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ABSTRACT
We describe several new bottom-up approaches to problems
in role engineering for Role-Based Access Control (RBAC).
The salient problems are all NP-complete, even to approx-
imate, yet we find that in instances that arise in practice,
these problems can be solved in minutes. We first consider
role minimization, the process of finding a smallest collec-
tion of roles that can be used to implement a pre-existing
user-to-permission relation. We introduce fast graph reduc-
tions that allow recovery of the solution from the solution to
a problem on a smaller input graph. For our test cases, these
reductions either solve the problem, or reduce the problem
enough that we find the optimum solution with a (worst-
case) exponential method. We introduce lower bounds that
are sharp for seven of nine test cases and are within 3.4% on
the other two. We introduce and test a new polynomial-time
approximation that on average yields 2% more roles than
the optimum. We next consider the related problem of min-
imizing the number of connections between roles and users
or permissions, and we develop effective heuristic methods
for this problem as well. Finally, we propose methods for
several related problems.

1. BOTTOM-UP ROLE MINING
Access control allows organizations to grant or deny access
of something to someone. Traditionally, access controls have
been maintained locally with the entity to which access is
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being granted. This causes significant management overhead
in large organizations where the access controls are spread
across the enterprise, and it is very difficult to rationalize
why certain users have access to certain things while others
do not. In large organizations there is a significant security
concern that individuals might have access to things they do
not need to do their jobs, thus creating a risk of fraudulent
or otherwise damaging actions.

Role based access control (RBAC) attempts to remedy the
situation by centralizing access controls and aligning them
with business needs. Here, users are assigned to a role, such
as “accounts receivable clerk”, and that role in turn is de-
fined as the set of permissions such a person needs to do
his or her job. RBAC can be centralized across multiple ap-
plications, which leads to an easier management task, and
in principle roles can be defined to minimize the possibility
that an employee is given permissions beyond the scope of
the job.

The first step in setting up any kind of RBAC system is to
define a set of roles; this is a step in a process known as role
engineering. The specification of roles by fiat (based, pre-
sumably, on business acumen) is referred to as top-down role
engineering [3]. This process is labor intensive and therefore
costly [5]. Analysis of the existing access controls can be
done to derive a set of roles which are inherently defined in
an organization. This type of bottom-up analysis is called
role mining or role discovery. The top-down and bottom-
up approaches are not incompatible: the roles discovered
bottom-up can then be modified and approved top-down;
a partial set of roles specified top-down can be augmented
and completed by bottom-up approaches. In this paper, we
consider the bottom-up approach.

Thus, the task in bottom-up role engineering is to find a set
R of roles, together with a set of user-to-role assignments
EUR and a set of role-to-permission assignments ERP such
that user u has permission p if and only if (iff) there is
a role r ∈ R such that both (u, r) is part of the user-to-
role assignment relation EUR and (r, p) is in the role-to-
permission relation ERP . The Role Mining Problem (RMP)
is to find a smallest set of roles for which this is possible.



1.1 Our contributions
Our contributions to the RMP are as follows. We introduce
(Sect. 4.1) a method to find the best possible solution to
the RMP that succeeds for each of a collection of practical
problems that we have used as a test suite. The method
uses fast graph reductions that allow recovery of the opti-
mum solution from the solution to a problem on a graph
smaller than the original input. For most of the realistic
problems for which we have tried them, these reductions
completely solve the problem by themselves. On the re-
maining problems, they reduce the problem enough that we
can find the exact solution with an exponential (in the worst
case) method.

We introduce (Sect. 4.2.1 and 4.2.2) and test a fast approx-
imation method that is within 12% of best possible on all of
our test cases, and 2% on average across all the test cases.
We give a method for computing (Sect. 4.3.1) a lower bound
that is sharp for seven of nine test cases and are within 3.4%
on the other two, and is fast to compute. Finally we show
experimentally (Sect. 4.3.3) that the matrix rank of a bi-
partite graph adjacency matrix approximates quite closely
the number of roles in a solution to the RMP.

A second problem that we attack is the minimization not of
|R| but rather some measure of the total size of the tripar-
tite representation. Indeed, Zhang, Ramamohanarao, and
Ebringer [23] proposed |R|+ |EUR|+ |ERP | as a measure to
be minimized, and a heuristic for reducing it. We consider
this problem and their approach in Section 5. We have tried
a variant of their approach on large problems arising in prac-
tice and found that, for some cases, a significant reduction
in the number of edges is possible with only a small increase
in the number of roles.

Finally, we propose (Sect. 6) a way to generalize any ap-
proach to the RMP in order to implement a system in which
users are assigned to groups of users (possibly overlapping,
so a user may be part of several groups), which are granted
roles, which confer permissions. We find that a convergent
iterative process that alternately updates and improves the
groups, then the roles, then the groups, etc., is effective.

2. PROBLEMS ADDRESSED
As our methods and our explanations are couched in the
language of graph theory, we review some terminology before
we get started. We then define the problems addressed in
this paper.

2.1 Graphs
In a graph G = (V, E), with vertex set V = V (G) and edge
set E = E(G), we say that v ∈ V and w ∈ V are adjacent
if (v, w) ∈ E. The vertices v and w are called the endpoints
of the edge (v, w). E is a set of unordered pairs; the edges
of G are undirected. For a vertex v, we denote by Γ(v) the
set {w | (v, w) ∈ E } of its neighbors. If S is a subset of the
vertices V (G), then the subgraph induced by S is the graph
whose vertex set is S and whose edges are the members of
E(G) whose two endpoints are both in S. If S is a set of
vertices, we denote by G[S] the subgraph of G induced by
S. Similarly, for any set T of edges, we denote by G[T ] the
subgraph of G induced by the endpoints of the edges in T .

Thus T ⊆ E(G[T ]). For v ∈ V , the star centered at v is
G[v ∪ Γ(v)].

A clique in a graph is a set of pairwise adjacent vertices.
An independent set in a graph is a set of vertices, no two
of which are adjacent. A graph G is said to be bipartite if
V (G) can be partitioned into two subsets V1 and V2 such
that for every edge (v1, v2) ∈ E(G), v1 ∈ V1 and v2 ∈ V2. A
biclique in a bipartite graph is a set of vertices C1 ⊆ V1 and
C2 ⊆ V2 such that (c1, c2) ∈ E for all c1 ∈ C1 and c2 ∈ C2.
An independent set, clique, or biclique is said to be maximal
if it is not a proper subset of a larger independent set, clique,
or biclique, respectively.

A collection C of bicliques is a biclique cover (of the edges) of
G if for every edge (u, v) of G there is a biclique B ∈ C such
that u ∈ B and v ∈ B; equivalently, (u, v) ∈ E(G[B]). We
say that B covers (u, v) in this case. A minimum cardinality
collection of bicliques that covers the edges of a given bipar-
tite graph is a minimum biclique cover (MBC). The size of
an MBC is known as the biclique cover number, denoted
bc(G).

2.2 Problems
To begin, we are given an undirected bipartite graph G =
(V, E) in which the vertex set V has been partitioned into
disjoint subsets U and P , where the members of U are the
users and the members of P are the permissions, and where
E is a set of pairs (u, p) in which u ∈ U and p ∈ P . The
pair (u, p) ∈ E iff user u is granted permission p.

Our work addresses precise formulations of several role en-
gineering problems that were introduced by Vaidya, Atluri,
and Guo [21] and by Vaidya, Atluri, and Guo [21] at SAC-
MAT 2007. The first problem we attack was called the Role
Minimization Problem (RMP) by Vaidya; it is to find a min-
imum cardinality set of roles that can be used to implement
a given user-permission relation. Thus, the task is to find
a smallest possible set R of roles, together with a set of
user-to-role assignments EUR and a set of role-to-permission
assignments ERP , such that

E = {(u, p) | ∃r ∈ R, (u, r) ∈ EUR, (r, p) ∈ ERP }. (1)

In other words, our original bipartite graph G has an edge
from u to p iff there is at least one path of length two from
u to p in the tripartite graph

GRB = (U ∪R ∪ P, EUR ∪ ERP ) .

Given a set of roles and pair of relations EUR and ERP sat-
isfying (1), each role is adjacent to a subset of users and
a subset of permissions, and each of these users has each of
these permissions. The users and permissions connected to a
role therefore induce a biclique in G. The set C of subgraphs
induced by {u | (u, r) ∈ EUR} ∪ {u | (r, p) ∈ EUR} as r
varies over all of R is a biclique cover of G. Similarly, given
a biclique cover of G, we obtain a set R of roles (identified
with the bicliques) and a pair relations EUR and ERP satis-
fying (1). The role mining problem is therefore equivalent to
the problem of finding an MBC. This is an NP-hard prob-
lem [14] that is known to be hard to approximate. Results
of Simon [19] and of Lund and Yannikakis [11] show that
MBC has no polynomial time approximation with factor nδ



for δ > 0 unless P = NP .1 To date, heuristics have been
proposed, but they remain largely untested on practical ex-
amples.

There are a variety of equivalent ways to view the RMP.
One may view it as factorization of a binary relation into
a join of two relations, factorization of a {0, 1} matrix as a
boolean product [18], tiling of a database [6], or the repre-
sentation of a given bipartite graph as the transitive closure
of a tripartite graph in which the set of roles is a newly intro-
duced subset of vertices. We prefer the graph point of view,
but all of our approaches are applicable no matter which
of these fully equivalent viewpoints is taken. Cornaz and
Fonlupt discuss several practical applications of the MBC
problem [2].

2.2.1 Reduction to minimum clique partition and chro-
matic number

A minimum clique partition (MCP) of a graph is a smallest
collection of cliques such that each vertex is a member of ex-
actly one of the cliques; it is a partition of the vertices into
cliques. The graph coloring problem is to find a smallest par-
tition of the vertices of a graph into independent sets. The
chromatic number of a graph is the number of independent
sets in a smallest partition of the vertices into independent
sets. Here, we introduce a reduction of the MBC problem
to the MCP and the graph coloring problems that will be
useful to us in building and explaining algorithms.

Let G = (V, E) be a given bipartite graph in which we seek
a minimum biclique cover. We construct a new, undirected,
unipartite graph G′ = G′(G), which is an edge dual of the
given bipartite graph G, as follows. The edges of G become
the vertices of G′. A pair of vertices in G′ are connected by
an edge iff the endpoints of the corresponding edges of G
induce a biclique of G; see Figure 1. Thus,

G′ = (E, {(e1, e2) | e1 and e2 induce a biclique of G}).
If two edges can be covered by a single biclique, then clearly
the (three or four) vertices that are endpoints of these two
edges are completely connected and form a small biclique,
so the two edges must be adjacent; hence, a pair of non-
adjacent edges cannot both be covered by a single biclique.

The vertices of a (maximal) clique in G′ correspond to a set
of edges of G whose endpoints are a (maximal) biclique in
G. The edges covered by a (maximal) biclique of G induce
a (maximal) clique in G′. Thus, every biclique edge cover of
G corresponds to a collection of cliques of G′ whose union
contains all of the vertices of G′. From such a collection,
a clique partition of G′ can be obtained by removing any
redundantly covered vertex from all but one of the cliques
to which it belongs. Similarly, any clique partition of G′

corresponds to a biclique cover of G. Thus, the biclique
cover number of a bipartite graph G is equal to the clique
cover number (the size of a minimum clique partition) of
G′(G).

A clique partition of a graph G = (V, E) is a coloring of its

1One of us (A. Ene) provides a more complete picture of
the theory of the difficulty of the problem in an unpublished
report [4].

Figure 1: A pair of edges is adjacent if their end-
points form a biclique. The dashed edges are not
adjacent: a cross edge from the upper triangular
vertex to the lower circular vertex is missing. They
cannot both be covered by a single biclique.

complement, Ĝ = (V, (V ×V ) \E). Thus, the biclique cover
number of a bipartite graph G is the chromatic number of

Ĝ′(G).

3. RELATED WORK
Top-down approaches and assisted top-down approaches are
discussed in several papers. Kuhlmann et al. [8] use clus-
tering and data mining techniques to obtain structural and
statistical information that can be used to construct roles.
Schlegelmilch and Steffens [17] take a hierarchical cluster-
ing approach to identify role hierarchies, and describe a tool
allowing users to visualize and manage role hierarchies.

In a 2006 paper, Vaidya, Atluri, and Warner [22] proposed
a bottom-up method that first enumerates a set of candi-
date roles (bicliques) and then selects from among these.
The candidates are enumerated by considering each user,
the permissions of that user, then all users that have this
set of permissions. Then all intersections of the permission
sets of this initial set of bicliques are generated and added
to the candidate role set. Finally, this (potentially large) set
of candidates is scanned in some priority order to select the
cover. Tests were done, but only on synthetic datasets. Sub-
set enumeration techniques had been advocated earlier [16].

In their 2007 paper, Vaidya, Atluri, and Guo [21] formally
define the RMP, in effect as the minimum biclique cover
problem. They advocate a greedy heuristic that grows a
cover by including, at each step, the biclique that covers the
largest possible set of previously uncovered edges. Unfortu-
nately, this step requires the solution of the maximum edge
biclique problem, which is itself NP-hard [15], so they advo-
cate a branch and bound method. They present no test of
its complexity or efficacy in practice.

4. ROLE MINING VIA BICLIQUE COVERS
We consider the Role Minimization Problem; that is, we give
methods for finding a biclique cover of the edges of a bipar-
tite graph. We give a practical and exact (but exponential



in the worst case) algorithm and a fast (polynomial), accu-
rate approximation algorithm. In a discussion section, we
give a lower bound algorithm for the biclique cover number;
we then show how to find the best biclique cover in which
each biclique is a star; and we show how the rank of the
adjacency matrix provides an accurate estimate of biclique
cover number.

4.1 Exact upper bounds via reduction
In this section we consider techniques that allow us to find
the exact solution to the MBC problem even for very large
instances. Recall that the MBC problem for a given bipar-
tite graph G is equivalent to the MCP problem for G’s edge
dual G′, as explained in Section 2.2.1. Our plan, then, is:

1. Construct the dual G′(G).

2. Find a minimum clique partition of G′(G) via graph
reduction:

(a) Remove vertices and their incident edges from G′

according to the strategy below, until no further
removal is possible.

(b) Form the complement of the resulting reduced
graph, the irreducible kernel.

(c) Use a branch and bound backtracking method to
color this graph.

(d) Each color class is a clique in a clique partition of
the irreducible kernel.

(e) Include the removed vertices in the reverse of the
order they were removed, recovering a clique par-
tition of G′.

3. Each clique of the MCP is a set of edges of G. Con-
struct the set of endpoints of these edges. It induces
a biclique of G. Create one role corresponding to this
biclique. The set of roles thus created solves the RMP.

We propose to construct the dual graph G′ by a doubly
nested loop over edges, finding all the pairs of edges that are
adjacent, at cost O(|E(G)|2), to get the edge set of the dual
graph G′. We then find an MCP C of G′ via the reduction
strategy below.

The basic idea of the reduction method is best explained
as a reduction for the MCP problem. For the remainder of
this section, G = (V, E) is a simple graph (not in general
bipartite), and we seek a (smallest) set C of cliques of G
that partitions the vertices V : each v ∈ V is a member of
one of the members of C.

We say that a vertex d is the dominator of a vertex g if g
and all of its neighbors are a subset of d and its neighbors:

d dominates g ⇔ ({ g } ∪ Γ(g)) ⊆ ({ d } ∪ Γ(d)) .

The reduction strategy for MCP is as follows. If a vertex
of x ∈ V (G) has no neighbors, then there is an MCP of G
that consists of a clique containing x alone, together with
an MCP of the subgraph induced by V \ {x}. If the vertex
d dominates the vertex g, then there is an MCP of G that
consists of an MCP of the subgraph induced by V \ {d},

modified to include d in the unique clique that contains g.
We thus have a recursive strategy: find an isolated vertex
v, if any, and append it (a single-vertex clique) to an MCP
(found by recursion) of G[V \{v}]; alternatively, find a vertex
d that dominates a vertex g, construct (recursively) an MCP
of G[V \{d}], and add d to the (unique) clique that contains
g.

Lemma 1. This recursive strategy constructs an MCP of
G.

Proof. If G has an isolated vertex x, then the only clique
that can cover x is {x}. Thus, any clique partition, and
therefore every MCP, consists of {x}∪C where C is an MCP
of G[V \ x]. This is exactly what the strategy provides in
this case. Note that we have shown that | MCP (G) | =
1 + | MCP (G[V \ x]) | in this case.

In the other case, we have to show that we construct a set
of vertex disjoint cliques of G that partitions the vertices
V (G), and that there is no smaller clique partition. The
recursive call produces a set of cliques of G[V \ d] that par-
titions all vertices save the removed dominator vertex d. A
clique of G[V \ v] is a clique of G for any vertex v, so these
are (disjoint) cliques of G. Then d is added to the clique
that contains the dominated vertex g, and so is covered;
the collection C so modified therefore partitions V . And the
clique C to which we add d remains a clique. Because C was
a clique that contains g, we have that C ⊆ ( { g } ∪ Γ(g) ),
and since d dominates g, C ⊆ Γ(d). In other words, ev-
ery member of C is a neighbor of d. Hence, C ∪ { d } is a
clique in G. This shows that we have built a clique parti-
tion. It must be an MCP of G. If not, there is another of
smaller cardinality. Removal of a vertex from a clique yields
a clique. We can remove d from the one member of this
smaller clique partition of G to which it belongs, and the
result is a smaller clique partition of G[V \d] than the MCP
found by the recursive call, a contradiction.

Our implementation follows this plan conceptually, but not
in detail. In particular, we do not construct G′, because its
edge set can be as large as |E|2. Rather we find the domina-
tors in G′ by working with the data structure representing
G.

We implement the algorithm as an iterative process, reduc-
ing the number of edges to be covered until an irreducible
kernel – that is a graph with neither isolated vertices or
dominators – is obtained. The reduction by removal of an
edge is accomplished by a marking of edges as having been
removed, rather than their actual removal; we must retain
all of G, as it is our implicit representation of G′.

When no further reduction is possible, we generate the ir-
reducible kernel of G′, recast the MCP problem for the ir-
reducible kernel into the corresponding coloring problem for
its edge-complement, and use well known techniques to find
a coloring [12]. It is then a simple process to recover the
minimum biclique cover.

The complexity of the reduction is O(|E|3|V | log |V |). There
are at most |E| iterative steps, and at each step there is a



search over (at most) all edge pairs to find a dominator. The
check to see whether or not one edge dominates another,
which is a check on whether one set of vertices is a subset
of another, costs |V | log |V |. (The check is performed by
sorting the indices then comparing them; if |V| storage cells
are available, the check can be done in time O(|V|).)

The experiments below show that this approach is very pow-
erful in practice. It solves seven of our nine test cases by
reduction alone. For the other two, we are able to find best-
possible colorings of the very small irreducible kernels.

4.2 Heuristics
Although the algorithm discussed in the previous section can
be used to solve large problems in practice, this technique
has limits. As a practical matter, there will be bipartite
graphs for which finding a minimum biclique cover is not
feasible in a reasonable amount of time. In this section we
discuss fast heuristic strategies that produce very good re-
sults, as will be seen when we compare them with optimum
solutions and lower bounds.

4.2.1 A greedy algorithm
We propose a greedy algorithm that builds a biclique cover
by identifying and including one biclique at a time in the
cover until all edges are covered. We construct bicliques as
follows. Take a vertex v according to some criterion – we
discuss several of these below. Find its neighbors, Γ(v), and
then find the set Ξ(Γ(v)) of vertices that are adjacent to all of
Γ(v). (If v is a user, we find his or her permissions and then
find all other users who also have all of these permissions;
if on the other hand v is a permission, we find all users
that have this permission and then all permissions that all
of these users have.) Clearly v ∈ Ξ(Γ(V )), so Ξ(Γ(V )) is
nonempty and the vertex subset Ξ(Γ(V ))∪Γ(v) is a biclique.
(Rymon [16] also uses this technique to build bicliques.)

Vaidya, Atluri, and Guo [21] also take the “add one biclique
at a time” approach. But they advocate choosing at each
step a biclique that covers as many uncovered edges as pos-
sible. Unfortunately, the subproblem of finding this next
biclique is itself NP-hard [15]. It would be interesting to
pursue fast methods for finding bicliques that cover many,
if not the most, uncovered edges.

We have experimented with our method. We tried the fol-
lowing criteria for selecting the next vertex v as the seed
for Ξ(Γ(v)): a vertex with fewest uncovered incident edges,
with most uncovered incident edges, or with any number
other than zero of uncovered incident edges. Selecting a
node with the fewest (but not zero) uncovered incident edges
tends to give a slightly better result than selecting one with
the most. Selecting a random vertex does not do as well as
either of these strategies. The method is fast enough that
one can use both (fewest / most) of the competitive variants
and simply select the better final result, which is what we
do in our tests.

4.2.2 Lattice-based postprocessing
In this section we describe a procedure that we use to reduce
the number of roles found by a first heuristic, such as the
greedy algorithm of the previous section. The combination

of these two methods derives sets of roles that come close to
best possible in practice.

Our procedure employs a technique of Zhang et al. [23], who
used it for reducing edge count as described in the follow-
ing section. Let a tripartite graph GRB (whose middle ver-
tices are interpreted as roles) be given. For the remainder
of this section, we identify the role r ∈ R with the sub-
set Perms(r) ∈ P that this role confers and to which r is
adjacent in GRB . Viewing each role thus, as the set of per-
missions to which it is adjacent, consider the lattice of roles
with respect to the subset relation. We write rs ⊂ rS if
rs ⊆ rS and rs 6= rS . Let rS be a role that contains other
roles, and consider the part of rS that is not contained in
any other role: r′S ≡ rS \ ∪rs⊂rS r. We can grant the same
permissions to a user with role rS by assigning him or her
the roles r′S and each maximal rs ⊂ rS . If r′S is empty, the
number of roles is thereby reduced.

For each iteration of the algorithm we replace rS with r′S for
every role in the lattice. This yields a new set of roles. We
continue until the lattice is completely flat: no role covers
any other role.

Comparison of the results obtained this way with the MBCs
found by the reduction method shows that this approach is
extraordinarily effective in practice.

4.3 Discussion
We cover some related topics in this section: a lower bound,
finding the best star cover, and approximating boolean rank
by real rank.

4.3.1 A lower bound on roles
To assess how well heuristics perform, we need a lower bound
on the number of bicliques in an exact cover.

The size of an independent set in a graph is clearly a lower
bound on its clique cover number. The biclique cover num-
ber bc(G) is the clique cover number of its dual G′(G). We
therefore get a lower bound on bc(G) by finding a maximal
independent set I of edges, that is, a maximal independent
set in the graph G′.

Finding a maximum set of pairwise independent edges in
a bipartite graph is NP-complete [13]. We have therefore
used a greedy heuristic to find maximal independent sets.
Starting with an empty set of edges, we repeatedly choose an
edge to add to the independent set. As a heuristic, we choose
an edge with the fewest adjacent edges, breaking ties at
random. We then remove that edge and the edges adjacent
to it from the graph. The process is repeated until no edges
are left. We run the randomized algorithm a number of
times in order to increase the lower bound achieved. On
the nine examples on which we test it (see Section 7.2), the
bound is exact in seven cases, off by 2% in one, and off by
3.5% in the last.

4.3.2 Maximum matchings and biclique covers
A matching in a bipartite graph (V, E) is an edge subset
S ⊆ E with the property that no two members of S have a
common endpoint. A matching is maximal if every edge not



in the matching has an endpoint in common with an edge
that is in the matching. A matching of largest cardinality is
a maximum matching. A maximum bipartite matching can
be found in O(|V |2.5) time [7].

A star is a subgraph induced by a single vertex (the center)
and its neighbors. There are trivial edge covers consisting of
stars: the stars centered at the members of U and the stars
centered at the members of P . These are not competitive
with covers found by our heuristic and our exact methods.
What about the best possible star cover? It is easy to see
that the size of the smallest star cover is the size of a smallest
set of vertices incident on every edge (called a minimum ver-
tex cover). According to König’s Theorem [1], this is equal
to the size of a maximum matching. Thus, we can quickly
determine the size of a best star cover; we report these re-
sults in Section 7.2 below. These too are not competitive
with covers found by the exact and heuristic methods.

4.3.3 Boolean and real rank
Let A be a real m× n matrix. The real rank of A, denoted
rank(A), is the smallest integer r such that A has a factor-
ization A = BC where B has r columns. If the elements
of A are in {0, 1}, and if we consider the boolean product
of matrices, so that the (i, j) element of the product BC is
given by

(BC)ij ≡
r∨

k=1

bir ∧ crj

(here ∧ is multiplication and ∨ is boolean addition, where
1 + 1 = 1) then the boolean rank of A is the smallest r such
that A can be factored as above into a product BC where B
has r columns. Now let A = A(G) be the incidence matrix
of the bipartite graph G: Aup = 1 if (u, p) ∈ E(G) and
Aup = 0 otherwise. Then the biclique cover number bc(G)
is equal to the boolean rank of A(G).

The nonnegative-integer rank of a matrix is the smallest r
for which it can be factored as a product BC of nonnegative
integer matrices in which B has r columns. It is known that
the boolean rank is not larger than the nonnegative integer
rank [18], but computing nonnegative integer rank is NP-
complete. On the other hand, real rank can be computed
fast in practice using numerical techniques. It is not the
case in general that real rank bounds boolean rank either
above or below. We have, however, found for our test cases
that the two are remarkably close; see Table 1. Although
this is not always true, we find that in all these test cases,
rank(A(G)) ≥ bc(G). On average it is 2.5% higher than
bc(G). The practical import of these findings is not clear,
but we feel that they are intriguing enough to mention.

5. EDGE CONCENTRATION
Rather than minimizing the number of roles, we may wish
to minimize the size of the role-based data structure. One
way to measure this size is by the sum over all roles of the
number of users and number of permissions in that role;
equivalently, it is the number of edges in the tripartite graph
GRB . This problem, known in the literature as edge concen-
tration (EC), has also been shown to be NP-hard [10], and
is hard to approximate as well: EC has no polynomial time
approximation with factor nδ for δ > 0 unless P = NP [4].
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Figure 2: (a) The permissions of the role rs are a
subset of those of the role rS. (b) The dashed edges
are removed, and the dash-dotted edge is added, for
a net reduction of one edge.

More generally, we could try to minimize a linear combina-
tion λR|R|+ λE(|EUR|+ |ERP )| of the number of roles and
the number of edges in GRB .

The only lower bound on the number of assignments that we
know of is |U |+ |P |, the number of vertices in G, since every
nonisolated vertex must have at least one incident edge.

5.1 A heuristic for edge concentration
We do not have generalizations of the reduction method of
Section 4.1 for edge concentration; this is an avenue for fur-
ther research. We concentrate here on heuristic approaches.

Zhang et al. [23] make the following observations:

• When the permissions of one role, rs, are a proper
subset of those of a second role, rS , one may remove
the permission of the subset from the superset, thus
removing edges between roles and permissions, at the
expense of adding an edge from any user that has role
rS in order to also give her role rs. This strategy may
be used to reduce edges without increasing roles. The



(a)

(b)

Figure 3: (a) The two roles have two permissions
(gray) in common. (b) A new role (the middle one)
is created and connected to the gray permissions,
which are no longer part of the original two roles.
Dashed edges are removed. Users who had either of
the original roles now have the new role as well. The
added edges are shown by black dash-dotted lines.

situation is symmetric; we can also exploit cases in
which the users of one role are a subset of the users of
another. A case in which this reduces edges is shown in
Figure 2. As this transformation reduces edges without
increasing roles, it ought to be performed as a matter of
course as a postprocessing step in any role minimizer
or any solver of the MBC problem for that matter,
and we use it in the implementation that produced
the results described in Section 7.2. Note that in the
lattice-based postprocessing technique of Section 4.2.2
we apply this same graph transformation. Since our
goal there is to minimize roles, we apply it without
regard to the effect it has on edge count, and we do so
only when rs is a maximal proper subset of rS , that is
only when there are no intervening roles in the lattice.

• When there is substantial overlap between the permis-
sions of a pair of roles, we can potentially remove edges
by introducing a new role that has as its permissions
the intersection of the permissions of these two roles,

and removing the intersection from their permission
sets. This is true of users as well. Figure 3 illustrates
this. (In the case shown, the transformation increases
the number of edges, so we wouldn’t make it.)

We exploit these observations, employing a heuristic strat-
egy to approximately minimize (a linear combination of)
the number of roles and edges. We start by using one of
the role minimizing algorithms of either Section 4.1 or Sec-
tion 4.2.1. We then greedily improve the objective function
using the transformations above, until no further improve-
ment is possible. To do so, we find the amount of overlap
among the user and permission sets of the current set of
roles, and for each pair of roles whose user or permission sets
have nonempty intersection, we evaluate the improvement in
the objective achievable by the transformations above. We
choose at each step to make a change that achieves the best
possible reduction, breaking ties at random, and stopping at
a local minimum (when no change of this kind yields a fur-
ther reduction.) The results of Section 7.2 show that large
reductions in edge count can be achieved in some cases.

6. ADDING GROUPS TO THE ROLE HIER-
ARCHY

In a hierarchical role-based system, roles may imply other
roles, so that the strict three-tier structure of users, roles,
and permissions is generalized. In one version of a role hier-
archy, we assign users to groups, assign groups to roles, and
then roles to permissions, which leads to a four-tier repre-
sentation. One advantage of such a representation is that
it may reduce the size of the representation more than a
three-tier structure.

In order to compute a four-tier, edge-reduced representa-
tion of the given bipartite graph G that models the user-
permission relation, we proceed as follows:

Initialize Find the role set R and the edges EUR and ERP

in an edge-reduced three-tier representation of G, using the
methods of Section 5.1.

Iterate while any further reduction is obtained, repeat:

Update groups Find the new set H of groups and edge
sets EUH and EHR by computing an edge-reduced three-
tier representation of the bipartite user-role relation GUR ≡
(U ∪R, EUR); Re-define the group-permission edge set EHP

through the roles: EHP = {(h, p) ∈ H×P | ∃ r ∈ R, (h, r) ∈
EHR, (r, p) ∈ ERP }.

Update roles Find the new set R of roles and edge sets EHR

and ERP by computing an edge-reduced three-tier repre-
sentation of the bipartite group-permission relation GHP ≡
(H ∪P, EHP ); Re-define the user-role edge set EUR through
the groups: EUR = {(u, r) ∈ U × R | ∃ h ∈ H, (u, h) ∈
EUH , (h, r) ∈ EHR}.

The process must converge, as it monotonically reduces total
edge count. At most three iterations of the while loop were
needed on our test cases. Experiments below show that it



Data Users Permissions Edges Role Real Maximum
Set lower rank Matching

bound
americas large 3,485 10,127 185,294 390 403 688
americas small 3,477 1,587 105,205 172 203 562
apj 2,044 1,164 6,841 453 455 711
emea 35 3,046 7,220 34 34 35
healthcare 46 46 1,486 14 14 46
domino 79 231 730 20 20 21
customer 10,021 277 45,427 276 276 277
firewall 1 365 709 31,951 64 68 242
firewall 2 325 590 36,428 10 10 117

Table 1: Test datasets, lower bounds, real rank

can make a further contribution to reducing the size of the
representation.

7. EXPERIMENTAL RESULTS
7.1 Test cases
We applied our algorithms to some network access control
rules used in Hewlett Packard (HP) to manage external busi-
ness partner connectivity. We obtained two user profiles
(americas small and americas large) from Cisco firewalls
that authenticate external users and provide them with lim-
ited HP network access based on their user profiles. We also
got similar, smaller datasets apj and emea. The health-
care dataset was obtained from the US Veteran’s Admin-
istration, which has developed a comprehensive list of the
healthcare permissions that may be assigned to licensed or
certified providers [20]. The domino graph is from a set
of user and access profiles for a Lotus Domino server. cus-
tomer is an access control graph obtained from the IT de-
partment of an HP customer.

Table 1 gives the sizes of the test case graphs, shows the
lower bound computed with the method of Section 4.3.1,
and the real rank of the adjacency matrix, which is discussed
in Section 4.3.3, and the size of a maximum matching (see
Section 4.3.2).

7.1.1 Application of MBC to network reachability anal-
ysis

Role discovery is just one application of minimum biclique
cover. Others arise whenever a compressed representation of
a binary relation is desired. One such relation is reachabil-
ity in networking. The firewall{1,2} datasets are results
of running an analysis algorithm on Checkpoint firewalls.
These results assert whether packets delivering a service,
such as http, can reach from some sources to some desti-
nations. Reachability is expressed as set of pairs, each of
which is a source IP address range and destination IP ad-
dress range. The analysis algorithm ensures that the rect-
angular areas so formed are disjoint. We transformed this
set of rectangles into a bipartite graph by partitioning the
x-axis and the y-axis into intervals such that each rectangle
is a product of intervals, creating a graph vertex for each
interval and a graph edge for each rectangle, linking its x-
extent (an interval) to its y-extent. A minimum biclique
cover of this graph yields a compact description of the set
of rectangles.

For example, suppose the three rectangles are [0, 1]× [0, 1],

[1, 2]×[3, 4] and [0, 2]×[5, 6]. First, we partition the x-axis to
[0, 1] and [1, 2] and the y-axis to [0, 1], [3, 4] and [5, 6]. From
this we obtain the bipartite graph edges [0, 1] ↔ [0, 1] and
[1, 2] ↔ [3, 4] from the first two rectangles, and [0, 1] ↔ [5, 6]
and [1, 2] ↔ [5, 6] from the third rectangle. This bipartite
graph can be covered with two bicliques.

A standard approach to the compaction of a plane region
with axis-aligned boundaries is to find a minimum covering
by rectangles [9]. In firewall analysis, however, large con-
tiguous regions are infrequent, while cartesian products of
unions of intervals, which are bicliques in our bipartite rep-
resentation, are common. Because of this, we are able to find
a very compact representation of the firewall datasets. The
representation will be beneficial in several ways, including
in the graphical presentation of the information to network
administrators.

1firewall1 2firewall2

7.2 Experimental results for exact cover
We implemented the reduction and coloring of the kernel in
C++, and ran it on a PC (Processor: Intel CPU T2500,
Processor Speed: 2:00 GHz, RAM : 2 Gb, Compiler: g++/
cygwin, OS: cygwin running on windows). The results are
given in Table 2.

Data Reduced Cover Cover Runtime
Set Graph |R| |E| (sec.)

|E|
americas large 97 398 87,053 1729
americas small 44 178 9,080 448
apj 0 453 4,256 43
emea 0 34 7,246 .68
healthcare 0 14 194 0.02
domino 0 20 718 0.03
customer 0 276 45,161 72
firewall 1 0 64 1,999 3
firewall 2 0 10 1,158 2

Table 2: Results of exact reduction-based solver

In all cases, we were able to solve the problem exactly. The
number of uncovered edges that constitute the irreducible
kernel is nonzero only for the two Americas examples, which
therefore require a coloring of the complement of the irre-
ducible kernel. The others are completely solved by reduc-
tion.

The third column shows the size of the cover found; that is,
it shows the biclique cover number of the graph. Thus, we



have solved the RMP problem on inputs with as many as
185,000 edges in no more than 30 minutes.

The discovered role sets are small in comparison with |U |
and |P | in most cases. For two (emea and customer),
they are not; evidently the emea users and the customer
permissions have almost no exploitable similarities. Note
that only in two cases (the Americas) was the lower bound
less than the biclique cover number, and in those cases the
relative difference is under 3.4%.

In the americas largedata set, the largest role that we dis-
covered confers 20 permissions, and 2,804 of the users have
this role. About four-fifths of the roles consist of a single
user and all of his or her permissions. The discovery of such
“orphaned”users and permissions may have significant value
in identifying and possibly removing exceptional and in some
cases erroneous entries in Access Control Lists.

7.3 Results for heuristic methods
Table 3 shows how well the greedy algorithm for MBC does,
with and without the lattice postprocessing, and how well
the edge concentration heuristic reduces edges. In four cases
(emea, domino, customer, and firewall2) we find the op-
timum cover with the greedy heuristic. We overestimate by
about 1% for apj, 5% for americas large, 7% for health-
care, 11% for 1, and 24% for americas small. The im-
plementations are in Matlab, an interpreted language, and
run on a PC with a 3 GHz Xeon processor having 2 GB
or DRAM. Runtimes are very low, despite the Matlab im-
plementation; for the large test cases it is 10 to 20 times
faster than the reduction / coloring method that finds the
optimum.

We applied the edge concentration heuristic of Section 5.1
as well. We started with the greedy role minimizer, then
reduced the sum of edges and roles until a local minimum
was reached. The results in Table 3 show considerable vari-
ability. In some cases, major reductions in edge count (from
75,000 to 22,000 for Americas large) come at a cost of a
modest increase in the number of roles. This happens for
the two largest problems. In others, little reduction beyond
the contained-role improvement (Section 5.1) can be found.

Since one of the goals of RBAC is to reduce complexity and
improve manageability by reducing the size of the access
control data structure, we compared models of these sizes.
Our model is a count of vertices and edges. Thus, we com-
pare |E(G)|, the size of the non-role-based implementation,
which is the total number of entries in the set of access con-
trol lists. For the latter, we take the number of roles plus
the number of edges in the reduced representation generated
by our edge concentration heuristic. The data are bimodal:
reduction by about half occurs for four of the nine cases, and
by an order of magnitude in five of the cases. The reduction
is at least 35%, on the large datasets is roughly 90%, and
can be as large as 97%.

The rightmost section of Table 3 shows the results obtained
by the greedy heuristic followed by the lattice method as a
postprocessor to reduce role count. In every case for which
the greedy heuristic produces a larger-than-minimum bi-
clique cover, the lattice method reduces the number of roles.

This may come at the cost of some increase in the edge
count, but there can also be a reduction in edges. Runtime
is about the same as the greedy method. The combination
of the greedy method with lattice-method postprocessing
gets remarkably close to the minimum biclique cover! The
difference is at most 12% and on average it is 2%.

The results of the four-tier representation as described in
Section 6 are given in Table 4. Note that only modest re-
ductions in complexity are achieved this way.

Data |Groups| |Roles| |Edges| Runtime
Set sec.
americas large 585 983 18,986 505.0
americas small 250 254 7,005 32.0
apj 468 462 4,314 23.0
emea 53 118 3,661 2.1
healthcare 15 14 160 0.1
domino 25 25 415 0.1
customer 585 983 22,860 411.0
firewall 1 77 74 1,472 2.3
firewall 2 11 11 963 0.3

Table 4: Sizes of computed quadripartite represen-
tations.

8. CONCLUSIONS
The problem we considered here is to compress a relation via
one or a few uses of an “inverse join” construction, and, as
such, our approach has potentially very broad applications.
It may prove useful to compress and illuminate the structure
of important binary relations, and in other applications of
the MBC problem.

In the RBAC context, we have shown that instances of the
RMP that arise in practice are amenable to exact solution
in acceptable runtimes. Moreover, we have presented fast
approximate methods that come remarkably close to the ex-
act solutions to the RMP, and that are also effective for the
edge concentration problem.

Whether or not this will be important in RBAC is another
matter. We focus on the problem of finding the smallest
set of roles, or roles and edges, to describe a given set of
access controls. However, we have ignored the qualitative
but important question of whether or not these roles are
meaningful. Indeed, this is the biggest barrier we have en-
countered to getting the results of role mining to be used in
practice; customers are unwilling to deploy roles that they
can’t understand. In practice, role mining alone is not suf-
ficient. Rather role mining can be viewed as a tool that,
along with top-down role engineering, can help make the
role engineering process more efficient.

We have also found that in some situations the number of
roles we discover is not significantly different from the num-
ber of users or the number of permissions. In such cases,
role discovery does little to help ease the access manage-
ment problem. Indeed, it only adds a layer of complexity.
However it helps by raising a natural question: why are the
existing access controls so complex to begin with? Is this
some inherent property of the organization? Are the exist-
ing access controls corrupted, or have they been so poorly
managed that the discovered roles are fragmented into more
roles than necessary to describe the intent of the organiza-



Data Greedy Edge Concentration Lattice
Set |R| |E| sec. |R| |E| sec. |R| |E| sec.
americas large 422 75,007 69.8 928 21,987 177 400 89,757 50.0
americas small 220 8,730 10.2 258 8,071 13.1 193 8,996 12.0
apj 456 4,182 11.1 471 3,959 12.0 454 4,094 10.9
emea 34 7,246 0.04 104 3,772 0.74 34 7,246 0.03
healthcare 15 211 0.05 15 211 0.05 14 204 0.08
domino 20 729 0.01 28 394 0.05 20 713 0.05
customer 276 45,059 5.93 1,039 23,435 94.1 276 45,047 2.47
firewall 1 70 2,225 0.76 75 1,873 1.02 66 2,008 0.94
firewall 2 10 1,076 0.12 10 1,076 0.16 10 1,091 0.04

Table 3: Heuristic Algorithms: Number of roles and edges (user-role and user-permission connections) for
the greedy heuristic (Sect. 4.2.1) alone, after edge concentration (Sect. 5), and after lattice postprocessing
(Sect. 4.2.2).

tion? If so, might some approximation technique be a more
appropriate approach? We see it as a promising research
direction to develop algorithms that elucidate the tradeoff
between the complexity of a relation’s approximate represen-
tation and the closeness of the approximation to the given
relation.

After an RBAC structure has been put in place, there will be
advantages to periodically optimizing the RBAC structure,
due to the constant evolution of organizations. Role mining
can assist in this optimization as well.
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