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Abstract. We consider node-weighted network design in planar and minor-closed
families of graphs. In particular we focus on the edge-connectivity survivable net-
work design problem (EC-SNDP). The input consists of a node-weighted undi-
rected graph G = (V,E) and integral connectivity requirements r(uv) for each
pair of nodes uv. The goal is to find a minimum node-weighted subgraph H of
G such that, for each pair uv, H contains r(uv) edge-disjoint paths between u
and v. Our main result is an O(k)-approximation algorithm for EC-SNDP where
k = maxuv r(uv) is the maximum requirement. This improves the O(k logn)-
approximation known for node-weighted EC-SNDP in general graphs [15]. Our
algorithm and analysis applies to the more general problem of covering a proper
function with maximum requirement k. Our result is inspired by, and generalizes,
the work of Demaine, Hajiaghayi and Klein [5] who gave constant factor approx-
imation algorithms for node-weighted Steiner tree and Steiner forest problems
(and more generally covering 0-1 proper functions) in planar and minor-closed
families of graphs.

1 Introduction

Network design is an important area of discrete optimization with several practical ap-
plications. Moreover, the clean optimization problems that underpin the applications
have led to fundamental theoretical advances in combinatorial optimization, algorithms
and mathematical programming. In this paper we consider a class of problems that can
be modeled as follows. Given an undirected graph G = (V,E) find a subgraph H
of minimum weight/cost such that H satisfies certain desired connectivity properties.
A common cost model is to assign a non-negative weight w(e) to each e ∈ E and
the weight/cost of H is simply the total weight of edges in it. A number of well-studied
problems can be cast as special cases. Examples include polynomial-time solvable prob-
lems such as the minimum spanning tree (MST) problem whenH is required to connect
all the nodes ofG, and the NP-Hard Steiner tree problem whereH is required to connect
only a given subset S ⊆ V of terminals. A substantial generalization of these problems
is the survivable network design problem which is defined as follows. The input, in
addition to G, consists of an integer requirement function r(uv) for each (unordered)
pair of nodes uv in G; the goal is to find a minimum-weight subgraph H that contains
r(uv) edge-disjoint paths between u and v for each pair uv. This problem is called the
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edge-connectivity SNDP (EC-SNDP) to distinguish from more general problems such
as Elem-SNDP and VC-SNDP that require the paths to be element and vertex disjoint
respectively. SNDP arises naturally in the design of fault-tolerant networks, and vari-
ous special cases have been extensively studied. Algorithmic approaches for SNDP and
related problems are based on solving a larger class of abstract network design prob-
lems such as covering proper and skew-supermodular cut-requirement functions that
we describe formally later.

Node weights: The cost of a network is dependent on the application. In connectivity
problems, as we remarked, a common model is the edge-weight model. A more general
problem is obtained when each node v of G has a weight w(v) and the weight of H is
the total weight of the nodes in H1. Node weights are relevant in several applications,
in particular telecommunication networks, where they can model the cost of setting
up routing and switching infrastructure at a given node. There have also been several
recent applications in wireless network design [17,16] where the weight function is
closely related to that of node weights. We refer the reader to [5] for some additional
applications of node weights to network formation games.

The node-weighted versions of network design problems often turn out to be strictly
harder to approximate than their corresponding edge-weighted versions. For instance
the Steiner tree problem admits a 1.39-approximation for edge-weights [2], however,
Klein and Ravi [12] showed, via a simple reduction from the Set Cover problem, that
the node-weighted Steiner tree problem on n nodes is hard to approximate to within
an Ω(log n)-factor unless P = NP . They also described a (2 log k)-approximation
where k is the number of terminals. A more dramatic difference emerges if we consider
SNDP. Jain gave a 2-approximation for EC-SNDP with edge-weights [10]. The best
known approximation for EC-SNDP with node-weights is O(k log n) [15] where k =
maxuv r(uv) is the maximum connectivity requirement. Nutov [15] gives evidence, via
a reduction from the k-densest-subgraph problem, that for the node-weighted problem
a dependence on k in the approximation ratio is necessary.

Demaine, Hajiaghayi and Klein [5] considered the approximability of the node-
weighted Steiner tree problem in planar graphs. In an interesting result, they adapted
the well-known primal-dual algorithm for the edge-weighted problem [1,7] to the node-
weighted problem and showed that it gives a 6-approximation in planar graphs. De-
maine et al. also showed that their algorithm works for a more general class of 0-1-
valued proper functions (first considered by Goemans and Williamson [7]) that includes
several other problems such as the Steiner forest problem ([14] claims an improved 9/4
approximation for the Steiner forest problem). Their analysis also shows that one ob-
tains a constant factor approximation (the algorithm is the same) for any minor-closed
family of graphs where the constant depends on the family. In addition to their the-
oretical value, these results have the potential to be useful in practice since in many
real-world networks the underlying graph G is either planar or has very few crossings.

1 For many problems of interest, including Steiner tree and SNDP, the version with weights on
both edges and nodes can be reduced to the version with only node weights; sub-divide an
edge e by placing a new node ve and set the weight of ve to be that of e.
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Our Results: In this paper we consider node-weighted network design problems in
planar graphs for higher connectivity. In particular we consider EC-SNDP and show
that the insights in [5] can be used to develop improved approximation algorithms for
this more general problem as well. However, the results require non-trivial technical
work that we explain after we state the results. The algorithm works for any graph but
the ratio is constant for planar graphs and more generally graphs from any minor-closed
family; we articulate the precise dependence of the ratio on the family in later sections.

Our main result is the following.

Theorem 1. There is an O(k)-approximation for node-weighted EC-SNDP in planar
graphs where k is the maximum requirement.

The above theorem extends to a more general problem that we describe now. An integer
valued set function f : 2V → Z+ on the vertex set ofG is said to be proper if it satisfies
the following conditions: (i) f is symmetric, that is, f(S) = f(V −S) for all S, and (ii)
f is maximal, that is, f(A ∪ B) ≤ max{f(A), f(B)} for any two disjoint sets A,B.
Given a proper function f on V (by a value oracle) and a graph G on V , the f -covering
problem is to find a subgraph H of minimum weight such that |δH(S)| ≥ f(S) for all
S2. EC-SNDP is a special case of this problem [18]. We obtain an O(k)-approximation
for the node-weighted version of this problem in planar graphs where k = maxS f(S).

Overview of Technical Ideas and Contribution: The two main algorithmic approaches
for SNDP are the following. The first is the augmentation approach pioneered by Williamson
et al. [18] in which the required network is built in k phases. At the end of the first (i−1)
phases the connectivity of a pair uv is at least min{r(uv), i − 1}. Thus the i’th phase
is required to increase the connectivity of some of the pairs by 1 by adding additional
edges; the advantage of this approach is that we now work with a 0-1 covering problem.
On the other hand the covering problem is no longer so simple. The function that we
need to cover falls into the more general class of uncrossable functions: A requirement
function f : 2V → {0, 1} is uncrossable if for any sets A,B ⊆ V , f(A) = f(B) = 1
implies f(A∩B) = f(A∪B) = 1 or f(A−B) = f(B−A) = 1. Williamson et al. [18]
showed that a primal-dual algorithm achieves a 2-approximation for the edge-weighted
version of covering uncrossable functions. Nutov [15] gave an O(log n)-approximation
for the node-weighted case. These results for uncrossable functions, when combined
with the augmentation framework, give a 2k and an O(k log n) approximation for
the edge-weighted and node-weighted versions of EC-SNDP in general graphs3. The
second approach for SNDP is the powerful iterated rounding technique pioneered by
Jain which led to a 2-approximation for EC-SNDP [10] and also for covering a cer-
tain class of skew-supermodular functions4. Iterated rounding does not quite apply to
node-weighted problems for various technical reasons.

2 We work with node-induced subgraphsH ofG in which caseH may not contain all the nodes
of a set S ⊂ V . In that case δH(S) denotes the edges of H with exactly one endpoint in S.

3 The approximation for the edge-weighted version can be improved to 2Hk by doing the aug-
mentation in the reverse [6].

4 A function f : 2V → Z is skew-supermodular if for all A,B ⊆ V , f(A) + f(B) ≤
max{f(A∩B)+f(A∪B), f(A−B)+f(B−A)}. A skew-supermodular function f with
f(A) ≤ 1 for all A gives rise to an uncrossable function.
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We follow the augmentation approach. Demaine et al. adapted the primal-dual al-
gorithm for edge-weighted 0-1-proper functions to the node-weighted case. The novel
technical ingredient in their analysis is to understand properties of node-minimal fea-
sible solutions instead of edge-minimal feasible solutions. For the most part, problems
captured by 0-1-proper functions are very similar to the Steiner forest problem, a canon-
ical problem in this class. In this setting it is possible to visualize and understand node-
minimal solutions through connected components and basic reachability properties. In
the augmentation approach for higher-connectivity, as we remarked, the problem in
each phase is no longer that of covering a proper function but belongs to the richer class
of covering uncrossable functions. The primal-dual analysis for this class of functions
is more subtle and abstract [18] and proceeds via uncrossing arguments and laminar
witness families.

Our main technical contribution is understanding properties of node-minimal feasi-
ble solutions for uncrossable functions. We refer the reader to Theorem 3 in Section 3
for the precise statement; the theorem holds for general graphs (not just planar graphs)
and may have other applications. We remark on a crucial aspect of our algorithm and
analysis. Why do our results only apply for covering proper functions and not the more
general class of skew-supermodular functions? For the node-weighted problem of cov-
ering an arbitrary uncrossable function there is no natural covering LP relaxation. How-
ever, we observe that the particular uncrossable functions that arise in the augmentation
framework for a proper function (including EC-SNDP) have certain additional connec-
tivity properties that allow for an LP relaxation and the primal-dual approach. We obtain
a constant factor approximation in each phase and this results in anO(k)-approximation
overall where k is the maximum requirement.

As in [5] we use planarity only in one step of the analysis where we argue about the
average degree of a certain graph that is a minor of the original graph; this is the reason
that the algorithm and analysis generalize to any minor-closed family. In this paper, in
the interest of clarity and exposition, we have not attempted to optimize the constants
in the approximation.

Extensions: Our ideas for EC-SNDP can be extended to give an O(k) approximation
for node-weighted Elem-SNDP in planar graphs. We again use the augmentation ap-
proach but for Elem-SNDP we use a primal-dual algorithm and analysis with respect
to the setpair relaxation [11,3]. There are however some non-trivial differences and the
generalization is not immediate. An improved algorithm for node-weighted VC-SNDP
in planar graphs follows from a generic reduction of VC-SNDP to Elem-SNDP [4]. A
longer version of this paper will discuss these extensions.

Other related work: There is extensive literature on network design but due to space
limitations we are unable to discuss it in detail. We refer the reader to [8] for a survey
on primal-dual based algorithms for network design, and to recent surveys [13,9] for an
overview of the known approximation results and references to related work.

Organization: Section 2 describes our algorithm based on the augmentation approach
and the primal-dual algorithm for each phase of the augmentation. The analysis is done
by assuming the main technical theorem on a node-minimal augmentation of the un-
crossable requirement functions that arise in the augmentation framework. We state
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and prove this theorem in Section 3. Some of the proofs are omitted in this version.
A longer version with detailed proofs as well as the claimed extensions will be made
available on arXiv and the authors’ web pages in the near future.

2 Algorithm for Node-weighted EC-SNDP and Proper Functions

We start by defining the node-weighted EC-SNDP problem formally. The input consists
of an undirected node-weighted graph G = (V,E) (weight of node v is denoted by
w(v)) and a requirement function r(uv) for each pair of nodes. The goal is to find a
minimum node-weighted subgraph H of G such that H contains r(uv) edge-disjoint
paths for each pair uv. We use k to denote the maximum requirement. A node u is called
a terminal if there is some node v such that r(uv) > 0. Since any feasible solution has to
contain all terminals, we can assume without loss of generality that the weight of every
terminal is zero. We define a function f : 2V → Z+ where f(S) = max{r(uv) | u ∈
S, v /∈ S}. It is well-known that f is a proper function. By Menger’s theorem, solving
node-weighted EC-SNDP is equivalent to finding a minimum node-weight subgraph H
such that |δH(S)| ≥ f(S) for all S ⊂ V . (Recall that δH(S) is the set of all edges of
H with exactly one endpoint in S.) Our algorithm and analysis extend to the problem
of finding a node-weighted subgraph to cover a given proper function. For an arbitrary
proper function f we call a node v a terminal if f({v}) > 0; maximality of f implies
that S contains a terminal if f(S) > 0. Again, we can assume without loss of generality
that terminals have zero weight, since they are included in any feasible solution.

We alert the reader that, in order to cover the function f , we need to pick a set
of edges. But since the weights are (only) on the nodes, we pay for a set of nodes
and we can use any of the edges in the graph induced by the nodes in order to cover
the function. More precisely, our goal is to select a minimum-weight node-induced
subgraph H = G[X] that covers f , where X is a subset of nodes of G. We will always
assume that X contains the terminals.

As we mentioned, our algorithm for covering f uses the augmentation framework
introduced in [18]. Let fp : 2V → Z be the function such that fp(S) = min{f(S), p}
for each set S. If f is a proper function then fp is also a proper function. The algorithm
performs k phases: for 1 ≤ p ≤ k, at the end of phase p, the algorithm has a subgraph
Hp that covers fp. In phase p the algorithm starts with Hp−1 that covers fp−1 and
adds some additional nodes to obtain Hp that covers fp. We can express the underlying
optimization problem in phase p as follows.

It is convenient to assume that all of the vertices of Hp−1 have zero weight; since
we have already paid for the nodes, we can set their weight to zero at the beginning
of phase p. Let G′p = (V,E(G) − E(Hp−1)). (We emphasize that G′p has all of the
nodes of G and that the terminals and vertices of V (Hp−1) have zero weight.) Our
goal is to select a minimum-weight subgraph H of G′p that covers the following 0-1
function hp : 2V → {0, 1}. For each set S, we have hp(S) = 1 iff f(S) ≥ p and
|δHp−1

(S)| = p− 1. The function hp is known to be an uncrossable function [18]; note
that it may no longer be a proper function. We use a primal-dual algorithm to cover hp in
the graphG′p. A 2-approximation exists for this covering problem for the edge-weighted
problem and anO(log n)-approximation for the node-weighted case [15]. We show that
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the primal-dual algorithm achieves an O(1)-approximation for the node-weighted case
in planar graphs, however, we emphasize that it only applies for the specific uncrossable
functions that arise from proper functions as above; in particular it is important that the
chosen subgraphs at the end of each phase are node-induced. We describe and analyze
the primal-dual algorithm below and point out the place where we need this restriction.

2.1 A primal-dual algorithm for the augmentation problem

In the following, we fix a phase p of the augmentation framework. Let h = hp andG′ =
G′p. Recall that all of the terminals and the vertices selected in the first p−1 phases have
zero weight. In the following, we use ΓG′(S) to denote the set of all vertices v such that
v /∈ S but there is an edge uv ∈ E(G′) such that u ∈ S. We use a primal-dual algorithm
in order to select a subgraphH ofG′ that covers h. The primal and dual LPs that we use
are described below. We remark that the primal LP has unbounded integrality gap for
an arbitrary uncrossable function5. However, the function h that arises from a proper
function f in the augmentation framework has additional properties that allow us to
avoid such examples.

Primal:

min
∑
v∈V

x(v)w(v)

s.t.
∑

v∈ΓG′ (S)

x(v) ≥ h(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

Dual:

max
∑
S⊆V

y(S)h(S)

s.t.
∑

S:v∈ΓG′ (S)

y(S) ≤ w(v) ∀v ∈ V

y(S) ≥ 0 ∀S ⊆ V

We omit the constraint x(v) ≤ 1 in the primal since h is a 0-1 function.
The primal-dual algorithm is a “standard” one in that it is the natural adaptation

to the node-weighted setting (as done in [5]) of the primal-dual algorithm for edge-
weighted network design formalized by Goemans and Williamson [7]. The algorithm
selects a set X ⊆ V (G′) of nodes such that the graph G′[X] covers h. Initially, X
consists of all vertices that have zero weight. We also maintain a feasible dual solution
y that is implicitly initialized to zero. We proceed in iterations. Consider iteration i and
let Xi−1 be the set of nodes selected in the first i − 1 iterations; the set X0 consists
of all zero-weight vertices. A set S is violated with respect to Xi−1 iff h(S) = 1
and δG′[Xi−1](S) = ∅. A set S is a minimal violated set with respect to Xi−1 iff S
is a violated set and no proper subset of S is violated. Let Ci denote the collection
of all minimal violated sets with respect to Xi−1. As shown in [18], no two minimal
violated sets of an uncrossable function can intersect; further the collection of minimal
violated sets for h arising from proper functions can be computed in polynomial time.
Moreover, Lemma 1 below shows that the sets in Ci are subsets of Xi−1. If Ci is empty,

5 A simple example is a function h such that there is a single set S such that h(S) = 1. Each
vertex in S has weight 1, and each vertex in V − S has weight 0. The optimum solution has
value 1 since at least one node in S has to be picked but the optimum LP value is 0; note that
the value is 0 even if we have integrality constraints.
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G′[Xi−1] covers h and we return G′[Xi−1]. Otherwise, we increase the dual variables
{y(S)}S∈Ci uniformly until a dual constraint for a vertex v becomes tight, i.e., we have∑
S:v∈ΓG′ (S)

y(S) = w(v); we add v to X . Note that, since the components of Ci are
contained in Xi−1, for each minimal violated component C ∈ Ci, none of the vertices
in ΓG′(C) are inXi−1 and thus it is possible to increase the dual variables {y(S)}S∈Ci .

Finally we perform a reverse-delete step. Let X be the set of vertices selected by
the primal-dual algorithm. We select a subset Y of X as follows. We start with Y = X .
We order the vertices of Y in the reverse of the order in which they were selected by
the primal-dual algorithm. Let v be the current vertex. If G′[Y − v] is a feasible cover
for h, we remove v from Y .

The primal-dual algorithm described above is not well-defined for an arbitrary un-
crossable function h but the following property holds for those that arise from proper
functions. Using the following lemma, we can show that the algorithm is well-defined
and it outputs a cover of h in polynomial time.

Lemma 1. Every minimal violated component C ∈ Ci is a subset of Xi−1.
Proof: Consider C ∈ Ci and suppose C 6⊆ Xi−1. Let C ′ = C ∩ Xi−1. We observe
that fp(C \ C ′) = 0 since all the terminals are in Xi−1. Since fp is maximal, we have
fp(C) ≤ max{fp(C ′), fp(C \ C ′)} = max{fp(C ′), 0} = fp(C

′). Since C ∈ Ci,
we have fp(C) = p and |δG[Xi−1](C)| = p − 1. Therefore fp(C ′) ≥ fp(C) = p.
Additionally, δG[Xi−1](C) = δG[Xi−1](C

′), since G[Xi−1] does not have any edges
incident to vertices in V \ Xi−1. It follows that C ′ is violated with respect to Xi−1,
which contradicts the minimality of C. �

Now we turn our attention to the analysis of the primal-dual algorithm. In the following,
we show that the algorithm achieves anO(1) approximation for the augmentation prob-
lem when the graph G is from a minor-closed family of graphs G; the constant depends
on the family G.

Theorem 2. If G is a graph from a minor-closed family of graphs G, the weight of
the set Y is O(OPTh), where OPTh is the optimum solution to the LP relaxation for
covering h.

The dual variables are grown uniformly in each iteration and the standard primal-
dual analysis [7] gives a condition under which the approximation ratio can be upper
bounded. This is encapsulated in the lemma below.

Lemma 2. Let Bi = Y −Xi−1. Suppose there exists a γ such that, for each iteration
i of the primal-dual algorithm,

∑
C∈Ci |Bi ∩ ΓG′(C)| ≤ γ|Ci|. Then the weight of Y is

at most γOPTh, where OPTh is the value of an optimal solution to the LP relaxation.

The content of the above lemma is the following. Consider the minimal violated sets in
Ci. The set Bi = Y −Xi−1 forms a node-minimal set that together with Xi−1 covers h
(minimality follows from the reverse delete step). We are interested in γ, the “average
degree”6 of the components in Ci, with respect to nodes in Bi. In general graphs γ can

6 Here we are abusing the term slightly and we refer to the ratio
∑

C∈Ci
|Bi ∩ ΓG′(C)|/|Ci| as

the average degree of the components in Ci. One can view the ratio as the average degree of
the components if we shrink each of the components in Ci to a single vertex and we remove
parallel edges.
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be Ω(n) in the worst case which does not give a useful bound. However, planar graphs
are sparse. Thus one can bound the average degree if one can bound the number of
nodes in Bi that are adjacent to components in Ci. This was done in [5] for 0-1 proper
functions but the case of uncrossable functions is more involved and it is our main
technical contribution. Theorem 3 is stated in a general and useful form and proved
in Section 3. Assuming the theorem, we finish the analysis as follows. The following
lemma upper bounds the number of nodes in Bi that are adjacent to components in Ci.

Lemma 3. Let B′i be the set of all vertices u ∈ Bi such that u ∈ ΓG′(C) for some
component C ∈ Ci. We have |B′i| ≤ 4|Ci|.

In order to take advantage of the fact that planar and minor-closed graphs are sparse,
we need the following technical ingredient. The proof of Lemma 4 follows from the
maximality of fp and it is similar to the proof of Lemma 1.

Lemma 4. For each component C ∈ Ci, the graph G[C] is connected.

In order to finish the average degree argument, we shrink each component C ∈ Ci into
a single node and we use Lemma 3 and the fact that, for a graph K from a minor-closed
family G there is a constant c′ that depends only on the family such that |E(K)| ≤
c′|V (K)|.

Lemma 5. Let Bi = Y −Xi−1. If G is a graph from a minor-closed family of graphs
G, we have

∑
C∈Ci |Bi ∩ ΓG′(C)| ≤ c|Ci|, where c is a constant that depends only on

the family G.

Theorem 2 follows from Lemma 2 and Lemma 5. Theorem 2 together with the augmen-
tation framework gives an O(k)-approximation for finding a minimum node-weighted
subgraph to cover a proper function with maximum requirement k. The result for EC-
SNDP is a special case of this result.

Remark 1. For planar graphs, we get a 10-approximation for the augmentation prob-
lem and a 10k-approximation for the EC-SNDP problem. Demaine et al. [5] get a 6-
approximation for planar graphs when k = 1, and thus our ratio is slightly weaker. Our
analysis in Lemma 5 could be tightened in several ways. We believe that the analysis in
Theorem 3 and consequently Lemma 3 can be improved to obtain a factor of 3 instead
of 4. The analysis uses the maximality of f but not symmetry and hence our results
hold for a larger class of functions than proper functions.

3 Proof of Theorem 3

Let G = (V,E) be a graph. Let h : 2V → {0, 1} be a requirement function. A set S is
violated if h(S) = 1. A set C is a minimal violated component of h if C is violated and
no proper subset of C is violated. Let H be a subgraph of G. The graph H is a feasible
cover for h if, for any set S ⊆ V such that h(S) = 1, there is at least one edge of H
leaving S; in other words, |δH(S)| ≥ h(S). We say that H is a node-minimal feasible
cover for h if, for any vertex v ∈ V (H), H − v is not a feasible cover for h.

Now we are ready to state our main theorem.
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Theorem 3. Let h : 2V → {0, 1} be an uncrossable function. Let C be the minimal
violated components of h. Let H be a node-minimal feasible cover for h. Let X be the
set of all vertices v ∈ V (H) such that v is not in the union of the components in C and
there is an edge of H connecting v to a component of C. Then |X| ≤ 4|C|.

We devote the rest of this section to the proof of Theorem 3. A basic property of un-
crossable functions [18] is stated below.

Lemma 6. Let h be an uncrossable function. The minimal violated components of h
are disjoint. Moreover, if S is a violated set and C is a minimal violated component, S
and C do not properly intersect.

We start with a high-level overview of the proof. The main idea is to pick a subset
M of the edges of H such that M is an edge-minimal feasible cover for h. Such a
minimal cover has nice properties that were pointed out and used in the analysis for
edge-weighted problems [18]. More precisely, for each edge e ∈ M , we can pick a
“witness set” that is a violated set such that e is the only edge of M that is leaving the
set. Moreover, we can pick a family of witness sets, one for each edge of M , such that
the family is laminar7. This laminar family can be used to upper bound the number of
edges of M that are incident to the components of C.

We are interested in analyzing a node-minimal cover H which is not necessarily
edge-minimal; there can be a node u that is adjacent to components in C but it is pos-
sible that an edge-minimal cover M does not contain any of the edges connecting u to
components of C. Thus we cannot use the witness family to count such vertices. We
address this issue by counting them separately using a witness family for a different set
of edges.

We now turn our attention to the formal proof of the theorem. We refer to the vertices
in X as critical vertices. We refer to edges connecting a critical vertex to a component
C ∈ C as red edges, and we refer to all other edges of H as blue edges.

We define two subsets of edges F1 and F2 as follows. We start with F1 = E(H)
and we remove some of the edges as follows. We order the blue edges arbitrarily. We
consider the blue edges in this order. Let e be the current edge. If F1 − e is a feasible
solution for h, we remove e from F1. At the end of this process, each red edge is in F1

and each blue edge in F1 is necessary to cover h. We refer to critical vertices that are
incident to at least one blue edge of F1 as regular vertices; critical vertices that are not
regular are referred to as special vertices. As we will see shortly, we can use the blue
edges in F1 to upper bound the number of regular vertices.

In order to count the special vertices, we pick a subset F2 of F1 as follows. We start
with F2 = F1. We consider the red edges of F2 in some order. Let e be the current
edge. If F2 − e is a feasible cover, we remove e from F2. We can use the red edges in
F2 to upper bound the number of special vertices. Since H is a node-minimal cover for
h, each special vertex is incident to at least one red edge of F2.

Note that F2 is an edge-minimal feasible cover for h while F1 is a feasible cover
but is not necessarily edge-minimal. The difficulty is in counting the regular vertices via
F1. We consider the regular and special vertices separately. Theorem 3 follows from the
following two lemmas.

7 A set family F is laminar iff no two sets in F properly intersect.
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Lemma 7. The number of regular vertices is at most 2|C|.

Lemma 8. The number of special vertices is at most 2|C|.

Our counting arguments are based on the laminar witness family approach of Williamson
et al. More precisely, we define a witness set as follows.

Definition 1. Let F be a set of edges. A set Se ⊆ V is an F -witness set for an edge e
iff h(Se) = 1 and δF (Se) = {e}.

An F -witness set Se is a violated set; from Lemma 6 it follows that for each component
C ∈ C, C ⊆ Se or C ∩ Se = ∅.

Recall that a family of sets L is laminar if no two sets in L properly intersect;
differently said, for any two sets A,B ∈ L, either A and B are disjoint or one is
contained in the other. The following lemma follows from [18].

Lemma 9 ([18]). Let F be a feasible cover for an uncrossable function h. Let M ⊆ F
be a subset of F such that, for each edge e ∈ M , F − e is not a feasible cover for h.
There is a laminar family L = {Se | e ∈M} such that Se is an F -witness set for e.

Our approach is to use laminar witness families for the blue edges of F1 and the red
edges of F2 in order to count the regular and special vertices. Before we turn our atten-
tion to the counting arguments, we describe some properties of laminar witness families
that we need.

We can associate a forestF with a laminar set family L as follows. The forestF has
a node νS for each set S ∈ L. We add an edge between νA and νB iff A is the smallest
set in L that contains B. Let L = {Se | e ∈ M} be a laminar F -witness family for a
set M ⊆ F of edges. Let T be the tree associated with L∪ {V }; we root T at the node
νV .

We define the following bijection between the edges of the tree T and the edges of
M . Let e be an edge of M and let Se be the witness set for e. The node νSe

has a parent
νA in T , and we associate the edge e ∈ M with the edge (νA, νSe

) of T . We say that
the edge e corresponds to the edge (νA, νSe

). A node νS of T owns a vertex v ∈ V iff
S is the smallest set in L ∪ {V } that contains v.

Proposition 1. Let L = {Se | e ∈M} be a laminar F -witness family for a setM ⊆ F
of edges. Let T be the tree associated with L ∪ {V }. For each leaf νS of T there is a
distinct component C ∈ C such that C ⊆ S.

The following simple observation plays a crucial role in our counting argument.

Proposition 2. Let L = {Se | e ∈M} be a laminar F -witness family for a setM ⊆ F
of edges. Let T be the tree associated with L∪{V }. Let νS be a node of T and let e be
an edge of F \M . Either both endpoints of e are contained in S or neither endpoint of
e is contained in S. In particular, the endpoints of e are owned by the same node of T .

The following lemma was proved in [18].
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Lemma 10 ([18]). Let L = {Se | e ∈ M} be a laminar F -witness family for a set
M ⊆ F of edges. Let T be the tree associated with L ∪ {V }. Let e be an edge of M
and let (νA, νSe) be the edge of T corresponding to e, where Se is the witness set for
e and νA is the parent of νSe . Then νA owns one endpoint of e and νSe owns the other
endpoint of e.

Counting argument for regular vertices. Let LF1 = {Se | e is a blue edge in F1} be
a laminar F1-witness family for the blue edges in F1 that is guaranteed by Lemma 9.
Let TF1

be the tree associated with the family LF1
∪ {V }; we view TF1

as a rooted tree
whose root is the node corresponding to V .

Recall that each regular vertex u is incident to a red edge ur; the edge ur is in F1,
since F1 contains all the red edges. Additionally, u is incident to a blue edge ub ∈ F1.
Since r is contained in a minimal component of C, it follows from Proposition 2 that
the node of TF1

that owns u also owns a component Cu ∈ C. Our approach is to charge
each regular vertex u in its subtree; more precisely, we charge u to a component C ∈ C
that is owned by a node in the subtree rooted at the node that owns u and Cu.

We charge each regular vertex u as follows. Recall that there is a blue edge ub ∈ F1

that is incident to u. Let νA and νB be the nodes of TF1 that own u and b, respectively.
By Lemma 10, one of νA, νB is the parent of the other.

Suppose that νA is the parent of νB . Since each leaf owns a component of C (from
Proposition 1), there is a descendant of νB (possibly νB itself) that owns a component
of C. Let νS be the closest such descendant, i.e., a descendant whose distance to νB
is minimized. (If there are several descendants whose distance to νB is minimum, we
pick one of them arbitrarily.) We charge u to one of the components of C that νS owns;
we refer to this charge as a subtree charge (since u is charged in a subtree rooted at a
child of the node νA that owns u). Since a regular vertex v and its component Cv are
owned by the same node of the tree, the components Cv serve as sentinels that ensure
that there is at most one subtree charge to each component of C.

Suppose that νA is a child of νB . We charge u to the component Cu; we refer to this
charge as a parent charge (since the charge corresponds to the tree edge connecting the
node νA that owns C to its parent). Since each node has at most one parent edge, there
is at most one parent charge to each component of C.

Proposition 3. There is at most one subtree charge to each component C ∈ C.

Proposition 4. There is at most one parent charge to each component C ∈ C.

Proof of Lemma 7: Each component of C is charged at most twice and thus the number
of regular vertices is at most 2|C|. �

Counting argument for special vertices. Recall that F2 is an edge-minimal cover of
h. Moreover, a critical vertex v is special only if there is an edge e ∈ F2 (in fact a
red edge) such that e connects v to a minimal violated component C. Thus, the total
number of special vertices is upper bounded by

∑
C∈C |δF2

(C)|. Williamson et al. [18]
show that for any edge-minimal cover of an uncrossable function this is upper bounded
by 2|C|. Thus we can upper bound the number of special vertices by 2|C| which proves
Lemma 8. We remark that some of the regular vertices are counted in this step as well,
but this can only help us.
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