be the
event that at least c of the chosen paths contain edges in U . The set vbl(βC,U ) contains all variables
xj , where at least one path in bundle Bj contains an edge of U . Since the set P of paths causes
congestion at most η̃ in H ′, and each group contains at most z edges, |vbl(βC,U )| ≤ η̃z. The number
of potential c-tuples of paths (where we take at most one path from each bundle) containing edges of
U is at most (η̃z)c, and each such c-tuple is selected with probability at most 1/(Zm)c. Therefore,

Pr [βC,U ] ≤
(
η̃z
Zm

)c
. We denote this probability by p.

For each bundle Bj , there are mZ paths in the bundle, each path contains ` edges, and for each
such edge e, there are most two bad events βC,U , βC′,U ′ , where e ∈ U and e ∈ U ′. Therefore, for each
bad event βC,U , |Γ(βC,U )| ≤ |vbl(βC,U )| · 2mZ` ≤ 2mZ`η̃z. We denote D = 2mZ`η̃z.

It now only remains to verify that e(D + 1) · p ≤ 1, or equivalently, e(2mZ`η̃z + 1) ·
(
η̃z
Zm

)c
≤ 1.

This is immediate from the choice of Z = 2η̃
1+ 2

c−1 ·z1+
2
c−1 ·`

1
c−1

m .
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Assume now that we have selected a collection
{
P1, . . . , Pr/2

}
of paths, such that none of the

bad events βC,U happens. Then for each small cluster C ∈ π, the set
{
P1, . . . , Pr/2

}
of paths define

a set DC of (c − 1,GC)-restricted demands, which can be routed inside C with congestion at most

60(c− 1) = 720 using Corollary 1. Let P ′ =
{
P ′1, . . . , P

′
r/2

}
denote the resulting set of paths in graph

G′. Then for each 1 ≤ j ≤ r/2, path P ′j connects some terminal t′2j−1 ∈ U2j−1′ to some terminal
t′2j ∈ U2j . Moreover, since every edge of H ′ belongs to some group U ∈ GC of some small cluster
C ∈ π, the total congestion caused by paths in P ′ is bounded by 720. Finally, we extend each path
P ′j by connecting t2j−1 to t′2j−1, and t′2j to t2j via the spanning tree T . Since each group U ∈ G′ is
associated with a sub-tree TU of T , and all these sub-trees are edge-disjoint, the resulting set of paths
gives an integral routing of the set D′ of demands in graph G′, with congestion at most 721. This
concludes the proof of Theorem 9.

D Proof of Theorem 11

Our first step is to construct a joined tendril graph H∗, whose construction is identical to the one
given by Andrews [And10], except that we use the new Q-J decomposition. The final graph H is
obtained by appropriately sampling the edges of H∗.

D.1 Joined Tendril Graph

Recall that we are given a set Q of Q-clusters, and a set J of J-clusters. We have defined Q∗ =⋃
Q∈QQ, EQ =

⋃
Q∈Q out(Q), and EJ =

(⋃
J∈J out(J)

)
\ EQ. Recall that we are also given a set

N =
{
τe | e ∈ EJ

}
of tendrils where path τe connects e to some edge in EQ, each edge in EQ is

an endpoint of at most one tendril, and the total congestion caused by the set N of tendrils is at
most 3. Moreover, the tendrils do not use edges whose both endpoints belong to Q∗. We define
E′ =

⋃
J∈J out(J), that is, E′ consists of edges in EJ and out(Q∗). We now extend the set N of

tendrils to include tendrils τ(e) for edges e ∈ out(Q∗), where for each such edge, τ(e) = (e). The
resulting set N contains a tendril τ(e) for each edge e ∈ E′, the total congestion due to the set N of
tendrils is at most 3, and each edge in out(Q∗) serves as an endpoint of at most two such tendrils. We
are now ready to define the graph H∗.

The vertices of graph H∗ correspond to the Q-clusters, V (H∗) = {vC | C ∈ Q}. The set of the
edges of H∗ consists of two subsets, E0 and E1. For each edge e = (u, u′) in G, where u ∈ C, u′ ∈ C ′
for a pair C,C ′ ∈ Q of distinct Q-clusters, we add the edge (vC , vC′) to E0. In order to define the
set E1 of edges, we consider the set J of J-clusters. For each J-cluster C ∈ J , we define a set EC of
edges, and we eventually set E1 =

⋃
C∈J E

C . The final set of edges of H∗ is E(H∗) = E0 ∪ E1.
Consider some J-cluster C ∈ J . We now define EC as follows. Let XC be a degree-3 α′-expander

on | out(C)| vertices, where α′ is some constant, and let fC : V (XC) → out(C) be an arbitrary
bijection, mapping each vertex of XC to an edge of out(C). For each edge e = (u, v) ∈ E(XC),
we define an edge e′ ∈ EC , as follows. Consider the edges e1 = fC(u), and e2 = fC(v), and their
tendrils τ(e1), τ(e2). Let h1, h2 ∈ Q∗ be the heads of these two tendrils, respectively, and assume that
h1 ∈ C1, h2 ∈ C2, where C1, C2 ∈ Q. If C1 6= C2, then we add an edge e′, connecting vC1 to vC2 , to set
EC . The following notation will be useful later. We denote p1(e′) = e1, and p2(e′) = e2 (the ordering
of these two vertices is chosen arbitrarily). We also denote by τ1(e′) = τ(e1), and τ2(e′) = τ(e2), and
refer to them as the first and the second tendrils of e′, respectively. Finally, we denote f ′(e′) = e.
Observe that each edge e′′ ∈ out(C) may serve as p1(e′) or p2(e′) for at most three edges e′ ∈ EC ,
since the degree of the expander XC is 3. Notice also that for each edge e ∈ E(XC), we add at most
one edge e′ to EC . We set E1 =

⋃
C∈J E

C , and the final set of edges of H∗ is E(H∗) = E0 ∪E1. For
consistency, for edges e ∈ E0, we define the first and the second tendril of e to be the edge e itself.
Let e ∈

⋃
J∈J out(J), and let τ(e) be its tendril. Assume that e = (u, v), where u ∈ C1, v ∈ C2.
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Notice that τ(e) may serve as the first or the second tendril of at most six edges in graph H∗: three
edges in EC1 (edges e′ for which p1(e′) = e, or p2(e′) = e), and three edges in EC2 . This completes
the definition of graph H∗. In the next theorem, we show that the cuts in graph H∗ are roughly at
least as high as their counterparts in graph G. The theorem and its proof are identical to the ones
in [And10]. We include the proof here for completeness.

Theorem 27 Let (A,B) be any cut in graph H∗. Then there is a cut (A′, B′) in graph G, such that
for each Q ∈ Q, if vQ ∈ A, then Q ⊆ A′, and if vQ ∈ B, then Q ⊆ B′. Moreover, |EG(A′, B′)| ≤
O(|EH∗(A,B)|).

Proof: We will call the vertices of A and B in H∗ red and blue, respectively. We will assign the
colors, red or blue, to the vertices of G, and then the cut (A′, B′) will be defined based on the colors
of vertices, where A′, B′ contain vertices whose colors are red and blue respectively.

For each critical cluster Q ∈ Q, if vQ is red, then we color all its vertices red, and otherwise we
color all its vertices blue. Now, consider some J-cluster J ∈ J . Recall that each edge e ∈ out(J) has
a tendril τ(e) associated with it, that connects e to some vertex in Q∗. This vertex is already colored
red or blue. If at least half the tendrils in set {τ(e) | e ∈ out(J)} have their head colored red, then we
color all vertices of J red; otherwise we color all vertices of J blue. This completes the definition of
the cut (A′, B′) of V (G).

We now show that |EG(A′, B′)| ≤ O(|EH∗(A,B)|), by defining a mapping from EG(A′, B′) to
EH∗(A,B), where the number of edges mapped to each edge of EH∗(A,B) is bounded by a constant.
We say that an edge of graph H∗ or of graph G is multi-colored iff one of its endpoints is red and
the other is blue. Consider some multi-colored edge e in graph G. Since the endpoints of this edge
have different colors, it connects vertices from two different clusters, C and C ′. If both clusters are
critical, then we map e to itself. We will ignore such edges from now on, and we let Ê denote the
remaining multi-colored edges. If exactly one of the two clusters (say C) is a J-cluster, and the other
one is a critical cluster, then we say that cluster C is responsible for the edge e. Assume now that
both clusters C,C ′ are J-clusters, where C is red and C ′ is blue. If the head of τ(e) is red, then we
say that C ′ is responsible for e; otherwise we say that C is responsible for e.

So far we have identified, for each edge e ∈ Ê, a cluster C(e) that is responsible for e. This cluster
has the property that its color is opposite of the color of the head of τ(e). Consider any J-cluster
C, and assume that C is responsible for nC edges. Recall that we have built an expander XC , and
a bijection fC : V (XC) → out(C). We now show that the number of multi-colored edges in EC is at
least Ω(nC).

We color the vertices of the expanderXC as follows. Recall that each vertex v ∈ V (XC) corresponds
to an edge e = f(v) ∈ out(C). The edge e is in turn is connected to Q with a tendril τ(e), whose head
is colored either red or blue. If it is colored red, then we color v red as well, and if it is colored blue,
then we color v blue.

Assume w.l.o.g. that C is colored blue. Then for each one of the nC edges e for which C is
responsible, the head of τ(e) is red, while the majority tendrils in set {τ(e) | e ∈ out(C)} have blue
endpoints (that is why we have colored C blue). So the red-blue coloring of XC must define a cut of
size at least Ω(nC) in graph XC . If an edge e ∈ E(XC) belongs to this cut, then its corresponding
edge e′ ∈ EC must be a multi-colored edge. So the number of multi-colored edges in EC is at least
Ω(nC). Overall, the number of multi-colored edges in E1 is at least Ω(|Ê|), and the total number of
multi-colored edges in H∗, |EH∗(A,B)| ≥ Ω(|EG(A′, B′)|) as required.

Combining Theorem 27 with Property (P3) of the Q-J decomposition, we obtain the following
corollary.

Corollary 4 The value of the minimum cut in graph H∗ is Ω
(
L
η∗

)
.
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D.2 Graph H

We now complete the construction of graph H, with Properties (C1)–(C4). Recall that graph H∗

already has the first two properties. The idea is that we will suitably sample some edges of H∗

and add them to graph H. This will allow us to (approximately) preserve the cuts, while ensuring
Properties (C3) and (C4).

We proceed in two steps. In the first step, we sample the edges in E(H∗) to ensure that, for each
Q-cluster C ∈ Q, for each group U ∈ GC , the number of the sampled edges, whose tendrils terminate
at the edges of group U , is bounded by poly log log n, while the cut sizes only go down by a factor
of O(log4 n). In the second step we obtain the desired graph H. For the first step, we use the new
constructive proof of Lovasz Local Lemma due to Haeupler, Saha and Srinivasan [HSS10], which allows
us to handle exponentially many bad events:

Theorem 28 (Theorem 3.4 in [HSS10]) Let X be a finite set of n mutually independent random
variables in some probability space. Let A be a finite set of bad events determined by these variables.
For each event A ∈ A, let vbl(A) ⊆ X be the unique minimal subset of variables determining A, and
let Γ(A) ⊆ A be a subset of bad events B such that A 6= B, but vbl(A) ∩ vbl(B) 6= ∅.

Assume that there is a constant ε ∈ (0, 1) and an assignment of reals x : A → (0, 1− ε) such that

∀A ∈ A : Pr [A]1−ε ≤ x(A)
∏

B∈Γ(A)

(1− x(B)) (7)

Moreover, assume that log 1
δ ≤ poly(n), where δ = minA∈A x(A)

∏
B∈Γ(A)(1− x(B)). Then there is a

Monte Carlo algorithm that runs in time poly(n), and returns an assignment where none of the events
in A hold, with probability at least 1− n−c, where c > 0 is any desired constant.

For each cluster C ∈ Q, for each group U ∈ GC , we define the set S(C,U) of edges in E(H∗),
consisting of all edges whose first tendril terminates at an edge of U . Similarly, let S′(C,U) be the set
of all edges whose second tendril terminates at an edge of U . Recall that |U | ≤ 3Z = O(log4 n) and
that for each edge in U , at most two tendrils terminate at it. Each such tendril may participate in at
most 6 edges of H∗. Therefore, |S(C,U)|, |S′(C,U)| ≤ 36Z. For convenience, we denote Z ′ = 36Z.
We sample every edge e ∈ E(H∗) with probability 1/Z ′. For each C ∈ Q, U ∈ GC , we denote by
βC,U and β′C,U the bad events that more than 200 logZ ′ edges in S(C,U) and S′(C,U) are selected,

respectively. By the Chernoff bound, Pr [βC,U ] ,Pr
[
β′C,U

]
≤ 1/Z ′50. For each subset W ⊆ V (H∗) of

vertices, we define a bad event β̃W as the event that the number of selected edges in outH∗(W ) is less

than | outH∗ (W )|
2Z′ . From the Chernoff bound,

Pr
[
β̃W

]
≤ e−| outH∗ (W )|/12Z′ = n−| outH∗ (W )|/12Z′ logn.

We are now ready to define the assignments x : A → (0, 1−ε). For the events of the form βC,U and
β′C,U , define x(βC,U ) = x(β′C,U ) = 1/Z ′40. And for each event β̃W , let x(β̃W ) = n−| outH∗ (W )|/24Z′ logn.
We use the following theorem of Karger [Kar93].

Theorem 29 (Theorem 6.2 in [Kar93]) For any half-integer k, the number of cuts of weight at
most kC in any graph is less than n2k, where C is the size of the minimum cut.

For convenience, we will distinguish between the dependencies Γ(A) of two different types. For
each event A ∈ A, we define Γ′(A) to be the set of bad events B of the form βC,U or β′C,U such that

vbl(A)∩vbl(B) 6= ∅. Similarly we define Γ′′(A) to be the bad events β̃W such that vbl(A)∩vbl(β̃W ) 6= ∅.
Clearly, for any event A ∈ A, we have Γ(A) = Γ′(A) ∪ Γ′′(A). The following claim bounds the
contribution from the second type of dependencies.
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Claim 9 For any event A ∈ A, ∏
β̃W∈Γ′′(A)

(1− x(β̃W )) ≥ (1− 1/n2)

Proof: Fix any event A ∈ A. Let Lmin denote the size of the minimum cut in graph H∗. Then,

∏
β̃W∈Γ′′(A)

(1− x(β̃W )) ≥
∏

W⊆V (H∗)

(1− x(β̃W ))

=
∏

r≥Lmin

∏
W :| outH∗ (W )|=r

(1− x(β̃W ))

≥
∏

r≥Lmin

(1− n−r/24Z′ logn)n
4r/Lmin

≥
∏

r≥Lmin

(
1− n

−r
24Z logn

+ 4r
Lmin

)
(We have used the fact that for all 0 < x < 1, (1−x)a ≥ 1−ax). Recall that we have selected L =

Ω(log6 n), and from Corollary 4, Lmin = Ω(L/η∗). Therefore, we can assume that Lmin ≥ 500Z ′ log n,
obtaining: ∏

β̃W∈Γ′′(A)

(1− x(β̃W ) ≥
∏

r≥Lmin

(1− n−r/48Z′ logn) ≥ 1−
∑

r≥Lmin

n−r/48Z′ logn ≥ 1− 1/n2

We now show that inequality (7) holds for all bad events in A. Consider first some event A of
the form βC,U or β′C,U . Then |vbl(A)| ≤ Z ′, since vbl(A) only contains variables corresponding to the
edges in S(C,U) or S′(C,U). Each such edge participates in at most two events of the form βC′,U ′ or
β′C′,U ′ . Therefore,

∏
A′∈Γ′(A)(1− x(A′)) ≥ (1− 1/Z ′40)2Z′ ≥ (1− 1/Z ′38) ≥ 1/2, and so

x(A) ·
∏

A′∈Γ(A)

(1− x(A′)) ≥ 1

Z ′40
(1− n−2)(1/2) ≥ Pr [A]0.99

Consider now events of the form β̃W . For each such event β̃W , vbl(β̃W ) only contains random
variables corresponding to the edges of outH∗(W ), so |vbl(β̃W )| ≤ | outH∗(W )|. Since each such edge
participates in at most 2 events of the form βC,U or β′C,U , |Γ′(β̃W )| ≤ 2| outH∗(W )|. Therefore,∏
A∈Γ′(β̃W )(1− x(A)) ≥ (1− 1/Z ′40)2| outH∗ (W )| ≥ e−

4| outH∗ (W )|
Z′40 . Altogether,

x(β̃W )
∏

A∈Γ(x(β̃W ))

(1− x(A)) ≥ e−
| outH∗ (W )|

24Z′ e−
4| outH∗ (W )|

Z′40 (1− 1

n2
) ≥ e−

| outH∗ (W )|
15Z′ ≥ Pr

[
β̃W

]0.99

We have thus established that inequality (7) holds for all events A ∈ A, for the value ε = 0.01. It is
easy to verify that log(1/δ) ≤ poly(n). Therefore, there is an efficient algorithm that w.h.p. samples
the edges of H∗, so that none of the events in A happens. Let H̃ denote the resulting graph, containing
the edges of H∗ that have been sampled by the algorithm. The following corollary summarizes the
properties of graph H̃.

Corollary 5 Graph H̃ has the following properties.
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• For every cut (A,B) in H̃, there is a cut (A′, B′) in graph G, such that for each Q ∈ Q, if vQ ∈ A
then Q ⊆ A′, and if vQ ∈ B then Q ⊆ B′, and |EG(A′, B′)| ≤ O(log4 n poly log log n)·|EH̃(A,B)|.

• The value of the minimum cut in H̃ is at least Ω
(

L
log4 npoly log logn

)
.

• For each critical cluster C ∈ Q, for each group U ∈ GC , there are at most O(logZ) = O(log log n)
edges e ∈ E(H̃), such that the first or the second tendril of e terminates at some edge of U .

In the second step, we further sample edges from graph H̃ to obtain our final graph H. We use the
following theorem, which is a variant of Karger’s graph skeleton constructions [Kar99, Kar00, KS96].

Theorem 30 Let G = (V,E) be any graph, where the size of the minimum cut is C. Assume that
the edges in E are partitioned into disjoint subsets E1,E2, . . . ,Er, of size at most q each, where
q < C/(128 lnn). Construct a graph G′ = (V,E′) as follows: for each group Ei : 1 ≤ i ≤ r, sample
one edge e ∈ Ei uniformly at random, and add it to E′. Then with probability at least (1− 1/n3), for
each partition (A,B) of the set V of vertices, |EG′(A,B)| ≥ 1

2q |EG(A,B)|.

Proof: We say that a cut (A,B) is violated if |EG′(A,B)| < 1
2q |EG(A,B)| Consider some partition

(A,B) of the vertices of V , and denote Ê = EG(A,B). For each i : 1 ≤ i ≤ r, let Êi = Ei ∩ Ê. For
each 1 ≤ i ≤ r, we define an indicator random variable yi, which is set to 1 iff an edge of Êi has been
added to E′. Then Pr [yi = 1] = |Êi|/|Ei| ≥ |Êi|/q, and variables {yi}ri=1 are mutually independent.

Then |EG′(A,B)| =
∑

i yi, and the expectation µ = E [
∑

i yi] ≥ |Ê|/q. Using the Chernoff bound,

Pr

[
|EG′(A,B)| < 1

2q
|EG(A,B)|

]
= Pr

[∑
i

yi < µ/2

]
≤ e−µ/8 ≤ e−|Ê|/(8q)

For each j : 1 ≤ j ≤ 2 log n, we let Cj denote the collection of all cuts (A,B) with 2j−1C <

|EG(A,B)| ≤ 2jC. From Theorem 29, |Cj | < n2j+1
. From the above calculations, the probability that

a given cut (A,B) ∈ Cj is violated, is at most e−2j−1C/(8q) = e−2j−4C/q. Using the union bound, the
probability that any cut in Cj is violated is at most

e−2j−4C/q · n2j+1
= e−2j−4C/q+2j+1 lnn

≤ e−2j−5C/q

≤ e−2j+1 lnn

if q < C
27 lnn

. Using a union bound over all 1 ≤ j ≤ 2 log n, we get that the with probability at
least (1− 1/n3), none of the cuts is violated.

We call the procedure outlined in the above theorem an edge sampling procedure. Once we specify
the partition E1, . . . ,Er of the edges of our graph, the edge sampling procedure is fixed. We now
perform four rounds of the edge sampling procedure, each of which uses a different partition of the
edges of H̃. The edges that survive all four rounds of sampling will then be added to the graph H.

First partition For each critical cluster C ∈ Q, let GC be the grouping of the edges of out(C). For
each cluster C ∈ Q, for each group U ∈ GC , we define a set S(C,U), consisting of all edges in E(H̃)
whose first tendril terminates at an edge of U . Notice that all sets S(C,U) are disjoint. The previous
step guarantees that |S(C,U)| ≤ O(log log n). Let E1 denote the resulting partition of the edges E(H̃).
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Second partition The second partition, E2, is defined exactly like the first partition, except that
now we group by the second tendril, and not by the first tendril. Let E2 denote the resulting grouping.

In order to define the third and the fourth partitions, we consider the J-clusters C ∈ J . Intuitively,
the edges of the expander XC define demands on the edges of out(C), that we would like to be able
to route inside C with small congestion. We cannot do it directly, and instead employ Corollary 1 for
routing in small clusters. For each J-cluster C ∈ J , let GC be the partition of the edges of out(C) given
by Corollary 1. Recall that the size of each group is z = poly log logn, and any set of (γ,GC)-restricted
integral demands on out(C) can be routed integrally with constant congestion inside C.

Third partition The third partition, E3 is defined as follows. Every edge e ∈ E0 is placed in a
separate group. For each J-cluster C ∈ J , we group the edges of EC as follows. For each set U ∈ GC ,
we create a group S(C,U) ⊆ EC , that contains all edges e′ ∈ EC , for which p1(e′) ∈ U . This defines
a partition of edges of EC into groups of size poly log log n. Each such group is then added to E3.

Fourth partition The fourth partition, E4, is defined exactly like the third partition, except that
we are using p2(e′) instead of p1(e′) to group the edges of EC .

We perform the edge sampling procedure four times, once for each partition E1, E2, E3, E4. Edges
that are selected by all four sampling procedures then become the edges of H. The sizes of groups
in each of these partitions are poly log log n. From Theorem 30, w.h.p., for each partition (A,B)

of V (H) = V (H̃), |EH(A,B)| = Ω
(
|EH̃(A,B)|

poly log logn

)
. Combining this with Corollary 5 immediately

implies Properties (C1) and (C2). Our sampling using the partitions E1 and E2 immediately implies
Property (C4). In order to establish Property (C3), consider any edge e = (vC , vC′) in graph H. If
e connects two critical clusters, then we define Pe = {e}. Otherwise, assume that e ∈ EC′′ for some
J-cluster C ′′. Let Ê be the subset of edges of EC

′′
that belong to H. Then these edges define a set of

(2,GC′′)-restricted integral demands on the edges of outG(C ′′). From Corollary 1, we can route these
demands inside C ′′ with constant congestion. For each edge e ∈ Ê, let PC′′(e) be the corresponding
path in this routing. Consider now some edge e ∈ Ê. We define Pe to be the concatenation of τ1(e),
PC′′(e), and τ2(e). Since all tendrils cause a constant congestion in G, and for each J-cluster C ′′, the
routing of the demands on outG(C ′′) is performed with constant congestion, the final congestion of
the set PEH = {Pe | e ∈ E(H)} of paths is bounded by a constant.

E Proof of Lemma 15

The proof is similar to the standard well-linked decomposition, with minor changes. Throughout the
algorithm, we maintain a partition R of V , where at the beginning, R = {V }.

Consider some set R ∈ R. Let G′ = G[R], and let TR = T ∩R. Let (A,B) be any partition of R,
denote TA = A ∩ T , TB = B ∩ T , and assume w.l.o.g. that |TA| ≤ |TB|. We say that the cut (A,B)
is sparse iff |EG′(A,B)| ≤ 2L

∆ · |TA|. We run algorithm AARV on instance (G′, TR) of the sparsest cut
problem. Let (A,B) be the output of this algorithm. If the cut (A,B) is sparse, then we remove R
from R, and we add A and B instead. Then we charge the terminals in TA uniformly for the edges in
|EG′(A,B)|. Notice that the charge to every terminal in TA is at most 2L·αARV(n)

∆ .
If algorithm AARV returns, for each R ∈ R, a cut that is not sparse, then we stop the execution of

the algorithm, and return the set R. Notice that we are now guaranteed that for each set R ∈ R, if
(A,B) is any partition of R, TA = A∩T , TB = B ∩T , and |TA| ≤ |TB|, then |EG[R](A,B)| ≥ 2L

∆ · |TA|.
In particular, if |EG[R](A,B)| < 2L, then |TA| < ∆ must hold.

In order to bound
∑

R∈R | out(R)|, consider some terminal t. In each iteration that t is charged,

the charge is at most 2LαARV(n)
∆ , and the number of terminals in the cluster to which t belongs goes
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down by the factor of at least 2. Therefore, the total charge to t is at most 2LαARV(n) logn
∆ ≤ 1

32km since

∆ ≥ 64kmLαARV(n) log n. Overall:
∑

R∈R | out(R)| ≤ |T |
8km = 2kDm

8km = D
4 .

F Arbitrary Edge Capacities and Demands

In this section we extend our algorithms for basic-ICF and for group-ICF from Sections 4 and 7 to
arbitrary demands and edge capacities. We only present here the generalization for basic-ICF, since
the extension of the algorithm for group-ICF to general edge capacities and demands is almost identical.

Let α = poly log n denote the approximation factor of the algorithm from Section 4, and let γ
denote the congestion. Recall that for each demand pair (t, t′) ∈ M, the algorithm finds bλOPTD/αc
paths connecting t to t′ in G.

We now assume that we are given a set D of arbitrary demands, and the edge capacities are also
arbitrary. We assume w.l.o.g. that λOPT = 1. Let Dmax and Dmin be the maximum and the minimum
demands in D, respectively. We first consider the case where Dmax/Dmin ≤ n3, and show a factor
4α-approximation with congestion at most 2γ for it.

Let D∗ = 4α. Since we are only interested in finding a factor 4α-approximation, we can assume
w.l.o.g., that for each pair of terminals, either D(t, t′) = 0, or D(t, t′) ≥ D∗. In particular, Dmin ≥ D∗.

We now slightly modify the graph G, and define a new set D′ of demands, such that in the new
instance all capacities are unit, and the demands are uniform. Let D = Dmin. We start with M = ∅.
Consider some demand pair (s, t) with D(s, t) > 0, and let N(s, t) = bD(s, t)/Dc. We create N(s, t)
copies of the source s that connect to s with a capacity-∞ edge each, and N(s, t) copies of the sink t
that connect to t with capacity-∞ edges. We also add N(s, t) disjoint pairs of vertices, each containing
one copy of s and one copy of t, to setM. LetM be the final set of terminal pairs, obtained after we
process all pairs with non-zero demands, and let D′ be the corresponding set of demands, where for
each pair (s′, t′) ∈ M, we set its demand D′(s′, t′) to be D. Notice that so far for each pair (s, t) of
vertices with D(s, t) > 0, the total demand in D′ between the copies of s and the copies of t is at least
D(s, t)/2 and at most D(s, t). Therefore, an α′-approximate solution to the resulting instance will
give a 2α′-approximation to the original instance. Our final step is to take care of the non-uniform
edge capacities. Since we are interested in an integral solution, we can assume w.l.o.g. that all edge
capacities ce ≥ 1. Since the total amount of flow sent by the fractional solution is bounded by n2Dmax,
for every edge whose capacity is greater than n2Dmax, we set its capacity to be n2Dmax.

If D ≥ 2n3, then we delete all edges whose capacities are less than ρ =
⌊
D/(2n3)

⌋
. Notice that the

total amount of flow going through such edges in the optimal fractional solution is bounded above by
D/2, so this change reduces the value of the optimal fractional solution by at most factor 2. Otherwise,
if D ≤ 2n3, then we set ρ = 1.

In our final step, each remaining edge e is replaced by dce/ρe parallel edges, and all demands are
set to D/ρ, thus obtaining the final problem instance G′. The value of the optimal fractional solution
for G′ is λ′OPT ≥ 1

2 , and any integral solution of value λ and congestion η in G′ can be converted into
an integral solution of value λ and congestion at most 2η in G. It is immediate to see that the size
of G′ is polynomial in n. We can now use the algorithm from Section 4 to find an α-approximate
integral solution with congestion at most γ for this new instance. This solution immediately gives a
factor 4α-approximation with congestion at most 2γ for the original instance.

Assume now that we are given an instance (G,D) of basic-ICF with arbitrary demands and edge
capacities. By appropriately scaling the demands, we can assume w.l.o.g. that λOPT = 1. We group
the demands geometrically into groups D1,D2, . . ., where group Di contains all demands D(s, t) with
n3(i−1)D′min ≤ D(s, t) < n3iD′min, where D′min is the minimum demand in D. Notice that the number
of non-empty groups Di is bounded by n2. For each non-empty group Di, we create a new instance of
basic-ICF, as follows. We build a graph Gi whose set of vertices is V (G), and the set of edges consists
of all edges of G whose capacities are at least n3(i−2)D′min. If the capacity of an edge is more than
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n3i+2D′min, then we set its capacity to n3i+2D′min. The capacities of all other edges remain unchanged.
We then use the algorithm for the special case where Dmax/Dmin ≤ n3 for each one of the resulting
instances (Gi,Di), and output the union of their solutions. Since the value of the optimal fractional
solution in each such instance is at least λOPT/2, it is immediate to verify that we obtain a factor
8α-approximation. In order to bound the edge congestion, observe that for each edge e ∈ E(G), the
total capacity of copies of edge e in all instances (Gi,Di) to which e belongs is bounded by 4c(e).
Therefore, the overall edge congestion is bounded by 8γ.
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G List of Parameters

αARV(n) O(
√

log n) Approximation factor of algorithm AARV for sparsest cut

βFCG(k) O(log k) Flow-cut gap for undirected graphs

L poly log n Threshold for defining small and large clusters

αW Ω(1/ log1.5 n) Well-linkedness for large clusters given by Theorem 6

αS Ω
(
1/(log log n)1.5

)
Parameter for bandwidth condition of small clusters

αBW αW · αS = Ω
(
1/(log n log log n)1.5

)
Parameter for bandwidth condition of large clusters

λ αBW
8αARV(n) = Ω( 1

log2 n·(log logn)1.5
) Parameter for weight condition

η∗ 2βFCG(L)
αS

= O((log log n)2.5) A large cut contains more than L/(4η∗) edges

αEDP poly log k EDP approximation factor from Theorem 5

ηEDP 14 Congestion of the algorithm for EDP from Theorem 5

Z O(log4 n) A grouping parameter for routing in critical clusters
from Theorem 9

α∗ O(log4 n poly log log n) A factor up to which the cuts are preserved in graph H
in Theorem 11

αRZ O(log10 n) Approximation factor from the algorithm of [RZ10] for EDP

LRZ Ω(log5 n) Requirement on the size of minimum global cut
in the algorithm of [RZ10]

Additional parameters for the algorithm for group-ICF.

L O(log25 n) Threshold for defining small and large clusters

m O(log n) Parameter for canonical instances

∆ O(k poly log n) We require that D ≥ 640∆mαEDP log2 n = k poly log n
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