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Abstract. We consider node-weighted network design problems, in particular
the survivable network design problem (SNDP) and its prize-collecting version
(PC-SNDP). The input consists of a node-weighted undirected graphG = (V,E)
and integral connectivity requirements r(st) for each pair of nodes st. The goal
is to find a minimum node-weighted subgraph H of G such that, for each pair
st, H contains r(st) edge-disjoint paths between s and t. PC-SNDP is a gener-
alization in which the input also includes a penalty π(st) for each pair, and the
goal is to find a subgraph H to minimize the sum of the weight of H and the
sum of the penalties for all pairs whose connectivity requirements are not fully
satisfied by H . Let k = maxst r(st) be the maximum requirement. There has
been no non-trivial approximation for node-weighted PC-SNDP for k > 1, the
main reason being the lack of an LP relaxation based approach for node-weighted
SNDP. In this paper we describe multiroute-flow based relaxations for the two
problems and obtain approximation algorithms for PC-SNDP through them. The
approximation ratios we obtain for PC-SNDP are similar to those that were pre-
viously known for SNDP via combinatorial algorithms. Specifically, we obtain
an O(k2 logn)-approximation in general graphs and an O(k2)-approximation in
graphs that exclude a fixed minor. The approximation ratios can be improved by
a factor of k but the running times of the algorithms depend polynomially on nk.

1 Introduction

In this paper we consider the survivable network design problem (SNDP) and its prize-
collecting version (PC-SNDP). In SNDP the input consists of an undirected graph G =
(V,E) and a connectivity requirement function specified in terms of an integer r(st) for
each unordered pair of nodes st. The goal is to find a minimum-weight subgraphH ofG
that contains r(st) disjoint paths for each pair st. We use EC-SNDP and VC-SNDP to
refer to the versions of SNDP depending on whether the desired paths are edge or node
disjoint. In this paper we focus on EC-SNDP; for notational convenience we use SNDP
when we mean EC-SNDP. A parameter of interest is the maximum requirement k =
maxst r(st). Special cases of SNDP include well-studied problems such as the Steiner
tree and Steiner forest problems (here k = 1). The weight of the chosen subgraph
H can depend both on the edges and nodes in H . In the edge-weighted version, each
edge has a weight w(e) and the weight of H is the sum of the weights of the edges
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in H; Jain [14] obtained a 2-approximation for this problem via the influential iterated
rounding technique that he introduced. The focus of this paper is the more general
node-weighted case where each node v has a weight w(v); the weight of H is the sum
of the weights of the nodes in it1. The node-weighted version is provably harder to
approximate. In contrast to the constant factor approximation for edge-weighted SNDP,
the node-weighted Steiner tree problem is already Ω(log n)-hard to approximate via a
simple reduction from the Set Cover problem [17].

Klein and Ravi [17] were the first to study node-weighted network design from an
approximation point of view. They showed the hardness result mentioned above and
described algorithms that achieved an O(log n)-approximation for the Steiner tree and
Steiner forest problems. Their algorithms are based on finding a structure called spider.
Nutov examined the approximability of node-weighted SNDP [19] and obtained an
O(k log n)-approximation via the augmentation framework of Williamson et al. [21]
(the connectivity requirements are met in k stages with each stage increasing the con-
nectivity of every unsatisfied pair by 1). His algorithm is based on a non-trivial structural
result on spiders for covering an arbitrary 0-1 uncrossable requirement function2. Fur-
ther, Nutov gave evidence, via a reduction from the k-densest subgraph problem, that
a dependence on k is necessary in the approximation ratio when k is large. The algo-
rithms of Klein and Ravi [17] and that of Nutov [19] are combinatorial. Mathematical
programming relaxation based algorithms are powerful and flexible and it is natural to
ask about their efficacy for node-weighted network design, and in particular for SNDP.
Guha et al. [9] considered a natural LP relaxation for node-weighted Steiner tree and
forest and showed that its integrality gap is O(log n), matching the bound obtained
via the combinatorial algorithm; in fact, their proof uses a nice dual-fitting argument
via spiders. In more recent work Demaine, Hajiaghayi, and Klein [8] demonstrated
the advantage of the LP relaxation by describing a primal-dual algorithm that achieves
an O(1)-approximation for node-weighted Steiner tree and forest when the underlying
graph is planar.

In recent work [5] we generalized the work of Demaine et al. [8] and described an
O(k)-approximation for node-weighted SNDP in planar graphs. A technical point of
interest is that the algorithm is not based on a single LP relaxation. It uses the augmen-
tation framework in which the connectivity requirements are incrementally satisfied in
k phases; a separate LP relaxation (Augment-LP) for each stage (that depends on the
solution for the previous stages) is used3.

This paper is motivated by two questions. Is there a natural LP relaxation for node-
weighted SNDP? Is there a non-trivial approximation for node-weighted PC-SNDP?

1 The version where both edges and nodes have weights can be easily reduced to the node-
weighted version by sub-dividing each edge e and placing a weight of w(e) on the new node.

2 A 0-1 set function f : 2V → {0, 1} is said to be uncrossable if f(A) = f(B) = 1 implies
that f(A ∩B) = f(A ∪B) = 1 or f(A−B) = f(B −A) = 1.

3 There is some subtlety to understanding the integrality gap of Augment-LP since it only ap-
plies to a certain restricted class of uncrossable functions that arise from proper functions; in
particular, each uncrossable function is a residual function of a node-induced subgraph of the
original graph. This is in contrast to the edge-weighted case where there is a natural cut re-
laxation for covering an arbitrary uncrossable function whose integrality gap is at most 2. We
refer the reader to Subsection 2.1 and [5] for more details.



We now give some background on prize-collecting network design problems and then
discuss our results.
Prize-collecting SNDP (PC-SNDP): In PC-SNDP the input, in addition to that for
SNDP, consists of penalties π(st) for each pair of nodes. The goal is to find a subgraph
H of G to minimize the weight of H plus the sum of the penalties for pairs whose
connectivity requirement is not satisfied by H; a pair st is not satisfied if the number of
disjoint paths in H between s and t is strictly less than r(st); this is the all-or-nothing
penalty model and is the most interesting one from a technical point of view. The prize-
collecting version of Steiner tree and Steiner forest have been studied extensively and
have several theoretical and practical applications [15, 11, 20, 10]. A simple technique,
introduced by Bienstock et al. [2], shows how one can use an LP relaxation based ρ-
approximation algorithm for Steiner tree (and Steiner forest) to obtain an O(ρ) approx-
imation algorithm for the prize-collecting version. PC-SNDP for higher connectivity
has been recently studied [18, 13, 12]. In [12] a technique similar to that of Bienstock
et al. is used for edge-weighted SNDP (and also for Elem-SNDP and VC-SNDP). How-
ever, [12] shows that a straightforward and natural LP relaxation has a large integrality
gap, and introduce a stronger LP relaxation. In this paper we are concerned with node-
weighted PC-SNDP. For node-weighted Steiner tree and Steiner forest there is a natural
LP relaxation with O(log n) integrality gap (and O(1) gap for planar graphs), and one
can use this to obtain a corresponding approximation for the prize-collecting version.
However, as we already remarked, the algorithms for node-weighted SNDP for k > 1
have not been based on a single LP relaxation.
Our Contribution: Our first contribution is to formulate an LP relaxation for node-
weighted SNDP and PC-SNDP via multi-route flows [16, 1]. We give two relaxations,
one for arbitrary k and a different relaxation that is more suited for fixed k. The multi-
route flow based relaxation easily allows us to apply the basic idea of Bienstock et al.
[2] to reduce the PC-SNDP problem to the SNDP problem. Our second contribution is
to analyze the integrality gap of these relaxations for node-weighted SNDP. We obtain
an upper bound on the integrality gap by relating the optimum value of the relaxation to
that of the Augment-LP relaxation [5] in each phase of the augmentation framework.
For planar graphs we can use the result from [5] that showed that the integrality gap of
the Augment-LP is O(1). In this paper we show that Augment-LP has an integrality
gap of O(log n) for general graphs. These ingredients give us the following theorem
that summarizes our results.

Theorem 1. There is an O(k2 log n)-approximation for node-weighted PC-SNDP in
undirected graphs which improves to anO(k2)-approximation for planar graphs. There
is an algorithm with running time that is polynomial in nk that achieves an O(k log n)
approximation for general graphs and an O(k) approximation for planar graphs.

Discussion, Related Work and Extensions: We start with the question as to why it
is non-trivial to find a natural LP relaxation for the node-weighted SNDP problem.
Consider the problem where the requirement is only for a single pair st; that is, we
wish to find a minimum weight subgraph that has k edge-disjoint paths from s to t. If
the weights are on the edges then this problem can be solved easily via min-cost flow.
However, if the weights are on the nodes the edge-disjoint paths from s to t may use



a node v multiple times, yet the weight of the node v counts only once. (This is the
same issue that is also present in the capacitated SNDP (Cap-SNDP) problem [3, 4].)
The inability to solve the single pair problem exactly is at the heart of the difficulty
of finding a relaxation for node-weighted SNDP. We write a multi-route flow based
LP that we cannot solve in polynomial time because the separation oracle for the dual
requires us to solve the single pair problem. However, this relaxation can be solved
approximately within a factor of k. This is the reason that our approximation ratios
depend on k2, one factor of k from approximating the relaxation, and another factor of
k from the augmentation framework. We write a different relaxation that can be solved
in time that is polynomial in nk. This relaxation is inspired by the formulation of the
Augment-LP and allows us to improve the approximation when k is a fixed constant.
Multi-route flows and cuts are useful concepts when considering higher connectivity.
Their applications and properties are not as widely known as they could be, and we
hope our work helps highlight their usefulness.

One can also consider the node-weighted versions of element-connectivity SNDP
(Elem-SNDP) and vertex-connectivity SNDP (VC-SNDP). Multi-route flow based re-
laxations can be written in the same fashion. The same difficulty present in EC-SNDP
for solving the single-pair node-weighted problem extends to the Elem-SNDP problem.
Interestingly, it is easy to write a multi-route LP relaxation for VC-SNDP and solve it
in polynomial time! The reason for this is that in VC-SNDP the paths are required to be
node-disjoint and hence the capacitated aspect goes away. However, the only non-trivial
algorithmic technique for VC-SNDP at this point is via a (randomized) reduction from
VC-SNDP to Elem-SNDP [7]. We believe that our algorithms and analysis will extend
from EC-SNDP to Elem-SNDP as well and hence indirectly also to VC-SNDP.

The multi-route flow based LP relaxations can be solved in polynomial time for
edge-weighted problems. For the prize-collecting version the relaxation is in fact equiv-
alent to that in the work of Hajiaghayi et al. [12]; the multi-route flow view makes the
cut-based relaxation in [12] easier to understand. Previous work on prize-collecting
SNDP has considered submodular penalty functions [20, 12]; here the penalty for not
connecting a set of pairs is a monotone submodular function of those pairs. It is easy
to extend our algorithms and analysis to this more general case by simply replacing the
linear penalty in the objective function of the relaxation by a Lovász-extension based
convex penalty function; this is in the same fashion as in the work of Chudak and
Nagano [6]. We omit the details in this version of the paper.

Finally, the advantage of having an LP relaxation based algorithm (for node-weighted
SNDP) is the flexibility it affords in incorporating additional constraints and solving re-
lated problems. For instance, problems such as k-MST can be solved via relaxations for
the Steiner tree. Guha et al. [9] studied an LP relaxation approach for node-weighted
Steiner tree motivated by such considerations. Similar applications can now be derived
for higher connectivity.

Organization: The rest of the paper is organized as follows. Section 2 discusses the
multi-route flow based relaxations and relates their integrality gap to that of Augment-LP.
In Section 3 we bound the integrality gap of Augment-LP by O(log n) for general
graphs.



2 LP Relaxations for node-weighted PC-SNDP

Let s and t be two vertices of the graph and let ` be an integer. Consider a tuple p =
(p1, p2, · · · , p`) such that each pi is a path from s to t and the paths in p are edge-
disjoint; we refer to such a tuple p as an `-route tuple connecting s to t. In the following,
we ignore the order in which the paths appear in the tuple; more precisely, two tuples
consisting of the same collection of paths are considered to be the same tuple. A vertex
v intersects p if there exists some path in p that contains v; we use v ∈ p to denote the
fact that v intersects p. Similarly, an edge e intersects p if there exists some path in p
that contains e; we use e ∈ p to denote the fact that e intersects p.

Consider an instance of the node-weighted PC-SNDP problem. For each unordered
pair st of nodes, we let Pr(st)st denote the collection of all r(st)-tuples that connect s to
t, where r(st) is the requirement of the pair. We can write a relaxation for the problem
as follows. We have a variable x(v) for each vertex v and a variable z(st) for each pair
st of nodes with the interpretation that x(v) = 1 if v is in the solution and z(st) = 1
if the requirement of st is not satisfied by the solution. We also have variables f(p),
where p ∈ Pr(st)st , with the interpretation that f(p) = 1 if the paths connecting s to t
are the paths of p.

PC-Multiroute-LP

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

p∈Pr(st)
st

f(p) = 1− z(st) ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v
0 ≤ z(st) ≤ 1 ∀st
f(p) ≥ 0 ∀p

Multiroute-LP

min
∑
v∈V

w(v)x(v)

s.t.
∑

p∈Pr(st)
st

f(p) = 1 ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v
f(p) ≥ 0 ∀p

Proposition 1. PC-Multiroute-LP is a valid relaxation for the node-weighted PC-SNDP
problem. Moreover if there is a single pair st with non-zero requirement then the relax-
ation is exact.

We summarize at a high-level our theorems about PC-Multiroute-LP and Multiroute-LP
below.

– Given a feasible solution (x, f, z) to PC-Multiroute-LP it is easy to obtain another
feasible solution (x′, f ′, z′), via the scaling trick of Bienstock et al. [2], such that
z′ is integral and the cost of (x′, f ′, z′) is at most 2 times the cost of (x, f, z).

– The integrality gap of Multiroute-LP is O(k log n) for general graphs and O(k)
for graphs from a minor-closed family of graphs.



– PC-Multiroute-LP and Multiroute-LP are NP-hard to solve when k is part of
the input. However, one can find in polynomial time a feasible solution to them
with cost at most k times the optimum solution value. This is done by solving a
compact relaxation. Combining the above three ingredients gives an O(k2 log n)
approximation for node-weighted PC-SNDP and the ratio improves to O(k2) for
minor-closed families of graphs.

– There is a different relaxation that leads to an improvement in the approximation
ratio for PC-SNDP to O(k log n) in general graphs and to O(k) in minor-closed
families of graphs respectively. The running time is, however, polynomial in nk.

Remark 1. For edge-weighted problems the multi-route formulation will have a vari-
able x(e) for each edge and the total multi-route flow on each edge e for any pair will
be bounded by x(e). This relaxation can be solved in polynomial time since the sepa-
ration oracle for the dual is the min-cost flow problem. This relaxation for PC-SNDP
is equivalent (in the sense of having the same optimal value for each instance) to the
cut-based relaxation from [12].

We sketch the rounding step in the first item above that reduces the PC-SNDP problem
to the SNDP problem, since it demonstrates the naturalness of the multi-route LP for
higher connectivity. Let (x, f, z) be a feasible fractional solution to PC-Multiroute-LP.
Let I = {st | z(st) > 1/2}. Consider the SNDP instance that we get from the prize-
collecting instance by setting the requirements of all the pairs in I to zero. Let J be
the set of all pairs not in I . Let x′ and f ′ be the following vectors. For each vertex
v ∈ V , we set x′(v) = min{1, 2x(v)}. For each pair st ∈ J and each p ∈ Pr(st)st ,
we set f ′(p) = f(p)/(1 − z(st)). (Note that, for each st ∈ J , z(st) ≤ 1/2.) It is
straightforward to show that (x′, f ′) is a feasible solution to Multiroute-LP for the
pairs in J . Further, the penalty incurred for pairs in I is at most twice the penalty that
the fractional solution (x, f, z) already paid for them. The factor of 2 loss here can be
improved slightly via an idea of Goemans as was done in prior work, but we omit the
improvement in this version.

In Subsection 2.1 we show an upper bound on the integrality gap of Multiroute-LP
via the augmentation framework and Augment-LP from [5].

A different relaxation. Consider a solution H that satisfies the requirement of the pair
st. If we remove less than r(st) of the edges of H then there will be at least one path
from s to t in the resulting graph. With this observation in mind, we can write an LP
relaxation as follows. As before, we have a variable x(v) for each vertex v and a variable
z(st) for each pair st. We introduce the following constraints for each pair st and each
set F ⊆ E such that |F | < r(st). Consider the network GF = (V,E − F ) with node
capacities given by the values x(v). We impose the valid constraint that the network
GF supports at least 1 − z(st) units of flow from s to t subject to the node capacity
constraints given by x. The resulting LP has O(|E|k) constraints and can be solved in
time that is polynomial in nk. When k is a fixed constant, this relaxation leads to an
improvement in the approximation ratio.

We refer to this LP as PC-Cut-LP and to its non-prize-collecting counterpart as
Cut-LP. We note that Multiroute-LP is strictly stronger than Cut-LP; on instances of
the problem in which there is a single requirement pair with requirement k, Multiroute-LP



is exact whereas Cut-LP has an Ω(k) integrality gap. Nevertheless, we can show that
the integrality gap of Cut-LP is O(k log n) for general graphs and O(k) for graphs
from a minor-closed family. The approach for upper bounding the integrality gap of
PC-Cut-LP and Cut-LP is very similar to the approach described in Subsection 2.1 for
upper bounding the integrality gap of PC-Multiroute-LP and Multiroute-LP.

2.1 Integrality gap of Multiroute-LP via Augment-LP

In this section, we show that the integrality gap of Multiroute-LP is O(k log n) for
general graphs and O(k) for minor-closed families of graphs.

Theorem 2. Let OPT be the value of the optimal fractional solution to Multiroute-LP.
There is a polynomial time algorithm that constructs a subgraph H of G such that
H is a feasible solution for the node-weighted SNDP instance and the weight of H is
O(k log n)·OPT.

Theorem 3. Let OPT be the value of the optimal fractional solution to Multiroute-LP.
If the input graph G belongs to a minor-closed family G, there is a polynomial time
algorithm that constructs a subgraph H of G such that H is a feasible solution for the
node-weighted SNDP instance and the weight of H is O(k)·OPT, where the constant
depends only on the family G.

In order to prove Theorem 2 and Theorem 3, we use the augmentation framework that
was introduced by Williamson et al. [21] for the edge-weighted SNDP problem. Note
that the theorems only upper bound the integrality gap of the relaxations; the algorithms
for SNDP are not based on solving them. The relaxations need to be solved for PC-
SNDP to identify the pairs to connect and reduce to SNDP.

We start by introducing some notation. A set S separates a pair st iff S contains
exactly one of s, t. Let r : 2V → Z+ be the function such that r(S) is the maximum
requirement of a pair separated by S. Let r` : 2V → Z+ be the function such that
r`(S) = min{r(S), `} for all sets S ⊆ V . Let δH(S) be the set of all edges of H with
an endpoint in S and the other in V − S (note that H may not contain all the vertices
of S). A graph H covers r iff |δH(S)| ≥ r(S) for all sets S. By Menger’s theorem, a
graph H is a feasible solution to the SNDP instance iff H covers r.

The algorithm selects a cover H of r in k phases. The algorithm maintains the in-
variant that the first ` phases have selected a graph H` that covers r`. During phase `,
the algorithm adds a new set of nodes to H`−1 in order to get a graph H` that cov-
ers r`. More precisely, in phase `, we solve the following augmentation problem. It is
convenient to assume that all the nodes in H`−1 have weight zero; since we have al-
ready paid for the nodes, we can set their weight to zero at the beginning of phase `.
Let h` : 2V → {0, 1} be the function such that h`(S) = 1 iff |δH`−1

(S)| = ` − 1
and r(S) ≥ `. Let G′` = (V,E − E(H`−1)). The goal is to select a minimum weight
subgraph K` of G′` that covers h`; once we have K`, we let H` be the subgraph of G
induced by V (H`−1) ∪ V (K`).

In the following, we show that, in each phase `, we can select a subgraph K` that
covers h` such that the node weight of K` is at most O(log n) ·OPT for general graphs



and O(1) · OPT for minor-closed families of graphs, where OPT is the value of the
optimal solution to Multiroute-LP. It will then follow that the algorithm described
above constructs a subgraphH such thatH covers r and the weight ofH isO(k log n) ·
OPT for general graphs and O(k) · OPT for minor-closed families of graphs.

Consider a phase `. Recall that the goal is to cover h` using a subgraph of G′`. Let
ΓG′`(S) be the vertex neighborhood of S; that is, the set of vertices v ∈ V − S such
that there is an edge uv ∈ E(G′`), where u ∈ S. We have the following relaxation for
the augmentation problem of phase `.

Augment-LP(G′`, h`)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′
`
(S)

x(v) ≥ h`(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

As shown in Lemma 1, for each phase of the algorithm, the optimal value of Augment-LP
is at most the optimal value of Multiroute-LP.

Lemma 1. Let (x, f) be a feasible solution to Multiroute-LP. For any phase `, x is a
feasible solution to Augment-LP(G′`, h`).

Corollary 1. Let ρ be such that, for each phase `, the integrality gap of Augment-LP(G′`, h`)
is at most ρ. Then the integrality gap of Multiroute-LP is at most kρ.

Therefore it suffices to upper bound the integrality gap of Augment-LP. We prove
Theorem 4 in Section 3. Theorem 5 was shown in [5].

Theorem 4. For each `, the integrality gap of Augment-LP(G′`, h`) isO(log n). More-
over, there is a polynomial time algorithm that selects a subgraph K` of G′` such that
K` covers h` and the weight of K` is at most O(log n) times the weight of the optimal
fractional solution to Augment-LP(G′`, h`).

Theorem 5 ([5]). Suppose that G belongs to a minor-closed family G. For each `, the
integrality gap of Augment-LP(G′`, h`) is a constant that depends only on the family G.
Moreover, there is a polynomial time algorithm that selects a subgraph K` of G′` such
that K` covers h` and the weight of K` is at most O(1) times the weight of the optimal
fractional solution to Augment-LP(G′`, h`).

Remark 2. The integrality gap of Augment-LP is unbounded when the function h` is
an arbitrary uncrossable function. However, the functions h` that arise from instances
of the node-weighted SNDP problem via the augmentation framework have additional
properties that are exploited by Theorem 2 and Theorem 3. We refer the reader to [5]
for more details.

Theorem 2 and Theorem 3 follow from Corollary 1 and Theorem 4 and Theorem 5.



3 Integrality gap of Augment-LP

In this section, we prove Theorem 4 that upper bounds the integrality gap of Augment-LP
in general graphs. We refer the reader to Subsection 2.1 for the relevant definitions and
notation.

In order to simplify notation, we let G′ = G′` and h = h`; our goal is to select a
minimum-weight subgraph K of G′ that covers h. As we have already seen in Subsec-
tion 2.1, we have the following LP relaxation for this problem.

Augment-LP(G′, h)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′ (S)

x(v) ≥ h(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

Dual of Augment-LP(G′, h)

max
∑
S⊆V

y(S)h(S)

s.t.
∑

S:v∈ΓG′ (S)

y(S) ≤ w(v) ∀v ∈ V

y(S) ≥ 0 ∀S ⊆ V

Our proof uses the concept of a (generalized) spider that was introduced by Nutov [19]
which we will define shortly. While Nutov uses a combinatorial algorithm to find a
spider we find one via a primal-dual algorithm and relate its density to that of the LP
relaxation. We start with some notation and some definitions that are based on [19, 21].

Preliminaries. Recall that we are working with a 0-1 uncrossable function h : 2V →
{0, 1}. We can also view h as a family consisting of all sets S such that h(S) = 1.
Following Nutov, we let F = {S | h(S) = 1} be the family corresponding to h. We
refer to each set inF as a violated set and we refer to the inclusion-wise minimal sets of
F as min-cores. Let C be the set of all min-cores of F . The sets in C are disjoint and we
can compute the collection C in polynomial time for the function h that arises in SNDP
[21]. Additionally, if S is a violated set and C is a min-core, either C is contained in S
or C and S are disjoint.

A set S ∈ F is a core of F iff S contains exactly one min-core C; we refer to a
core S that contains the min-core C ∈ C as a C-core. Let A ⊆ C and let u be a vertex.
Let S(A, u) ⊆ F be the family consisting of all sets S ∈ F such that S is an A-core
for some A ∈ A and u /∈ S. We refer to the family S(A, u) as a spider family. We
refer to the min-cores in A as the feet of S(A, u) and we refer to u as the center of
S(A, u). A set F ⊆ E(G′) of edges covers a family F ′ of sets iff, for each set S ∈ F ′,
there is at least one edge of F leaving S; more precisely, we have |δF (S)| ≥ 1 for
each set S ∈ F ′. If F ′ is a spider family, we refer to F as a spider cover. Nutov [19]
introduced the notions of spider families and covers as a generalization to the concept
of spiders that play an important role in the algorithm of Klein and Ravi [17] for the
node-weighted Steiner tree problem; we refer the reader to [19] for more details. We
remark that there are subtleties when thinking about spiders for uncrossable functions
since a spider cover F can be disconnected.

The algorithm for covering F . Nutov extended the algorithm of Klein and Ravi to
the problem of covering an uncrossable family F as follows. We find a spider family



S(A, u) and a cover F of S(A, u). LetF ′ = {S | S ∈ F , δF (S) = ∅} be the subfamily
of F that is not covered by F ; the residual family F ′ is uncrossable as well. Let G′′ =
(V,E(G′) − F ). We recursively construct a cover F ′ ⊆ E(G′′) for F ′ and we return
F ∪ F ′ as our cover of F .

Nutov gave a polynomial time algorithm to find a spider cover whose weight (in
terms of nodes) is “comparable” to the weight of the optimal integral solution; here
the comparison is in the sense of density which is the weight divided by the number
of min-cores that are removed by the addition of the cover. We show that we can find
a spider cover whose weight is “comparable” to the weight of the optimal fractional
solution for Augment-LP(G′, h). More precisely, we show the following theorem.

Theorem 6. There is a spider family S(A, u) of F and a cover F of S(A, u) with the
following properties. Let F ′ = {S | S ∈ F , δF (S) = ∅} be the subfamily of F that
is not covered by F , and let C′ be the collection of all minimal sets of F ′. We have
|C′| < |C| and w(V (F )) (total weight of the nodes in F ) is O

(
(|C| − |C′|)/|C|

)
times

the value of the optimal fractional solution to Augment-LP(G′, h). Moreover, we can
find the feet A, the center u, and the cover F of S(A, u) in polynomial time.

Once we have Theorem 6, we can find a cover of h using a greedy algorithm. If the
collection C of all minimal violated components is empty, we return an empty cover.
Otherwise, let S(A, u) and F be the spider family and spider cover guaranteed by Theo-
rem 6. LetH ′ and h′ be as in the statement of Theorem 6, and letG′′ = (V,E−E(H ′)).
We recursively find a cover F ′ of h′ and we return F ∪ F ′.

It is straightforward to verify that the weight of the optimal fractional solution
to Augment-LP(G′′, h′) is at most the weight of the optimal fractional solution to
Augment-LP(G′, h). This observation together with a standard set cover analysis gives
us that the total weight of the cover constructed by the algorithm above is O(log |C|)
times the weight of the optimal fractional solution to Augment-LP(G′, h).

Therefore, in order to complete the proof of Theorem 4, it suffices to prove The-
orem 6. In the following, we give the algorithm for constructing the spider family
S(A, u).

Primal-dual algorithm for constructing the spider family. Consider the dual of the
Augment-LP(G′, h) (see above). The algorithm selects a set X ⊆ V (G′) of nodes
as follows. The algorithm also maintains a solution y that is feasible for the dual of
Augment-LP(G′, h); the solution y is implicitly initialized to zero.

We proceed in iterations. Consider iteration i and let Xi−1 be the nodes selected in
the first i− 1 iterations; X0 is the set of all zero-weight nodes. A set S is violated with
respect to a set Z of nodes iff h(S) = 1 and δG′[Z](S) is empty. Recall that C is the
collection of all minimal violated components of h; note that C is also the collection
of all minimal sets that are violated with respect to X0. Let Ci−1 be the collection of
minimal violated sets with respect to Xi−1. For each component C ∈ Ci−1, we have
C ⊆ Xi−1 [5]. Since the components of Ci−1 are disjoint and two components C ∈ C
and C ′ ∈ Ci−1 do not properly intersect, we have |Ci−1| ≤ |C|. If |Ci−1| is strictly
less than |C|, we return the set X = Xi−1 and the dual solution y, and we terminate
the algorithm. In other words we stop the algorithm when at least two of the min-cores
in C “merge” and are part of the same minimal violated set of Ci−1. Otherwise, we



increase the dual variables {y(C)}C∈Ci−1
uniformly until a dual constraint for a vertex

becomes tight. (Note that it is possible that the increase was zero if there was already a
tight vertex at the beginning of the iteration; any vertex that was already tight is not in
Xi−1.) Let v be a vertex that became tight; if there are several such vertices, we pick
one of them arbitrarily. We add v to X and we proceed to the next iteration (note that
we have Xi = Xi−1 ∪ {v}).

Let X be the set of nodes selected by the algorithm. Let i∗ denote the last iteration
of the algorithm which adds a node. Let Ĉ = ∪i≤i∗Ci−1 be the collection of all sets
that were minimal violated sets throughout the history of the primal-dual algorithm
before merging happens at the end of iteration i∗. Let u be the node that was added to
X in iteration i∗. Intuitively, the addition of u merged some of the cores. We formally
identify the min-cores associated with the merged cores as follows. Let A = {C ∈
C | there is D ∈ Ci∗−1 such that C ⊆ D and u ∈ ΓG′(D)}. The family S(A, u) is the
desired spider family.

Finally, we perform the following reverse-delete step on the set X of nodes in order
to identify a subset of nodes that cover S(A, u). We let YC be the set of all nodes in
X − (X0 ∪ {u}) that are adjacent to some C-core in Ĉ. The sets {YC}C∈C are disjoint
and their union is X − (X0 ∪ {u}). We consider each foot A ∈ A separately. An
important observation is thatG′[YA∪X0∪{u}] covers S({A}, u). For each footA, we
select a set ZA ⊆ YA such that G′[ZA ∪ X0 ∪ {u}] covers S({A}, u) as follows. We
start with ZA = YA. We consider the nodes of ZA in the reverse of the order in which
they were added toX . Let v be the current node. If the graphG′[(ZA∪X0∪{u})−{v}]
covers the spider family S({A}, u), we remove v from ZA. We set Z = ∪A∈AZA and
we output the family S(A, u) and the cover G′[Z ∪X0 ∪ {u}].

The spider family S(A, u) and the cover G′[Z ∪ X0 ∪ {u}] have the properties
required by Theorem 6; we defer the proof to a longer version of this paper.
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