
Prize-collecting Steiner Problems on Planar Graphs

M. Bateni∗ C. Chekuri† A. Ene‡ M.T. Hajiaghayi§ N. Korula¶ D. Marx‖

Abstract

In this paper, we reduce Prize-Collecting Steiner TSP

(PCTSP), Prize-Collecting Stroll (PCS), Prize-Collecting

Steiner Tree (PCST), Prize-Collecting Steiner Forest (PCSF),

and more generally Submodular Prize-Collecting Steiner For-

est (SPCSF), on planar graphs (and also on bounded-

genus graphs) to the corresponding problem on graphs of

bounded treewidth. More precisely, for each of the men-

tioned problems, an α-approximation algorithm for the prob-

lem on graphs of bounded treewidth implies an (α + ε)-

approximation algorithm for the problem on planar graphs

(and also bounded-genus graphs), for any constant ε > 0.

PCS, PCTSP, and PCST can be solved exactly on graphs of

bounded treewidth and hence we obtain a PTAS for these

problems on planar graphs and bounded-genus graphs. In

contrast, we show that PCSF is APX-hard to approximate on

series-parallel graphs, which are planar graphs of treewidth

at most 2. Apart from ruling out a PTAS for PCSF on pla-

nar graphs and bounded treewidth graphs, this result is also

interesting since it gives the first provable hardness separa-

tion between the approximability of a problem and its prize-

collecting version. We also show that PCSF is APX-hard on

Euclidean instances.

∗Department of Computer Science, Princeton University,

Princeton, NJ 08540; Email: mbateni@cs.princeton.edu. The au-

thor is also with the Center for Computational Intractability,
Princeton, NJ 08540. He was supported by a Gordon Wu fellow-

ship as well as NSF ITR grants CCF-0205594, CCF-0426582 and

NSF CCF 0832797, NSF CAREER award CCF-0237113, MSPA-
MCS award 0528414, NSF expeditions award 0832797.
†Department of Computer Science, University of Illinois, Ur-

bana, IL 61801. Supported in part by NSF grants CCF-0728782,
CNS-0721899 and CCF-1016684. Email: chekuri@cs.illinois.edu.
‡Department of Computer Science, University of Illinois, Ur-

bana, IL 61801. Supported in part by NSF grant CCF-0728782.
Email: ene1@illinois.edu.
§Department of Computer Science, University of Maryland,

115 A.V. Williams Building, College Park, MD 20742. The author
is also affiliated with AT&T Labs–Research, Florham Park, NJ

07932; Email: hajiagha@cs.umd.edu.
¶Google Research, 76 9th Ave, New York, NY 10011. This

work was done while the author was at the Department of

Computer Science of the University of Illinois, and was supported

by a University of Illinois dissertation completion fellowship.
Email: nitish@google.com.
‖Humboldt-Universität zu Berlin, Germany. Email:

dmarx@cs.bme.hu. Supported in part by ERC Advanced Grant
DMMCA and Hungarian National Research Fund OTKA 67651.

1 Introduction

In this paper we consider prize-collecting versions of
several network design problems. A typical network
design problem is modeled as the problem of finding
a minimum-cost sub-network of a given network G that
satisfies some “requests”. The requests often correspond
to connectivity between some given pairs or sets of
nodes. In prize-collecting variants, each request has a
penalty, and we allow the sub-network not to satisfy
some requests. The goal is to minimizie the cost of
the sub-network plus the penalties for the requests that
are not satisfied by the sub-network. These problems
are interesting for several reasons. In particular, prize-
collecting Steiner problems are well-known network
design problems with several applications in expanding
telecommunications networks (see for example [42, 49]),
cost sharing, and Lagrangian relaxation techniques (see
e.g. [41, 26]). A general problem in this area is the
Prize-Collecting Steiner Forest (PCSF) problem1: given
an undirected network (graph) G = (V,E), a set of
source-sink pairs2 D = {{s1, t1}, {s2, t2}, . . . , {sk, tk}},
a non-negative edge-cost function c : E → R+, and a
non-negative penalty function π : D → R+, the goal is
to find a subgraph H of G to minimize the cost of the
edges of H plus the sum of the penalties for requests in
D that are not connected by H. A more general problem
is obtained if the penalty for not connecting a set of
demands is not simply the sum of individual penalties
for unconnected demands, but an arbitrary function
π : 2D → R+. A natural and useful restriction on π
is that it is a monotone and non-negative submodular
function3; in this case we obtain the Submodular Prize-
Collecting Steiner Forest (SPCSF) of all unsatisfied pairs.

1In the literature, this problem is also called Prize-Collecting
Generalized Steiner Tree.

2Source-sink pairs are sometimes called demands.
3A function f : 2S 7→ R is called submodular if and only if

∀A,B ⊆ S : f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). An equivalent
characterization is that the marginal profit of each item should
be non-increasing, i.e., f(A∪ {a})− f(A) ≤ f(B ∪ {a})− f(B) if

B ⊆ A ⊆ S and a ∈ S \B. A function f : 2S 7→ R is monotone if
and only if f(A) ≤ f(B) for A ⊆ B ⊆ S. Since the number of sets
is exponential, we assume a value oracle access to the submodular

function; i.e., for a given set T , an algorithm can query an oracle
to find its value f(T).

The prize-collecting problems generalize the under-
lying network design problems since one can set the
penalties to∞ which forces the solution to satisfy all re-
quests. In particular, PCSF generalizes the well-studied
Steiner Forest problem which is NP-Hard and also APX-
Hard to approximate. The best known approximation
ratio for Steiner Forest is 2− 2

n (n is the number of nodes
of the graph) due to Agrawal, Klein, and Ravi [2] (see
also [35] for a more general result and a simpler anal-
ysis). The case of Prize-Collecting Steiner Forest prob-
lem in which all sinks are identical is the (rooted) Prize-
Collecting Steiner Tree (PCST) problem. In the unrooted
version of this problem, there is no specific sink (root);
here, the goal is to find a tree connecting some sources
and pay the penalty for the rest of them. We also study
two variants of (unrooted) Prize-Collecting Steiner Tree,
Prize-collecting TSP (PCTSP) and Prize-collecting Stroll
(PCS), in which the set of edges form a cycle and a path
(respectively) instead of a tree. When in addition all
penalties are ∞ in these prize-collecting problems, we
have the classic APX-hard problems Steiner Tree, TSP
and Stroll (Path TSP) for which the best approximation
factors in order are 1.39 [19], 3

2 [25], and 3
2 [39].

Why are prize-collecting problems interesting?
PCST and PCTSP are two classic optimization problems
with a large impact, both in theory and practice. At
AT&T, PCST code has been used in large-scale studies
in access network design, both as described by Johnson,
Minkoff and Phillips [42], and in another unpublished
applied work by Archer et al..

The key difference between problems such as PCST,
PCSF and their special cases Steiner Tree and Steiner
Forest is that we do not know a priori the set of demands
that are to be satisfied/connected; satisfying more de-
mands reduces the penalty, but increases the connec-
tion cost. This connection cost plus penalty nature of
the objective function models realistic problems with
multiple goals; for example, in network construction,
one may wish to examine the tradeoff between the cost
of serving clients and the potential profit from serving
them. The impact of PCST and PCTSP within approx-
imation algorithms is also far-reaching, especially in the
study of other problems where the set of demands to
be satisfied is not fixed: In the k-MST and k-Stroll
problems [30, 8, 27, 7, 31, 21], the goal is to find a
minimum-cost tree or path containing at least k ver-
tices, and in the Max-Prize-Tree and Orienteering prob-
lems [16, 11, 24, 46], the goal is to find a tree or path
that contains as many vertices as possible, subject to a
length constraint. In particular, PCST is a Lagrangian
relaxation of the k-MST problem, and hence has played
a crucial role in the design of algorithms for all the prob-
lems mentioned above. Thus, we are motivated to study

prize-collecting problems both for their inherent theo-
retical and practical value, and because they are useful
in the study of several other problems of interest.

In this paper, we consider prize-collecting prob-
lems in planar graphs. Planarity is a natural restric-
tion for network design in some practical scenarios such
as telecommunication networks where crossings between
cables or fiber in the ground are few in number if at
all. Thus obtaining algorithms with better approxima-
tion factors is desirable in this case. There is a wealth
of literature on obtaining improved approximation al-
gorithms for planar graphs. Here we focus on PTASs.
The seminal work of Baker [9] obtained PTASs for sev-
eral optimization problems on planar graphs (such as
minimum vertex cover and maximum independent set)
although the corresponding problems on general graphs
are considerably harder to approximate. The main idea
in her work is a decomposition approach that reduces
the problem on a planar graph to the problem on graphs
of bounded treewidth. This approach has been sub-
sequently applied in a variety of contexts. (The al-
gorithmic and graph-theoretic properties of treewidth
are extensively studied and a well-understood dynamic
programming technique can solve NP-hard problems on
bounded treewidth graphs.) The broad outline of the
PTAS approach for planar graphs had to be augmented
with a variety of non-trivial ideas and extensions. In
this paper we consider prize-collecting network design
problems. Before we discuss our contributions, we de-
scribe some prior work on network design problems in
planar graphs.

TSP, Steiner Tree, and Steiner Forest all have been
considered extensively on planar graphs. Indeed, all
these problems remain NP-hard even in this setting [29].
However, obtaining a PTAS for each of these problems
remained an open problem for several years. Grigni,
Koutsoupias, and Papadimitriou [36] obtained the first
PTAS for TSP on unweighted planar graphs in 1995;
this was later generalized to weighted planar graphs [6]
(and improved to linear time [44]). Obtaining a PTAS
for Steiner Tree on planar graphs remained elusive for
almost 12 years until 2007 when Borradaile, Klein and
Mathieu [18] obtained the first PTAS for Steiner Tree
on planar graphs using a new technique of contraction
decomposition and building spanners (this borrowed
ideas from earlier work of Klein on Subset TSP [43])
[18] posed obtaining a PTAS for Steiner Forest in planar
graphs as the main open problem. Bateni, Hajiaghayi
and Marx [13] very recently solved this open problem
using a primal-dual technique for building spanners and
obtaining PTASs by reducing the problem to bounded-
treewidth graphs. Interestingly, Steiner Forest turns
out to be NP-hard even on graphs of treewidth 3

and hence [13] had to devise a PTAS for the case of
bounded treewidth graphs in order to apply the general
framework.

Obtaining PTASs for prize-collecting versions of the
above network design problems was suggested as an
open problem in [13, 12]. The main technical difficulty
in prize-collecting problems is that it is not apriori clear
which requests are to be satisfied. In this paper, we
resolve this difficulty for PCST, PCTSP, PCSF, and even
more generally, for SPCSF, by reducing these problems
on planar graphs to the corresponding problems on
graphs of bounded treewidth. More precisely we show
that any α-approximation algorithm for these problems
on graphs of bounded treewidth gives an (α + ε)-
approximation algorithm for these problems on planar
graphs and bounded-genus graphs, for any constant
ε > 0. Since PCST and PCTSP can be solved exactly on
graphs of bounded treewidth using standard dynamic
programming techniques (as we discuss later in the
paper), we immediately obtain PTASes for PCST and
PCTSP on planar graphs (the same holds for PCS
as well). In contrast, we show that PCSF is APX-
hard already on series-parallel graphs, which are planar
graphs of treewidth at most 2, ruling out a PTAS for
planar PCSF (assuming P 6= NP). Apart from ruling
out a PTAS for PCSF on planar graphs and bounded
treewidth graphs, this result is also interesting since
it gives the first provable hardness separation between
the approximability of a problem and its prize-collecting
version; in this case Steiner Forest and Prize-Collecting
Steiner Forest when restricted to planar graphs. We also
show that PCSF is APX-hard on Euclidean instances,
that is, when the input graph is induced by points
in the Euclidean plane and the lengths are Euclidean
distances.

1.1 Related Work We have already mentioned sev-
eral related papers; we discuss these and others be-
low. As described above, PCST is a Lagrangian re-
laxation of the k-MST problem, and has been used
in a sequence of papers ([30, 8, 27, 7]) culminating in
a 2-approximation algorithm for k-MST by Garg [31].
PCTSP has also been used to improve the approxima-
tion ratio and running time of algorithms for the Mini-
mum Latency problem ([5, 22]). The first approximation
algorithms for PCST and PCTSP were given by Bien-
stock et al. [15], although PCTSP had been introduced
earlier by Balas [10]. Bienstock et al. achieved a fac-
tor of 3 for PCST and 2.5 for PCTSP by rounding the
optimal solution to a linear programming (LP) relax-
ation. Later, Goemans and Williamson [34] constructed
primal-dual algorithms using the same LP relaxation to
obtain a 2-approximation for both problems, building

on work of Agrawal, Klein and Ravi [2]. Chaudhuri et
al. [22] modified the Goemans-Williamson algorithm to
achieve a 2-approximation algorithm for PCS. It is only
recently that this factor of 2 for PCST and PCTSP was
improved by Archer et al. [4]; they obtained a ratio
for 1.967 for PCST and 1.980 for PCTSP; Goemans [33]
combined some ideas of [4] with others from [32] to im-
prove the ratio for PCTSP below 1.915.

The Prize-Collecting Steiner Forest problem was first
considered by Hajiaghayi and Jain [37]. The technique
of Bienstock et al. [15] easily implies a 3-approximation
but requires the solution to a primal LP. In contrast,
[37] developed an improved 2.54 approximation via the
LP, and a technically interesting 3-approximation via a
sophisticated primal-dual algorithm. Their primal-dual
approach has been generalized by Sharma, Swamy, and
Williamson [50] to SPCSF and related problems.

2 Technical Contributions and Overview

We first formally define the most general problem
studied in this paper. An instance of Submodular Prize-
Collecting Steiner Forest (SPCSF) is described by a triple
(G,D, π) where G is a undirected weighted graph, D is
a set of di = {si, ti} demand pairs, and π : 2D 7→ R+ is
a monotone nonnegative submodular penalty function.
A demand d = {s, t} is satisfied by a subgraph F if and
only if s, t are connected in F . If a forest F satisfies
a subset Dsat of the demands, its cost is defined as
cost(F) := length(F) + π(Dunsat), where length(F) is a
shorthand for the total length of all edges in F , and
Dunsat := D \ Dsat denotes the subset of unsatisfied
demands.

We similarly define SPCTSP, SPCS and SPCST
that are submodular prize-collecting variants of Trav-
eling Salesman Problem, Stroll and Steiner Tree, respec-
tively. An instance of these problems is represented
by (G,D, π) where all the demands d = {s, t} ∈ D
share a common root vertex r ∈ V (G).4 A feasible
solution F is a TSP tour, stroll, or Steiner tree, re-
spectively for a subset of demands, say Dsat ⊆ D. The
cost is then cost(F) := length(F) + π(Dunsat), where
Dunsat := D \ Dsat.

We first show that SPCSF on planar graphs (or
more generally, bounded-genus graphs) can be reduced
in an approximation-preserving fashion (within a (1+ε)-
factor) to SPCSF on graphs of bounded-treewidth; refer
to Appendix A for definitions regarding the treewidth
and bounded-treewidth graphs as well as bounded-genus

4Both the rooted and unrooted variants of these problems may
be more naturally defined with single-vertex demands rather than

demand pairs; having such a formulation, we can guess one vertex
of the solution, designate it as the root and obtain the rooted

formulation as defined in this paper.

graphs. In the rest of the paper, we focus on planar
graphs. The algorithms and analysis can be extended
with minor modifications to work for bounded-genus
graphs following prior ideas.

Theorem 2.1. For any given constant ε > 0, an
α-approximation algorithm for SPCSF on graphs of
bounded treewidth implies a (α + ε)-approximation al-
gorithm for SPCSF on planar graphs.

The reduction of Theorem 2.1 involves three steps:

1. Given an instance of SPCSF, let OPT denote the
cost of an optimal solution. We construct a collec-
tion of trees {T̂1, . . . , T̂k} with two important prop-
erties:

(a) The total length of the trees is bounded;∑
i length(T̂i) ≤ f(ε)OPT, for some function

f depending only on ε.

(b) Paying the penalty for all demand pairs not
contained in the same tree does not signifi-
cantly increase the cost of an optimal solu-
tion. More formally, let D̂ denote the set of
demand pairs which are not both contained in
the same tree. There is a solution F such that,
if D̄ is the set of demands not satisfied by F ,
length(F) + π(D̄ ∪ D̂) ≤ (1 +O(ε))OPT.

2. Given the collection of trees, construct a spanner
graph H, which is a subgraph of the input graph
G with the following two properties: First, the
total cost of edges in H is at most f ′(ε)OPT,
for some function f ′ depending only on ε. And
second, there is a solution contained in H of cost
(1 + O(ε))OPT. This follows the approach of
Borradaile et al. [18, 13].

3. After constructing the spanner graph, we invoke a
theorem implicit in the work of Klein [44] (refor-
mulated by [28]) that allows us to pay a cost of
at most εOPT while converting H to a graph of
bounded treewidth. We then use the approxima-
tion algorithm to solve the instance of SPCSF on
this bounded treewidth graph.

The second and third steps of the reduction are
standard in recent works, and we focus our attention
on the first step. Recall that the additional difficulty
in solving PCST, PCSF, SPCSF, and related problems
comes from not knowing which demands to connect.
The first step implies that we can effectively focus our
attention only on the demand pairs that have both
vertices in the same tree. The core of the reduction,
then, is obtaining the desired collection of trees, and

our algorithm is based on a prize-collecting clustering
technique that was first implicitly used in [4] and
later developed in [13]. In this work, the clustering
technique is generalized as follows: First, we need to
extend the ideas to work for prize-collecting variants
of Steiner network problems. This can indeed make
the problem provably harder; see Theorem 2.3. The
original prize-collecting clustering associates a potential
value to each node and grows the corresponding clusters
consuming these potentials. However, in order to extend
it to the prize-collecting setting, we consider source-sink
potentials. This means that there is some interaction
between the potentials of different nodes. Secondly, we
consider submodular penalty functions that model even
more interaction between the demands. The extended
prize-collecting clustering procedure has two phases. In
the first phase, we have a source-sink moat-growing
algorithm, and in the second phase, we have a single-
node potential moat-growing like [13].

Section 3 is devoted to the formal proof of The-
orem 2.1. The algorithm starts with a constant-
approximate solution F 1, say, obtained using Haji-
aghayi et al. [38] who prove a 3-approximation for
SPCSF on general graphs. The forest F 1 satisfies a sub-
set of demands, and we know the total penalty of unsat-
isfied demands is bounded. The algorithm then tries to
satisfy more demands by constructing a forest F 2 ⊇
F 1 whose length is bounded; see RestrictDemands

in Section 3.4. This step heavily uses a submodular
prize-collecting clustering algorithm5 introduced in Sec-
tion 3.3. At the end of this step, we can assume that
the near-optimal solution does not satisfy the demands
which are unsatisfied in F 2. Submodularity poses sev-
eral difficulties in proving this property: ideally, we
want to say that the cost paid by the optimal solution
to satisfy these demands is significantly more than their
penalty value. Surprisingly, this is not true. Neverthe-
less, we can prove that the marginal cost of the demands
satisfied in the near-optimal solution but not in F 2 can
be charged to the cost the near-optimal solution pays
in order to satisfy them. The next step of the reduc-
tion is to build a forest F 3 ⊇ F 2 of bounded length
that may connect several components of F 2 together;
see Section 3.5. This is done by assigning to each com-
ponent of F 2 a potential proportional to its length, and
then running a prize-collecting clustering similar to that

5The algorithm bears some similarity to the primal-dual moat-

growing algorithms for the Steiner network problems. One key

difference is that we do not have a primal LP. We have an LP
similar to the dual linear programs used in such algorithms, and

we use a notion of potential as a substitute for the lack of the

primal LP. The potentials, among other things, play the role of
an upper bound for the value of the dual LP.

of [13]. This guarantees that the near-optimal solution
does not need to connect different components of F 3 to
each other.

Once we have the forest F 3 with components that
do not need to be connected, we can implement Step 2 of
our reduction: We construct a spanner (see [13, 18, 44])
out of each component of F 3 separately from the others.
In the previous work [13], we could solve each of
the subinstances independently, however, the penalty
interaction originating from the submodular penalty
function in the current work does not allow us to solve
each subinstance completely independently. Instead, we
say that the forest of the near-optimal solution on each
subinstance is independent of the others.

Finally, after constructing the spanner graph F 4, we
invoke a generalization of the shifting idea of Baker [9]
due to [44, 28], and end up with a graph of bounded
treewidth. Since bounded-treewidth graphs bear some
similarity to trees, several tools have been developed for
solving optimization problems on them. Standard tech-
niques, see Appendix B, allow us to obtain PTASs for
several Steiner network problems on graphs of bounded
treewidth.

Theorem 2.2. PCST, PCS and PCTSP admit PTASs
on bounded-treewidth graphs.

In Section 4 we show how this results in PTASs for
the above problems on planar graphs. In particular, this
is simple for PCST since it is a special case of SPCSF. For
the other two problems, however, refer to the discussion
in Section 4.

In contrast, we show Prize-Collecting Steiner Forest
is APX-hard, even on planar graphs of treewidth at
least two; Hajiaghayi and Jain show the problem can
be solved in polynomial on tree metrics [37].

Theorem 2.3. PCSF is APX-hard on (1) planar
graphs of treewidth two and on (2) the two-dimensional
Euclidean metric.

This is done via a reduction from Bounded-Degree
Vertex Cover in Section 5. Indeed, the result shows that
Submodular Prize-Collecting Steiner Tree (the version of
the problem when the solution has to be a connected
tree instead of a forest) is also APX-hard. This implies
the hardness of PCSF originates from the interaction
between the penalties of terminals rather than from the
different components of the solution.

Surprisingly, the hardness also works for Euclidean
metrics, answering an open question raised in [12]. This
is a very rare instance where a natural network opti-
mization problem is APX-hard on the two-dimensional
Euclidean plane.

Theorem 2.3 means that planar PCSF reaches a
level of complexity where even though reduction to
bounded-treewidth instances works, it does not give
us a PTAS for the problem (in fact, no PTAS exists
unless P = NP). However, the treewidth reduction
approach can be still useful for obtaining constant-factor
approximations for planar graphs better than the factor
2.54 algorithm of [37] for general graphs. Theorem 2.1
show that beating the 2.54 factor on bounded-treewidth
graphs would immediately imply the same for planar
graphs. We pose it as an open question whether this is
indeed possible for PCSF.

Remarks: The current paper combines results ob-
tained in independent papers of Bateni, Hajiaghayi and
Marx [14] and Chekuri, Ene and Korula [23]. Although
[14] was done slightly before [23], the authors of the lat-
ter work were not aware of the former before obtaining
their results. We briefly describe the contributions of
each work. The paper of Chekuri et al. gives a reduction
from PCST, PCSF, PCTSP, and PCS on planar graphs
to the corresponding problems on graphs of bounded
treewidth. The reduction (see Section 3.1 for a special
case) relies on properties of a primal-dual algorithm for
the underlying problem with scaled up penalties. The
reduction outlined by Bateni et al. works for the more
general PCSF. Bateni et al. (see Section 3.2) use a sep-
arate primal-dual clustering step on top of the trees re-
turned by an approximation algorithm (used as a black
box) for the underlying problem, which is inspired by
earlier work of Archer et al. [4] and further extended
in [13]. The APX-hardness proofs are due to Bateni et
al.; see Section 5. This paper mostly follows [14] with
Section 3.1 based on the work in [23].

3 Reduction to the bounded-treewidth case

This section focuses on proving Theorem 2.1. In fact, we
prove a stronger version of the theorem that is necessary
for obtaining PTASs for PCST, PCTSP, and PCS. We
reduce an instance (G,D, π) of SPCSF to an instance
(H,D, π′) where H has bounded treewidth and π′ has a
structure similar to π; in particular, for some Dunsat ⊆ D
we define π′(D) := π(D ∪Dunsat) for all D ⊆ D. Notice
that if π is submodular, then so is π′. Moreover, if π
models a PCSF instance, i.e., π is an additive function,
then π′(D) − π′(∅) models a PCSF instance too. In
fact, π′(D) is an additive function that is shifted by a
fixed amount π′(∅). The same condition holds for PCST,
PCTSP and PCS. Therefore, after reducing a PCST
instance, we are left with a PCST instance—rather than
an SPCSF one—on a bounded-treewidth graph.

Before presenting the proof of the general reduction,
we present in Section 3.1 a simpler proof that suffices

to obtain the desired reduction for PCST, PCTSP,
PCS, and (with additional work) PCSF. However, this
technique does not suffice to obtain the reduction for
SPCSF. For ease of exposition, we focus on PCST in
Section 3.1.

3.1 A Simpler Reduction for PCST Recall that
our reduction to bounded-treewidth instances involved
three steps; in this section, we omit discussions of the
latter two (see the proof of Theorem 2.1 at the end of
Section 3.2). The first step in the reduction is to find
a collection of trees with the following two properties:
First, their total length is f(ε)OPT, and second, there
is a solution to the SPCSF instance of cost at most
(1+ε)OPT that only connects demand pairs in the same
tree.

For PCST, all demand pairs involve a common root;
we construct a single tree T̂ of length O(1/ε)OPT that
captures “almost all” of the crucial vertices: Even
if we pay the penalty for all vertices not in T̂ , this
does not significantly increase the cost of an opti-
mal solution. More formally, we find a tree T̂ of
length O(1/ε)OPT such that there exists a tree T with
length(T) +

∑
v 6∈T∩T̂ π(v) ≤ (1 + ε)OPT. In fact, we

can construct such a tree T̂ that captures almost all the
vertices of any optimal solution. We devote the rest of
this section to describing the construction of this tree.

Given an instance I of PCST on a graph G(V,E),
with non-negative edge-cost function c and with π(v)
the penalty for not connecting vertex v to the root, we
define a new instance I ′ as follows: The graph and edge-
cost functions are unchanged, but we scale the penalties
so that the penalty for not connecting v to the root is
π′(v) = π(v)/ε.

We now run the 2-approximate primal-dual algo-
rithm GW-Primal-Dual of Goemans and Williamson [35]
on the PCST instance I ′. This algorithm is based on the
following primal and dual linear programming formula-
tions for PCST. For each vertex v, the variable zv is 1
if we pay the penalty for not connecting v to the root
r, and 0 otherwise; the variable xe denotes whether the
edge e is selected for the forest. Let Sv denote the col-
lection of sets S that contain v but not r.

Primal-PCST

min
∑
e

c(e)xe +
∑
v

π(v)zv∑
e∈δ(S)

xe ≥ (1− zv) (∀i, S ∈ Sv)

xe, zv ≥ 0 (∀e, v)

Dual-PCST

max
∑
v

∑
S∈Sv

yv,S∑
S : e∈δ(S)

∑
v : S∈Sv

yv,S ≤ c(e) (∀e)

∑
S∈Sv

yv,S ≤ π(v) (∀i)

yv,S ≥ 0 (∀i, S ∈ Sv)

Due to space constraints, we do not describe the
well-known algorithm GW-Primal-Dual here, but ob-
serve that it returns both a tree T̂ and a feasible dual
solution with variables yv,S , such that for all v 6∈ T̂ ,∑
S∈Sv yv,S = π(v).

Theorem 3.1. Let T ∗ be any optimal solution to an
instance I of PCST, and let OPT =

∑
e∈T∗ c(e) +∑

v 6inT∗ π(v). Let T̂ be the tree output by algorithm
GW-Primal-Dual on the instance I ′ with penalties scaled
as above. Let X denote the set of vertices in T ∗ but not
in T̂ . Then,

∑
e∈T̂ c(e) ≤ 2OPT/ε, and

∑
v∈X π(v) ≤

εOPT.

The tree T̂ described in the theorem above satisfies
the two properties we desire: Its length is comparable
to OPT, and paying the penalty for all vertices not in T̂
increases the cost of an optimal solution to the instance
I by at most εOPT. To see the latter fact, fix an optimal
solution T ∗; by definition length(T ∗) +

∑
v 6∈T∗ π(v) =

OPT. But
∑
v∈T∗−T̂ π(v) ≤ εOPT by the theorem, and

so length(T ∗) +
∑
v 6∈T∗∩T̂ π(v) ≤ (1 + ε)OPT.

Hence, to complete the first step of the reduction,
it suffices to prove Theorem 3.1.

Proof. This requires showing that the length of T̂
is bounded (

∑
e∈T̂ c(e) ≤ 2OPT/ε), and that we

can afford to pay the penalty for vertices in T ∗

but not in T̂ (that is,
∑
v∈X π(v) ≤ εOPT). To

see the former condition is true, note that T ∗ is
a feasible solution to instance I ′, and has cost
at most length(T ∗) +

∑
v 6∈T∗ π

′(v) = length(T ∗) +

1
ε

∑
v 6∈T∗ π(v) ≤ 1

ε

(
length(T ∗) +

∑
v 6∈T∗ π(v)

)
=

1
εOPT. Hence, the cost of an optimal solution to I ′ is

at most (1/ε)OPT, and as T̂ is a 2-approximate solution
to I ′, it has cost at most (2/ε)OPT.

It remains only to prove that the total penalty
of vertices in X is small. Consider a Steiner Tree
instance defined on these vertices: As T ∗ connects all
the vertices in X to the root, the cost of an optimal
Steiner tree for X is at most OPT. Suppose, by way of
contradiction, that

∑
v∈X π(v) > εOPT, and hence that

∑
v∈X π

′(v) > OPT. Now consider the following dual
of a natural LP for the Steiner Tree instance induced by
X:

Dual-Steiner Tree(X)

max
∑

S separating some v ∈ X from r

zS

∑
S : e∈δ(S)

zS ≤ c(e) (∀e)

zS ≥ 0 (∀S)

Let yv,S be the feasible solution to Dual-PCST
returned by GW-Primal-Dual on instance I ′. Now,
construct a dual solution to the LP Dual-Steiner
Tree(X) as follows: For each set S separating some
v ∈ X from the root, set zS =

∑
v∈X yv,S . As∑

S:e∈δ(S)
∑
v : S∈Sv yv,S ≤ c(e) from the feasibility of

the solution to Dual-PCST, we conclude that the dual
variables zS correspond to a feasible solution of Dual-
Steiner Tree(X).

Thus, we have a feasible solution to Dual-Steiner
Tree(X) of total value

∑
S

∑
v∈X : S∈Sv yv,S . But the

dual solution returned by GW-Primal-Dual has the
property that for each v 6∈ T̂ (and hence for each
v ∈ X),

∑
S∈Sv yv,S = π′(v). Therefore, we have a

feasible solution to Dual-Steiner Tree(X) of total
value

∑
v∈X π

′(v) > OPT. By weak duality, the length
of any Steiner tree for X must also be greater than OPT.
But T ∗ is a Steiner tree for X of total length at most
OPT, which is a contradiction.

3.2 A General Reduction We now return to the
more general reduction. Our proof has three steps:

1. We start with an instance (G,D, π) of SPCSF. We
first take out a subset, sayDunsat, of demands whose
cost of satisfying is too much compared to their
penalties. Thus, we can focus on the remaining
demands, say Dsat := D \ Dunsat.

2. Afterwards, we partition the remaining demands
Dsat into D1,D2, . . . ,Dp such that, roughly speak-
ing, SPCSF can be solved separately on each of the
demand sets without increasing the total cost sub-
stantially.

3. Finally, we build a spanner for each demand set
Di, and use similar ideas as in [13] to reduce the
problem to bounded-treewidth graphs.

The first step is carried out in the following the-
orem. The proof appears in Section 3.4, and uses a
submodular prize-collecting clustering technique intro-
duced in Section 3.3. This step allows us to focus on

only a subset Dsat of demands, and ignore the rest of
the demands. The additional cost due to this is only
εOPT.

Theorem 3.2. Given an instance (G,D, π) of SPCSF
(or SPCTSP or SPCS) and a parameter ε > 0, we
can construct in polynomial time a subgraph F of G,
satisfying only a subset Dsat ⊆ D of demands, in effect
leaving Dunsat := D \ Dsat unsatisfied, such that

1. length(F) ≤ (6ε−1 + 3)OPT, and

2. the optimum of (G,Dsat, π′) is at most (1 + ε)OPT
where π′(D) := π(D ∪ Dunsat) is defined for D ⊆
Dsat.

At this point, we have a constant-approximate
solution satisfying all the (remaining) demands. The
second step is a generalization and extension of the work
in [13]. We are trying to break the instance into smaller
pieces. The solution to each piece is almost independent
of the others, i.e., there is little interaction between
them. The following theorem is proved in Section 3.5.

Theorem 3.3. Given an instance (G,D, π) of SPCSF,
a forest F satisfying all the demands, and a parameter
ε > 0, we can compute in polynomial time a set of trees
{T̂1, . . . , T̂k}, and a partition of demands {D1, . . . ,Dk},
with the following properties:

1. All the demands are covered, i.e., D =
⋃k
i=1Di.

2. The tree T̂i spans all the terminals in Di.

3. The total length of the trees T̂i is within a constant
factor of the length of F , i.e.,

∑k
i=1 length(T̂i) ≤

(2
ε + 1)length(F).

4. Let D∗ be the subset of demands satisfied by
OPT. Define D∗i := D∗ ∩ Di, and de-
note by SteinerForest(G,D) the length of a mini-
mum Steiner forest of G satisfying the demands
D. We have

∑
i SteinerForest(G,D∗i) ≤ (1 +

ε)SteinerForest(G,D∗).

The final step is very similar to the spanner con-
struction of [13, 18]. Since it has been extensively cov-
ered in those works, we defer the details to the full ver-
sion of the paper6.

Now we show how the above theorems imply the
main theorem of the paper.

6The previous work show for Steiner tree and Steiner forest

that, given a subgraph of length O(OPT) with sufficient connec-

tivity as that of a near-optimal solution, we can construct a span-
ner, i.e., a subgraph such that (1) the total length of the sub-

graph is no more than a constant times the length of the cost of

the optimal solution, and (2) there is a near-optimal (i.e., (1 + ε)-
approximate) solution using only the edges of the subgraph.

Proof. [Proof of Theorem 2.1] Start with an instance
(G,D, π) of SPCSF. Without loss of generality we
present an approximation guarantee of α + O(1)ε.
Find F , Dsat and Dunsat from applying Theorem 3.2
on (G,D, π). We know that F satisfies Dsat and
length(F) = O(OPT). Moreover, OPTDsat(G) ≤ OPT.
Define π+(D) := π(D ∪ Dunsat) for all D ⊆ D. Clearly,
the optimal solution of (G,Dsat, π+) costs no more than
(1 + ε)OPT. Pick ε′ < ε · length(F)/OPT and feed
(G,Dsat, π+) along with F and ε′ into Theorem 3.3 in
order to obtain Di’s and T̂i’s for i = 1, . . . , k. We have∑
i length(T̂i) = O(length(F)) = O(OPT), since ε′ is a

constant. In addition, the theorem guarantees a near-
optimal solution OPT+ of cost at most (1 + 2ε)OPT
that does not use the connectivity of different compo-
nents Di and Di′ for i, i′ ∈ {1, . . . , k} : i 6= i′. This
ensures that the spanner construction gives us a graph
G+ (of total length O(OPT)) that approximates the
forest of the solution within a 1 + ε factor. Thus,
the optimal solution of (G+,Dsat, π+) costs at most
(1 + ε)(1 + 2ε)OPT = [1 + O(1)ε]OPT. Since the to-
tal length of the graph G+ is within O(OPT), we can
use the decomposition theorem7 due to Klein [44] to re-
duce the problem to bounded-treewidth graphs with an
increase of εOPT in the solution cost. The reduced in-
stance is solved via the α-approximation algorithm, and
we finally get an approximation ratio of α+O(ε).

3.3 Submodular prize-collecting clustering
First we present and analyze a primal-dual algorithm
for SPCSF, and later we see how this algorithm can be
used to achieve the goal of identifying and removing
certain demands from the optimal solution such that
the additional penalty is negligible.

Consider an instance (G(V,E),D, π) of the SPCSF.
A set S ⊆ V is said to cut a demand d = {s, t} if
and only if |S ∩ d| = 1. We denote this by the short-
hand d � S, and say the demand d crosses the set S.
In the linear program (3.1)–(3.1), there is a variable
yS,d for any S ⊆ V , d ∈ D such that d � S. For
convenience, we use the short-hands yS :=

∑
d∈D yS,d

and yd :=
∑
S⊆V yS,d.∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑
d∈D

yd ≤ π(D) ∀D ⊆ D

yS,d ≥ 0 ∀d ∈ D, S ⊆ V, d� S.

We produce a solution to the above LP. Theorem 3.2

7This technique is first implicitly used in the conference version
of Klein [44], and is subsequently reformulated in [28].

is proved via some properties of this solution. These
constraints look like the dual of a natural linear pro-
gram for SPCSF. For convenience, we use the notation
y(D) :=

∑
d∈D yd for any D ⊆ D.

Lemma 3.1. Given an instance (G,D, π) of SPCSF, we
produce in polynomial time a forest F and a subset
Dunsat ⊆ D of demands, along with a feasible vector y
for the above LP such that

1. y(Dunsat) = π(Dunsat);

2. F satisfies any demand in Dsat := D \ Dunsat; and

3. length(F) ≤ 2y(D).

The solution is built up in two stages. First
we perform an submodular growth to find a forest
F1 and a corresponding y vector. This differs from
the usual growth phase of [35, 1] in that the penalty
function may go tight for a set of vertices that are
not currently connected. In the second stage, we
prune some edges of F1 to obtain another forest F2.
Below we describe the two phases of Algorithm 1
(Submodular-PC-Clustering).

Growth We begin with a zero vector y, and an
empty set F1. A demand d ∈ D is said to be live if and
only if y(D) < π(D) for any D ⊆ D that d ∈ D. If a de-
mand is not live, it is dead. During the execution of the
algorithm Submodular-PC-Clustering, we maintain a
partition C of vertices V into clusters; it initially con-
sists of singleton sets. Each cluster is either active or
inactive; the cluster C ∈ C is active if and only if there
is a live demand d : d � C. We simultaneously grow
all the active clusters by η. In particular, if there are
κ(C) > 0 live demands crossing an active cluster C, we
increase yC,d by η/κ(C) for each live demand d : d�C.
Hence, yC is increased by η for every active cluster C.
We pick the largest value for η that does not violate
any of the constraints in (3.1) or (3.1). Obviously, η is
finite in each iteration because the values of these vari-
ables cannot be larger than π(D). Hence at least one
such constraint goes tight after each growth step. If this
happens for an edge constraint for e = (u, v), then there
are two clusters Cu 3 u and Cv 3 v in C, at least one
of which is growing. We merge the two clusters into
C = Cu∪Cv by adding the edge e to F1, remove the old
clusters and add the new one to C. Nothing needs to be
done if a constraint (3.1) becomes tight. The number of
iterations is at most 2|V | because at each event either
a demand dies, or the size of C decreases.

Computing η is nontrivial here. In particular, we
have to solve an auxiliary linear program to find its
value. New variables y∗S,d denote the value of vector y
after a growth of size η. All the constraints are written

for the new variables. There are exponentially many
constraints in this LP, however, it admits a separation
oracle and thus can be optimized.8

maximize η

subject to

y∗S,d = yS,d +
η

κ(S)

∀d ∈ D, S ⊆ V, d� S, κ(S) > 0

y∗S,d = yS,d

∀d ∈ D, S ⊆ V, d� S, κ(S) = 0∑
S:e∈δ(S)

y∗S ≤ ce ∀e ∈ E

∑
d∈D

y∗d ≤ π(D) ∀D ⊆ D

y∗S,d ≥ 0 ∀d ∈ D, S ⊆ V, d� S.

Pruning Let S denote the set of all clusters formed
during the execution of the growth step. It can be
easily observed that the clusters S are laminar and the
maximal clusters are the clusters of C. In addition,
notice that F1[C] is connected for each C ∈ S.

Let B ⊆ S be the set of all clusters C that do
not cut any live demand. Notice that a demand d
may still be live at the end of the growth stage if it
is satisfied; roughly speaking, the demand is satisfied
before it exhausts its potential. In the pruning stage,
we iteratively remove edges from F1 to obtain F2. More
specifically, we first initialize F2 with F1. Then, as long
as there is a cluster S ∈ B such that F2 ∩ δ(S) = {e},
we remove the edge e from F2.

A cluster C is called a pruned cluster if it is pruned
in the second stage in which case, δ(C)∩F2 = ∅. Hence,
a pruned cluster cannot have non-empty and proper
intersection with a connected component of F2.

We first bound the length of the forest F . The fol-
lowing lemma is similar to the analysis of the algorithm
in [35]. However, we do not have a primal LP to give
a bound on the dual. Rather, the upper bound for the
length is π(D). In addition, we bound the cost of a for-
est F that may have more than one connected compo-

8 Notice that there are only a polynomial number of non-zero
variables at each step since yS,d may be non-zero only for clusters
S, and these clusters form a laminar family in our algorithm.
Verifying constraints (3.1)-(3.1) and (3.1) is very simple. Verifying
constraints (3.1) is equivalent to finding minD⊆D π(D) − y∗(D)

and checking that it is non-negative. The function to minimize is
submodular and thus can be minimized in polynomial time [40].
A standard argument shows that the values of these variables

have polynomial size. We defer to the full version of the paper
the detailed discussion of how the LP can be approximated.

Algorithm 1 Submodular-PC-Clustering

Input: Instance (G(V,E),D, π) of Generalized prize-
collecting Steiner forest
Output: Forest F , subset of demands Dunsat and
fractional solution y.

1: Let F1 ← ∅.
2: Let yS,d ← 0 for any d ∈ D, S ⊆ V, d� S.
3: Let S ← C ← {{v} : v ∈ V ∗}.
4: while there is a live demand do
5: Compute η via LP (3.1): the largest possible

value such that simultaneously increasing yC by
η for all active clusters C ∈ C does not violate
Constraints (3.1)-(3.1).

6: Let yC,d ← yC,d + η
κ(C) for all live demands d

crossing clusters C ∈ C, i.e., d� C.
7: if ∃e ∈ E that is tight and connects two clusters

C1 and C2 then
8: Pick one such edge e = (u, v).
9: Let F1 ← F1 ∪ {e}.

10: Let C ← C1 ∪ C2.
11: Let C ← C ∪ {C} \ {C1, C2}.
12: Let S ← S ∪ {C}.
13: Let F2 ← F1.
14: Let B be the set of all clusters S ∈ S that do not

cut any live demands.
15: while ∃S ∈ B such that F2∩δ(S) = {e} for an edge

e do
16: Let F2 ← F2 \ {e}.
17: Let Dunsat denote the set of dead demands.
18: Output F := F2, Dunsat and y.

nent, whereas the prize-collecting Steiner tree algorithm
of [35] finds a connected graph at the end.

Lemma 3.2. The cost of F2 is at most 2y(D).

Proof. Recall that the growth phase has several events
corresponding to an edge or set constraint going tight.
We first break apart y variables by epoch. Let tj be the
time at which the jth event point occurs in the growth
phase (0 = t0 ≤ t1 ≤ t2 ≤ · · ·), so the jth epoch is the
interval of time from tj−1 to tj . For each cluster C, let

y
(j)
C be the amount by which yC grew during epoch j,

which is tj − tj−1 if it was active during this epoch, and

zero otherwise. Thus, yC =
∑
j y

(j)
C . Because each edge

e of F2 was added at some point by the growth stage
when its edge packing constraint (3.1) became tight, we
can exactly apportion the cost ce amongst the collection
of clusters {C : e ∈ δ(C)} whose variables “pay for”
the edge, and can divide this up further by epoch. In

other words, ce =
∑
j

∑
C:e∈δ(C) y

(j)
C . We will now prove

that the total edge cost from F2 that is apportioned to

epoch j is at most 2
∑
C y

(j)
C . In other words, during

each epoch, the total rate at which edges of F2 are paid
for by all active clusters is at most twice the number
of active clusters. Summing over the epochs yields the
desired conclusion.

We now analyze an arbitrary epoch j. Let Cj denote
the set of clusters that existed during epoch j. Consider
the graph F2, and then collapse each cluster C ∈ Cj into
a supernode. Call the resulting graph H. Although the
nodes of H are identified with clusters in Cj , we will
continue to refer to them as clusters, in order to to avoid
confusion with the nodes of the original graph. Some
of the clusters are active and some may be inactive.
Let us denote the active and inactive clusters in Cj by
Cact and Cdead, respectively. The edges of F2 that are
being partially paid for during epoch j are exactly those
edges of H that are incident to an active cluster, and
the total amount of these edges that is paid off during
epoch j is (tj − tj−1)

∑
C∈Cact

degH(C). Since every
active cluster grows by exactly tj − tj−1 in epoch j, we

have
∑
C y

(j)
C ≥

∑
C∈Cj y

(j)
C = (tj − tj−1)|Cact|. Thus, it

suffices to show that
∑
C∈Cact

degH(C) ≤ 2|Cact|.
First we must make some simple observations about

H. Since F2 is a subset of the edges in F1, and each
cluster represents a disjoint induced connected subtree
of F1, the contraction to H introduces no cycles. Thus,
H is a forest. All the leaves of H must be live clusters
because otherwise the corresponding cluster C would be
in B and hence would have been pruned away.

With this information about H, it is easy to bound∑
C∈Cact

degH(C). The total degree in H is at most
2(|Cact| + |Cdead|). Noticing that the degree of dead

clusters is at least two, we get
∑
C∈Cact

degH(C) ≤
2(|Cact|+ |Cdead|)− 2|Cdead| = 2|Cact| as desired.

Now we can prove Lemma 3.1 that characterizes the
output of Submodular-PC-Clustering.

Proof. [Proof of Lemma 3.1] For every demand d ∈
Dunsat we have a set D 3 d such that y(D) = π(D). The
definition of Dunsat guarantees D ⊆ Dunsat. Therefore,
we have sets D1, D2, . . . , Dl that are all tight (i.e.,
y(Di) = π(Di)) and they span Dunsat (i.e., Dunsat =
∪iDi). To prove y(Dunsat) = π(Dunsat), we use induction
and combine Di’s two at a time. For any two tight sets
A and B we have y(A∪B) = y(A) +y(B)−y(A∩B) =
π(A) + π(B) − y(A ∩ B) ≥ π(A) + π(B) − π(A ∩
B) ≥ π(A ∪ B), where the second equation follows
from tightness of A and B, the third step is a result
of Constraint (3.1), and the last step follows from
submodularity. Constraint (3.1) has it that π(A∪B) ≥
y(A ∪B), therefore, it has to hold with equality.

Clearly, at the end of execution of
Submodular-PC-Clustering, any live demand is
already satisfied. Notice that such demands are not
affected in the pruning stage. Hence, only dead
demands may be not satisfied. This guarantees the
second condition. The third condition follows from
Lemma 3.2.

3.4 Restricting the demands We prove The-
orem 3.2 in this section. First, we obtain a
constant-factor approximate solution F+—via the 3-
approximation algorithm for general graphs [38]. Let
D+ denote the demands satisfied by F+. We denote
by T+

j the connected components of F+. For each de-

mand d = {s, t} ∈ D+ we clearly have {s, t} ⊆ V (T+
j)

for some j. However, for an unsatisfied demand d′ =
{s′, t′} ∈ D \ D+, the vertices s′ and t′ belong to two
different components of F+. Construct G∗ from G by
reducing the length of edges of F+ to zero. The new
penalty function π∗ is defined as follows:

π∗(D) := ε−1π(D) for D ⊆ D.(3.1)

Finally we run Submodular-PC-Clustering on
(G∗,D, π∗); see Algorithm 2.

Now we show that the algorithm
Restrict-Demands outlined above satisfies the re-
quirements of Theorem 3.2. Before doing so, we show
how the cost of a forest can be compared to the values
of the output vector y.

Lemma 3.3. If a graph F satisfies a set Dsat of de-
mands, then length(F) ≥

∑
d∈Dsat yd.

This is quite intuitive. Recall that the y variables
color the edges of the graph. Consider a segment on

Algorithm 2 Restrict-Demands

Input: Instance (G,D, π) of Submodular Prize-
Collecting Steiner Forest
Output: Forest F and Dunsat.

1: Use the algorithm of Hajiaghayi et al. [38] to find
a 3-approximate solution: a forest F+ satisfying
subset D+ of demands.

2: Construct G∗(V,E∗) in which E∗ is the same as E
except that the edges of F+ have length zero in E∗.

3: Define π∗ as Equation (3.1).
4: Call Submodular-PC-Clustering on (G∗,D, π∗) to

obtain the result F , Dunsat and y.
5: Output F and Dunsat.

edges corresponding to cluster S with color d. At least
one edge of F passes through the cut (S, S̄). Thus, a
portion of the cost of F can be charged to yS,d. Hence,
the total cost of the graph F is at least as large as the
total amount of colors paid for by Dsat. We now provide
a formal proof.

Proof. The length of the graph F is∑
e∈F

ce ≥
∑
e∈F

∑
S:e∈δ(S)

yS by (3.1)

=
∑
S

|F ∩ δ(S)|yS

≥
∑

S:F∩δ(S) 6=∅

yS

=
∑

S:F∩δ(S) 6=∅

∑
d:d�S

yS,d

=
∑
d

∑
S:d�S

F∩δ(S) 6=∅

yS,d

≥
∑
d∈Dsat

∑
S:d�S

F∩δ(S) 6=∅

yS,d

=
∑
d∈Dsat

∑
S:d�S

yS,d,

because yS,d = 0 if d ∈ Dsat and F ∩ δ(S) = ∅,

=
∑
d∈Dsat

yd

Proof. [Proof of Theorem 3.2] We know that
length(F+) + π(D \D+) ≤ 3OPT because we start with
a 3-approximate solution. For any demand d = (s, t),
we know that yd is not more than the distance of
s, t in G∗. Since the distance between endpoints of d
is zero if it is satisfied in D+, yd is non-zero only if

d ∈ D \ D+, we have y(D) = y(D \ D+) ≤ π∗(D \ D+)
by constraint (3.1). Lemma 3.1 gives length(F) in
G∗, denoted by lengthG∗(F), is at most 2y(D) ≤
2π∗(D \ D+) = 2ε−1π(D \ D+) ≤ 6ε−1OPT. Therefore
length(F) = length(F+)+lengthG∗(F) ≤ (6ε−1+3)OPT.

To establish the second condition of the theorem,
take an optimal forest F ′: F ′ satisfies demands DOPT,
and we have length(F ′) + π(D \ DOPT) = OPT. De-
fine A := DOPT \ Dsat and B := Dunsat \ A. The
penalty of F ′ under π′ is π((D \ DOPT) ∪ Dunsat) =
π((Dsat\DOPT)∪A∪B). Hence the increase in penalty of
F ′ due to changing from π to π′ is π((Dsat \DOPT)∪A∪
B)−π((Dsat \DOPT)∪B) ≤ π(A∪B)−π(B) due to the
decreasing marginal cost property of submodular func-
tions. We have y(A ∪ B) = π∗(A ∪ B) = ε−1π(A ∪ B)
because A ∪ B = Dunsat is the set of dead demands
of Submodular-PC-Clustering; see the first condition
of Lemma 3.1. We also have ε−1π(B) = π∗(B) ≥
y(B) because of Constraint (3.1). Therefore the ad-
ditional penalty is at most ε[y(A∪B)− y(B)] = εy(A).
Since F ′ satisfies the demands A, we have y(A) ≤
length(F ′) ≤ OPT from Lemma 3.3. Therefore, the ad-
ditional penalty is at most εOPT.

The extension to SPCTSP and SPCS is straight-
forward once we observe that the cost of building a tour
or a stroll9 on a subset of vertices is at least the cost
of constructing a Steiner tree on the same set. Hence,
there algorithm pretends it has an SPCST instance,
and restricts the demand set accordingly. However,
the extra penalty due to the ignored demands Dunsat is
charged to the Steiner tree cost which is no more than
the TSP or stroll length.

3.5 Restricting the connectivity We first run
Restrict-Demands on (G,D, π). Let F and Dunsat be
its output. The forest F satisfies all the demands in
Dsat := D \ Dunsat. The length of this forest is O(OPT)
and the demands in Dunsat can be safely ignored.

The forest F consists of tree components Ti. In
the following, we connect some of these components to
make the trees T̂i. It is easy to see that this construction
guarantees the first two conditions of Theorem 3.3.
We work on a graph G∗(V ∗, E∗) formed from G by
contracting each tree component of F . A potential φv is
associated with each vertex v of G∗, which is ε−1 times
the length of the tree component corresponding to v in
case v is the contraction of a tree component, and zero
otherwise.

We use the algorithm PC-Clustering introduced in
[13] to cluster the components Ti and construct a forest

9A stroll is similar to a tour, except that it may start and end
on different vertices.

F2 with components T̂i; the details of the algorithm
can be seen in [13]. We obtain the folowing guarantees.
Appendix D explains PC-Clustering for the sake of
completeness.

Lemma 3.4. ([13, Lemma 6]) The cost of F2 is at
most 2

∑
v∈V ∗ φv.

Recall that the trees Ti are contracted in F2.
Construct F̂ from F2 by uncontracting all these trees.
Let F̂ consist of tree components T̂i. It is not difficult
to verify that F̂ is indeed a forest, but we do not need
this condition since we can always remove cycles to find
a forest. Define D̂i := {(s, t) ∈ D : s, t ∈ V (T̂i)}, and let
D∗ be the subset of demands satisfied by OPT. Define
D∗i := D∗ ∩ Di, and denote by SteinerForest(G,D) the
length of a minimum Steiner forest of G satisfying the
demands D.

Lemma 3.5. ([13, Lemma 10])∑
i SteinerForest(G,D∗i) ≤ (1 + ε)SteinerForest(G,D∗).

Now, we are ready to prove the main theorem of
this section.

Proof. [Proof of Theorem 3.3] The first condition of the
lemma follows directly from our construction: we start
with a solution, and never disconnect one of the tree
components in the process. The construction immedi-
ately implies the second condition. By Lemma 3.4, the
cost of F2 is at most 2

∑
v∈V φv ≤

2
ε length(F). Thus,

F̂ costs no more than (2/ε + 1)length(F), giving the
third condition. Finally, Lemma 3.5 establishes the last
condition.

4 PTASs for PCST, PCTSP and PCS on planar
graphs

Since PCST is a special case of PCSF, Theorems 2.1 and
2.2 imply that PCST admits a PTAS on planar graphs.
However, obtaining the same result for PCTSP and PCS
is not immediate from those theorems since the latter
problems are not special cases of PCSF. Here we explain
how we can use these theorems to obtain the desired
PTASs. Here we focus on PCTSP; however, the same
arguments with minor changes apply to PCS as well.

Take an instance I = (G,D, π) of PCTSP, and
apply Theorem 3.2 on I to obtain F and Dunsat. Since
all the demands share a common root vertex10, all the
terminals in Dsat are connected in F . We then invoke
the TSP spanner construction of Arora et al. [6] to
build H. Finally, we use the contraction decomposition

10If we have a penalty for each vertex in the PCTSP formulation,

we can guess a root vertex r and define the demand pairs
accordingly.

theorem of Demaine et al. [28] to contract a small-weight
subset of edges and reduce the problem to graphs of
bounded treewidth. The total additional charge due
to penalties of Dunsat and contracted edges is at most
O(ε)OPT. Therefore we can obtain a PTAS by solving
the bounded-treewidth instance precisely.

5 Hardness of PCSF on series-parallel graphs

We first present the hardness proof for PCSF on a planar
graph of treewidth two. The proof shows hardness for
a very restricted class of graphs: short cycles going
through a single central vertex.

Proof. [Proof of Theorem 2.3(1)] We reduce an instance
I of Vertex Cover on 3-regular graphs to an instance I ′ of
PCSF on a planar graphs of treewidth two. The former
is known to be APX-hard [3]. The instance I is defined
by an undirected graph G. If n denotes the number of
vertices of G, the number edges is m = 3n/2. We will
denote the i-th vertex of G by vi, the j-th edge by ej ,

and the first and second endpoints of ej by e
(1)
j and e

(2)
j ,

respectively.
We now specify the reduction (illustrated in Fig-

ure 1); I ′ is represented by (H,D, π). The graph H
consists of the vertices

• ai for 1 ≤ i ≤ n,

• bj , c1j , c2j for 1 ≤ j ≤ m,

• central vertex w,

and the edges

• {w, ai} of cost 2 (1 ≤ i ≤ n),

• {w, c1j}, {w, c2j}, {c1j , bj}, {c2j , bj} of cost 1 (1 ≤ j ≤
m).

The instance contains the following demands:

• {w, bj} with penalty 3 (1 ≤ j ≤ m),

• If vi = e
(`)
j for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, and

` ∈ {1, 2}, then {ai, c`j} is a demand with penalty
1.

Thus the number of demands is exactly m + 3n
and each ai appears in exactly 3 demands. We claim
that the cost of the optimum solution of I ′ is exactly
2m+ 2n+ τ(G), where τ(G) is the size of the minimum
vertex cover in G. Note that τ(G) ≥ n/3 (as G is 3-
regular), thus 2m+2n+τ(G) is at most a constant times
τ(G). In order to prove the correctness of the reduction,
we prove the following two statements:

w

c13

c23

c12

c22

c24

c2j

c14

c11 b2

b3

b4

b1

a2

a3

a4

a1

Figure 1: Illustrating the reduction from 3-Regular
Vertex Cover to PCSF.

(1) Given a vertex cover of size k for G, a solution of
cost 2m+ 2n+ k can be constructed.

(2) Given a solution of cost at most 2m + 2n + k, a
vertex cover of size at most k can be constructed.

To prove (1), suppose that C is a vertex cover of
size k for G. Let T be a tree of H that contains

• edge {w, ai} if and only if vi 6∈ C,

• edges {w, c1j}, {c1j , bj} if and only if e1j 6∈ C,

• edges {w, c2j}, {c2j , bj} if and only if e1j ∈ C.

The total cost of T is 2(n−k)+2m. Observe that all
the demands {w, bj} are connected (either via c1j or c2j).
Furthermore,if vi 6∈ C, then all three demands where
ai appears are satisfied: edge {w, ai} is in T and if
vi = e1j , then edge {w, c1j} is in T as well. (Note that

if vi = e2j and vi 6∈ C, then e1j ∈ C must hold, and

therefore {w, c2j} is in T .) Thus the total penalty is at
most 3k, and hence the cost of the solution is at most
2n+ 2m+ k, as claimed.

To prove (2), suppose that subgraph F of G is a
solution such that the sum of the cost of F and the
penalties is at most 2m+ 2n+ k. We can assume that
for every 1 ≤ i ≤ n, vertex bj can be reached from w:
otherwise we can decrease the penalty by 3 at the cost of
adding two edges of cost 1. Furthermore, we can assume

that only one of c1j and c2j is can be reached from w:
otherwise we can remove an edge without disconnecting
bj from w, thus the cost decreases by 1 and the penalty
increases by at most 1. Finally, we can assume that
if {w, ai} ∈ F , then all 3 demands containing ai are
connected: otherwise removing {w, ai} decreases the
cost by 2 and increases the penalty by at most 2.

Let vertex vi be in C if and only if {w, ai} 6∈ F .
We claim that C is a vertex cover of size at most k. To
see that C is a vertex cover, consider an edge ej . We
have observed above that one of c1j and c2j cannot be

reached from w. If c1j cannot be reached from w and

e
(1)
j = vi, then the demand {vi, c1j} is not connected

by F . Therefore, not all 3 demands containing ai
are connected, which means (as observed above) that
{w, ai} 6∈ F . Thus vi ∈ C, covering the edge ej .

Since every bj can be reached from w and {w, ai} ∈
F if vi 6∈ C, the cost of F is at least 2m + 2(n − |C|).
Furthermore, if vi ∈ C, then {w, ai} 6∈ F , which means
that we have to pay the penalty for the 3 demands
containing ai. Therefore, the total cost of the solution
is at least 2m + 2n + |C|. We assumed that the cost
of the solution is at most 2m + 2n + |C|, thus |C| ≤ k
follows, what we had to prove.

5.1 Hardness of Euclidean PCSF The proof for
the Euclidean version is very similar to the graph
version. The main difference is that the central vertex
w is replaced by a set of points arranged along a long
vertical path.

Proof. [Proof of Theorem 2.3(2)] We reduce an instance
I of Vertex Cover on 3-regular graphs to an instance I ′
of PCSF on points in the Euclidean plane. If n denotes
the number of vertices of the 3-regular graph G in I,
then the number edges is m = 3n/2. We will denote
the i-th vertex of G by vi, the j-th edge by ej , and

the first and second endpoints of ej by e
(1)
j and e

(2)
j ,

respectively.
We now specify the reduction (illustrated in Fig-

ure 2). Let us define U := 10000(n+m) (“basic unit of
cost”), H = 10U (“horizontal length”), and V = 100U
(“vertical spacing”). Instance I ′ contains the following
set P of points:

• z0,y = (0, y) for every −mV ≤ y ≤ nV ,

• zx,y = (x, y) and for every 0 ≤ x ≤ H and y = iV
for 1 ≤ i ≤ n,

• zx,y = (x, y) and zx,y+4U for every 0 ≤ x ≤ H and
y = −jV for 1 ≤ j ≤ m,

• ai = (H + 2U, iV) for 1 ≤ i ≤ n,

• bj = (H,−jV + 2U) for 1 ≤ j ≤ m,

• c1j = (H,−jV + U), and c2j = (H,−jV + 3U) for
1 ≤ j ≤ m.

Let Z be the set of all zx,y vertices in P , note that
|Z| = V (i+ j) + 1 + (i+ 2j)H. For ease of notation, we
define wi = zH,iV , w1

j = zH,−jV , w2
j = zH,−jV+4U .

The instance contains the following demands:

1. If zx,y and zx+1,y are both in P , then there is a
demand {zx,y, zx+1,y} with penalty 1.

2. If zx,y and zx,y+1 are both in P , then there is a
demand {zx,y, zx,y+1} with penalty 1.

3. {(0, 0), bj} with penalty 3U (1 ≤ j ≤ n),

4. If vi = e
(`)
j for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, and

` ∈ {1, 2}, then {ai, c`j} is a demand with penalty
U − 10.

The total number of demands is |Z| − 1 + n + 3m and
each ai appears in exactly 3 demands. We claim that
the cost of the optimum solution of I ′ is between |Z|+
(2m+2n+τ(G))U and |Z|+(2m+2n+τ(G))U−100n,
where τ(G) is the size of the minimum vertex cover
in G. Note that m = 3n/2 and τ(G) ≥ m/3, thus
|Z| + (2m + 2n + τ(G))U is at most a constant factor
larger than τ(G)U .

More precisely, in order to prove the correctness of
the reduction, we prove the following two statements:

(1) Given a vertex cover of size k for G, a solution of
cost at most |Z| + (2m + 2n + k)U for I ′ can be
constructed.

(2) Given a solution of cost at most |Z|+(2m+2n+k)U
for I ′, a vertex cover of size at most k can be
constructed.

To prove (1), suppose that C is a vertex cover of size
k for G. Let F be the forest (actually, a tree) that
contains

1. edge {zx,y, zx+1,y} if both these points are in P ,

2. edge {zx,y, zx,y+1} if both these points are in P ,

3. edge {wi, ai} if vi 6∈ C,

4. edges {w1
j , c

1
j} and {c1j , bj} if e

(1)
j 6∈ C,

5. edges {w2
j , c

2
j} and {c2j , bj} if e

(1)
j ∈ C.

The total cost of F is |Z| − 1 + 2U(n− k) + 2Um.
Observe that all the demands {(0, 0), bj} are satisfied.
Furthermore, if vi 6∈ C, then all three demands where

w1
j

w1

U
U
U
U

4U

V

2U

V

H

w2
j

c2j

c1j

bj

a1

a2

a3
w3

w2

(0, 0)

Figure 2: Illustrating the reduction from 3-Regular
Vertex Cover to Euclidean PCSF.

ai appears are satisfied. This can be seen as follows.
First, ai is in the same component as wi and hence as

every vertex of Z. If vi = e
(1)
j , then there is a demand

{ai, c1j} and c1j is connected with w1
j (and hence with

ai). If vi = e
(2)
j , then vi 6∈ C means that e

(1)
j ∈ C must

hold, and therefore c2j is connected to w2
j , satisfying

the demand {ai, c2j}. Thus the total penalty is at most
3k(U−10), and hence the cost of the solution is at most
|Z| − 1 + (2m+ 2n+ k)U − 30k, as claimed.

To prove (2), suppose that forest F is an optimum
solution such that the sum of the cost of F and the
penalties is at most |Z| + (2n + 2m + k)U . First, we
can assume that every demand of the first two types
is satisfied: if, say, (zx,y, zx+1,y) is not satisfied, then
we can extend F by adding an edge of cost 1, which
decreases the penalty by at least 1. Thus all the zx,y
points are in the same connected component K of F .
We can also assume that every demand of the third type
is satisfied: if {(0, 0), bj} is not satisfied, then we can
decrease the penalty by 3U at the cost of 2U by adding
edges {w1

j , c
1
j} and {c1j , bj}, contradicting the optimality

of F . Therefore, every vertex bj is in the component K.
Let Z ′ = {zx,y ∈ Z | x = 0 ∨ x ≥ 10}. Let R be

the region of the plane at Manhatten distance at most
3 from Z ′. Note that R consists of one “vertical” and
n+ 2m “horizontal” components.

We claim that the cost of F inside R is at least
|Z ′|. We have seen above that a single component K
of F contains every point of P ∩ R. The restriction
of K to R gives rise to several components. Consider
such a component K ′ containing a subset S ⊆ Z ′ of
vertices. We show that the cost of K ′ is at least |S|.
The vertices of S lie on a horizontal or vertical line.
This means that there are two vertices s1, s2 ∈ S at
distance d ≥ |S| − 1. As K is not contained fully in any
component of R, component K ′ has to contain a point
s3 on the boundary of R. As s3 is at distance at least 3
from s1 and s2, it can be verified that any Steiner tree
of s1, s2, s3 has cost at least d+ 1 = |S|. Summing for
every component K ′ of the restriction of K to R, we get
that the cost of K in R is at least |P ∩R|.

Let R+ be the region of space at Manhattan dis-
tance at most 3 from Z. We claim that the cost of
every component of F \ R+ is at most 3U . There are
two types of components of F \R+: (1) those that con-
tain a point of P and (2) those that do not contain such
a point. Clearly, there are at most n+ 3m components
of the first type. Suppose that there is a component D
of the second type having cost more than 3U . In this
case, we modify F to obtain a better solution as follows.
Consider F \R+ (i.e., let us remove the part of F inside
R+) and let us remove every component of the second

type. After that, let us add all the |Z| − 1 edges of the
form {wx,y, wx+1,y}, {wx,y, wx,y+1}. Finally, for every
component of the first type, if it intersects R+, then let
us choose a point of the component on the boundary of
R+ and connect this point to the nearest vertex of Z.
It is clear that the new forest F ′ satisfies every demand
satisfied by F : every point of P connected to Z remains
connected to Z. By our claim in the previous para-
graph, the cost of F \R′ is less than the cost of F by at
least |Z ′| = |Z| − 9(n+ 2m). Removing components of
the second type decreases the cost by more than 3U (as
there are at least one such component having cost more
than 3U). The edges connecting Z increase the cost by
|Z| − 1. Adding the new connections corresponding to
the components of the first type increases the cost by at
most n+ 3m. As 3U ≥ 9(n+ 2m)− 1 + n+ 3m, forest
F ′ is a strictly better solution, a contradiction.

Suppose now that there is a component D of the
first type with cost more than 3U . For −m ≤ s ≤ n,
let Rs be the region of the plane at Manhattan distance
at most 4U from (H, sV). Observe that for each s, all
the points of P ∩ Rs can be connected to the nearest
point of Z with a total cost of at most 3U . This means
that if D intersects only one of these regions, say Rs,
then we can substitute D at cost at most 3U in such a
way that every demand satisfied by F remains satisfied,
contradicting the optimality of F . Suppose therefore
that D intersects t ≥ 2 of these regions; in this case, the
cost of D is at least (t− 1)(V − 8U) > 6tU − 6U ≥ 3tU .
Let us replace D by connecting every point of P ∩D to
the closest vertex of Z. The new connections increase
the cost by at most t · 3U , which is less than the cost of
D, a contradiction.

We have proved that for every component D of
F \ R+, D ∩ P is either a single ai, or a subset
of {bj , c1j , c2j}. Therefore, every such component D
intersects R+: otherwise, Dcould be safely removed,
as it does not satisfy any demand. Next we show that
it can be asssumed that only one of c1j and c2j is in K.
Otherwise we can remove every component of F \ R+

intersecting {bj , c1j , c2j} and replace them with the edges

{w1
j , c

1
j} and {c1j , bj}. The total cost of the components

we removed is at least 2U − 3 + U − 3 (which is the
minimum cost of connecting bj , c

1
j , c

2
j to R+) and the

new edges have cost 2U . This transformation might
disconnect the demand containing c2j , hence the penalty
can increase by at most U − 10 only, contradicting the
optimality of F .

We can assume that if ai is in K, then all 3 demands
containing ai are connected: otherwise removing the
component of F \ R+ containing ai decreases the cost
by at least 2U − 3 and increases the penalty by at most
2(U − 10).

Let vertex vi be in C if and only if ai is not in
component K. We claim that C is a vertex cover of size
at most k. To see that C is a vertex cover, consider
an edge ej . We have observed above that one of c1j

and c2j is not in K. If c1j 6∈ K and e
(1)
j = vi, then the

demand {ai, c1j} is not connected by F . Therefore, not
all 3 demands containing ai are connected, which means
(as observed above) that ai is not in K. Thus vi ∈ C,

covering the edge ej . Similarly, c2j 6∈ K, then e
(2)
j ∈ C.

The cost of F ∩ R+ is at least |Z| − 9(n + 2m).
Since every bj is in K and ai is in K if vi 6∈ C, the cost
of F \ R+ is at least (2U − 3)m + (2U − 3)(n − |C|).
Furthermore, if vi ∈ C, then we have to pay the penalty
for the 3 demands containing ai. Therefore, the total
cost of the solution is at least

|Z|−9(n+2m)+(2U−3)m+(2U−3)(n−|C|)+3|C|(U−10)

≥ |Z|+ (2m+ 2n+ |C|)U − 100n

We assumed that the cost of the solution is at most
|Z|+(2m+2n+k)U . As U > 100n, this is only possible
if |C| ≤ k, what we had to prove.

References

[1] A. Agrawal, P. N. Klein, and R. Ravi, When trees
collide: An approximation algorithm for the generalized
Steiner problem on networks, in Proceedings of the
twenty-third Annual ACM Symposium on Theory of
Computing (STOC), 1991, pp. 134–144.

[2] A. Agrawal, P. N. Klein, and R. Ravi, When trees
collide: an approximation algorithm for the generalized
Steiner problem on networks, SIAM J. Comput., 24
(1995), pp. 440–456.

[3] P. Alimonti and V. Kann, Some APX-completeness
results for cubic graphs, Theoret. Comput. Sci., 237
(2000), pp. 123–134.

[4] A. Archer, M. Bateni, M. Hajiaghayi, and
H. Karloff, Improved approximation algorithms for
prize-collecting Steiner tree and TSP, SIAM Journal
on Computing, (to appear). Preliminary version in
Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 427–436,
2009.

[5] A. Archer, A. Levin, and D. P. Williamson, A
faster, better approximation algorithm for the mini-
mum latency problem, SIAM J. Comput., 37 (2008),
pp. 1472–1498.

[6] S. Arora, M. Grigni, D. Karger, P. Klein,
and A. Woloszyn, A polynomial-time approximation
scheme for weighted planar graph tsp, in Proceedings of
the ninth annual ACM-SIAM Symposium on Discrete
algorithms (SODA’98), 1998, pp. 33–41.

[7] S. Arora and G. Karakostas, A 2 + ε approxima-
tion algorithm for the k-MST problem, Mathematical
Programming, 107 (2006), pp. 491–504.

[8] S. Arya and H. Ramesh, A 2.5 factor approximation
algorithm for the k-MST problem, Information Process-
ing Letters, 65 (1998), pp. 117–118.

[9] B. S. Baker, Approximation algorithms for np-
complete problems on planar graphs, Journal of the
ACM, 41 (1994), pp. 153–180.

[10] E. Balas, The prize collecting traveling salesman
problem, Networks, 19 (1989), pp. 621–636.

[11] N. Bansal, A. Blum., S. Chawla, and A. Meyer-
son, Approximation Algorithms for Deadline-TSP and
Vehicle Routing with Time-Windows, in Proceedings
of the 36th Annual ACM Symposium on Theory of
Computing (STOC), ACM New York, NY, USA, 2004,
pp. 166–174.

[12] M. Bateni and M. Hajiaghayi, Euclidean prize-
collecting steiner forest, in Proceedings of the 9th
Latin American Theoretical Informatics Symposium
(LATIN’10), 2010. to appear.

[13] M. Bateni, M. Hajiaghayi, and D. Marx, Approx-
imation schemes for Steiner forest on planar graphs
and graphs of bounded treewidth, in Proceedings of the
fourty-second annual ACM Symposium on Theory of
computing (STOC’10), New York, NY, USA, 2010,
ACM. to appear.

[14] M. Bateni, M. Hajiaghayi, and D. Marx, Prize-
collecting network design on planar graphs, CoRR,
abs/1006.4339 (2010).

[15] D. Bienstock, M. X. Goemans, D. Simchi-Levi,
and D. P. Williamson, A note on the prize collecting
traveling salesman problem., Mathematical Program-
ming, 59 (1993), pp. 413–420.

[16] A. Blum, S. Chawla, D. Karger, T. Lane,
A. Meyerson, and M. Minkoff, Approximation
Algorithms for Orienteering and Discounted-Reward
TSP, SIAM Journal on Computing, 37 (2007), pp. 653–
670. Preliminary version in Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 46–55, 2003.

[17] H. L. Bodlaender and A. M. C. A. Koster, Com-
binatorial optimization on graphs of bounded treewidth,
Comput. J., 51 (2008), pp. 255–269.

[18] G. Borradaile, C. Kenyon-Mathieu, and P. N.
Klein, A polynomial-time approximation scheme for
Steiner tree in planar graphs, in Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2007, pp. 1285–1294.

[19] J. Byrka, F. Grandoni, T. Rothvoss, and
L. Sanita, An improved LP-based approximation for
steiner tree, in Proceedings of the fourty-second annual
ACM Symposium on Theory of computing (STOC’10),
New York, NY, USA, 2010, ACM. to appear.

[20] S. Cabello and B. Mohar, Finding shortest non-
separating and non-contractible cycles for topologically
embedded graphs, in Proceedings of the 13th An-
nual European Symposium of Algorithms (ESA), 2005,

pp. 131–142.
[21] K. Chaudhuri, B. Godfrey, S. Rao, and K. Tal-

war, Paths, Trees, and Minimum Latency Tours, in
Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE Com-
puter Society, 2003, pp. 36–45.

[22] K. Chaudhuri, B. Godfrey, S. Rao, and K. Tal-
war, Paths, trees, and minimum latency tours, in Pro-
ceedings of the 44th Annual IEEE Symposium on the
Foundations of Computer Science, 2003, pp. 36–45.

[23] C. Chekuri, A. Ene, and N. Korula, Prize-
collecting steiner tree and forest in planar graphs,
CoRR, abs/1006.4357 (2010).

[24] C. Chekuri, N. Korula, and M. Pál, Improved Al-
gorithms for Orienteering and Related Problems, ACM
Transactions on Algorithms, (to appear). Preliminary
version in Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 661–670,
2008.

[25] N. Christofides, Worst-case analysis of a new
heuristic for the travelling-salesman problem, tech.
rep., Graduate School of Industrial Administration,
Carnegie-Mellon University, 1976.

[26] F. A. Chudak, T. Roughgarden, and D. P.
Williamson, Approximate k-MSTs and k-Steiner trees
via the primal-dual method and lagrangean relaxation,
in Proceedings of the 8th International Conference
on Integer Programming and Combinatorial Optimiza-
tion (IPCO’01), London, UK, 2001, Springer-Verlag,
pp. 60–70.

[27] F. A. Chudak, T. Roughgarden, and D. P.
Williamson, Approximate k-MSTs and k-Steiner
trees via the primal-dual method and Lagrangean re-
laxation, Mathematical Programming, 100 (2004),
pp. 411–421.

[28] E. D. Demaine, M. Hajiaghayi, and B. Mohar,
Approximation algorithms via contraction decomposi-
tion, in Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2007, pp. 278–287.

[29] M. R. Garey and D. S. Johnson, The rectilinear
Steiner tree problem is NP-complete, SIAM J. Appl.
Math., 32 (1977), pp. 826–834.

[30] N. Garg, A 3-approximation for the minimum tree
spanning k vertices, in Proceedings of the 37th An-
nual Symposium on Foundations of Computer Science,
1996, pp. 302–309.

[31] , Saving an epsilon: a 2-approximation for the
k-MST problem in graphs, in Proceedings of the 37th

Annual ACM Symposium on Theory of Computing,
2005, pp. 396–402.

[32] M. Goemans, The prize-collecting TSP revis-
ited. Available from http://www-math.mit.edu/ goe-
mans/prizecollect.ps. Talk slides from the 1998 SIAM
Discrete Math conference.

[33] M. X. Goemans, Combining approximation al-
gorithms for prize-collecting TSP. unpublished
manuscript, 2009.

[34] M. X. Goemans and D. P. Williamson, A general
approximation technique for constrained forest prob-
lems, SIAM Journal on Computing, 24 (1995), pp. 296–
317.

[35] M. X. Goemans and D. P. Williamson, Improved
approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming, J.
Assoc. Comput. Mach., 42 (1995), pp. 1115–1145.

[36] M. Grigni, E. Koutsoupias, and C. Papadim-
itriou, An approximation scheme for planar graph
tsp, in Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS’95), Wash-
ington, DC, USA, 1995, IEEE Computer Society,
p. 640.

[37] M. Hajiaghayi and K. Jain, The prize-collecting
generalized Steiner tree problem via a new approach
of primal-dual schema, in Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, New York, 2006, ACM, pp. 631–640.

[38] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and
Z. Nutov, Prize-collecting Steiner network problems,
in Proceedings of the 14th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO),
2010. to appear.

[39] J. Hoogeveen, Analysis of Christofides’ heuristic:
Some paths are more difficult than cycles, Operations
Research Letters, 10 (1991), pp. 291–295.

[40] S. Iwata, L. Fleischer, and S. Fujishige, A combi-
natorial strongly polynomial algorithm for minimizing
submodular functions, J. ACM, 48 (2001), pp. 761–777
(electronic).

[41] K. Jain and V. V. Vazirani, Approximation algo-
rithms for metric facility location and k-median prob-
lems using the primal-dual schema and Lagrangian re-
laxation, J. ACM, 48 (2001), pp. 274–296.

[42] D. S. Johnson, M. Minkoff, and S. Phillips, The
prize collecting Steiner tree problem: theory and prac-
tice., in Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2000, pp. 760–769.

[43] P. N. Klein, A subset spanner for planar graphs, with
application to subset TSP, in Proceedings of the 38th
Annual ACM Symposium on Theory of Computing
(STOC), 2006, pp. 749–756.

[44] , A linear-time approximation scheme for tsp
in undirected planar graphs with edge-weights, SIAM
Journal on Computing, 37 (2008), pp. 1926–1952.

[45] B. Mohar and C. Thomassen, Graphs on surfaces,
Johns Hopkins University Press, Baltimore, MD, 2001.

[46] V. Nagarajan and R. Ravi, Poly-logarithmic Ap-
proximation Algorithms for Directed Vehicle Routing
Problems, in Proceedings of the 10th International
Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems (APPROX), 2007,
pp. 257–270.

[47] N. Robertson and P. D. Seymour, Graph minors.
II. algorithmic aspects of tree-width, Journal of Algo-
rithms, 7 (1986), pp. 309–322.

[48] , Graph minors. XI. circuits on a surface, Journal

of Combinatorial Theory, Series B, 60 (1994), pp. 72–
106.

[49] F. S. Salman, J. Cheriyan, R. Ravi, and
S. Subramanian, Approximating the single-sink link-
installation problem in network design, SIAM J. on Op-
timization, 11 (2000), pp. 595–610.

[50] Y. Sharma, C. Swamy, and D. P. Williamson, Ap-
proximation algorithms for prize collecting forest prob-
lems with submodular penalty functions, in Proceedings
of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA ’07), 2007, pp. 1275–1284.

A Basic graph theory definitions

Let G(V,E) be a graph. As is customary, let δ(V ′)
denote the set of edges having one endpoint in a subset
V ′ ⊆ V of vertices. For a subset of vertices V ′ ⊆ V ,
the subgraph of G induced by V ′ is denoted by G[V ′].
With slight abuse of notation, we sometimes use the
edge set to refer to the graph itself. Hence, the above-
mentioned subgraph may also be referred to by E[V ′]
for simplicity. We denote the length of a shortest x-to-y
path in G as distG(x, y). For an edge set E, we denote
by `(E) :=

∑
e∈E ce the total length of edges in E.

Given an edge e = (u, v) in a graph G, the
contraction of e in G denoted by G/e is the result of
unifying vertices u and v in G, and removing all loops
and multiple edges except the shortest edge. More
formally, the contracted graph G/e is formed by the
replacement of u and v with a single vertex such that
edges incident to the new vertex are the edges other than
e that were incident with u or v. To obtain a simple
graph, we first remove all self-loops in the resulting
graph. In case of multiple edges, we only keep the
shortest edge and remove all the rest. The contraction
G/E′ is defined as the result of iteratively contracting
all the edges of E′ in G, i.e., G/E′ := G/e1/e2/ . . . /ek
if E′ = {e1, e2, . . . , ek}. Clearly, the planarity of G is
preserved after the contraction. Similarly, contracting
edges does not increase the cost of an optimal Steiner
forest.

The boundary of a face of a planar embedded graph
is the set of edges adjacent to the face; it does not
always form a simple cycle. The boundary ∂H of a
planar embedded graph H is the set of edges bounding
the infinite face. An edge is strictly enclosed by the
boundary of H if the edge belongs to H but not to ∂H.

Now we define the basic notion of treewidth, as
introduced by Robertson and Seymour [47]. To define
this notion, we consider representing a graph by a tree
structure, called a tree decomposition. More precisely, a
tree decomposition of a graph G(V,E) is a pair (T,B) in
which T (I, F) is a tree and B = {Bi | i ∈ I} is a family
of subsets of V (G) such that 1)

⋃
i∈I Bi = V ; 2) for

each edge e = (u, v) ∈ E, there exists an i ∈ I such that

both u and v belong to Bi; and 3) for every v ∈ V , the
set of nodes {i ∈ I | v ∈ Bi} forms a connected subtree
of T .

To distinguish between vertices of the original graph
G and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding Bi’s bags.
The width of the tree decomposition is the maximum
size of a bag in B minus 1. The treewidth of a graph G,
denoted tw(G), is the minimum width over all possible
tree decompositions of G.

For algorithmic purposes, it is convenient to define
a restricted form of tree decomposition. We say that a
tree decomposition (T,B) is nice if the tree T is a rooted
tree such that for every i ∈ I either

1. i has no children (i is a leaf node),

2. i has exactly two children i1, i2 and Bi = Bi1 = Bi2
holds (i is a join node),

3. i has a single child i′ and Bi = Bi′ ∪ {v} for some
v ∈ V (i is an introduce node), or

4. i has a single child i′ and Bi = Bi′ \ {v} for some
v ∈ V (i is a forget node).

It is well-known that every tree decomposition can be
transformed into a nice tree decomposition of the same
width in polynomial time. Furthermore, we can assume
that the root bag contains only a single vertex.

We also need a basic notion of embedding; see,
e.g., [48, 20]. In this paper, an embedding refers to
a 2-cell embedding, i.e., a drawing of the vertices and
edges of the graph as points and arcs in a surface
such that every face (connected component obtained
after removing edges and vertices of the embedded
graph) is homeomorphic to an open disk. We use
basic terminology and notions about embeddings as
introduced in [45]. We only consider compact surfaces
without boundary. Occasionally, we refer to embeddings
in the plane, when we actually mean embeddings in the
2-sphere. If S is a surface, then for a graph G that is (2-
cell) embedded in S with f facial walks, the number g =
2−|V (G)|+ |E(G)|−f is independent of G and is called
the Euler genus of S. The Euler genus coincides with
the crosscap number if S is non-orientable, and equals
twice the usual genus if the surface S is orientable.

B PCST, PCTSP and PCS on
bounded-treewidth graphs

Treewidth is a notion of how similar a graph is to
trees. Since tree structure usually lends itself to the
dynamic programming approach, it is plausible that
many optimization problems may be solvable in poly-
nomial time on graphs of bounded treewidth; Bodlaen-
der and Koster [17] have a comprehensive survey on

this topic. In particular, several Steiner network prob-
lems become relatively easy when restricted to bounded-
treewidth graphs. Among them are Steiner Tree, TSP
and Stroll. One surprising outlier is Steiner forest that
is proved to be NP-hard, yet it admits a PTAS [13].
In this section, we study the prize-collecting extensions
of the above problems, and when possible, we provide
a polynomial-time algorithm for them. More specifi-
cally, we present PTASs for PCST, PCTSP and PCS on
bounded-treewidth graphs. We already showed in Sec-
tion 5 that PCSF is APX-hard even on series-parallel
graphs. The proof is extended to give APX-hardness
for Euclidean plane.

We focus the discussion on PCST, however, minor
modifications allow us to solve PCTSP and PCS, too.
We are given a weighted graph G(V,E) of treewidth
k − 1 for a fixed parameter k, and a penalty function
π : V → R+. We have a nice tree decomposition (T,B)
for G. Each bag Bi has size at most k. These are
sometimes called portals for the subtree below node Bi.
Let I denote the nodes of the tree decomposition T ,
and for each i ∈ I, let Ti be the subtree of T below i.
A dynamic programming entry is specified by a tuple
(i, S,P) where

• i ∈ I is a node in the tree decomposition,

• S ⊆ Bi is a subset of portals of the subtree Ti, and

• P is a partition of S.

Let us denote by Vi the vertices corresponding to
the subtree Ti, i.e., Vi := ∪i′∈Ti

Bi′ . A dynamic
programming entry DP(i, S,P) takes up the least cost
of building a subgraph H such that

• H uses only the edges whose both endpoints are in
Vi,

• H connects the vertices in each set Pj of the
partition P = {P1, P2, . . . , Pm},

• S is the subset of Bi whose penalty is not paid,
moreover, if a vertex v ∈ Vi is not connected to
S via H, then its penalty π(v) is paid in the total
cost.

The final solution to the problem can be found
as minS DP(r, S, {S}) where r is the root of the tree
decomposition, i.e., it does not matter which subset of
the bag of the root is picked as long as they form a single
component.

The DP entries are easy to compute for leaves: let
Bi = {v} for a leaf i. There are two possibilities:
DP(i, ∅, ∅) = π(v) and DP(i, {v}, {{v}}) = 0. The
update procedure works as follows for different tree
nodes:

Introduce node i is the parent of i′, and we have Bi =
Bi′ ∪ {v}. Then, DP(i, S,P) = π(v) + DP(i′, S,P)
if v 6∈ S. Next consider an entry DP(i, S,P) such
that for v ∈ S and P = {P1, P2, . . . , Pm} where
v ∈ P1. Let P ′ := {P1 \ {v}, P2, . . . , Pm} and
let d be the distance of v to the set P1 \ {v}.
The dynamic programming sets DP(i, S,P) = d +
DP(i′, S \ {v},P ′).

Forget node i is the parent of i′, and we have Bi′ =
Bi ∪ {v}. Then,

DP(i, S,P) = min

π(v) + DP(i′, S,P)

minP′{DP(i′, S ∪ {v},P ′) : P ′

is formed by adding v to a

set of P}

The first terms considers the case where we pay
the penalty for v and do not connect it in the
final Steiner tree, whereas the second term takes
into account the case where v is connected to each
connected component of the partition.

Join node the node i has two children i1 and i2 with
the same bags. We set DP(i, S,P) to

min
P1,P2

{DP(i1, S,P) + DP(i2, S,P)− π(Bi \ S)} ,

where the minimization goes over all pairs P1 and
P2 whose connectivity implies that of P. The last
term in the minimum operand is for canceling the
double charging of the unsatisfied terminals of Bi.

It is not difficult to verify that the algorithm
produces the correct output, and we defer the proof to
the full version of the paper. The running time of the
algorithm is polynomial in the number of DP entries,
and the latter is at most n ·2k ·kk. Since k is a constant,
the running time is a polynomial.

To extend the algorithm to PCTSP, the DP state
is modified to (i,P) where i ∈ I is a node of the tree
decomposition, and P is a set of pairs of vertices in bag
Bi. A pair s, t implies that there is a path between s
and t in the subsolution, but the two nodes should be
extended from outside the subtree Ti to make a tour.
The final solution is stored in DP(r, {(r, r)}). The algo-
rithm for PCS works in the same way except that the
final solution can be founded in mins,t∈Br

DP(r, {(s, t)})
since we do not need to have a closed tour.

C Missing proofs from Section 3

Proof. [Proof of Lemma 3.2] Recall that the growth
phase has several events corresponding to an edge or set

constraint going tight. We first break apart y variables
by epoch. Let tj be the time at which the jth event point
occurs in the growth phase (0 = t0 ≤ t1 ≤ t2 ≤ · · ·),
so the jth epoch is the interval of time from tj−1 to

tj . For each cluster C, let y
(j)
C be the amount by

which yC grew during epoch j, which is tj − tj−1 if
it was active during this epoch, and zero otherwise.

Thus, yC =
∑
j y

(j)
C . Because each edge e of F2 was

added at some point by the growth stage when its edge
packing constraint (3.1) became tight, we can exactly
apportion the cost ce amongst the collection of clusters
{C : e ∈ δ(C)} whose variables “pay for” the edge, and
can divide this up further by epoch. In other words,

ce =
∑
j

∑
C:e∈δ(C) y

(j)
C . We will now prove that the

total edge cost from F2 that is apportioned to epoch j

is at most 2
∑
C y

(j)
C . In other words, during each epoch,

the total rate at which edges of F2 are paid for by all
active clusters is at most twice the number of active
clusters. Summing over the epochs yields the desired
conclusion.

We now analyze an arbitrary epoch j. Let Cj denote
the set of clusters that existed during epoch j. Consider
the graph F2, and then collapse each cluster C ∈ Cj into
a supernode. Call the resulting graph H. Although the
nodes of H are identified with clusters in Cj , we will
continue to refer to them as clusters, in order to to avoid
confusion with the nodes of the original graph. Some
of the clusters are active and some may be inactive.
Let us denote the active and inactive clusters in Cj by
Cact and Cdead, respectively. The edges of F2 that are
being partially paid for during epoch j are exactly those
edges of H that are incident to an active cluster, and
the total amount of these edges that is paid off during
epoch j is (tj − tj−1)

∑
C∈Cact

degH(C). Since every
active cluster grows by exactly tj − tj−1 in epoch j, we

have
∑
C y

(j)
C ≥

∑
C∈Cj y

(j)
C = (tj − tj−1)|Cact|. Thus, it

suffices to show that
∑
C∈Cact

degH(C) ≤ 2|Cact|.
First we must make some simple observations about

H. Since F2 is a subset of the edges in F1, and each
cluster represents a disjoint induced connected subtree
of F1, the contraction to H introduces no cycles. Thus,
H is a forest. All the leaves of H must be live clusters
because otherwise the corresponding cluster C would be
in B and hence would have been pruned away.

With this information about H, it is easy to bound∑
C∈Cact

degH(C). The total degree in H is at most
2(|Cact| + |Cdead|). Noticing that the degree of dead
clusters is at least two, we get

∑
C∈Cact

degH(C) ≤
2(|Cact|+ |Cdead|)− 2|Cdead| = 2|Cact| as desired.

Proof. [Proof of Lemma 3.3] The length of the graph F

is ∑
e∈F

ce ≥
∑
e∈F

∑
S:e∈δ(S)

yS by (3.1)

=
∑
S

|F ∩ δ(S)|yS

≥
∑

S:F∩δ(S) 6=∅

yS

=
∑

S:F∩δ(S) 6=∅

∑
d:d�S

yS,d

=
∑
d

∑
S:d�S

F∩δ(S)6=∅

yS,d

≥
∑
d∈Dsat

∑
S:d�S

F∩δ(S) 6=∅

yS,d

=
∑
d∈Dsat

∑
S:d�S

yS,d,

because yS,d = 0 if d ∈ Dsat and F ∩ δ(S) = ∅,

=
∑
d∈Dsat

yd

D Overview of PC-Clustering

The following LP has a variable yS,v for each v ∈ S ⊆
V ∗. ∑

S:e∈δ(S)

∑
v∈S

yS,v ≤ ce ∀e ∈ E∗,

∑
S3v

yS,v ≤ φv ∀v ∈ V ∗,

yS,v ≥ 0 ∀v ∈ S ⊆ V ∗.

These constraints are very similar to the dual LP
for the Prize-Collecting Steiner Tree problem when φv
are thought of as penalty values corresponding to the
vertices. In the standard linear program for the Prize-
Collecting Steiner Tree problem, there is a special root
vertex to which all the terminals are to be connected.
No set containing the root appears in that formulation.

The solution is built up in two stages. First we
perform an unrooted growth to find a forest F1 and
a corresponding y vector. In the second stage, we
prune some of the edges of F1 to get another forest
F2. Uncontracting the trees Ti turns F2 into the
Steiner trees T̂i in the statement of Theorem 3.3. The
details of the two phases can be seen in Algorithm 3
(PC-Clustering). The proofs of some of the lemmas in
this section are similar to the discussion in Section 3 or
to the previous work [13].

Algorithm 3 PC-Clustering

Input: An instance (G,D, π) of Generalized prize-
collecting Steiner forest
Output: Set of trees T̂i with associated demands Di
and D′.

1: Run Restrict-Demands on (G,D, π) to obtain F
and D′.

2: Let F consist of tree components T1, . . . , Tk.
3: Contract each tree Ti to build a new graph
G∗(V ∗, E∗).

4: For any v ∈ V ∗, let φv be ε−1 times the length of
the tree Ti corresponding to v, and zero if there is
no such tree.

5: Let F1 ← ∅.
6: Let yS,v ← 0 for any v ∈ S ⊆ V ∗.
7: Let S ← C ← {{v} : v ∈ V ∗}.
8: while there is a live vertex do
9: Let η be the largest possible value such that

simultaneously increasing yC by η for all active
clusters C does not violate Constraints (D.1)-
(D.1).

10: Let yC,v ← yC,v + η
κ(C) for all live vertices v in an

active cluster C.
11: if ∃e ∈ E∗ that is tight and connects two clusters

then
12: Pick one such edge e = (u, v) connecting two

clusters C1 and C2.
13: Let F1 ← F1 ∪ {e}.
14: Let C ← C1 ∪ C2.
15: Let C ← C ∪ {C} \ {C1, C2}.
16: Let S ← S ∪ {C}.
17: Let F2 ← F1.
18: Let B be the set of all clusters S ∈ S such that∑

v∈S yS,v =
∑
v∈S φv.

19: while ∃S ∈ B such that F2∩δ(S) = {e} for an edge
e do

20: Let F2 ← F2 \ {e}.
21: Construct F from F2 by uncontracting all the trees

Ti.
22: Let F̂ consist of tree components T̂i.
23: Output D′ and the set of trees {T̂i}, along with
D̂i := {(s, t) ∈ D \ D′ : s, t ∈ V (T̂i)}.

We first bound the cost of the forest F2. The fol-
lowing lemma is similar to the analysis of the algorithm
in [35]. However, we do not have a primal LP to give
a bound on the dual. Rather, the upper bound for the
cost is the sum of all the potential values

∑
v φv. In ad-

dition, we bound the cost of a forest F2 that may have
more than one connected component, whereas the prize-
collecting Steiner tree algorithm of [35] finds a connected
graph at the end.

The following lemma gives a sufficient condition for
two vertices that end up in the same component of F2.

Lemma D.1. Two vertices u and v of V ∗ are connected
via F2 if there exist sets S, S′ both containing u, v such
that yS,v > 0 and yS′,u > 0.

Proof. The growth stage connects u and v since yS,v > 0
and u, v ∈ S. Consider the path p connecting u and v
in F1. All the vertices of p are in S and S′. For the
sake of reaching a contradiction, suppose some edges of
p are pruned. Let e be the first edge being pruned on
the path p. Thus, there must be a cluster C ∈ B cutting
e; furthermore, δ(C) ∩ p = {e}, since e is the first edge
pruned from p. The laminarity of the clusters S gives
C ⊂ S, S′, since C contains exactly one endpoint of e. If
C contains both or no endpoints of p, it cannot cut p at
only one edge. Thus, C contains exactly one endpoint
of p, say v. We then have

∑
C′⊆C yC′,v = φv, because

C is tight. However, as C is a proper subset of S, this
contradicts with yS,v > 0, proving the supposition is
false. The case C contains u is symmetric.

Consider a pair (v, S) with yS,v > 0. If subgraph G′

of G∗ has an edge that goes through the cut (S, S̄), at
least a portion of length yS,v of G′ is colored with the
color v due to the set S. Thus, ifG′ cuts all the sets S for
which yS,v > 0, we can charge part of the length of G′ to
the potential of v. Later in Lemma 3.5, we are going to
use potentials as a lower bound on the optimal solution.
More formally, we say a graph G′(V ∗, E′) exhausts a
color u if and only if E′ ∩ δ(S) 6= ∅ for any S : yS,u > 0.
The proof of the following corollary is omitted here;
however, it is implicit in the proof of Lemma 3.5 below.
We do not use this corollary explicitly. Nevertheless, it
gives insight into the analysis below.

Corollary D.1. If a subgraph H of G connects two
vertices u1, u2 from different components of F2 (which
are contracted versions of the components in F), then
H exhausts the color corresponding to at least one of u1
and u2.

We can relate the cost of a subgraph to the potential
value of the colors it exhausts.

Lemma D.2. Let L be the set of colors exhausted by
subgraph G′ of G∗. The cost of G′(V ∗, E′) is at least∑
v∈L φv.

This is quite intuitive. Recall that the y variables color
the edges of the graph. Consider a segment on edges
corresponding to cluster S with color v. At least one
edge of G′ passes through the cut (S, S̄). Thus a portion
of the cost of G′ can be charged to yS,v. Hence the
total cost of the graph G′ is at least as large as the
total amount of colors paid for by L. We now provide a
formal proof.

Proof. The cost of G′(V ∗, E) is∑
e∈E′

ce ≥
∑
e∈E′

∑
S:e∈δ(S)

yS by (D.1)

=
∑
S

|E′ ∩ δ(S)|yS

≥
∑

S:E′∩δ(S) 6=∅

yS

=
∑

S:E′∩δ(S) 6=∅

∑
v∈S

yS,v

=
∑
v

∑
S3v:E′∩δ(S) 6=∅

yS,v

≥
∑
v∈L

∑
S3v:E′∩δ(S) 6=∅

yS,v

=
∑
v∈L

∑
S3v

yS,v,

because yS,v = 0 if v ∈ L and E′ ∩ δ(S) = ∅,

=
∑
v∈L

φv by a tight version of (D.1).

The algorithm PC-Clustering has two guarantees
as referenced in the body of the paper.

1. The cost of F2 is at most 2
∑
v∈V ∗ φv.

2.
∑
i SteinerForest(G,D∗i) ≤ (1 +

ε)SteinerForest(G,D∗).

	Introduction
	Related Work

	Technical Contributions and Overview
	Reduction to the bounded-treewidth case
	A Simpler Reduction for PCST
	A General Reduction
	Submodular prize-collecting clustering
	Restricting the demands
	Restricting the connectivity

	PTASs for PCST, PCTSP and PCS on planar graphs
	Hardness of PCSF on series-parallel graphs
	Hardness of Euclidean PCSF

	Basic graph theory definitions
	PCST, PCTSP and PCS on bounded-treewidth graphs
	Missing proofs from Section 3
	Overview of PC-Clustering

