
Approximation Algorithms and Hardness of Integral
Concurrent Flow ∗

Parinya Chalermsook†
Dept. of Computer Science

University of Chicago,
Chicago, IL 60615

parinya@cs.uchicago.edu

Julia Chuzhoy ‡
Toyota Technological Institute

Chicago, IL 60637
cjulia@ttic.edu

Alina Ene§
Dept. of Computer Science

University of Illinois, Urbana,
IL 61801

ene1@illinois.edu

Shi Li ¶
Center for Computational

Intractability
Dept. of Computer Science,

Princeton University
shili@cs.princeton.edu

ABSTRACT
We study an integral counterpart of the classical Maximum
Concurrent Flow problem, that we call Integral Concurrent
Flow (ICF). In the basic version of this problem (basic-ICF),
we are given an undirected n-vertex graph G with edge ca-
pacities c(e), a subset T of vertices called terminals, and a
demand D(t, t′) for every pair (t, t′) of the terminals. The
goal is to find a maximum value λ, and a collection P of
paths, such that every pair (t, t′) of terminals is connected
by bλ · D(t, t′)c paths in P, and the number of paths con-
taining any edge e is at most c(e). We show an algorithm
that achieves a poly logn-approximation for basic-ICF, while
violating the edge capacities by only a constant factor. We
complement this result by proving that no efficient algorithm
can achieve a factor α-approximation with congestion c for
any values α, c satisfying α · c = O(log logn/ log log logn),
unless NP ⊆ ZPTIME(npoly logn).

We then turn to study the more general group version of
the problem (group-ICF), in which we are given a collection
{(S1, T1), . . . , (Sk, Tk)} of pairs of vertex subsets, and for
each 1 ≤ i ≤ k, a demand Di is specified. The goal is to find

†Supported in part by NSF grant CCF-0844872.
‡Supported in part by NSF CAREER grant CCF-0844872
and Sloan Research Fellowship.
§Supported in part by NSF grants CCF-0728782, CCF-
1016684 and CCF-0844872. Part of this work was done while
the author was visiting TTIC.
¶Supported by NSF awards MSPA-MCS 0528414, CCF
0832797, AF 0916218 and CCF-0844872. Part of this work
was done while the author was visiting TTIC.
∗A full version of this paper is available at the authors’ web
pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOCŠ12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

a maximum value λ and a collection P of paths, such that for
each i, at least bλ·Dic paths connect the vertices of Si to the
vertices of Ti, while respecting the edge capacities. We show
that for any 1 ≤ c ≤ O(log log n), no efficient algorithm can

achieve a factor O
(
n1/(22c+3)

)
-approximation with conges-

tion c for the problem, unless NP ⊆ DTIME(nO(log logn)).
On the other hand, we show an efficient randomized algo-
rithm that finds a poly logn-approximate solution with a
constant congestion, if we are guaranteed that the optimal
solution contains at least D ≥ k poly logn paths connecting
every pair (Si, Ti).

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems, Routing and Layout .

General Terms
Theory, Algorithms

Keywords
Integral Concurrent Flow

1. INTRODUCTION
Multicommodity flows are ubiquitous in computer science,

and they are among the most basic and extensively studied
combinatorial objects. Given an undirected n-vertex graph
G = (V,E) with capacities c(e) > 0 on edges e ∈ E, and
a collection {(s1, t1), . . . , (sk, tk)} of source-sink pairs, two
standard objective functions for multicommodity flows are:
Maximum Multicommodity Flow, where the goal is to maxi-
mize the total amount of flow routed between the source-sink
pairs, and Maximum Concurrent Flow, where the goal is to
maximize a value λ, such that λ flow units can be simulta-
neously sent between every pair (si, ti).

Many applications require however that the routing of
the demand pairs is integral, that is, the amount of flow
sent on each flow-path is integral. The integral counter-
part of Maximum Multicommodity Flow is the Edge Disjoint

Paths problem (EDP), where the goal is to find a maximum-
cardinality collection P of paths connecting the source-sink
pairs with no congestion. It is a standard practice to de-
fine the EDP problem on graphs with unit edge capacities,
so a congestion of any solution P is the maximum number
of paths in P sharing an edge. EDP is a classical rout-
ing problem that has been studied extensively. Robertson
and Seymour [26] have shown an efficient algorithm for EDP
when the number k of the demand pairs is bounded by a
constant, but the problem is NP-hard for general values
of k [19]. The best currently known approximation algo-
rithm, due to Chekuri, Khanna and Shepherd [11], achieves
an O(

√
n)-approximation. The problem is also known to be

Ω(log1/2−ε n)-hard to approximate for any constant ε, un-
less NP ⊆ ZPTIME(npoly logn) [3, 2]. A standard technique
for designing approximation algorithms for routing prob-
lems is to first compute a multi-commodity flow relaxation
of the problem, where instead of connecting the demand
pairs with integral paths, we are only required to send flow
between them. Such a fractional solution can usually be
computed using linear programming, and it is then rounded
to obtain an integral solution to the routing problem. For
the EDP problem, the corresponding flow relaxation is the
Maximum Multicommodity Flow problem. However, the ra-
tio of the Maximum Multicommodity Flow solution value to
the EDP solution value can be as large as Ω(

√
n) in some

graphs [11]. Interestingly, when the value of the global min-
imum cut in G is Ω(log5 n), Rao and Zhou [24] have shown
a poly logn-approximation algorithm for EDP, by rounding
the multicommodity flow relaxation.

Much better results are known if we slightly relax the
problem requirements by allowing a small congestion. An-
drews [1] has shown an efficient randomized algorithm that
w.h.p. routes Ω(OPT/ poly logn) of the demand pairs with
congestion poly(log logn), where OPT is the value of the
optimal solution with no congestion for the given EDP in-
stance, and Chuzhoy [12] has shown an efficient randomized
algorithm that w.h.p. routes Ω(OPT/poly log k) of the de-
mand pairs with a constant congestion. In fact the number
of demand pairs routed by the latter algorithm is within a
poly log k-factor of the Maximum Multicommodity Flow value.

Assume now that we are given an instance where every
demand pair (si, ti) can simultaneously send D flow units
to each other with no congestion. The algorithm of [12]
will then produce a collection P of Ω(Dk/poly log k) paths
connecting the demand pairs, but it is possible that some
pairs are connected by many paths, while some pairs have
no paths connecting them. In some applications however, it
is important to ensure that every demand pair is connected
by many paths.

In this paper, we propose to study an integral counter-
part of Maximum Concurrent Flow, called Integral Concurrent
Flow (ICF). We study two versions of ICF. In the simpler ba-
sic version (basic-ICF), we are given an undirected n-vertex
graph G = (V,E) with non-negative capacities c(e) on edges
e ∈ E, a subset T ⊆ V of k vertices called terminals, and
a set D of demands over the terminals, where for each pair
(ti, tj) ∈ T , a demand D(ti, tj) is specified. The goal is to
find a maximum value λ, and a collection P of paths, such
that for each pair (ti, tj) of terminals, set P contains at least
bλ · D(ti, tj)c paths connecting ti to tj , and for each edge
e ∈ E, at most c(e) paths in P contain e.

The second and the more general version of the ICF prob-

lem that we consider is the group version (group-ICF), in
which we are given an undirected n-vertex graph G = (V,E)
with edge capacities c(e) > 0, and k pairs of vertex subsets
((S1, T1), . . . , (Sk, Tk)). For each pair (Si, Ti), we are also
given a demand Di. The goal is to find a maximum value
λ, and a collection P of paths, such that for each 1 ≤ i ≤ k,
there are at least bλ ·Dic paths connecting the vertices of Si
to the vertices of Ti in P, and every edge e ∈ E belongs to at
most c(e) paths. It is easy to see that group-ICF generalizes
both the basic-ICF and the EDP problems1. As in the EDP
problem, we will sometimes relax the capacity constraints,
and will instead only require that the maximum edge con-
gestion - the ratio of the number of paths containing the
edge to its capacity - is bounded. We say that a set P of
paths is a solution of value λ and congestion η, iff for every
1 ≤ i ≤ k, at least bλ ·Dic paths connect the vertices of Si
to the vertices of Ti, and every edge e ∈ E participates in at
most η · c(e) paths in P. Throughout the paper, we denote
by λ∗ the value of the optimal solution to the ICF instance,
when no congestion is allowed. We say that a solution P is
an α-approximation with congestion η iff for each 1 ≤ i ≤ k,
at least bλ∗ ·Di/αc paths connect the vertices of Si to the
vertices of Ti, and the congestion due to paths in P is at
most η.

Given a multicommodity flow F , we say that it is a frac-
tional solution of value λ to the group-ICF instance, iff for
each demand pair (Si, Ti), at least λ ·Di flow units are sent
from the vertices of Si to the vertices of Ti, and the total
amount of flow sent via any edge e is at most ce. Throughout
the paper, we denote by λOPT the value of the optimal frac-
tional solution to the ICF problem instance. The value λOPT

can be efficiently computed by solving an appropriate LP-
relaxation of the problem, for both basic-ICF and group-ICF.
Observe that for basic-ICF, this is equivalent to solving the
Maximum Concurrent Flow problem.

In addition to designing approximation algorithms for the
ICF problem, an interesting question is the relationship be-
tween the optimal fractional and the optimal integral solu-
tions for ICF. For example, suppose we are given a multi-
commodity flow, where for each 1 ≤ i ≤ k, the vertices of Si
send D flow units to the vertices of Ti simultaneously with
no congestion. What is the maximum value λ, for which we
can find an integral solution where for each pair (Si, Ti) at
least bλDc paths connect the vertices of Si to the vertices
of Ti?

We start by showing a randomized algorithm for basic-ICF
that w.h.p. produces a solution of value λOPT/ poly logn and
constant congestion. We also show that for any values η, α,
such that η ·α ≤ O(log logn/ log log logn), no efficient algo-
rithm can find an α-approximate solution with congestion η
to basic-ICF unless NP ⊆ ZPTIME(npoly logn). We then turn
to the more challenging group-ICF problem. It is easy to see
that when no congestion is allowed, the ratio of the optimal
fractional to the optimal integral solution can be as large as
Ω(
√
n) for group-ICF, even when k = 2. Moreover, even if

we allow congestion c− 1, this ratio can still be as large as
Ω(n1/c), as shown in the full version of the paper. We show

that for any 0 < η ≤ O(log log n) and any α = O
(
n1/22η+3

)
,

1To reduce EDP to group-ICF, make D disjoint copies of the
EDP instance. For each 1 ≤ i ≤ k, let Si contain all copies
of si and Ti contain all copies of ti. If we can find λD paths
for every group (Si, Ti), then some copy of the EDP instance
will contain a solution of value at least λk.

no efficient algorithm can find α-approximate solutions with
congestion η for group-ICF unless NP ⊆ DTIME(nO(log logn)).
Given an optimal integral solution P to the group-ICF prob-
lem instance, let D = mini {bλ∗ ·Dic} be the minimum
number of paths connecting any pair (Si, Ti) in this solu-
tion. Our hardness result only holds for the regime where
D << k. We show that if D > k poly logn, then there is
an efficient algorithm that finds a (poly logn)-approximate
solution with constant congestion. The value of the solu-
tion is in fact λOPT/poly logn, where λOPT is the value of
the optimal fractional solution. Therefore, when we allow
a constant congestion, the ratio of the optimal fractional to
the optimal integral solution becomes only polylogarithmic
if D > k poly logn.

Our Results and Techniques.
Our first result is an approximation algorithm for the

basic-ICF problem.

Theorem 1 There is an efficient randomized algorithm, that,
given any instance of basic-ICF, w.h.p. produces an integral
solution of value λOPT/poly logn and constant congestion,
where λOPT is the value of the optimal fractional solution
with no congestion to the ICF instance.

The main technical tool that our algorithm uses is a graph
decomposition similar to the one proposed by Andrews [1].
Assume first that the value of the minimum cut in graph
G is polylogarithmic. We can then define poly logn new
graphs G1, . . . , Gr, where for each 1 ≤ j ≤ r, V (Gj) =
V (G), and the edges in graphs Gj form a partition of the
edges in G. If the value of the minimum cut in G is large
enough, we can furthermore ensure that the value of the
minimum cut in each resulting graph Gj is Ω(log5 n). We
can then use the algorithm of Rao and Zhou [24] to find
λ∗ ·

∑
iDi/poly logn paths connecting the source-sink pairs

in each graph Gj separately. By appropriately choosing the
subsets of source-sink pairs for each graph Gj to connect, we
can obtain a polylogarithmic approximation for the basic-ICF
problem instance.

Unfortunately, it is possible that the global minimum cut
in graph G is small. Andrews [1] in his paper on the EDP
problem, suggested to get around this difficulty as follows.
Let L = poly logn be a parameter. For any subset C of
vertices in G, let out(C) = E(C, V \ C) be the set of edges
connecting the vertices of C to the vertices of V \C. We say
that a subset C of vertices is a large cluster iff | out(C)| ≥ L,
and otherwise we say that it is a small cluster. Informally,
we say that cluster C has the bandwidth property iff we can
send 1/| out(C)| flow units between every pair of edges in
out(C) with small congestion inside the cluster C. Finally,
we say that C is a critical cluster iff it is a large cluster,
and we are given a partition π(C) of its vertices into small
clusters, such that on the one hand, each cluster in π(C) has
the bandwidth property, and on the other hand, the graph
obtained from G[C] by contracting every cluster in π(C) is
an expander. The key observation is that if C is a critical
cluster, then we can integrally route demands on the edges
of out(C) inside C, by using standard algorithms for routing
on expanders. The idea of Andrews is that we can use the
critical clusters to “hide” the small cuts in graph G.

More specifically, the graph decomposition procedure of
Andrews consists of two steps. In the first step, he con-

structs what we call a Q-J decomposition (Q,J) of graph
G. Here, Q is a collection of disjoint critical clusters and J
is a collection of disjoint small clusters that have the band-
width property, and Q ∪ J is a partition of V (G). This
partition is computed in a way that ensures that every cut
separating any pair of clusters in Q is large, containing at
least poly logn edges, and moreover we can connect all edges
in
⋃
C∈J out(C) to the edges of

⋃
C∈Q out(C) by paths that

together only cause a small congestion.
Given a Q-J decomposition (Q,J), Andrews then con-

structs a new graph H, whose vertices are {vQ | Q ∈ Q},
and every edge e = (vQ, vQ′) in H is mapped to a path Pe
in G connecting some vertex of Q to some vertex of Q′, such
that the total congestion caused by the set {Pe | e ∈ E} of
paths in graph G is small. Moreover, graph H preserves, to
within a polylogarithmic factor, all cuts separating the clus-
ters of Q in graph G. In particular, the size of the global
minimum cut in H is large, and any integral routing in graph
H can be transformed into an integral routing in G. This
reduces the original problem to the problem of routing in the
new graph H. Since the size of the minimum cut in graph
H is large, we can now apply the algorithm proposed above
to graph H.

We revisit the Q-J decomposition and the construction of
the graph H from [1], and obtain an improved construction
with better parameters. In particular, it allows us to reduce
the routing congestion to constant, and to reduce the powers
of the logarithms in the construction parameters. The Q-J
decomposition procedure of [1] uses the tree decomposition
of Räcke [22] as a black box. We instead perform the de-
composition directly, thus improving some of its parameters.
We also design a new well-linked decomposition procedure
that may be of independent interest.

Our next result shows that basic-ICF is hard to approx-
imate, using a simple reduction from the Congestion Mini-
mization problem.

Theorem 2 Given an n-vertex graph G with unit edge ca-
pacities, a collection M = {(s1, t1), . . . , (sk, tk)} of source-
sink pairs, and integers c, D, such that Dc ≤ O(log logn

log log logn
),

no efficient algorithm can distinguish between the following
two cases unless NP ⊆ ZPTIME(npoly logn): (i) There is a
collection P of paths that causes congestion 1, with D paths
connecting si to ti for each 1 ≤ i ≤ k; and (ii) Any collec-
tion P of paths, containing, for each 1 ≤ i ≤ k, at least one
path connecting si to ti, causes congestion at least c.

We then turn to the group-ICF problem, and prove that it
is hard to approximate in the following theorem.

Theorem 3 Suppose we are given an n-vertex graph G =
(V,E) with unit edge capacities, and a collection of pairs of
vertex subsets (S1, T1), . . . , (Sk, Tk). Let c be any integer,

0 < c ≤ O(log logn) and let D = O
(
n1/22c+3

)
. Then un-

less NP ⊆ DTIME(nO(log logn)), no efficient algorithm can
distinguish between the following two cases: (i) There is a
collection P∗ of paths that causes congestion 1, and contains,
for every 1 ≤ i ≤ k, D paths connecting the vertices of Si to
the vertices of Ti; and (ii) Any set P∗ of paths, containing,
for each 1 ≤ i ≤ k, at least one path connecting a vertex of
Si to a vertex of Ti, causes congestion at least c.

The proof of Theorem 3 establishes a connection between

group-ICF and the Machine Minimization Scheduling prob-
lem, and then follows the hardness of approximation proof
of [13] for the scheduling problem. Finally, we show an ap-
proximation algorithm for the group-ICF problem.

Theorem 4 Suppose we are given an instance of group-ICF,
and let D = mini {λOPT ·Di} be the minimum amount of
flow sent between any pair (Si, Ti) in the optimal fractional
solution. Assume further that D ≥ ∆′, where ∆′ = k poly logn
is a parameter whose value we set later. Then there is an
efficient randomized algorithm that finds a solution of value
λOPT/poly logn with constant congestion for the group-ICF
instance.

We now give a high-level overview of the proof of Theo-
rem 4. We say that a Q-J decomposition is good iff no flow
path in the optimal fractional solution is contained in any

small cluster in X = J ∪
(⋃

Q∈Q π(Q)
)

. We show an al-

gorithm that finds a (poly logn)-approximate solution with
constant congestion for instances where a good Q-J decom-
position is given. This algorithm is similar to the algorithm
from Theorem 1 for basic-ICF. Therefore, if we succeed in
finding a good Q-J decomposition for instance (G,D), we
would have been done. However, we do not know how to
obtain a good Q-J decomposition directly, so our algorithm
instead partitions the input graph into a number of sub-
instances. Each sub-instance either admits a good Q-J de-
composition or corresponds to what we call a split instance,
which can be solved using the algorithm of [12] as a sub-
routine, together with standard randomized rounding pro-
cedure.

Organization.
We start with Preliminaries in Section 2, and present the

improved Q-J decomposition together with the construc-
tion of the graph H in Section 3. We show an algorithm
for basic-ICF in Section 4, and hardness of basic-ICF and
group-ICF in Sections 5 and 6 respectively. An algorithm for
group-ICF appears in Section 7.

2. PRELIMINARIES
In all our algorithmic results, we first solve the problem for

the special case where all edge capacities are unit, and then
extend our algorithms to general edge capacities. There-
fore, in this section, we only discuss graphs with unit edge
capacities.

2.1 Demands and Routing
Given any subset S ⊆ V of vertices in graph G, denote

by outG(S) = EG(S, V \ S). We omit the subscript G when
clear from context. Let P be any collection of paths in graph
G. We say that paths in P cause congestion η, iff for each
edge e ∈ E(G), the number of paths in P containing e is at
most η.

Given a graph G = (V,E), and a set T ⊆ V of terminals,
a set D of demands is a function D : T × T → R+, that
specifies, for each unordered pair t, t′ ∈ T of terminals, a
demand D(t, t′). We say that a set D of demands is γ-
restricted, iff for each terminal t ∈ T , the total demand∑
t′∈T D(t, t′) ≤ γ. Given any partition G of the terminals

in T , we say that a set D of demands is (γ,G)-restricted iff
for each group U ∈ G,

∑
t∈U

∑
t′∈T D(t, t′) ≤ γ. We say

that a demand set D is integral iff D(t, t′) is integral for all
t, t′ ∈ T .

Given any set D of demands, a fractional routing of D
is a flow F , where each pair t, t′ ∈ T , of terminals sends
D(t, t′) flow units to each other. Given an integral set D
of demands, an integral routing of D is a collection P of
paths, that containsD(t, t′) paths connecting each pair (t, t′)
of terminals. The congestion of this integral routing is the
congestion caused by the set P of paths in G. Any matching
M on the set T of terminals defines an integral 1-restricted
set D of demands, where D(t, t′) = 1 if (t, t′) ∈ M , and
D(t, t′) = 0 otherwise. We do not distinguish between the
matching M and the corresponding set D of demands.

Given any two subsets V1, V2 of vertices, we denote by
F : V1 ;η V2 a flow from the vertices of V1 to the vertices
of V2 where each vertex in V1 sends one flow unit, and the
congestion due to F is at most η. Similarly, we denote by
P : V1 ;η V2 a collection of paths P = {Pv | v ∈ V1}, where
each path Pv originates at v and terminates at some vertex
of V2, and the paths in P cause congestion at most η. We
define flows and path sets between subsets of edges similarly.
For example, given two collections E1, E2 of edges of G, we
denote by F : E1 ;η E2 a flow that causes congestion at
most η in G, where each flow-path has an edge in E1 as its
first edge, and an edge in E2 as its last edge, and moreover
each edge in E1 sends one flow unit (notice that it is then
guaranteed that each edge in E2 receives at most η flow units
due to the bound on congestion). We will often be interested
in a scenario where we are given a subset S ⊆ V (G) of
vertices, and E1, E2 ⊆ out(S). In this case, we say that a
flow F : E1 ;η E2 is contained in S, iff for each flow-path
P in F , all edges of P belong to G[S], except for the first
and the last edges that belong to out(S). Similarly, we say
that a set P : E1 ;η E2 of paths is contained in S, iff all
inner edges on paths in P belong to G[S].

Edge-Disjoint Paths.
We use the algorithm of [12] for EDP, summarized in the

following theorem.

Theorem 5 ([12]) Let G be any graph with unit edge ca-
pacities and a set M = {(s1, t1), . . . , (sk, tk)} of source-sink
pairs. Assume further that there is a multicommodity flow
where the pairs inM altogether send OPT flow units to each
other, with no congestion, and at most one flow unit is sent
between each pair. Then there is an efficient randomized al-
gorithm that w.h.p. finds a collection P of paths, connecting
at least OPT/αEDP of the demand pairs, such that the con-
gestion of P is at most ηEDP = 14, where αEDP = poly log k.

2.2 Sparsest Cut and the Flow-Cut Gap
Given a graph G = (V,E) with a subset T of vertices

called terminals, the sparsity of any partition (A,B) of V is
|E(A,B)|

min{|A∩T |,|B∩T |} . The goal of the sparsest cut problem is to

find a partition (A,B) of V with minimum sparsity. Arora,
Rao and Vazirani [7] have shown anO(

√
log k)-approximation

algorithm for the sparsest cut problem. We denote by AARV

this algorithm and by αARV(k) = O(
√

log k) its approxima-
tion factor.

Sparsest cut is the dual of the Maximum Concurrent Flow
problem, where for each pair (t, t′) of terminals, the demand
D(t, t′) = 1/k. The maximum possible ratio, in any graph,
between the value of the minimum sparsest cut and the value

λ of the maximum concurrent flow, is called the flow-cut gap.
The flow-cut gap in undirected graphs, that we denote by
βFCG(k) throughout the paper, is Θ(log k) [20, 16, 21, 8].
In particular, if the value of the sparsest cut in graph G is
α, then every pair of terminals can send at least α

kβFCG(k)

flow units to each other simultaneously with no congestion.
Moreover, any 1-restricted set D of demands on the set T
of terminals can be fractionally routed with congestion at
most 2βFCG(k)/α in G.

2.3 Well-linkedness
Given any subset S ⊆ V of vertices, we say that S is α-

well-linked, iff for any partition (A,B) of S, if we denote
TA = out(S) ∩ out(A) and TB = out(S) ∩ out(B), then
|E(A,B)| ≥ α ·min {|TA|, |TB |}.

Given a subset S of vertices, we can sub-divide every edge
e ∈ out(S) by a vertex ze, and set T ′ = {ze | e ∈ out(S)}.
Let GS be the sub-graph of the resulting graph induced by
S∪T ′. Then S is α-well-linked (for α ≤ 1) in G iff the value
of the sparsest cut in graph GS for the set T ′ of terminals
is at least α. In particular, if S is α-well-linked, then any
1-restricted set D of demands on out(S) can be fractionally
routed inside S with congestion at most 2βFCG(k)/α.

Similarly, given any graph G = (V,E) with a subset T
of vertices called terminals, we say that G is α-well-linked
for T iff for any partition (A,B) of V , |EG(A,B)| ≥ α ·
min {|T ∩A|, |T ∩B|}.

Let L = poly logn be a parameter to be fixed later. (We
use different values of L in different algorithms.) We say
that a cluster X ⊆ V (G) is small iff | out(X)| ≤ L, and we
say that it is large otherwise.

A useful tool in graph routing algorithms is a well-linked
decomposition [10, 22]. This is a procedure that, given any
subset S of vertices, produces a partition W of S into well-
linked subsets. In the following theorem we describe a new
well-linked decomposition. In addition to the standard prop-
erties guaranteed by well-linked decompositions, we obtain
a collection of paths connecting the edges of

⋃
R∈W out(R)

to the edges of out(S), with a small congestion. The proof
of the following theorem appears in the full version of the
paper.

Theorem 6 (Extended well-linked decomposition)
There is an efficient algorithm, that, given any set S of ver-
tices, with | out(S)| = k′, produces a partition W of S with
the following properties.

• For each set R ∈ W, | out(R)| ≤ k′. If R is a large
cluster, then it is αW = Ω

(
1/ log1.5 n

)
-well-linked. If

R is a small cluster, then it is αS = Ω
(
1/(log logn)1.5

)
-

well-linked.

• Let E∗ =
(⋃

R∈W out(R)
)
\ out(S). Then we can ef-

ficiently find a set N = {τe | e ∈ E∗} of paths called
tendrils contained in G[S], where tendril τe connects
edge e to some edge of out(S), each edge in out(S)
participates in at most one tendril, and the total con-
gestion caused by N is at most 3.

• |E∗| ≤ 0.4| out(S)|.

The Grouping Technique.
The grouping technique was first introduced by Chekuri,

Khanna and Shepherd [9], and it is widely used in algorithms
for network routing [10, 24, 1], in order to boost network
connectivity and well-linkedness parameters. We summarize
it in the following theorem.

Theorem 7 Suppose we are given a connected graph G =
(V,E), with weights w(v) on vertices v ∈ V , and a parameter
p. Assume further that for each v ∈ V , 0 ≤ w(v) ≤ p, and∑
v∈V w(v) ≥ p. Then we can find a partition G of the

vertices in V , and for each group U ∈ G, find a tree TU ⊆ G
containing all vertices of U , such that for each group U ∈ G,
p ≤ w(U) ≤ 3p, where w(U) =

∑
v∈U w(v), and the trees

{TU}U∈G are edge-disjoint.

2.4 Bandwidth Property and Critical Clusters
Given a graph G, and a subset S of vertices of G we say

that the modified bandwidth condition holds for S, iff S is
αBW-well-linked if it is a large cluster, and it is αS-well-linked
if it is a small cluster, where αS = Ω

(
1/(log logn)1.5

)
, and

αBW = αW · αS = Ω
(

1
(logn log logn)1.5

)
. For simplicity, we

will use “bandwidth property” instead of “modified band-
width property” from now on.

Given a subset S of vertices of G, and a partition π of
S, let HS be the following graph: start with G[S], and
contract each cluster C ∈ π into a super-node vC . Set
the weight w(vC) of vC to be | outG(C)| (notice that the
weight takes into account all edges incident on C, including
those in out(S)). We use the parameter λ = αBW

8αARV(n)
=

Ω
(

1
log2 n·(log logn)1.5

)
.

Definition 1 Given a subset S of vertices of G and a par-
tition π of S, we say that (S, π) has the weight property
with parameter λ′, iff for any partition (A,B) of V (HS),
|EHS (A,B)| ≥ λ′ · min

{∑
v∈A w(v),

∑
v∈B w(v)

}
. If the

weight property holds for the parameter λ = λ′, then we
simply say that (S, π) has the weight property.

Definition 2 Given a subset S of vertices and a partition
π of S, we say that S is a critical cluster iff (1) S is a large
cluster and it has the bandwidth property; (2) Every cluster
R ∈ π is a small cluster and it has the bandwidth property;
and (3) (S, π) has the weight property. Additionally, if S =
{v}, and the degree of v is greater than L, then we also say
that S is a critical cluster.

Let η∗ = 2βFCG(L)
αS

= O((log logn)2.5). We say that a

cut (S, S) in G is large iff |E(S, S)| ≥ L
4η∗ . Note that we

somewhat abuse the notation: We will say that a cluster S
is large iff | out(S)| > L, but we say that a cut (S, S) is large
iff |E(S, S)| ≥ L

4η∗ .
In the next lemma we show that if we are given any large

cluster S that has the bandwidth property, then we can find
a critical sub-cluster Q of S. Moreover, there is a subset of
at least L/4 edges of out(Q) that can be routed to the edges
of out(S). One can prove a similar lemma using the Räcke
decomposition as a black-box. Since we use slightly different
parameters in the definitions of small and critical clusters,
we prove the lemma directly.

Lemma 1 Let S be any large cluster that has the bandwidth
property. Then we can efficiently find a critical cluster Q ⊆
S, a subset EQ ⊆ out(Q) of L/4 edges, and a set PQ :
EQ ;η∗ out(S) of paths, which are contained in S \ Q,
such that for each edge e ∈ out(S), at most one path of PQ
terminates at e.

Proof. Let G′ be a graph obtained from G as follows:
subdivide every edge e ∈ out(S) with a vertex ve, and let
T ′ = {ve | e ∈ out(S)}. Graph G′ is the sub-graph of G
induced by T ′ ∪ S.

Throughout the algorithm, we maintain a collection π of
disjoint subsets of vertices of S, together with a correspond-
ing contracted graph Z, which is obtained from graph G′,
by contracting every cluster C ∈ π into a super-node vC .
We say that π is a good collection of clusters, iff each cluster
C ∈ π is small and has the bandwidth property. The value
W (π) of the collection π of clusters is the number of edges
in the corresponding contracted graph Z. We notice that
some vertices of S may not belong to any cluster in π. Our
initial collection is π = ∅.

We say that a cluster S′ ⊆ S is canonical for the collection
π iff for every cluster C ∈ π, either C ⊆ S′, or C ∩ S′ = ∅.

Throughout the algorithm, we also maintain an active
large cluster S′ ⊆ S (the initial cluster S′ = S). We will
ensure that S′ is canonical w.r.t. the current collection π
of good clusters, and it has the bandwidth property. We
perform a number of iterations. In each iteration, one of the
following three things happens: we either find a new good
collection π′ of clusters, with W (π′) < W (π), or find a crit-
ical cluster Q as required, or select a sub-cluster S′′ (S′ as
our next active cluster. In the latter case, we will guarantee
that S′′ is canonical for the current collection π of good clus-
ters, and it has the bandwidth property. An execution of an
iteration is summarized in the next lemma, whose proof ap-
pears in the full version. The proof uses arguments similar
in spirit to the analysis of the Räcke decomposition [22].

Lemma 2 Let π be a good collection of clusters, and let
S′ ⊆ S be a large cluster with the bandwidth property, such
that S′ is canonical for π. Assume additionally that there is
a set ES′ ⊆ out(S′) of L/4 edges, and a set PS′ : ES′ ;η∗

out(S) of paths in graph G, contained in S \ S′, where each
edge in out(S) is an endpoint of at most one path. Then
there is an efficient algorithm, whose output is one of the
following:

• Either a good collection π′ of clusters with W (π′) <
W (π).

• Or establishes that S′ is a critical cluster, by comput-
ing, if |S′| > 1, a partition π∗ of S′ into small clusters
that have bandwidth property, such that (S′, π∗) has
the weight property.

• Or a sub-cluster S′′ (S′, such that S′′ is large, canon-
ical for π, has the bandwidth property, and there is a set
ES′′ ⊆ out(S′′) of L/4 edges, and a set PS′′ : ES′′ ;η∗

out(S) of paths in graph G, contained in S \S′′, where
each edge in out(S) is an endpoint of at most one path.

We now complete the proof of Lemma 1. We start with
S′ = S and an initial collection π = ∅. We then iteratively
apply Lemma 2 to the current cluster S′ and the current
partition π. If the lemma returns a good collection π′ of

clusters, whose value W (π′) is smaller than the value W (π)
of π, then we replace π with π′, set the current active clus-
ter to be S′ = S, and continue. Otherwise, if it returns
a sub-cluster S′′ (S′, then we replace S′ with S′′ as the
current active cluster and continue. Finally, if it establishes
that S′ is a critical cluster, then we return S′, π∗, the set
ES′ of edges, and the collection PS′ of paths. It is easy
to verify that the algorithm terminates in polynomial time:
we partition the algorithm execution into phases. A phase
starts with some collection π of clusters, and ends when we
obtain a new collection π′ with W (π′) < W (π). Clearly, the
number of phases is bounded by |E(G)|. In each phase, we
perform a number of iterations, where in each iteration we
start with some active cluster S′ ⊆ S, and replace it with
another cluster S′′ (S′. Therefore, the number of iterations
in each phase is bounded by n.

Suppose we are given a collection C of disjoint vertex sub-
sets in graph G. We say that a cut (A,B) in graph G is
canonical w.r.t. C, iff for each C ∈ C, either C ⊆ A, or
C ⊆ B. We say that it is a non-trivial canonical cut, iff
both A and B contain at least one cluster in C.

2.5 Routing across Small and Critical Clus-
ters

Following the ideas of Andrews [1], we will treat critical
clusters as contracted nodes and solve a routing problem in
the resulting contracted graph. To be able to do so, we need
to ensure that, for any small or critical cluster S, demands
between edges in out(S) can be routed with low congestion
inside S.

We use the following theorem from [12] to route demands
across small clusters.

Theorem 8 Let G be any graph and T any subset of k ver-
tices called terminals, such that G is α-well-linked for T .
Then we can efficiently find a partition G of the terminals
in T into groups of size poly log k

α
, such that, for any (1,G)-

restricted set D of demands on T , there is an efficient ran-
domized algorithm that w.h.p. finds an integral routing of D
in G with edge congestion at most 15.

Suppose we are given a small cluster S that has the band-
width property. Since | out(S)| ≤ poly logn, and S is αS-
well-linked, we can use Theorem 8 to find a partition GS of
the edges of out(S) into sets of size poly log logn, such that
any (1,GS)-restricted set D of demands can be integrally
routed inside S with congestion 15 w.h.p.

Observation 1 Let G be any partition of the set T of ter-
minals, and let D be any set of (γ,G)-restricted integral de-
mands. Then we can efficiently find 4γ sets D1, . . . ,D4γ of
(1,G)-restricted integral demands, such that any routing of
the demands in set

⋃4γ
i=1Di gives a routing of the demands

in D with the same congestion, and moreover, if the former
routing is integral, so is the latter.

Proof. Let G = {T1, . . . , Tr}. Our first step is to modify
the set D of demands, so that it does not contain demand
pairs that belong to the same set Ti. Specifically, for every
pair (u, v) ∈ D, where u, v ∈ Ti for some 1 ≤ i ≤ r, we
replace the demand (u, v) with a pair of demands (u, x),
(v, x), where x is any vertex in set Ti+1 (if i = r, then x is
any vertex in T1). Let D′ be the resulting set of demands.

Clearly, any routing of D′ gives a routing of D with the
same congestion, and if the routing of D′ is integral, so is
the corresponding routing of D. It is also easy to see that
D′ is (2γ,G)-restricted.

Our second step is to decompose D′ into 4γ demand sets
D1, . . . ,D4γ , such that each set Dj of demands is (1,G)-
restricted, and

⋃4γ
j=1Dj = D′. We construct a multi-graph

graph H with vertices v1, . . . , vr corresponding to the groups
T1, . . . , Tr of G. For every pair (u, v) ∈ D′, with u ∈ Ti,
v ∈ Tj , we add an edge (i, j) to graphH. Finding the decom-
position D1, . . . ,D4γ of the set D′ of demands then amounts
to partitioning the edges of H into 4γ matchings. Since the
maximum vertex degree in H is at most 2γ, such a decom-
position can be found by a simple greedy algorithm.

Combining Theorem 8 with Observation 1, we get the
following corollary for routing across small clusters.

Corollary 1 Given any small cluster S that has the band-
width property, we can efficiently find a partition GS of the
edges of out(S) into groups of size at most z = poly log logn,
such that, for any γ ≥ 1, given any (γ,GS)-restricted set D
of demands on the edges of out(S), there is an efficient ran-
domized algorithm, that w.h.p. finds an integral routing of
D inside S with congestion at most 60γ.

The following theorem gives an efficient algorithm for in-
tegral routing across critical clusters. The proof of this the-
orem appears in the full version.

Theorem 9 Suppose we are given any cluster S, together
with a partition π of S into small clusters, such that every
cluster C ∈ π is αS/3-well-linked, and (S, π) has the weight
property with parameter λ/3. Then we can efficiently find a
partition G of the edges of out(S) into groups of size at least
Z = O(log4 n) and at most 3Z, such that, for any set D
of (1,G)-restricted demands on out(S), there is an efficient
randomized algorithm that w.h.p. routes D integrally in G[S]
with congestion at most 721.

3. GRAPH DECOMPOSITION AND SPLIT-
TING

In this section we present the main technical tools that our
algorithms use: the Q-J decomposition, the construction of
the graph H, and the splitting of H into sub-graphs. We
start with the Q-J decomposition.

3.1 Graph Decomposition
We assume that we are given a non-empty collection Q0

of disjoint critical clusters in graph G, with the following
property: if (A,B) is any non-trivial canonical cut in graph
G w.r.t. Q0, then it is a large cut. For motivation, consider
the basic-ICF problem, and assume that every cut separating
the terminals in T is a large cut. Then we can set Q0 =
{{t} | t ∈ T }. For the group-ICF problem, we will compute
Q0 differently, by setting Q0 = {Q} where Q is an arbitrary
critical cluster in G.

Suppose we are given a collection Q of disjoint critical
clusters, and a collection J of disjoint small clusters, such
that Q∪J is a partition of V (G). Let EQ =

⋃
Q∈Q out(Q),

and let EJ =
(⋃

J∈J out(J)
)
\EQ. We say that (Q,J) is a

valid Q-J decomposition, iff Q0 ⊆ Q, and:

P1. Every cluster J ∈ J is a small cluster with the band-
width property, and every cluster Q ∈ Q is a critical
cluster.

P2. There is a set N =
{
τe | e ∈ EJ

}
of paths, called ten-

drils, where path τe connects e to some edge in EQ,
each edge in EQ is an endpoint of at most one ten-
dril, and the total congestion caused by N is at most
3. Moreover, the tendrils do not use edges e = (u, v)
where both u and v belong to clusters in Q.

P3. If (S, S) is any cut in graph G, which is non-trivial and
canonical w.r.t. Q, then it is a large cut.

We refer to the clusters in Q as the Q-clusters, and to the
clusters in J as the J-clusters. We note that Andrews [1]
has (implicitly) defined the Q-J decomposition, and sug-
gested an algorithm for constructing it, by using the graph
decomposition of Räcke [22] as a black-box. The Räcke de-
composition however gives very strong properties - stronger
than one needs to construct a Q-J decomposition. We ob-
tain a Q-J decomposition with slightly better parameters
by performing the decomposition directly, instead of using
the Räcke decomposition as a black-box. For example, the
tendrils in N only cause a constant congestion in our decom-
position, instead of a logarithmic one, the well-linkedness of
the J-clusters is poly log logn instead of poly logn, and we
obtain a better relationship between the parameter L and
the size of the minimum cut separating the Q-clusters. The
algorithm for finding a Q-J decomposition is summarized in
the next theorem.

Theorem 10 There is an efficient algorithm, that, given
any graph G, and a set Q0 of disjoint critical clusters, such
that any non-trivial canonical cut w.r.t. Q0 in G is large,
produces a valid Q-J decomposition of G.

Proof. For each edge e ∈ EJ , if v is the endpoint of
the tendril τ(e) that belongs to some Q-cluster in Q, then
we say that v is the head of the tendril τ(e). We also set
Q∗ =

⋃
Q∈QQ.

We build the clusters in Q gradually. The algorithm per-
forms a number of iterations. We start with Q = Q0, and in
each iteration, we add a new critical cluster Q to Q. In the
last iteration, we produce the set J of the J-clusters, and
their tendrils, as required.

We now proceed to describe an iteration. Let Q be the
set of current Q-clusters, and let Q∗ =

⋃
Q∈QQ. Let S0 =

V \Q∗.
We start by performing the extended well-linked decom-

position of the set S0 of vertices, using Theorem 6. LetW be
the resulting decomposition, and N the corresponding set of
tendrils. If all sets in W are small, then we set J =W, and
finish the algorithm, so the current iteration becomes the
last one. The output is (Q,J), and the final set of tendrils
is N . We will later show that it has all required properties.
Assume now that W contains at least one large cluster, and
denote it by S. Let NS be the set of tendrils originating at
edges of out(S).

We use Lemma 1 to find a critical sub-cluster Q ⊆ S,
together with the subset EQ ⊆ out(Q) of L/4 edges, and the
set PS : EQ ;η∗ out(S) of paths, that are contained in S\Q.
Let P ′S : EQ ;η∗ out(S0) be a collection of paths obtained
by concatenating the paths in PS with the set NS of tendrils

originating at the edges of out(S). Notice that each edge of
out(S0) serves as an endpoint of at most one such path, and
|P ′S | = L/4. We then add Q to Q, and continue to the next
iteration. This concludes the description of an iteration.
Consider the final collections Q,J of clusters produced by
the algorithm. It is immediate to see that Properties (P1)–
(P2) hold for it. We only need to establish Property (P3).

Consider any cut (S, S) in graph G, such that for each
cluster Q ∈ Q, either Q ⊆ S, or Q ⊆ S, and assume that
both S and S contain at least one cluster in Q. We say that
the vertices of S are red and the vertices of S are blue.

If both S and S contain clusters from Q0, then the cut
(S, S) must be large by our initial assumption. Assume
w.l.o.g. that all clusters in Q0 are red. Let Q be the first
cluster that has been added to Q over the course of the algo-
rithm, whose vertices are blue. Recall that we have a set P ′Q
of L/4 paths connecting the edges of out(Q) to the edges of
out(S0) with congestion at most η∗. Therefore, there must
be at least L

4η∗ edges in the cut, so (S, S) is a large cut. This
concludes the proof of Theorem 10.

Given a valid Q-J decomposition, it is not hard to con-
struct a graph H with the desired properties. The following
theorem mostly follows the construction of [1], with some
minor changes. We defer its proof to the full version.

Theorem 11 Suppose we are given a valid Q-J decomposi-
tion (Q,J) for graph G. Then there is an efficient ran-
domized algorithm to construct a graph H with V (H) =
{vC | C ∈ Q}, and for each edge e = (vC1 , vC2) ∈ E(H),
define a path Pe in graph G, connecting some vertex of
C1 to some vertex of C2, such that for some value α∗ =
O(log4 npoly log logn), the following properties hold w.h.p.
for graph H:

C1. For every cut (A,B) in graph H, there is a cut (A′, B′)
in graph G, such that for each Q ∈ Q, if vQ ∈ A
then Q ⊆ A′, and if vQ ∈ B then Q ⊆ B′, and
|EG(A′, B′)| ≤ α∗ · |EH(A,B)|.

C2. The value of the minimum cut in H is at least L
α∗ .

C3. The paths in set PEH = {Pe | e ∈ E(H)} cause a con-
stant congestion in graph G.

C4. For each critical cluster C ∈ Q, let GC be the grouping
of the edges of out(C) given by Theorem 9. Then for
each group U ∈ GC , at most two paths in PEH contain
an edge of U as their first or last edge.

3.2 Graph Splitting
Once we compute the graph H, we can split it into graphs

H1, . . . , Hx, as follows. For each 1 ≤ j ≤ x, the set of ver-
tices V (Hj) = V (H). The sets of edges E(H1), . . . , E(Hx)
are constructed as follows. Each edge e ∈ E(H) indepen-
dently chooses an index j ∈ {1, . . . , x} uniformly at random.
Edge e is then added to graph Hj , where j is the index cho-
sen by e. We use the following theorem (a re-statement of
Theorem 2.1 from [18]).

Theorem 12 ([18]) Let G = (V,E) be any n-vertex graph
with minimum cut value C. Assume that we obtain a sub-
graph G′ = (V,E′), by adding every edge e ∈ E with prob-
ability p to E′, and assume further that C · p > 48 lnn.

Then with probability at least 1 − O(1/n2), for every parti-

tion (A,B) of V, |EG′(A,B)| ≥ p|EG(A,B)|
2

.

Therefore, if we select L so that L
xα∗ > 48 lnn, then we

can perform the graph splitting as described above, and from
Theorem 12, for each 1 ≤ j ≤ x, for each partition (A,B)

of V (H), |EHj (A,B)| ≥ |EH (A,B)|
2x

w.h.p.

4. AN ALGORITHM FOR BASIC-ICF
The goal of this section is to prove Theorem 1. We start by

proving the theorem for the special case where all demands
are uniform, and all edge capacities are unit. That is, we are
given a subsetM⊆ T ×T of the terminal pairs, and for each
pair (t, t′) ∈ M, D(t, t′) = D, while all other demands are
0. We extend this algorithm to handle arbitrary demands
and edge capacities in Section A of the Appendix. We set
the parameter L = Θ(log20 npoly log logn), and we define
its exact value later.

4.1 The Algorithm
Assume first that in the input instance G, any cut sepa-

rating the set T of terminals has value at least L. We show
in the next theorem, that in this case we can find an integral
solution of value λOPT/poly logn with constant congestion
to instance (G,D). The main idea is to use Theorem 11 to
construct a graph H, where the initial set Q0 of critical clus-
ters is Q0 = {{t} | t ∈ T }. We then split H into poly logn
sub-graphs using the procedure outlined in Section 3, and
use the algorithm of Rao and Zhou [24] to route a poly-
logarithmic fraction of the demand pairs in each resulting
subgraph. The proof of the next theorem appears later in
Section 4.2.

Theorem 13 Let G be an instance of basic-ICF with unit
edge capacities and a set D of uniform demands over the set
T of terminals. Assume that every cut separating the ter-
minals in T has size at least L = Θ(log20 npoly log logn).
Then there is an efficient randomized algorithm that w.h.p.
finds an integral solution of value λOPT/β with constant con-
gestion, where β = O(log26 npoly log logn) and λOPT is the
value of the optimal fractional solution.

In general, graph G may contain small cuts that separate
its terminals. We get around this problem as follows. For
each subset S ⊆ V of vertices, let TS = S ∩ T be the subset
of terminals contained in S. We say that S is a good subset
iff (1) Any cut in graph G[S] separating the terminals in TS
has value at least L; and (2) | out(S)| ≤ L log k. We first
show that we can efficiently compute a good set S of vertices
in graph G. We then decompose the set D of demands into
two subsets: DS containing the demands for all pairs con-
tained in TS , and D′ containing the demands for all other
pairs. Next, we apply Theorem 13 to instance (G[S],DS),
obtaining a collection P ′ of paths, and solve the problem
recursively on instance (G,D′), obtaining a collection P ′′ of
paths. Our final step is to carefully combine the two sets
of paths to obtain the final solution P. We start with the
following lemma that allows us to find a good subset S of
vertices efficiently.

Lemma 3 Let (G,D) be a basic-ICF instance with uniform
demands and unit edge capacities, and a set T of terminals,
where |T | ≤ k. Then there is an efficient algorithm that

either finds a good set S ⊆ V (G) of vertices, or establishes
that every cut (A,B) separating the terminals of T in G has
value |EG(A,B)| ≥ L.

Proof. We start with S = V (G), and then perform a
number of iterations. Let G′ = G[S], and let TS = T ∩ S.
Let (A,B) be the minimum cut separating the terminals in
TS in graph G′, and assume w.l.o.g. that |A∩TS | ≤ |B∩TS |.
If |EG′(A,B)| < L, then we set S = A, and continue to the
next iteration. Otherwise, we output S as a good set. (If
S = V (G), then we declare that every cut separating the
terminals in T has value at least L.)

Clearly, if S is the final set that the algorithm outputs,
then every cut in graph G[S] separating the set T ∩ S of
terminals has value at least L. It only remains to show
that | outG(S)| ≤ L log k. Since |T | ≤ k, and the number
of terminals contained in set S goes down by a factor of at
least 2 in every iteration, there are at most log k iterations.
In each iteration, at most L edges are deleted. Therefore,
| outG(S)| ≤ L log k.

We use the following theorem, whose proof appears be-
low in Section 4.3, to combine the solutions to the two sub-
instances. In this theorem, we assume that we are given a
good vertex set S, TS = T ∩ S, and MS ⊆ M is the sub-
set of the demand pairs contained in S. We assume w.l.o.g.
that MS = {(s1, t1), . . . , (sk′ , tk′)}.

Theorem 14 Suppose we are given a good vertex set S, and
MS ⊆M as above. Assume further that for each 1 ≤ i ≤ k′,
we are given a set Pi of N paths connecting si to ti, such

that all paths in set P ′ =
⋃k′
i=1 Pi are contained in G[S],

and set P ′ causes congestion at most γ in G[S]. Let P ′′ be
any set of paths in graph G, where each path in P ′′ connects
some pair (s, t) ∈M\MS, and the congestion caused by the
paths in P ′′ is at most γ. Then we can efficiently find, for
each 1 ≤ i ≤ k′, a subset P∗i ⊆ Pi of at least N − 2Lγ logn
paths, and for each P ∈ P ′′, find a path P̃ connecting the
same pair of vertices as P , such that the total congestion

caused by the set
(⋃k′

i=1 P
∗
i

)
∪
{
P̃ | P ∈ P ′′

}
of paths is at

most γ in graph G.

We denote this algorithm by Reroute(P ′,P ′′), and its

output is denoted by P̃ ′ =
⋃k′
i=1 P

∗
i , and P̃ ′′ =

{
P̃ | P ∈ P ′′

}
.

We now complete the description of our algorithm, that we
call RecursiveRouting.

We assume that we are given a graph G, a set T of at most
k terminals, a set M of demand pairs, and a real number
D > 0, such that for each pair (t, t′) ∈ M, we can send
λOPT ·D flow units simultaneously in G with no congestion.
If no cut of size less than L separates the terminals of T ,
then we use Theorem 13 to find a set P of paths and return
P. Otherwise, we find a good vertex set S ⊆ V (G) using
Lemma 3. Let TS = T ∩ S, MS ⊆ M the subset of pairs
contained in TS ,M′ =M\MS . We then apply Theorem 13
to (G[S],MS , D) to obtain a collection P ′ of paths, and
invoke RecursiveRouting on (G,M′, D) to obtain a set
P ′′ of paths. Finally, we apply procedure ReRoute to sets
P ′,P ′′ of paths to obtain the collections P̃ ′, P̃ ′′ of paths,
and return P = P̃ ′ ∪ P̃ ′′.

Let β be the parameter from Theorem 13, and let γ be
the congestion it guarantees. We can assume w.l.o.g. that
λOPT
β

D ≥ 4Lγ logn, since otherwise b λOPT
4βLγ logn

Dc = 0, and

P = ∅ is a (poly log)-approximate solution to the problem.
We now prove that procedure RecursiveRouting produces
a solution of value λOPT

4β
and congestion at most γ.

Lemma 4 Let P be the output of procedure RecursiveR-
outing. Then for every pair (s, t) ∈ M, at least bλOPT

4β
Dc

paths connect s to t in P, and the paths in P cause conges-
tion at most γ in G.

Proof. The proof is by induction on the recursion depth.
In the base case, when no cut of size less than L separates
the terminals of T in G, the correctness follows directly from
Theorem 13.

Otherwise, consider the set P ′ of paths. For each pair
(s, t) ∈ MS , let P ′(s, t) ⊆ P ′ be the subset of paths con-
necting s to t in P ′. From Theorem 13, we are guaranteed
that |P ′(s, t)| ≥ bλOPT

β
Dc for each (s, t) ∈ MS , and the

paths in P ′ cause congestion at most γ in G[S].
Consider now the set P ′′ of paths. For each pair (s, t) ∈
M′, let P ′′(s, t) ⊆ P ′′ be the subset of paths connecting
s to t in P ′′. From the induction hypothesis, |P ′′(s, t)| ≥
bλOPT

4β
Dc for all (s, t) ∈ M′, and the paths in P ′′ cause

congestion at most γ in G.
Consider now the final set P = P̃ ′ ∪ P̃ ′′ of paths returned

by the algorithm. From Theorem 14, the paths in P cause
congestion at most γ, as required. For each pair (s, t) ∈MS ,

the set P̃ ′ of paths contains at least bλOPT
β

Dc− 2Lγ logn ≥
bλOPT

4β
Dc paths. For each pair (s, t) ∈MS , if P̃ ′′(s, t) is the

subset of paths of P̃ ′′ connecting s to t, then |P̃ ′′(s, t)| =

|P ′′(s, t)| ≥ bλOPT
4β

Dc, since each path in P ′′ is replaced by

a path connecting the same pair of vertices in P̃ ′′. Therefore,
each pair (s, t) ∈M is connected by at least bλOPT

4β
Dc paths

in P.

This completes the proof of Theorem 1 for uniform de-
mands and unit edge capacities, except for the proofs of
Theorems 13 and 14 that appear below. In Section A of
the Appendix we extend this algorithm to arbitrary edge
capacities and demands using standard techniques.

4.2 Proof of Theorem 13
We assume that we are given a collection M⊆ T × T of

terminal pairs and a value D > 0, such that for each pair
(t, t′) ∈M, D(t, t′) = 1, and all other demands are 0.

We start by applying Theorem 11 to graph G, where we
use the threshold L from the statement of Theorem 13 for
the definition of small clusters, and the initial set of critical
clusters is Q0 = {{t} | t ∈ T }. It is easy to see that each
cluster in Q0 is a critical cluster, and any cut separating the
clusters in Q0 in graph G is large. Let H be the resulting
graph guaranteed by Theorem 11.

Since every terminal in T is mapped to a separate vertex
of H, we can view D as a set of demands for graph H. We
now focus on finding a solution to the ICF problem instance
in graph H, and later transform it into a solution in the
original graph G. We use the following theorem, due to Rao
and Zhou [24].

Theorem 15 ([24]) Let G′ be any n-vertex graph, and let
M′ = {(s1, t1), . . . , (sk, tk)} be any set of source-sink pairs
in G′. Assume further that the value of the global minimum
cut in graph G′ is at least LRZ = Ω(log5 n), and there is a

fractional multi-commodity flow, where for each 1 ≤ i ≤ k,
source si sends fi ≤ 1 flow units to sink ti,

∑k
i=1 fi = F ,

and the flow causes no congestion in G′. Then there is an
efficient randomized algorithm that w.h.p. finds a collection
M∗ ⊆ M′ of at least F/αRZ demand pairs, and for each
pair (s, t) ∈M∗, a path P (s, t) connecting s to t in G′, such
that the paths in the set P∗ = {P (s, t) | (s, t) ∈M∗} are
edge-disjoint, and αRZ = O(log10 n).

Let x = 8αRZ·logn = O(log11 n). We set L = 2α∗·x·LRZ =
O(log20 npoly log logn).

We split graph H into x graphs H1, . . . , Hx, as follows.
For each 1 ≤ i ≤ x, we set V (Hi) = V (H). In order to
define the edge sets of graphs Hi, each edge e ∈ E, chooses
an index 1 ≤ i ≤ x independently uniformly at random, and
is then added to E(Hi). This completes the definition of
the graphs Hi. Given any partition (A,B) of the vertices of
V (H), let cutG(A,B) denote the value of the minimum cut
|EG(A′, B′)| in graph G, such that for each vQ ∈ A, Q ⊆ A′,
and for each vQ ∈ B, Q ⊆ B′. Recall that Theorem 11
guarantees that the size of the minimum cut in H is at least
L/α∗, and for each partition (A,B) of V (H), cutG(A,B) ≤
α∗ · |EH(A,B)|. From Theorem 12, w.h.p., for each 1 ≤ i ≤
x, we have that:

• The value of the minimum cut in Hi is at least L
2α∗x =

LRZ.

• For any cut (A,B) of V (Hi), |EHi(A,B)| ≥ cutG(A,B)
2xα∗ .

From now on we assume that both properties hold for each
graph Hi. We then obtain the following observation, whose
proof appears in the full version of the paper.

Observation 2 For each 1 ≤ i ≤ x, there is a fractional so-
lution to the instance (Hi,D) of basic-ICF of value λOPT

2xα∗βFCG

and no congestion.

In the rest of the algorithm, we apply the algorithm of
Rao-Zhou to each of the graphs H1, . . . , Hx in turn. For each
1 ≤ i ≤ x, in the ith iteration we define a subsetMi ⊆M of
pairs of terminals (that are not satisfied yet), and we define
the set Di of demands to be Di(t, t

′) = D if (t, t′) ∈Mi, and
Di(t, t

′) = 0 otherewise. For the first iteration, M1 = M.
We now describe an execution of iteration i ≥ 1.

Suppose we are given a set Mi of terminal pairs and a
corresponding set Di of demands. We construct a new col-
lection M′i of source-sink pairs, where the demand for each
pair is 1, as follows. For each pair (t, t′) ∈ Mi, we add

N = b λOPT
2xα∗βFCG

· Dc copies of the pair (t, t′) to M′i. We

then apply Theorem 15 to the resulting graph and the set
M′i of demand pairs. From Observation 2, there is a flow of
value at least Fi = N · |Mi| = |M′i| in the resulting graph.
Therefore, from Theorem 15, w.h.p. we obtain a collection
Pi of paths connecting the demand pairs in Mi with no

congestion, and |Pi| ≥ Fi
αRZ
≥ N·|Mi|

αRZ
. We say that a pair

(t, t′) ∈ Mi of terminals is satisfied in iteration i, iff the
number of paths in Pi connecting t to t′ is at least N

2αRZ
. We

then let Mi+1 ⊆ Mi be the subset of terminal pairs that
are not satisfied in iteration i. This concludes the descrip-
tion of our algorithm for routing on graph H. The key in
its analysis is the following simple claim.

Claim 1 For each 1 ≤ i ≤ x, |Mi+1| ≤
(

1− 1
2αRZ

)
|Mi|.

Proof. Let M∗i ⊆ Mi be the subset of demand pairs
that are satisfied in iteration i. It is enough to prove that
|M∗i | ≥ 1

2αRZ
|Mi|. Assume otherwise. A pair (t, t′) ∈ M∗i

contributes at most N paths to Pi, while a pair (t, t′) ∈
Mi \ M∗i contributes less than N

2αRZ
paths. Therefore, if

|M∗i | < 1
2αRZ
|Mi|, then:

|Pi| < |M∗i | ·N + |Mi \M∗i | ·
N

2αRZ

<
N

αRZ

|Mi|,

a contradiction.

Therefore, after x = 8αRZ · logn iterations, we will ob-
tain Mx+1 = ∅, and all demand pairs are satisfied. Recall
that a demand pair is satisfied iff there are at least N

2αRZ
=

Ω
(

λOPT
αRZxα

∗βFCG
·D
)

= Ω
(

λOPT
log26 n poly log logn

D
)

paths con-

necting them. Therefore, we have shown an integral solution

to the ICF instance (H,D) of value Ω
(

λOPT
log26 n poly log logn

)
and no congestion.

We now show how to obtain an integral solution to the ICF
instance (G,D), of the same value and constant congestion.
Let P∗ be the set of paths in graph H that we have ob-
tained. We transform each path P ∈ P∗ into a path P ′ con-
necting the same pair of terminals in graph G. Recall that
all terminals in T are vertices in both G and H. For each
edge e = (vQ, vQ′) on path P , we replace e with the path
Pe, connecting some vertex u ∈ Q to some vertex u′ ∈ Q′,
guaranteed by Property (C3) of graph H. Once we process
all edges on all paths P ∈ P∗, we obtain, for each cluster
Q ∈ Q, a set DQ of demands on the edges of out(Q), that
need to be routed inside the cluster Q. From Property (C4),
this set of demands must be (2,GQ)-restricted. Combining
Observation 1 with Theorem 9, we obtain an efficient ran-
domized algorithm that w.h.p. routes the setDQ of demands
integrally inside Q with constant congestion. For each path
P ∈ P∗, we can now combine the paths Pe for e ∈ P with
the resulting routing inside the clusters Q for each vQ ∈ P
to obtain a path P ′ in graph G connecting the same pair
of terminals as P . Since the set {Pe | e ∈ E(H)} of paths
causes a constant congestion in graph G from Property (C3),
the resulting set of paths causes a constant congestion in G.

4.3 Proof of Theorem 14
We use the following lemma as a subroutine.

Lemma 5 Let G′ be any graph, and let S1,S2 be two sets
of paths in G′, where the paths in each set are edge-disjoint
(but the paths in S1 ∪ S2 may share edges). Assume further
that all paths in S1 originate at the same vertex s. Then we
can efficiently find a subset S ′1 ⊆ S1 of at least |S1| − 2|S2|
paths, and for each path P ∈ S2, another path P̃ connecting
the same pair of vertices as P , such that, if we denote S ′2 ={
P̃ | P ∈ S2

}
, then:

1. All paths in S ′1 ∪ S ′2 are edge-disjoint.

2. Let E′ and Ẽ be the sets of edges used by at least one
path in S1∪S2 and S ′1∪S ′2 respectively. Then Ẽ ⊆ E′.

In other words, the lemma re-routes the paths in S2, using
the paths in S1, and then chooses S ′1 to be the subset of paths
in S1 that do not share edges with the new re-routed paths

in S ′2. The rerouting guarantees that re-routed paths only
overlap with at most 2|S2| paths in S1.

Proof Of Lemma 5. The proof is very similar to argu-
ments used by Conforti et al. [14]. Given any pair (P, P ′) of
paths, we say that paths P and P ′ intersect at edge e, if both
paths contain edge e, and we say that P and P ′ intersect iff
they share any edge.

We set up an instance of the stable matching problem in a
multi-graph. In this problem, we are given a complete bipar-
tite multigraphG = (A,B,E), where |A| = |B|. Each vertex
v ∈ A ∪B specifies an ordering Rv of the edges adjacent to
v in G. A complete matching M between the vertices of A
and B is called stable iff, for every edge e = (a, b) ∈ E \M ,
the following holds. Let ea, eb be the edges adjacent to a
and b respectively in M . Then either a prefers ea over e,
or b prefers eb over e. Conforti et al. [14], generalizing the
famous theorem of Gale and Shapley [15], show an efficient
algorithm to find a perfect stable matching M in any such
multigraph.

Given the sets S1,S2 of paths, we set up an instance of
the stable matching problem as follows. Set A contains a
vertex a(P) for each path P ∈ S1. For each path P ∈ S2,
if x, y are the two endpoints of P , then we add two vertices
b(P, x) and b(P, y) to B. In order to ensure that |A| = |B|,
we add dummy vertices to B as needed.

For each pair P ∈ S1, P ′ ∈ S2 of paths, for each edge
e that these paths share, we add two edges (a(P), b(P ′, x))
and (a(P), b(P ′, y)), where x and y are the endpoints of P ′,
and we think of these new edges as representing the edge
e. We add additional dummy edges as needed to turn the
graph into a complete bipartite graph.

Finally, we define preference lists for vertices in A and B.
For each vertex a(P) ∈ A, the edges incident to a(P) are
ordered according to the order in which they appear on path
P , starting from s. The dummy edges incident to a(P) are
ordered arbitrarily at the end of the list.

Consider now some vertex b(P, x) ∈ B. We again order
the edges incident to b(P, x) according to the order in which
their corresponding edges appear on the path P , when we
traverse P starting from x. The dummy edges incident on
b(P, x) are added at the end of the list in an arbitrary order.
The preference list of the vertex b(P, y) is defined similarly,
except that now we traverse P starting from y. Finally, the
preference lists of the dummy vertices are arbitrary.

Let M be any perfect stable matching in the resulting
graph. We let S ′1 ⊆ S1 be the subset of paths that are
matched to the dummy vertices. Clearly, |S ′1| ≥ |S1|−2|S2|.
For each path P ∈ S2, we now define a path P̃ , as follows.
Let x, y be the two endpoints of P . If at least one of the
vertices b(P, x), b(P, y) participates in M via a dummy edge,

then we let P̃ = P , and we say that P is of type 1. Oth-
erwise, let e, e′ be the edges of M incident on b(P, x) and
b(P, y), respectively, and let P1, P2 ∈ S1 be two paths such
that a(P1) is the other endpoint of e and a(P2) is the other
endpoint of e′. Let e1, e2 be the edges of the original graph
that the edges e, e′ represent. Let σ1(P) be the segment
of P from x to e; σ2(P) the segment of P1 from e to s;
σ3(P) the segment of P2 from s to e′; and σ4(P) the seg-

ment of P from e′ to y. We set P̃ be the concatenation of
σ1(P), σ2(P), σ3(P), σ4(P), and we say that P is of type 2.

Let S ′2 =
{
P̃ | P ∈ S2

}
. It now only remains to show that

all paths in S ′1 ∪ S ′2 are edge-disjoint. It is immediate that

the paths in S ′1 are edge-disjoint, since the paths in S1 were
edge-disjoint. We complete the proof in the following two
claims.

Claim 2 All paths in S ′2 are edge-disjoint.

Proof. Assume otherwise, and let P̃ , P̃ ′ ∈ S ′2 be any pair
of paths that share an edge, say e. First, it is impossible that
both P and P ′ are of type 1, since then P, P ′ ∈ S2, and so
they must be edge-disjoint. So at least one of the two paths
must be of type 2. Assume w.l.o.g. that it is P , and consider
the four segments σ1(P), σ2(P), σ3(P), σ4(P) of P̃ , and the
two edges e1, e2 that we have defined above. Let P1 and P2

be the paths in S1 on which the segments σ2(P), σ3(P) lie.
If P ′ is of type 1, then it can only intersect σ2(P) or

σ3(P), as the paths P and P ′ are edge-disjoint. Assume
w.l.o.g. that P ′ intersects σ2(P), and let e′ be any edge
that they share. Let x′ be the endpoint of P ′ such that
the edge incident to b(P ′, x′) in M is a dummy edge. Then
b(P ′, x′) prefers e′ to its current matching, and a(P1) prefers
e′ to its current matching as well, as e′ lies before e1 on path
P ′, a contradiction.

Assume now that P ′ is of type 2, and consider the seg-
ments σ1(P ′), σ2(P ′), σ3(P ′), σ4(P ′) of P̃ ′. Since the sets
S1,S2 of paths are edge-disjoint, the only possibilities are
that either one of the segments σ1(P), σ4(P) intersects one
of the segments σ2(P ′), σ3(P ′), or one of the segments σ1(P ′),
σ4(P ′) intersects one of the segments σ2(P), σ3(P). Assume
w.l.o.g. that σ1(P) shares an edge e with σ2(P ′). Let x be
the endpoint of P to which σ1(P) is adjacent, and let e1 be
the last edge on σ1(P), and let P1 ∈ S1 be the path that
shares e1 with P . Then vertex b(P, x) prefers the edge e to
its current matching, as it appears before e1 on P , starting
from x. Similarly, a(P1) prefers e to its current matching, a
contradiction.

Claim 3 Paths in S ′1 and S ′2 are edge-disjoint from each
other.

Proof. Assume otherwise, and let P ∈ S ′1, P ′ ∈ S ′2 be
two paths that share an edge e. It is impossible that P ′ is of
type 1: otherwise, for some endpoint x of P ′, b(P ′, x) is ad-
jacent to a dummy edge in M , and a(P) is also adjacent to a
dummy edge in M , while both of them prefer e, a contradic-
tion. Therefore, P ′ is of type 2. Consider the four segments
σ1(P ′), σ2(P ′), σ3(P ′), σ4(P ′). Since the paths in each set
S1 and S2 are edge-disjoint, the only possibility is that e
belongs to either σ1(P ′), or to σ4(P ′). Assume w.l.o.g. that
e ∈ σ1(P ′). Let x be the endpoint of P ′ to which σ1(P ′)
is adjacent. Then b(P ′, x) prefers e to its current match-
ing, and similarly a(P) prefers e to its current matching, a
contradiction.

We are now ready to complete the proof of Theorem 14.
We build a graph G′ from graph G, by replacing each edge
of G with γ parallel edges. It is enough to define the subsets
P∗i ⊆ Pi, and the paths P̃ for P ∈ P ′′ in graph G′, such that,
in the resulting set P̃ ′∪P̃ ′′, all paths are edge-disjoint. From
now on we focus on finding these path sets in graph G′.

We perform k′ iterations, where in iteration i we process
the paths in set Pi, and define a subset P∗i ⊆ Pi. In each
iteration, we may also change the paths in P ′′, by replacing
some of these paths with paths that have the same endpoints
as the original paths (we call this process re-routing). We

maintain the invariant that at the beginning of iteration i,

the paths in set P ′′ ∪
(⋃i−1

i′=1 P
∗
i′

)
are edge-disjoint in G′.

We now describe the ith iteration, for 1 ≤ i ≤ k′.
Let S1 = Pi, and let S2 be the collection of consecutive

segments of paths in P ′′ that are contained in S. The sets
S1 and S2 of paths are both edge-disjoint in graph G′, and
so we can apply Lemma 5 to them, obtaining the sets S ′1
and S ′2 of paths. We then set P∗i = S ′1, and modify every
path P ′′ ∈ P ′′ by removing the segments of S2 from it, and
adding the corresponding segments of S ′2 instead. Let P ′′ be
the collection of the resulting paths. Clearly, the paths in P ′′
connect the same pairs of terminals as the original paths, and
they continue to be edge-disjoint in G′ (since the re-routing
was only performed inside the graph G′[S]). Moreover, since
the paths in all sets P1, . . . ,Pi are edge-disjoint, and we
have only used the edges of the paths in Pi to re-route the

paths in P ′′, the paths in set P ′′ ∪
(⋃i

i′=1 P
∗
i′

)
are edge-

disjoint in G′. Finally, observe that |S2| ≤ γL logn, since
| outG(S)| ≤ L logn, and every path in S2 contains at least
one edge of outG′(S). Therefore, |P∗i | ≥ |Pi| − 2Lγ logn.

Once we process all sets P1, . . .Pk′ , our output is {P∗i }k
′

i=1,
and we output the final set P ′′ that contains a re-routed
path P̃ for each path P in the original set.

5. HARDNESS OF BASIC-ICF
In this section we prove Theorem 2, by performing a sim-

ple reduction from the Congestion Minimization problem.
We use the following theorem, due to Andrews and Zhang [4].

Theorem 16 Let G be any n-vertex graph with unit edge
capacities, and letM = {(s1, t1), . . . , (sk, tk)} be a collection
of source-sink pairs. Then, unless NP ⊆ ZPTIME(npoly logn),
no efficient algorithm can distinguish between the following
two cases:

• (Yes-Instance): There is a collection P of paths that
causes congestion 1, and for each 1 ≤ i ≤ k, there is a
path connecting si to ti in P.

• (No-Instance): For any collection P of paths that
contains, for each 1 ≤ i ≤ k, a path connecting si to ti,
the congestion due to P is at least Ω(log log n/ log log logn).

Let G be any n-vertex graph with unit edge capacities and
a set M = {(s1, t1), . . . , (sk, tk)} of source-sink pairs. We
build a new graph G′, where we replace every edge in G by
D parallel edges. Observe that if G is a Yes-Instance, then
there is a collection P of paths that causes congestion 1 in G,
and every demand pair (si, ti) ∈ M is connected by a path
in P. We then immediately obtain a collection P ′ of paths
in graph G′ that causes congestion 1, and every demand pair
(si, ti) is connected by D paths, by simply taking D copies
of each path in P. Assume now that G is a No-Instance,
and assume for contradiction that there is a collection P ′
of paths in graph G′ that causes congestion at most c, and
every demand pair (si, ti) is connected by at least one path
in P ′. Then set P ′ of paths defines a collection P of paths
in graph G, that causes congestion at most Dc, and every
demand pair (si, ti) is connected by at least one path in P.

From Theorem 16, no efficient algorithm can distinguish
between the case where there is a collection P ′ of edge-
disjoint paths in G′, where every demand pair is connected

by D paths, and the case where any collection P ′ of paths,
containing at least one path connecting every demand pair
causes congestion c, for any values D and c with Dc =
O(log log n/ log log logn), unless NP ⊆ ZPTIME(npoly logn).

6. HARDNESS OF GROUP-ICF
The goal of this section is to prove Theorem 3. We start

by introducing a new scheduling problem, called Max-Min
Interval Scheduling (MMIS), and show that it can be cast
as a special case of group-ICF. We show later that MMIS is
hard to approximate.

6.1 Max-Min Interval Scheduling
In the MMIS problem, we are given a collection J =
{1, . . . , n} of n jobs, and for each job j, we are given a set Ij
of disjoint closed intervals on the time line. Given any set I
of time intervals, the congestion of I is the maximum, over
all time points t, of the number of intervals in I containing
t. Speaking in terms of scheduling, this is the number of ma-
chines needed to execute the jobs during the time intervals
in I. The goal of MMIS is to find, for each job j, a subset
I∗j ⊆ Ij of intervals such that, if we denote I∗ =

⋃n
j=1 I

∗
j ,

then the intervals in I∗ are disjoint (or equivalently cause
congestion 1). The value of the solution is the minimum,
over all jobs j ∈ J , of |I∗j |. Given an instance J of MMIS,
we denote by N(J) the total number of intervals in

⋃
j∈J Ij .

In the following theorem, we relate MMIS to group-ICF.

Theorem 17 Given any instance J of MMIS, we can effi-
ciently construct an instance (G,D) of group-ICF on a line
graph, such that |V (G)| ≤ 2N(J) and the following holds:

• If OPT is the value of the optimal solution to J with
congestion 1, then there is a collection P∗ of edge-
disjoint paths in G, where each pair (Si, Ti) is con-
nected by OPT paths in P∗, and

• Given any set P∗ of paths in G, where every pair
(Si, Ti) is connected by at least D′ paths, and the total
congestion cased by P∗ is bounded by c, we can effi-
ciently find a solution I∗ to instance J of value D′

and congestion c.

Proof. Given an instance of the MMIS problem, we con-
struct an instance of group-ICF on a line graph as follows.
Let J = {1, . . . , n} be the input set of jobs, and let I =⋃n
j=1 Ij . Let S be the set of endpoints of all intervals in

I. We create a line graph G = (V,E), whose vertex set is
S, and the vertices are connected in the order in which they
appear on the time line. Clearly, |V (G)| ≤ 2N(J). For each
job j, we create a demand pair (Sj , Tj), as follows. Assume
w.l.o.g. that Ij = {I1, I2, . . . , Ir}, where the intervals are or-
dered left-to-right (since all intervals in Ij are disjoint, this
order is well-defined). For each 1 ≤ x ≤ r, if x is odd, then
we add the left endpoint of Ix to Sj and its right endpoint
to Tj ; otherwise, we add the right endpoint to Sj and the
left endpoint to Tj . In the end, |Sj | = |Tj | = |Ij |. This
concludes the definition of the group-ICF instance. Let OPT
be the value of the optimal solution to the MMIS instance
(with no congestion), and let I∗ =

⋃
j∈J I

∗
j be the optimal

solution to the MMIS problem instance. Notice that for each
job j ∈ J , for each interval I ∈ I∗j , one of its endpoints is
in Sj and the other is in Tj . For each interval I ∈ I∗, we

add the path connecting the endpoints of I to our solution.
It is immediate to see that each group (Si, Ti) is connected
by OPT paths, and since intervals in I∗ are disjoint, the
congestion is bounded by 1.

Assume now that we are given a solution P∗ =
⋃n
j=1 P

∗
j

to the group-ICF instance, where P∗j is the set of paths con-
necting Sj to Tj , such that |P∗j | ≥ D′, and the paths in P∗
cause congestion at most c. We now transform P∗ into a
solution of value D′ and congestion c for the original MMIS
instance, as follows.

Consider any path P , whose endpoints are x, y, where
one of these two vertices belongs to Sj and the other to Tj .
We say that P is canonical iff x, y are endpoints of some
interval I ∈ Ij . If some path P ∈ P∗j is not canonical, we
can transform it into a canonical path, without increasing
the overall congestion, as follows. We claim that path P
must contain some interval I ∈ Ij . Indeed, otherwise, let Sj
be the set of endpoints of the intervals in Ij . Then x and
y are two consecutive vertices in Sj , they are not endpoints
of the same interval in Ij , and yet one of them belongs
to Sj and the other to Tj . But the sets Sj and Tj were
defined in a way that makes this impossible. Therefore,
P contains some interval I ∈ Ij . We truncate path P so
that it starts at the left endpoint of I and ends at the right
endpoint of I. Once we process all paths in P∗, we obtain a
solution to the group-ICF problem instance, where all paths
are canonical and the congestion is still bounded by c. This
solution immediately gives us a solution of value D′ and
congestion at most c to the MMIS problem instance.

We note that a scheduling problem closely related to MMIS
is Machine Minimization Job Scheduling, where the goal is to
select one time interval for every job, so as to minimize the
total congestion. This problem admits anO(logn/ log logn)-
approximation via the Randomized LP-Rounding technique
of Raghavan and Thompson [23]. Chuzhoy and Naor [13]
have shown that it is Ω(log logn)-hard to approximate.

In the following theorem, we prove hardness of the MMIS
problem, which, combined with Theorem 17, immediately
implies Theorem 3. Its proof very closely follows the hard-
ness of approximation proof of [13] for Machine Minimization
Job Scheduling and appears in the full version of the paper.

Theorem 18 Suppose we are given an instance J of MMIS,
and let N = N(J). Let c be any integer, 0 < c ≤ O(log logN)

and let D = O
(
N1/(22c+3)

)
. Then no efficient algorithm

can distinguish between the following two cases:

• (Yes-Instance): the value of the optimal solution with
congestion 1 is at least D, and

• (No-Instance): any solution I∗, where for all j ∈ J ,
|I∗j | ≥ 1, causes congestion at least c.

unless NP ⊆ DTIME(nO(log logn)).

7. AN ALGORITHM FOR GROUP-ICF
We again start with a special case of the problem, where

all edge capacities are unit, and all demands are uniform.
By appropriately scaling the demands, we can then assume
w.l.o.g. that λOPT = 1, and the demand for each pair (Si, Ti)
is D. Let m = d16 logne be a parameter. We later define a

parameter ∆ = k poly logn, and we assume throughout the
algorithm that:

D ≥ 640∆mαEDP ln2 n = k poly logn, (1)

by setting ∆′ = 640∆mαEDP ln2 n.
We say that a group-ICF instance (G,D) is a canonical

instance iff for all 1 ≤ i ≤ k, Si =
{
si1, . . . , s

i
mD

}
, Ti ={

ti1, . . . , t
i
mD

}
, and there is a set of paths

P =
{
P ij | 1 ≤ i ≤ k, 1 ≤ j ≤ mD

}
where path P ij connects sij to tij , and the paths in P cause

congestion at most 2m inG. We denote byMi =
{

(sij , t
i
j)
}mD
j=1

the set of pairs corresponding to (Si, Ti) for each 1 ≤ i ≤ k,
and we associate a canonical fractional solution f∗ with
such an instance, where we send 1/(2m) flow units along
each path P ij . The value of such a solution is D/2 - the
total amount of flow sent between each pair (Si, Ti). Let

M =
⋃k
i=1Mi. The following lemma allows us to assume

w.l.o.g. that the input instance is canonical. The proof uses
standard randomized rounding and appears in the full ver-
sion.

Lemma 6 Given any instance (G,D) of group-ICF with unit
edge capacities and uniform demands Di = D for all 1 ≤ i ≤
k, where the value of the optimal solution λOPT = 1, we can
efficiently compute a canonical instance (G,D′,P), where
for each 1 ≤ i ≤ k, |Pi| = Dm. Moreover, any integral
solution to the canonical instance gives an integral solution
of the same value and congestion to the original instance.

From now on, we will assume that the input instance is a
canonical one, and that the set P of paths is given. Through-
out this section, the parameter L in the definition of small
and critical clusters is set to L = O(log25 n), and we set the
precise value of L later.

7.1 Split Instances and Good Q-J Decomposi-
tions

In this section we introduce two special cases of the group-ICF
problem and show efficient algorithms for solving them. In
the following section we show an algorithm for the general
problem, which decomposes an input instance of group-ICF
into several sub-instances, each of which belongs to one of
the two special cases described here.

Split Instances.
The first special case that we define is a split instance.

Suppose we are given a canonical instance (G,D) of the
group-ICF problem, with the corresponding set P of paths
connecting the demand pairs in

⋃k
i=1Mi. Assume further

that we are given a collection C = {C1, . . . , C`} of disjoint
vertex subsets of G, such that each path P ∈ P is com-
pletely contained in one of the sets Ch. For each 1 ≤ i ≤ k,
for each 1 ≤ h ≤ `, let Pi(Ch) ⊆ Pi be the subset of
paths contained in Ch. We say that instance (G,D) is a
split instance iff for each 1 ≤ i ≤ k, for each 1 ≤ h ≤ `,
|Pi(Ch)| ≤ D

4αEDP·ln2 n
= D

poly logn
.

Theorem 19 Let (G,D) be a canonical split instance as
described above. Then there is an efficient randomized al-

gorithm that finds a collection R of paths that cause a con-
gestion of at most ηEDP in G, and for each 1 ≤ i ≤ k, at
least D

64αEDP·ln2 n
= D

poly logn
paths connect the vertices of Si

to the vertices of Ti in R w.h.p.

Proof. For each 1 ≤ h ≤ `, let P(Ch) ⊆ P be the subset
of paths contained in Ch, and let M(Ch) ⊆ M be the set
of pairs of terminals that these paths connect. Recall that
the paths in set P(Ch) cause a congestion of at most 2m
in graph G[Ch]. Therefore, if we route 1/(2m) flow units
along each path P ∈ P(Ch), then we obtain a feasible frac-
tional solution to the EDP instance on graph G[Ch] and the
set M(Ch) of demands, where the value of the solution is
|M(Ch)|

2m
.

Let N = 2mαEDP ·lnn. We partition the setM(Ch) into N
subsets M1(Ch), . . . ,MN (Ch), and for each 1 ≤ z ≤ N , we
find a collection Rz(Ch) of paths contained in graph G[Ch]
that connect the demands inMz(Ch) and cause congestion
at most ηEDP.

We start with the setM(Ch) of demands, and apply The-
orem 5 to input (G[Ch],M(Ch)). Since there is a fractional

solution of value |M(Ch)|
2m

, we obtain a collection R1(Ch)
of paths connecting a subset M1(Ch) ⊆ M(Ch) of at least
|M(Ch)|
2mαEDP

demand pairs. We then remove the pairs inM1(Ch)

from M(Ch) and continue to the next iteration. Clearly,
after N iterations, every pair in the original set M(Ch) be-
longs to one of the subsetsM1(Ch), . . . ,MN (Ch). For each
such subsetMz(Ch), we have computed an integral routing
Rz(Ch) of the pairs in Mz(Ch) inside G[Ch], with conges-
tion at most ηEDP. We now choose an index z ∈ {1, . . . , N}
uniformly at random, and set M′(Ch) = Mz(Ch), and
R(Ch) = Rz(Ch). We view R(Ch) as the final routing of
pairs in M′(Ch) inside the cluster Ch, and we say that all
pairs in M′(Ch) are routed by this solution. Notice that
the probability that a pair in M(Ch) is routed is 1/N . The

output of the algorithm is R =
⋃`
h=1R(Ch).

We say that a demand pair (Si, Ti) is satisfied iff R con-
tains at least mD

2N
= D

4αEDP·lnn
paths connecting the vertices

of Si to the vertices of Ti. We now show that w.h.p. every
demand pair (Si, Ti) is satisfied.

Indeed, consider some demand pair (Si, Ti). Recall that
|Pi| = Dm, and for each cluster Ch ∈ C, Pi(Ch) ⊆ Pi is the
subset of paths contained in Ch. Let Mi(Ch) ⊆Mi be the
set of pairs of endpoints of paths in Pi(Ch). Denote D∗ =

D
64αEDP ln2 n

, and recall that we |Mi(Ch)| ≤ D∗ must hold.

We now define a random variable yi,h as follows. Let ni,h be
the number of pairs of vertices in Mi(Ch) that are routed
by R(Ch). Then yi,h =

ni,h
D∗ . Observe that the variables

{yi,h}`h=1 are independent random variables that take values

in [0, 1]. Let Yi =
∑`
h=1 yi,h. Then the expectation of Yi is

µi = mD
D∗·N = 64mαEDP ln2 n

2mαEDP·lnn
= 32 lnn.

The probability that (Si, Ti) is not satisfied is the prob-
ability that Yi <

mD
2D∗·N = µi/2. By standard Chernoff

bounds, this is bounded by e−µi/8 ≤ e−4 lnn = 1/n4. From
the union bound, with probability at least (1 − 1/n3), all
pairs (Si, Ti) are satisfied.

Good Q-J Decompositions.
Suppose we are given a canonical instance (G,D) of the

group-ICF problem, and any valid Q-J decomposition (Q,J)
of the graph G. Recall that for each critical cluster Q ∈ Q,

we are given a partition π(Q) of Q into small clusters that

have the bandwidth property. Let X = J ∪
(⋃

Q∈Q π(Q)
)

.

We say that the Q-J decomposition (Q,J) is good iff Q 6= ∅,
and no demand pair (sij , t

i
j) is contained in a single cluster in

X . In other words, for each 1 ≤ i ≤ k, for each 1 ≤ j ≤ mD,
vertices sij and tij must belong to distinct clusters in X . We
show that if we are given a good Q-J decomposition for G,
then we can efficiently find a good integral solution for it.

For technical reasons that will become apparent later, we
state the next theorem for canonical instances with non-
uniform demands.

Theorem 20 Assume that we are given a graph G, and
for 1 ≤ i ≤ k, two collections Si =

{
si1, . . . , s

i
Di

}
, Ti ={

ti1, . . . , t
i
Di

}
of vertices, where Di ≥ Ω

(
L2 log11 n

)
. As-

sume further that we are given a set of paths,

P =
{
P ij | 1 ≤ i ≤ k, 1 ≤ j ≤ Di

}
,

where path P ij connects sij to tij, and the paths in P cause
congestion at most 2m in G. Assume also that we are given
a good Q-J decomposition (Q,J) for G. Then there is
an efficient algorithm that finds an integral solution to the
group-ICF instance, whose congestion is at most cgood, and
for each 1 ≤ i ≤ k, at least bDi/αgoodc paths connect vertices
of Si to vertices of Ti. Here, αgood = O(log60 npoly log logn),
and cgood is a constant.

Proof. Recall that we are given a canonical fractional
solution, with a collection P =

{
P ij : 1 ≤ i ≤ k, 1 ≤ j ≤ Di

}
of paths, such that path P ij connects sij to tij , and no path
in P has its two endpoints in the same cluster X ∈ X ,

where X = J ∪
(⋃

Q∈Q π(Q)
)

. We view each path P ij ∈
P as starting at vertex sij and terminating at tij . We will
repeatedly use the following claim, whose proof follows from
standard Chernoff bound.

Claim 4 Let P ′ be any collection of paths in G, and let
(P ′1, . . . ,P ′k) be any partition of P ′. Assume that we are
given another partition G of the set P ′ of paths into groups
of size at most q each, and assume further that for each
1 ≤ i ≤ k, |P ′i| ≥ 32q logn. Let P ′′ ⊆ P ′ be a subset of
paths, obtained by independently selecting, for each group
U ∈ G, a path PU ∈ U uniformly at random, so P ′′ =

{PU | U ∈ G}. Then for each 1 ≤ i ≤ k, |P ′i ∩ P ′′| ≥
|P′i|
2q

with high probability.

We say that a path P ∈ P is critical iff it is contained
in some critical cluster Q ∈ Q. We say that a pair (Si, Ti)
is critical iff the number of paths in Pi that are critical is
at least |Pi|/2. Otherwise, we say that (Si, Ti) is a regular
pair. We first show how to route the critical pairs, and then
show an algorithm for routing regular pairs.

Routing Critical Pairs.
Let P̃ ⊆ P be the set of all critical paths, and let XQ =⋃
Q∈Q π(Q). For each cluster X ∈ XQ, we define two sets

of paths: U1(X), containing all paths in P̃ whose first end-

point belongs to X, and U2(X), containing all paths in P̃
whose last endpoint belongs to X. Since cluster X cannot
contain both endpoints of any path in P̃, and the paths in
P̃ cause congestion at most 2m, while | out(X)| ≤ L, we

have that |U1(X)|, |U2(X)| ≤ 2mL for all X ∈ XQ. For
each cluster X ∈ XQ, we then select, uniformly indepen-
dently at random, one path P1(X) ∈ U1(X), and one path

P2(X) ∈ U2(X). We then let P̃ ′ ⊆ P̃ be the subset of
paths P that were selected twice in this process. That is,
P̃ ′ =

{
P1(X) | X ∈ XQ

}
∩
{
P2(X) | X ∈ XQ

}
. Notice that

both {U1(X)}X∈XQ and {U2(X)}X∈XQ are partitions of P̃
into subsets of size at most 2mL. Therefore, from Claim 4,

for each 1 ≤ i ≤ k, |Pi ∩ P̃ ′| ≥ |Pi|
16m2L2 w.h.p.

We now fix some critical cluster Q ∈ Q. Let PQ ⊆ P̃ ′
denote the subset of paths in P̃ ′ that are contained in Q,
let MQ be the set of pairs of their endpoints, and TQ the
subset of terminals that serve as endpoints to the paths in
PQ. Recall that each small cluster C ∈ π(Q) contains at
most two terminals from T ′. We augment the graph G, by
adding, for every terminal t ∈ TQ, an edge et connecting t to
a new vertex t′. LetGQ denote this new graph (but note that
the new vertices t′ do not belong to Q). We now show that
Q still has the weight property in this new graph, and each
cluster C ∈ π(Q) still has the bandwidth property (with
slighter weaker parameters). We can then use Theorem 9
for routing on critical clusters, to route the pairs in MQ.
The proof of the following claim appears in the full version
of the paper.

Claim 5 Each cluster C ∈ π(Q) is (αS/3)-well-linked in
graph GQ, and (Q, π(Q)) has the weight property with pa-
rameter λ′ = λ/3.

We can now use Theorem 9 to find a grouping GQ of the
terminals in TQ into groups of size O(Z) = O(log4 n), such
that for any set D of (1,GQ)-restricted demands, there is
an efficient randomized algorithm that w.h.p. routes D in-
tegrally in G[Q] with constant congestion. Grouping GQ
defines two partitions G1Q,G2Q of the paths in PQ, as fol-
lows: for each group U ∈ GQ, we have a subset P1(U) ⊆ PQ
of paths whose first endpoint belongs to U , and a subset
P2(U) ⊆ PQ of paths whose last endpoint belongs to U . We
let G1Q = {P1(U) | U ∈ GQ}, and G2Q = {P2(U) | U ∈ GQ}.
For each group U ∈ G, we randomly sample one path in
P1(U) and one path in P2(U). We let P ′Q be the set of all
paths that have been selected twice, once via their first end-
point and once via their last endpoint, and we let P̃ ′′ =⋃
Q∈Q P

′
Q. From Claim 4, for each critical (Si, Ti) pair,

|Pi ∩ P̃ ′′| ≥ Ω
(
|Pi|

m2L2Z2

)
= Ω

(
|Pi|

L2 log10 n

)
w.h.p. For each

Q ∈ Q, let M′Q be the set of pairs of endpoints of paths in
P ′Q. Then M′Q defines a set of (2,GQ)-restricted demands
on the set TQ of terminals, and from Theorem 9, there is a
randomized algorithm to route these demands in G[Q] with
constant congestion.

Routing Regular Pairs.
We use the graph H, given by Theorem 11. The algorithm

consists of two steps. In the first step, we route some of
the terminals to the boundaries of the critical clusters, and
create what we call“fake terminals”. This step is very similar
to the algorithm of Andrews [1]. In this way, we transform
the problem of routing the original terminal pairs in graph
G into a problem of routing the new fake terminal pairs
in graph H. The second step is very similar to the proof
of Theorem 13: we split graph H into x = poly logn sub-
graphs H1, . . . , Hx using standard edge sampling, and route

a subset of the fake demand pairs in each graph Hj using
the algorithm of Rao and Zhou [24].

Since we now focus on regular pairs only, to simplify nota-
tion, we assume that we are given a collection {(Si, Ti)}ki=1

of regular demand pairs, and a collection P =
{
P ij
}

1≤i≤k,
1≤j≤D′i

of paths, where D′i = Di/2, such that path P ij connects sij
to tij . We assume that all paths P ij are regular. For each

1 ≤ i ≤ k, Si =
{
si1, . . . , s

i
D′i

}
, and Ti =

{
ti1, . . . , t

i
D′i

}
.

Let T =
⋃k
i=1(Si ∪ Ti) be the set of all terminals, and for

1 ≤ i ≤ k, let Mi =
{

(sij , t
i
j)
}D′i
j=1

be the set of the pairs

of endpoints of paths in set Pi =
{
P i1 , . . . , P

i
Di

}
. Denote by

T J and T Q the sets of all terminals contained in the J- and
the Q-clusters respectively, that is, T J = T ∩

(⋃
C∈J C

)
,

and T Q = T ∩
(⋃

C∈Q C
)
.

Step 1: Defining fake terminal pairs.
The goal of this step is to define new pairs of terminals,

that we call fake terminal pairs, in graph H, so that a good
routing of the fake terminal pairs in graph H immediately
translates into a good routing of the original pairs in graph
G. This step largely follows the ideas of [1]. Let EQ =⋃
Q∈Q out(Q). Our first step is to route all terminals in T

to the edges of EQ. This is done using the following three
lemmas, whose proofs appear in the full version of the paper.

Lemma 7 There is an efficient algorithm to find a partition
GJ of the set T J of terminals into groups of size at most
48m, such that for any (2,GJ)-restricted subset T ′ ⊆ T J
of terminals, there is an efficient algorithm to find a set
PJ : T ′ ;12 E

Q of paths in G.

Lemma 8 We can efficiently find a partition GQ of the set
T Q of terminals into groups of size at most 48m, such that
for any (2,GQ)-restricted subset T ′ ⊆ T Q of terminals, there
is an efficient algorithm to find a set PQ : T ′ ;12 E

Q of
paths G.

Let G = GQ ∪ GJ be the partition of terminals in T
obtained from Lemmas 7 and 8. For each group U ∈ G
of terminals, we define two subsets of paths: P1(U) ⊆ P
contains all paths whose first endpoint belongs to U , and
P2(U) ⊆ P contains all paths whose last endpoint belongs
to U . We then select, independently uniformly at random,
two paths P1(U) ∈ P1(U) and P2(U) ∈ P2(U). Let P ′ ⊆ P
be the subset of paths that have been selected twice, that
is, P ′ = {P1(U) | U ∈ G} ∩ {P2(U) | U ∈ G}. Since both
{P1(U)}U∈G and {P2(U)}U∈G define partitions of the paths
in P into sets of size at most 48m, from Claim 4, for each

1 ≤ i ≤ k, |Pi ∩ P ′| ≥ |Pi|
4608m2 w.h.p.

Let T ′ ⊆ T be the set of terminals that serve as endpoints
for paths in P ′. Since set T ′ is (2,G)-restricted, from Lem-
mas 7 and 8, there is a collection R : T ′ ;24 E

Q of paths in
graph G. For each terminal t ∈ T ′, setR contains a path Pt,
connecting t to some edge et ∈ EQ. We define a mapping
f : T ′ → EQ, where f(t) = et.

Recall that for each critical cluster Q ∈ Q, Theorem 9
gives a partition G(Q) of the edges of out(Q) into subsets of
size at most 3Z = O(log4 n).

Consider some edge e ∈ EQ. If there is a single criti-
cal cluster Q ∈ Q such that e ∈ out(Q), then we say that

e belongs to Q. Otherwise, if there are two such clusters
Q1, Q2 ∈ Q, then we select one of them arbitrarily, say Q1,
and we say that e belongs to Q1. We will view G(Q) as a
partition of only those edges in out(Q) which belong to Q,
and we will ignore all other edges. Let G′ =

⋃
Q∈Q G(Q), so

G′ is a partition of EQ. Our final step is to sample the paths
in P ′, such that for each group U ∈ G′, there are at most
two paths whose endpoints are mapped to the edges of U .

For each group U ∈ G′, we define a subset P1(U) ⊆ P ′ of
paths, containing all paths whose first endpoint t is mapped
to an edge of U , that is, f(t) ∈ U , and similarly, a subset
P2(U) ⊆ P ′ of paths, containing all paths whose last end-
point is mapped to an edge of U . We then select, uniformly
independently at random, a path P1(U) ∈ P1(U), and a path
P2(U) ∈ P2(U), and let P ′′ ⊆ P ′ be the subset of paths
that have been selected twice, that is, {P1(U) | U ∈ G} ∩
{P2(U) | U ∈ G}. Since each set |P1(U)|, |P2(U)| ≤ 3Z =
O(log4 n), from Claim 4, for each 1 ≤ i ≤ k, |Pi ∩ P ′′| ≥
Ω
(

Di
m2Z2

)
= Ω

(
Di

log10 n

)
w.h.p.

Let T ′′ ⊆ T be the set of terminals that serve as endpoints
of paths in P ′′, and let R′′ ⊆ R be their corresponding
subset of paths, R′′ : T ′′ ;24 E

Q. For each 1 ≤ i ≤ k, let
P ′′i = Pi ∩ P ′′, and let M′′i be the set of pairs of endpoints
of the paths in P ′′i .

Let H be the graph given by Theorem 11. We are now
ready to define fake demand pairs for the graph H. For each
1 ≤ i ≤ k, we define a set M̃i of demand pairs, and the sets
S̃i, T̃i of fake terminals, as follows: for each pair (s, t) ∈M′′i ,
if Q1 ∈ Q is the critical cluster to which f(s) belongs, and
Q2 ∈ Q the critical cluster to which f(t) belongs, then we

add (vQ1 , vQ2) to M̃i, and we add vQ1 to S̃i and vQ2 to T̃i.

Notice that we allow M̃i, S̃i and T̃i to be multi-sets. This
finishes the definition of the fake demand pairs. In order to
complete Step 1, we show that any good integral solution to
this new group-ICF instance will give a good integral solution
to the original group-ICF instance. The proof of the next
lemma appears in the full version of the paper.

Lemma 9 Let P̃ be any collection of paths in graph H that
causes congestion at most γ. For each 1 ≤ i ≤ k, let ni be
the number of paths in P̃ connecting the fake terminals in
S̃i to the fake terminals in T̃i. Then we can efficiently find a
collection P∗ of paths in the original graph G, such that for
each 1 ≤ i ≤ k, there are ni paths connecting the terminals
of Si to the terminals of Ti in P∗, and the congestion caused
by paths in P∗ is at most c0γ for some constant c0.

Step 2: Routing in graph H.
In this step, we find a solution for the group-ICF prob-

lem defined on graph H and the set of fake terminal pairs.
For each 1 ≤ i ≤ k, let D̃i = |M̃i|, and recall that D̃i =

Ω
(

Di
log10 n

)
. For each 1 ≤ i ≤ k, we will route a polylogarith-

mic fraction of the demand pairs in M̃i, with no congestion
in graph H. This step is almost identical to the proof of
Theorem 13, except that we use different parameters. For
simplicity, we assume w.l.o.g. in this step that all values D̃i
are equal. In order to achieve this, let D be the minimum
value of D̃i over all 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, we parti-
tion the demand pairs in M̃i into subsets, containingD pairs
each (except possibly the last subset). If one of the resulting
subsets contains fewer than D pairs, we simply disregard all

pairs in this subset. In this way, we define a new collection

of demand pairs
{
M̃′i′

}
, where 1 ≤ i′ ≤ k′. Notice that it

is now enough to find a collection P̃ of paths, such that for
each new group M̃′i′ , at least a poly-logarithmic fraction of
the pairs in M̃′i′ are connected by paths in P̃. To simplify
notation, we now assume w.l.o.g. that for each 1 ≤ i ≤ k,
D̃i = D.

Let αRZ = O(log10 n), LRZ = Θ(log5 n) be the parameters
from Theorem 15. Let x = 16mαRZ · logn = O(log12 n). We
set L = 2α∗ · x · LRZ = O(log25 npoly log logn).

We split graph H into x graphs H1, . . . , Hx, as follows.
For each 1 ≤ j ≤ x, we have V (Hj) = V (H). In order to
define the edge sets of graphs Hj , each edge e ∈ E, chooses
an index 1 ≤ j ≤ x independently uniformly at random, and
is then added to E(Hj). This completes the definition of the
graphs Hj .

For convenience, we define a new graph G′, which is ob-
tained from the original graph G by contracting each cluster
Q ∈ Q into a super-node vQ. Notice that the set M̃ of fake
terminal pairs is also a set of pairs of vertices in graph G′,
so we can also view M̃ as defining a set of demand pairs in
graph G′.

Given any partition (A,B) of the vertices of V (H), let
cutG′(A,B) denote the value of the minimum cut |EG′(A′, B′)|
in graph G′, such that A ⊆ A′, B ⊆ B′. Theorem 11 guar-
antees that the size of the minimum cut in H is at least
L/α∗, and for each partition (A,B) of V (H), cutG′(A,B) ≤
α∗ · |EH(A,B)|. From Theorem 12, for each graph Hj , for
1 ≤ j ≤ x, w.h.p. we have that: (i) The value of the min-
imum cut in Hj is at least L

2α∗x = LRZ; and (ii) For any

partition (A,B) of V (Hj), |EHj (A,B)| ≥ cutG′ (A,B)

2xα∗ .
We need the following lemma, whose proof appears in the

full version of the paper.

Lemma 10 For each 1 ≤ j ≤ x, there is a fractional solu-
tion to the instance (Hj ,M̃) of group-ICF, where each de-

mand pair in M̃ sends 1
6mxα∗βFCG

flow units to each other

with no congestion.

In the rest of the algorithm, we apply the algorithm of
Rao-Zhou to each of the graphs H1, . . . , Hx in turn, together
with some subset M̃j ⊆ M̃ of the fake demand pairs. The
output of the iteration is a collection P̃j of edge-disjoint
paths in graph Hj connecting some demand pairs in M̃j .
We say that a pair (S̃i, T̃i) is satisfied in iteration j, iff P̃j
contains at least D

48mxα∗βFCGαRZ
paths connecting demand

pairs in M̃i.
We now fix some 1 ≤ j ≤ x and describe the execution

of iteration j. Let I ⊆ {1, . . . , k} be the set of indices i,

such that (S̃i, T̃i) was not satisfied in iterations 1, . . . , j − 1.

Let M̃′ =
⋃
i∈I M̃i. From Lemma 10, there is a fractional

solution F in graph Hj , where every demand pair in M̃′
sends 1

6mxα∗βFCG
flow units to each other with no conges-

tion. We transform instance (Hj ,M̃′) of group-ICF into a
canonical instance, obtaining, for each i ∈ I, a collection
P̃ ′i of b D

6xα∗βFCG
c paths, such that the set

⋃
i∈I P̃

′
i of paths

causes congestion at most 2m in graph Hj . Let M̃j be the
collection of pairs of endpoints of paths in

⋃
i∈I P̃

′
i. We ap-

ply Theorem 15 to the EDP instance defined by the graph
Hj and the set M̃j of the demand pairs. Let P̃j be the

output of the algorithm. Then w.h.p., |P̃j | ≥ |M̃j |
2mαRZ

, and

the paths in P̃j are edge-disjoint.
It is easy to verify that at least 1

8mαRZ
-fraction of pairs

(S̃i, T̃i) for i ∈ I become satisfied in iteration j. This is

since |P̃j | ≥ |M̃j |
2mαRZ

≥ |I|·D
24mαRZxα

∗βFCG
, each unsatisfied pair

contributes at most D
48mαRZxα

∗βFCG
paths to P̃j , and each

satisfied pair contributes at most D
6xα∗βFCG

paths. There-

fore, after x = 16mαRZ · logn iterations, all demand pairs
are satisfied.

Let P̃ =
⋃x
j=1 P̃

j denote the final collection of paths.

For each demand pair (S̃i, T̃i), set P̃ must contain at least
D̃i

48mxα∗βFCG·αRZ
= Ω

(
Di

log42 n poly log logn

)
paths connecting

the vertices of S̃i to the vertices of T̃i, and the paths in P̃
are edge-disjoint. Applying Lemma 9, we obtain a collection
P∗ of paths in graph G, that cause a constant congestion,

and for each 1 ≤ i ≤ k, at least Ω
(

Di
log42 n poly log logn

)
paths

connect the vertices of Si to the vertices of Ti.

7.2 The Algorithm
We now present an algorithm to solve a general canonical

instance. Our algorithm uses the following parameter:

∆ = max

640kmLαARV(n) logn

αEDP

16mLαgoodcgood

Ω(L2 log11 n)

which gives ∆ = k poly logn. Let T =
⋃k
i=1(Si ∪ Ti) be

the set of all terminals. The main idea is that we would
like to find a Q-J decomposition of the graph G, such that

each small cluster X ∈ X , where X = J ∪
(⋃

Q∈Q π(Q)
)

,

contains at most D/poly logn terminals. Suppose we can
find such a decomposition. We then say that a path P ∈ P is
of type 1 iff its both endpoints are contained in some set X ∈
X , and it is of type 2 otherwise. We can then partition the
demand pairs (Si, Ti) into two types: a demand pair (Si, Ti)
is of type 1 if most of the paths in Pi are of type 1, and it
is of type 2 otherwise. This partitions the problem instance
into two sub-instances: one induced by type-1 demand pairs,
and the other induced by type-2 demand pairs. The former
is a split instance w.r.t. X , while for the latter instance, the
current Q-J decomposition is a good decomposition. We can
then solve the two resulting sub-instances using Theorems 19
and 20, respectively.

We are however unable to find such a Q-J decomposi-
tion directly. Instead, our algorithm consists of three steps.
In the first step, we find a partition of V (G) into subsets
V1, . . . , Vr, and for each 1 ≤ h ≤ r, we let Gh = G[Vh].
This partition guarantees that for each resulting graph Gh,
for each small cut (A,B) in graph Gh, either A or B con-
tain at most ∆ terminals. Moreover, the number of edges
e ∈ E(G) whose endpoints do not lie in the same set Vh is at
most D/4. This partition decomposes our original problem
into r sub-problems, where for 1 ≤ h ≤ r, the hth sub-
problem is defined over the graph Gh. In the second step,
for each graph Gh, we find a Q-J decomposition (Qh,Jh).
Let Xh = J ∪ {π(Q) | Q ∈ Qh} be the corresponding set of
small clusters. While the Q-J decomposition is not neces-
sarily good, we ensure that each cluster C ∈ Xh may only

contain a small number of pairs (sij , t
i
j) for all 1 ≤ i ≤ k. We

then decompose the demand pairs (Si, Ti) into several types,
and define a separate sub-instance for each of these types.
We will ensure that each one of the resulting instances is
either a split instance, or the Q-J decomposition computed
in step 2 is a good decomposition for it.

Step 1: Partitioning the graph G.
This step is summarized in the following lemma, whose

proof is similar to the proof of standard well-linked decom-
position and appears in the full version of the paper.

Lemma 11 Let (G,D) be a canonical instance of group-ICF
with uniform demands. Then there is an efficient algorithm
to find a partition R of V , such that for each R ∈ R,
for any partition (A,B) of R, where |EG[R](A,B)| < 2L,
either A or B contain at most ∆ terminals. Moreover,∑
R∈R | out(R)| ≤ D/4.

We apply Lemma 11 to our instance (G,D), to obtain
a partition R = {V1, . . . , Vr} of V (G). We denote E′ =⋃
R∈R out(R), and for each 1 ≤ h ≤ r, we denote Gh =

G[Vh]. Consider now some demand pair (Si, Ti). Since
|E′| ≤ D/4, and the set Pi of paths causes congestion at
most 2m in G, there are at least mD/2 pairs (sij , t

i
j) ∈Mi,

for which the path P ji is completely contained in some graph
Gh. Let M′i ⊆ Mi be the subset of all such pairs (sij , t

i
j),

|M′i| ≥ mD/2, and let P ′i ⊆ Pi be the subset of their corre-
sponding paths.

For each 1 ≤ h ≤ r, letMi,h ⊆M′i be the subset of pairs
(sij , t

i
j) for which P ji is contained in Gh, let Pi,h ⊆ P ′i be the

subset of paths connecting such pairs, and let Di,h = |Pi,h|.
Notice that

∑r
h=1 |Pi,h| ≥ Dm/2. For each 1 ≤ h ≤ r,

let Ph =
⋃k
i=1 Pi,h, and let fh be the fractional solution

associated with the set Ph of paths, where each path in Ph
is assigned 1/(2m) flow units. Then for each 1 ≤ i ≤ k, flow
fh routes Di,h/(2m) flow units between the pairs in Mi,h,
and the flow fh causes no congestion in Gh. We let T h be
the set of all terminals participating in pairs in

⋃k
i=1Mi,h.

Step 2: constructing Q-J decompositions.
We say that a graph Gh is small iff |T h| ≤ 8∆, and oth-

erwise we say that it is large. The goal of this step is to find
a Q-J decomposition for each large graph Gh. In this step
we fix some graph G′ = Gh, where Gh is a large graph, and
we focus on finding a Q-J decomposition for it. We denote
T ′ = T h to simplify notation. Recall that |T ′| > 8∆.

Suppose we are given a Q-J decomposition (Q,J) of G′,
and let X = J ∪

(⋃
C∈Q π(C)

)
. We say that this decompo-

sition is non-trivial iff Q 6= ∅. We say that it is successful
iff each cluster X ∈ X contains at most ∆ terminals in T ′.
Notice that in general, Lemma 11 ensures that every clus-
ter X ∈ X contains either at most ∆ or at least |T ′| − ∆
terminals from T ′, since for each X ∈ X , | outG′(X)| ≤ L.
In order for a decomposition to be successful, we need to
ensure that the latter case never happens.

We will instead achieve a decomposition with slightly weaker
properties. Let S∗ ⊆ V (G′) be any vertex subset contain-
ing at most ∆ terminals, with | outG′(S

∗)| ≤ 2L (we do not
require that G′[S∗] is connected). Let GS∗ be the graph ob-
tained from G′ as follows: if | outG′(S

∗)| ≤ L, then we set
GS∗ = G′ \ S∗. Otherwise, L < | outG′(S

∗)| ≤ 2L, and we
obtain GS∗ from G′ by contracting the vertices of S∗ into a

super-node vS∗ . In this step, we show an efficient algorithm
to find a set S∗ with | outG′(S

∗)| ≤ 2L, together with a
successful non-trivial Q-J decomposition for the graph GS∗ .
The algorithm is summarized in the next theorem, whose
proof appears in the full version of the paper.

Theorem 21 There is an efficient algorithm to find a clus-
ter S∗ ⊆ V (G′) containing at most ∆ terminals, with
| outG′(S

∗)| ≤ 2L, and a successful non-trivial Q-J decom-
position for the graph GS∗ .

For each graph Gh, if Gh is large, we invoke Theorem 21 to
obtain set S∗h and (Qh,Jh), a Q-J decomposition of graph

GS∗
h
. We denote Xh = Jh ∪

(⋃
Q∈Qh

π(Q)
)

, and X ′h =

Xh ∪ {S∗h}. Otherwise, if Gh is small, then we denote X ′h =
{V (Gh)}. Finally, let X =

⋃r
h=1 X

′
h.

Consider some path P ∈ P ′. We say that this path is of
type 1 iff it is completely contained in some cluster X ∈ X .
Assume now that the endpoints of P are contained in some
cluster X ∈ X , but P is not completely contained in cluster
X. If X = S∗h for some 1 ≤ h ≤ r, then we say that P is of
type 2; otherwise, it is of type 3. All remaining paths are of
type 4.

We partition the demand pairs (Si, Ti) into four types.
We say that a demand pair (Si, Ti) is of type 1, iff at least
1/5 of the paths in P ′i are of type 1; we say that it is of type
2 iff at least 1/5 of the paths in P ′i are of type 2; similarly,
it is of type 3 iff at least 1/5 of the paths in P ′i are of type
3, and otherwise it is of type 4. If a pair belongs to several
types, we select one of the types for it arbitrarily.

Step 3: Routing the demands.
We route the demands of each one of the four types sep-

arately.

Type-1 demands.
It is easy to see that type-1 demands, together with the

collection X of clusters, define a split instance. This is since
each cluster X ∈ X contains at most ∆ demand pairs, and
∆ ≤ D

640mαEDP·ln2 n
from Equation (1). If (Si, Ti) is a type-1

demand, then the number of type-1 paths in P ′i is at least
Dm/10. Therefore, we can apply Theorem 19, and obtain
a collection R1 of paths that cause congestion at most ηEDP

in G, and for each type-1 pair (Si, Ti), at least D/poly logn
paths connect the vertices in Si to the vertices in Ti in R1

w.h.p.

Type-2 Demands.
We show that the set of type-2 demands, together with

the collection of vertex subsets Vh where Gh is large, de-
fine a valid split instance. Indeed, for each such subset Vh
of vertices, every type-2 path that is contained in Vh must
contain an edge in outGh(S∗h). Since there are at most 2L
such edges, and the paths in P cause congestion at most 2m,
we get that the number of type-2 paths contained in each
such subset Vh is bounded by 4mL < ∆ ≤ D

640mαEDP·log2 n
.

For each type-2 demand pair (Si, Ti), there are at least Dm
10

type-2 paths connecting the vertices of Si to the vertices
of Ti in P ′i. Therefore, we can apply Theorem 19, and ob-
tain a collection R2 of paths that cause congestion at most
ηEDP in G, and for each type-2 demand pair (Si, Ti), at least

D/poly logn paths connect the vertices in Si to the vertices
in Ti in R2 w.h.p.

Type-3 Demands.
Let X ∈ X \ {S∗1 , . . . , S∗r}, and consider the set P(X)

of type-3 paths whose both endpoints belong to X. As-
sume w.l.o.g. that X ⊆ Vh. Since | outGh(X)| ≤ 2L,
|P(X)| ≤ 4Lm must hold. Recall that Gh[X] is a connected
graph if X 6∈ {S∗1 , . . . , S∗r}. Let M(X) be the collection
of pairs of endpoints of the paths in P(X). We select one
pair (s, t) ∈ M(X) uniformly at random, and we connect
s to t by any path contained in G[X]. Let R3 be the set
of all such resulting paths. Using the same arguments as
in Theorem 19, it is easy to see that w.h.p. every type-3
demand pair (Si, Ti) has at least D/poly logn paths con-
necting the vertices of Si to the vertices of Ti in R3, since
4mL < D

16 log2 n
.

Type-4 Demands.
Let (Si, Ti) be any type-4 demand, and let P4

i ⊆ P ′i be the
subset of type-4 paths for (Si, Ti). Recall that |P4

i | ≥ Dm/5.
For each 1 ≤ h ≤ r, let P4

i (h) ⊆ P4
i be the subset of paths

contained in the graph Gh. We say that pair (Si, Ti) is light
for Gh iff

|P4
i (h)| < max

{
16mLαgoodcgood,Ω(L2 log11 n)

}
.

Otherwise, we say that it is heavy for Gh. We say that a
demand pair (Si, Ti) is light iff the total number of paths in
sets P4

i (h), where (Si, Ti) is light for Gh is at least Dm/10.
Otherwise, we say that it is heavy.

Let (Si, Ti) be any demand pair, and let P be any type-4
path connecting a vertex of Si to a vertex of Ti. Assume
w.l.o.g. that P is contained in Gh for some 1 ≤ h ≤ r. We
say that P is a light path if (Si, Ti) is light for Gh, and we
say that it is a heavy path otherwise.

We now construct two canonical instances. The first in-
stance consists of light (Si, Ti) demand pairs of type 4, and
their corresponding light type-4 paths in P ′i. It is easy to see
that this defines a split instance for the collection of vertex
subsets Vh, where Gh is large. This is since for each light
pair (Si, Ti), for each subset Vh where (Si, Ti) is light for
Gh, |P4

i (h)| < max
{

16mLαgoodcgood,Ω(L2 log11 n
}
≤ ∆ ≤

D
640mαEDP·ln2 n

. Therefore, we can use Theorem 19 to find a

collection R4 of paths that cause congestion at most ηEDP,
and for each light type-4 pair (Si, Ti), at least D/poly logn
paths connect the vertices of Si to the vertices of Ti in R4

w.h.p.
Finally, consider some heavy type-4 pair (Si, Ti). Let
P ′′i ⊆ P ′i be the set of all heavy type-4 paths in P ′i, and
let M′′i be the set of pairs of their endpoints. Recall that
|M′′i | ≥ Dm/10, and the paths in P ′′i cause congestion at
most 2m in G. For each 1 ≤ h ≤ r, where Gh is large, let
P ′′i (h) ⊆ P ′′i be the subset of paths contained in Gh, and let
M′′i (h) be the set of their endpoints.

Consider some large graphGh, and consider the sets (S′i, T
′
i)

of demands for 1 ≤ i ≤ k, where S′i contains the first end-
point and T ′i contains the last endpoint of every path in
P ′′i (h). Then the Q-J decomposition that we have com-
puted in Step 2 is a good decomposition for graph G′S∗

h
,

where G′ = Gh, for the set (S′1, T
′
1), . . . , (S′k, T

′
k) of de-

mands. Therefore, we can apply Theorem 20 to find a

collection R5(h) of paths in graph G′S∗
h

that cause conges-

tion at most cgood in G′S∗
h
, and for each 1 ≤ i ≤ k, at least

b |P
′′
i (h)|

2mαgood
c > 4Lcgood paths connect vertices of Si to vertices

of Ti in R5(h). Observe however that it is possible that
G′S∗

h
is obtained from Gh by contracting the vertices of S∗h

into a supernode vh, and it is possible that some paths in
R5(h) contain the vertex vh. However, since the degree of
vh is bounded by 2L, and the congestion due to paths in
R5(h) is at most cgood, there are at most 2Lcgood such paths
in R5(h). We simply remove all such paths from R5(h).
Since for each 1 ≤ i ≤ k′, R5(h) contains more than 4Lcgood
paths connecting Si to Ti, we delete at most half the paths
connecting each pair (Si, Ti) in set R5(h)

Let R5 =
⋃
hR

5(h). Then for each heavy type-4 pair

(Si, Ti), at least Dm
40mαgood

= D
poly logn

paths connect Si to Ti

in R5, since we are guaranteed that for all h, either Di(h) =
0, or Di(h) ≥ 2mαgood. The congestion due to paths in R5

is bounded by cgood.
Our final solution is P∗ =

⋃5
j=1R

j . From the above

discussion, for every pair (Si, Ti), set P∗ contains at least
D/poly logn paths connecting Si to Ti, and the congestion
due to P∗ is bounded by a constant.

Acknowledgements.
The second author would like to thank Matthew Andrews

for sharing an early version of his paper and for many in-
teresting discussions. She also thanks Sanjeev Khanna for
many interesting discussions about routing problems. The
third author thanks Chandra Chekuri for useful discussions.

8. REFERENCES
[1] Matthew Andrews. Approximation algorithms for the

edge-disjoint paths problem via Raecke
decompositions. In Proceedings of the 2010 IEEE 51st
Annual Symposium on Foundations of Computer
Science, FOCS ’10, pages 277–286, Washington, DC,
USA, 2010. IEEE Computer Society.

[2] Matthew Andrews, Julia Chuzhoy, Venkatesan
Guruswami, Sanjeev Khanna, Kunal Talwar, and Lisa
Zhang. Inapproximability of edge-disjoint paths and
low congestion routing on undirected graphs.
Combinatorica, 30(5):485–520, 2010.

[3] Matthew Andrews and Lisa Zhang. Hardness of the
undirected edge-disjoint paths problem. In Harold N.
Gabow and Ronald Fagin, editors, STOC, pages
276–283. ACM, 2005.

[4] Matthew Andrews and Lisa Zhang. Hardness of the
undirected congestion minimization problem. SIAM J.
Comput., 37(1):112–131, 2007.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[6] S. Arora and S. Safra. Probabilistic checking of proofs:
a new characterization of NP. Journal of the ACM,
45(1):70–122, 1998.

[7] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani.
Expander flows, geometric embeddings and graph
partitioning. J. ACM, 56(2), 2009.

[8] Yonatan Aumann and Yuval Rabani. An O(log k)
approximate min-cut max-flow theorem and

approximation algorithm. SIAM J. Comput.,
27(1):291–301, 1998.

[9] Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. The all-or-nothing multicommodity flow
problem. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, STOC ’04,
pages 156–165, New York, NY, USA, 2004. ACM.

[10] Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. Multicommodity flow, well-linked terminals,
and routing problems. In STOC ’05: Proceedings of
the thirty-seventh annual ACM symposium on Theory
of computing, pages 183–192, New York, NY, USA,
2005. ACM.

[11] Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. An O(

√
n) approximation and integrality

gap for disjoint paths and unsplittable flow. Theory of
Computing, 2(1):137–146, 2006.

[12] Julia Chuzhoy. Routing in undirected graphs with
constant congestion. In STOC 2012, to appear.

[13] Julia Chuzhoy and Joseph (Seffi) Naor. New hardness
results for congestion minimization and machine
scheduling. J. ACM, 53(5):707–721, 2006.

[14] M. Conforti, R. Hassin, and R. Ravi. Reconstructing
flow paths. Operations Research Letters, 31:273–276,
2003.

[15] David Gale and Lloyd Shapley. College admissions
and the stability of marriage. American Mathematical
Monthly, 1:9–14, 1962.

[16] N. Garg, V.V. Vazirani, and M. Yannakakis.
Approximate max-flow min-(multi)-cut theorems and
their applications. SIAM Journal on Computing,
25:235–251, 1995.

[17] Naveen Garg, Vijay V. Vazirani, and Mihalis
Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees, with applications
to matching and set cover. In Andrzej Lingas, Rolf G.
Karlsson, and Svante Carlsson, editors, ICALP,
volume 700 of Lecture Notes in Computer Science,
pages 64–75. Springer, 1993.

[18] David R. Karger. Random sampling in cut, flow, and
network design problems. Mathematics of Operations
Research, 24:383–413, 1999.

[19] R. Karp. Reducibility among combinatorial problems.
In R. Miller and J. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press,
1972.

[20] F. T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM,
46:787–832, 1999.

[21] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Proceedings of 35th Annual IEEE
Symposium on Foundations of Computer Science,
pages 577–591, 1994.

[22] Harald Räcke. Minimizing congestion in general
networks. In In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 43–52, 2002.

[23] Prabhakar Raghavan and Clark D. Tompson.
Randomized rounding: a technique for provably good

algorithms and algorithmic proofs. Combinatorica,
7:365–374, December 1987.

[24] Satish Rao and Shuheng Zhou. Edge disjoint paths in
moderately connected graphs. SIAM J. Comput.,
39(5):1856–1887, 2010.

[25] R. Raz. A parallel repetition theorem. SIAM J.
Comput., 27(3):763–803, 1998.

[26] N. Robertson and P. D. Seymour. Outline of a disjoint
paths algorithm. In Paths, Flows and VLSI-Layout.
Springer-Verlag, 1990.

APPENDIX
A. ARBITRARY EDGE CAPACITIES AND

DEMANDS
In this section we extend our algorithms for basic-ICF and

for group-ICF from Sections 4 and 7 to arbitrary demands
and edge capacities. We only present here the generaliza-
tion for basic-ICF, since the extension of the algorithm for
group-ICF to general edge capacities and demands is almost
identical.

Let α = poly logn denote the approximation factor of the
algorithm from Section 4, and let γ denote the congestion.
Recall that for each demand pair (t, t′) ∈M, the algorithm
finds bλOPTD/αc paths connecting t to t′ in G.

We now assume that we are given a set D of arbitrary
demands, and the edge capacities are also arbitrary. We
assume w.l.o.g. that λOPT = 1. Let Dmax and Dmin be the
maximum and the minimum demands in D, respectively.
We first consider the case where Dmax/Dmin ≤ n3, and show
a factor 4α-approximation with congestion at most γ for it.

If Dmin ≥ 2n3, then we delete all edges whose capaci-
ties are less than ρ =

⌊
Dmin/(2n

3)
⌋
. Notice that the total

amount of flow going through such edges in the optimal frac-
tional solution is bounded by Dmin/2, so this change reduces
the value of the optimal fractional solution by at most factor
2. We then divide all demands and edge capacities by the
factor ρ, thus obtaining a new problem instance G′. The
value of the optimal solution for G′ remains λOPT = 1, and
any integral solution of value λ and congestion η in G′ can
be converted into an integral solution of value λ and conges-
tion η in G. From now on we will assume w.l.o.g. that the
value of the minimum demand Dmin ≤ 4n3, and so the value
of the maximum demand, Dmax ≤ 4n6, while λOPT = 1.

Let D∗ = 4α/λOPT. Since we are only interested in finding
a factor 4α-approximation, we can assume w.l.o.g., that for
each pair of terminals, either D(t, t′) = 0, or D(t, t′) ≥ D∗.
In particular, Dmin ≥ D∗.

We now slightly modify the graph G, and define a new set
D′ of demands, such that in the new instance all capacities
are unit, and the demands are uniform. Let D = Dmin. We
start with M = ∅. Consider some demand pair (s, t) with
D(s, t) > 0, and letN(s, t) = bD(s, t)/Dc. We createN(s, t)
copies of the source s that connect to s with a capacity-∞
edge each, and N(s, t) copies of the sink t that connect to t
with capacity-∞ edges. We also add N(s, t) disjoint pairs of
vertices, each containing one copy of s and one copy of t, to
set M. Let M be the final set of terminal pairs, obtained
after we process all pairs with non-zero demands, and let D′
be the corresponding set of demands, where for each pair
(s′, t′) ∈ M, we set its demand D′(s′, t′) to be D. Notice
that so far for each pair (s, t) of vertices with D(s, t) > 0, the

total demand in D′ between the copies of s and the copies
of t is at least D(s, t)/2 and at most D(s, t). Therefore, an
α′-approximate solution to the resulting instance will give a
2α′-approximation to the original instance. Our final step
is to take care of the non-uniform edge capacities. Since we
are interested in finding an integral routing, we can assume
w.l.o.g. that all edge capacities ce ≥ 1.

Since λOPT = 1, the total flow through any edge in the
optimal fractional solution cannot exceed n2 · Dmax, so if
the capacity of any edge is greater than n2 · Dmax, we can
set it to n2 · Dmax without changing the value of the opti-
mal fractional solution. Finally, for each edge e, we replace
e with dc(e)e parallel edges with unit capacities. The re-
sulting instance of ICF has unit edge capacities and uniform
demands. The value of the optimal fractional solution is at
least λOPT/2, where λOPT is the value of the optimal frac-
tional solution in the original instance. We can now use the
algorithm from Section 4 to find an α-approximate integral
solution with congestion at most γ for this new instance.
This solution immediately gives a factor 4α-approximation
with congestion at most 2γ for the original instance.

Assume now that we are given an instance (G,D) of basic-ICF
with arbitrary demands and capacities. By appropriately
scaling the demands, we can assume w.l.o.g. that λOPT = 1.
We group the demands geometrically into groups D1,D2, . . .,
where groupDi contains all demandsD(s, t) with n3(i−1)D′min ≤
D(s, t) < n3iD′min, whereD′min is the minimum demand inD.
Notice that the number of non-empty groups Di is bounded
by n2. For each non-empty group Di, we create a new in-
stance of basic-ICF, as follows. We build a graph Gi whose
set of vertices is V (G), and the set of edges consists of all

edges of G whose capacities are at least n3(i−2)D′min. If the
capacity of an edge is more than n3i+2D′min, then we set
its capacity to n3i+2. The capacities of all other edges re-
main unchanged. We then use the algorithm for the special
case where Dmax/Dmin ≤ n3 for each one of the resulting
instances (Gi,Di), and output the union of their solutions.
Since the value of the optimal fractional solution in each such
instance is at least λOPT/2, it is immediate to verify that we
obtain a factor 8α-approximation. In order to bound the
edge congestion, observe that for each edge e ∈ E(G), the
total capacity of copies of edge e in all instances (Gi,Di) to
which e belongs is bounded by 4c(e). Therefore, the overall
edge congestion is bounded by 8γ.

