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Abstract— We study algorithms for the SUBMODULAR MUL-
TIWAY PARTITION problem (SUB-MP). An instance of SUB-MP
consists of a finite ground set V , a subset S = {s1, s2, . . . , sk} ⊆
V of k elements called terminals, and a non-negative submodular
set function f : 2V → R+ on V provided as a value oracle.
The goal is to partition V into k sets A1, . . . , Ak to minimize∑k

i=1 f(Ai) such that for 1 ≤ i ≤ k, si ∈ Ai. SUB-MP
generalizes some well-known problems such as the MULTIWAY
CUT problem in graphs and hypergraphs, and the NODE-WEIGHED
MULTIWAY CUT problem in graphs. SUB-MP for arbitrary sub-
modular functions (instead of just symmetric functions) was con-
sidered by Zhao, Nagamochi and Ibaraki [29]. Previous algorithms
were based on greedy splitting and divide and conquer strategies. In
recent work [5] we proposed a convex-programming relaxation for
SUB-MP based on the Lovász-extension of a submodular function
and showed its applicability for some special cases. In this paper
we obtain the following results for arbitrary submodular functions
via this relaxation.

• A 2-approximation for SUB-MP. This improves the (k− 1)-
approximation from [29].

• A (1.5− 1
k
)-approximation for SUB-MP when f is symmetric.

This improves the 2(1− 1
k
)-approximation from [23], [29].

1. INTRODUCTION

In this paper we consider the approximability of the
following problem.

SUBMODULAR MULTIWAY PARTITION (SUB-MP). Let f :
2V → R+ be a non-negative submodular set function1 over
a finite ground set V and let S = {s1, s2, . . . , sk} ⊆ V be a
set of k terminals. The submodular multiway partition prob-
lem is to partition A1, . . . , Ak of V to minimize

∑k
i=1 f(Ai)

such that for 1 ≤ i ≤ k, si ∈ Ai. An important special case
is when f is symmetric and we refer to it as SYM-SUB-MP.

Motivation and Related Problems: We are motivated to
consider SUB-MP for two reasons. First, SUB-MP gen-
eralizes several problems that have been well-studied. We
discuss them now. Perhaps the most well-known of the
special cases is the GRAPH MULTIWAY CUT problem: the
input is an undirected edge-weighted graph G = (V,E)
and a set S ⊆ V of terminals, and the objective is to

∗Partially supported by NSF grants CCF-0728782 and CCF-1016684.
1A set function f : 2V → R is submodular iff f(A) + f(B) ≥ f(A ∩

B) + f(A ∪B) for all A,B ⊆ V . Moreover, f is symmetric if f(A) =
f(V −A) for all A ⊆ V .

remove a minimum weight set of edges to separate the
terminals [9]. Although the objective is stated in terms of
edge-removals, the problem can also be viewed as a special
case of SYM-SUB-MP with the cut-capacity function of G
as f . One obtains two interesting and related problems if
one generalizes GRAPH MULTIWAY CUT to hypergraphs.
Let G = (V, E) be an edge-weighted hypergraph.

HYPERGRAPH MULTIWAY CUT is the problem where the
goal is to remove a minimum-weight set of hyperedges
to disconnect the given set of terminals. HYPERGRAPH
MULTIWAY PARTITION problem is the special case of SYM-
SUB-MP where f is the hypergraph-cut function: f(A) =∑
e∈δ(A) w(e) where w(e) is the weight of e and δ(A) is the

set of all hyperedges that intersect A but are not contained
in A. The distinction between HYPERGRAPH MULTIWAY
CUT and HYPERGRAPH MULTIWAY PARTITION is that in
the former a hyperedge incurs a cost only once if the
vertices in it are split across terminals while in HYPER-
GRAPH MULTIWAY PARTITION the cost paid by a hyperedge
is the number of non-trivial pieces it is partitioned into.
Both problems have applications, in particular for circuit
partitioning problems in VLSI design [1]. We wish to draw
special attention to HYPERGRAPH MULTIWAY CUT since
it is approximation equivalent to the NODE WEIGHTED
MULTIWAY CUT problem in graphs where the nodes have
weights and the goal is to remove a minimum-weight
subset of nodes to disconnect a given set of terminals [13],
[14]. An important motivation to consider SUB-MP is that
HYPERGRAPH MULTIWAY CUT can be cast as a special
case of it [22]; the reduction is simple, yet interesting, and
we stress that the resulting function f is not symmetric.
From the above discussion it follows that NODE WEIGHTED
MULTIWAY CUT, via HYPERGRAPH MULTIWAY CUT, can
be viewed indirectly as a partition problem with an ap-
propriate submodular function. We believe this is a useful
observation. In fact, SUB-MP (and related generalizations)
were introduced by Zhao, Nagamochi and Ibaraki [29] partly
motivated by the applications to hypergraph cut and partition
problems.

A second important motivation to consider SUB-MP and
SYM-SUB-MP is the following question. To what extent do
current algorithms and techniques for GRAPH MULTIWAY



CUT and NODE WEIGHTED MULTIWAY CUT depend on the
fact that the underlying structure is a graph or a hypergraph?
Is it the case that submodularity of the cut function the
key underlying phenomenon? For GRAPH MULTIWAY CUT
Dahlhaus et al. [9] gave a simple 2(1 − 1

k )-approximation
via the isolating cut heuristic. Queyranne [23] showed that
this same bound can be achieved for SYM-SUB-MP (see
also [29]). For GRAPH MULTIWAY CUT, Calinescu, Karloff
and Rabani [3], in a breakthrough, obtained a (1.5 − 1

k )
approximation via an interesting geometric relaxation. The
integrality gap for this relaxation has been subsequently
improved to 1.3438 by Karger et al. [18]. Once again it
is natural to ask if this geometric relaxation is specific to
graphs and whether corresponding results exist for SYM-
SUB-MP. Further, the current best approximation for SUB-
MP is (k − 1) [29] and is obtained via a simple greedy
splitting algorithm. SUB-MP generalizes NODE WEIGHTED
MULTIWAY CUT and the latter has a constant factor ap-
proximation [14] but it is a non-trivial LP relaxation based
algorithm. Therefore it is reasonable to expect that one needs
a mathematical programming relaxation to obtain a constant
factor approximation for SUB-MP.

In recent work [5] we developed a convex-programming
relaxation for SUB-MP via the Lovász-extension of a sub-
modular function (we discuss this in more detail below). An
interesting observation is that this specializes to the CKR-
relaxation when we consider GRAPH MULTIWAY CUT. A
natural question, that was raised in [5], is whether the convex
relaxation can be used to obtain a better than 2 approx-
imation for SYM-SUB-MP. In this paper we answer this
question in the positive and also obtain a 2-approximation
for SUB-MP improving the known (k − 1)-approximation
[29]. We now describe the convex relaxation.

A convex relaxation via the Lovász extension. The relax-
ation SUBMP-REL for SUB-MP was introduced in [5]. It is
based on the well-known Lovász extension of a submodular
function which we describe for completeness. Let V be a
finite ground set of size n, and let f : 2V → R be a real-
valued set function. By representing a set by its characteristic
vector, we can think of f as a function that assigns a value to
each vertex of the boolean hypercube {0, 1}n. The Lovász
extension f̂ extends f to all of [0, 1]n and is defined as
follows2:

f̂(x) = E
θ∈[0,1]

[
f(xθ)

]
=

∫ 1

0

f(xθ)dθ

where xθ ∈ {0, 1}n for a given vector x ∈ [0, 1]n is defined
as: xθi = 1 if xi ≥ θ and xθi = 0 otherwise. Lovász showed
that f̂ is convex if and only if f is submodular [21].

SUB-MP is defined as a partition problem. We can
equivalently interpret it as an allocation problem (also a

2The standard definition is slightly different but is equivalent to the one
we give.

labeling problem) where for each v ∈ V we decide which
of the k terminals it is allocated to. Thus we have non-
negative variables x(v, i) for v ∈ V and 1 ≤ i ≤ k and
an allocation is implied by the constraint

∑k
i=1 x(v, i) = 1

for each v. Of course a terminal si is allocated to itself.
The only complexity is in the objective function since f is
submodular. However, the Lovász extension gives a direct
and simple way to express the objective function. Let xi
be the vector obtained by restricting x to the i’th terminal
si; that is, xi = (x(v1, i), . . . , x(vn, i)). If xi is integral
f̂(xi) = f(Ai) where Ai is the support of xi. Therefore we
obtain the following relaxation.

SUBMP-REL

min

k∑
i=1

f̂(xi)

k∑
i=1

x(v, i) = 1 ∀v

x(si, i) = 1 ∀i
x(v, i) ≥ 0 ∀v, i

The above relaxation can be solved exactly in polynomial
time3. We give algorithms to round an optimum fractional
solution to SUBMP-REL and obtain the following two
results which also establish corresponding upper bounds on
the integrality gap of SUBMP-REL.

Theorem 1.1. There is a (1.5− 1
k )-approximation for SYM-

SUB-MP.

Theorem 1.2. There is a 2-approximation for SUB-MP.

We give the proofs of Theorem 1.1 and Theorem 1.2 in
Section 2 and Section 3 respectively.

Remark 1.3. It is shown in [14] that an α-approximation
for NODE WEIGHTED MULTIWAY CUT implies an α-
approximation for the VERTEX COVER problem. Therefore,
improving the 2-approximation for SUB-MP is infeasible
without a corresponding improvement for VERTEX COVER.
It is easy to show that the integrality gap of SUBMP-REL
is at least 2(1 − 1

k ) even for instances of HYPERGRAPH
MULTIWAY CUT. The best lower bound on the integrality
gap of SUBMP-REL for SYM-SUB-MP that we know is
8/(7 + 1

k−1 ), the same as that for GRAPH MULTIWAY CUT
shown in [11].

Remark 1.4. Related to SUB-MP and SYM-SUB-MP are k-
way partition problems K-WAY SUB-MP and K-WAY SYM-
SUB-MP where no terminals are specified but the goal
is to partition V into k non-empty sets A1, . . . , Ak to
minimize

∑k
i=1 f(Ai). When k is part of the input these

3The running time is polynomial in n and log
(
maxS⊆V f(S)

)
. See

Appendix A in [6] for the details.



problems are NP-Hard but for fixed k, [23] claimed a
polynomial time algorithm for K-WAY SYM-SUB-MP while
the polynomial-time solvability of K-WAY SUB-MP is open.
For fixed k one can reduce K-WAY SUB-MP to SUB-MP
by guessing k terminals and this leads to a 2-approximation
via Theorem 1.2, improving the previously known ratio of
(k + 1− 2

√
k − 1) [22].

Our results build on some basic insights that were outlined
in [5] where the special cases of HYPERGRAPH MULTI-
WAY PARTITION and HYPERGRAPH MULTIWAY CUT were
considered (among other results). In [5] a (1.5 − 1

k )-
approximation for HYPERGRAPH MULTIWAY PARTITION
and a min{2(1− 1

k ), H∆}-approximation for HYPERGRAPH
MULTIWAY CUT were given, where ∆ is the maximum
hyperedge degree and Hi is the i’th harmonic number
(improvement over 2 is for ∆ ≤ 3). Our contribution
in this paper is a non-trivial and technical new result on
rounding SUBMP-REL (Theorem 1.5 below) that applies to
an arbitrary submodular function. The formulation of the
statement of the theorem may appear natural in retrospect
but is a significant part of the contribution. We now give an
overview of the rounding algorithm(s) and the new result.
We then discuss and compare to prior work.

1.1. Overview of rounding and the main technical result

Let x be a fractional allocation and
∑
i f̂(xi) the cor-

responding objective function value. How do we round x
to an integral allocation while approximately preserving the
convex objective function? The simple insight in [5] is that
we simply follow the definition of the Lovász function and
do θ-rounding: pick a (random) threshold θ ∈ [0, 1] and
set x(vj , i) = 1 if and only if x(vj , i) ≥ θ. Let xθ be the
resulting integer vector. If we pick θ uniformly at random
in [0, 1] then the expected cost of

∑
i E[f(xθi )] =

∑
i f̂(xi).

However, the difficulty is that xθ may not correspond to a
feasible allocation. Let A(i, θ) be the support of xθi , that is,
the set of vertices assigned to si for a given θ. The reason
that xθ may not be a feasible allocation is two-fold. First, a
vertex v may be assigned to multiple terminals, that is, the
sets A(i, θ) for i = 1, . . . , k may not be disjoint. Second,
the vertices U(θ) = V − ∪ki=1A(i, θ) are unallocated. We
let A(θ) = ∪ki=1A(i, θ) be the allocated set.

Our main insight here is that the expected cost of the
unallocated set, that is f(U(θ)), can be upper bounded
effectively. We can then assign the set U(θ) to an arbitrary
terminal and use sub-additivity of f (since it is submodular
and non-negative). Before we formalize this, we discuss
how to overcome the overlap in the sets A(i, θ). If f is
symmetric then it is also posi-modular4 and one can do a
simple uncrossing of the sets to make them disjoint without
increasing the cost. If f is not symmetric we cannot resort

4A set function f is posi-modular if f(A) + f(B) ≥ f(A − B) +
f(B −A) for all sets A and B.

to this trick. In this case we ensure that the sets A(i, θ)
are disjoint by picking θ uniformly in (1/2, 1] rather than
[0, 1] (we call this half-rounding); the sets A(i, θ) are disjoint
because for any v there can be at most one i such that
x(v, i) > 1/2. Now the unallocated set and the expected
cost of the initial allocation are some what more complex.
We analyze both these scenarios using the following theorem
which is our main result. The theorem below has a parameter
δ ∈ [1/2, 1] and this corresponds to rounding where we pick
θ uniformly from the interval (1− δ, 1].

Theorem 1.5. Let x be a feasible solution to SUBMP-REL.
For θ ∈ [0, 1] let A(i, θ) = {v | x(v, i) ≥ θ}, A(θ) =
∪ki=1A(i, θ) and U(θ) = V −A(θ). For any δ ∈ [1/2, 1] the
following holds:

k∑
i=1

∫ δ

0

f(A(i, θ))dθ ≥
∫ δ

0

f(A(θ))dθ +

∫ 1

0

f(U(θ))dθ.

By setting δ = 1, we obtain the following corollary.

Corollary 1.6.
k∑
i=1

f̂(xi) =

k∑
i=1

∫ 1

0

f(A(i, θ)dθ

≥
∫ 1

0

f(A(θ))dθ +

∫ 1

0

f(U(θ))dθ.

Theorem 1.5 gives a unified analysis of our algorithms
for SYM-SUB-MP and SUB-MP. More precisely, we get
Theorem 1.1 and Theorem 1.2 as rather simple corollaries.
Corollary 1.6 is sufficient to show that the SYM-SUB-MP
algorithm achieves a 1.5-approximation and that the SUB-
MP algorithm achieves a 4-approximation. In order to show
that the SUB-MP algorithm achieves a 2-approximation, we
need the stronger statement of Theorem 1.5.

Remark 1.7. A simpler and more intuitive proof of Theo-
rem 1.5 has been obtained [10]. Additionally, a variant of the
algorithm SUBMP-HALF-ROUNDING achieves a 2(1 − 1

k )
approximation for SUB-MP [10]; this improves the ratio of
2 from this paper.

1.2. Discussion and other related work

We recently considered the MINIMUM SUBMODULAR-
COST ALLOCATION problem [5]; this problem contains as
special cases SUB-MP and other problems such as uniform
metric labeling, non-metric facility location, hub location
and variants. It is shown in [5] that a convex programming
relaxation via the Lovász extension follows naturally for
MINIMUM SUBMODULAR-COST ALLOCATION, and that θ-
rounding based algorithms provide a unified way to under-
stand and extend several previous results. The integrality
gap of SUBMP-REL for SYM-SUB-MP and SUB-MP were
posed as open questions following results for the special
cases of HYPERGRAPH MULTIWAY CUT and HYPERGRAPH



MULTIWAY PARTITION. These results subsequently inspired
the formulation of Theorem 1.5.

Geometry plays a key role in the formulation, rounding
and analysis of the relaxation proposed for GRAPH MUL-
TIWAY CUT by Calinescu, Karloff and Rabani [3]; they
obtained a (1.5 − 1

k ) approximation. The subsequent work
of Karger et al. exploits the geometric aspects further to
obtain an improvement in the ratio to 1.3438. If one views
GRAPH MULTIWAY CUT as a special case of SYM-SUB-MP
then the function f under consideration is the cut function.
The cut function f can be decomposed into several simple
submodular functions, corresponding to the edges, each of
which depends only on two vertices. This allows one to focus
on the probability that an edge is cut in the rounding process.
Our work in [5] for HYPERGRAPH MULTIWAY PARTITION
and HYPERGRAPH MULTIWAY CUT is also in a similar vein
since one can visualize and analyze the simple functions
that arise from the hypergraph cut function. Our current
analysis differs substantially in that we no longer have a
local handle on f , and hence the need for Theorem 1.5.
It is interesting that the integrality gap of SUBMP-REL is
at most (1.5 − 1

k ) for any symmetric function f , matching
the bound achieved by [3] for GRAPH MULTIWAY CUT.
Our rounding differs from that in [3]; both do θ-rounding
but our algorithm uncrosses the sets A(i, θ) to make them
disjoint while CKR-rounding does it by picking a random
permutation. One can understand the random permutation as
an oblivious uncrossing operation that is particularly suited
for submodular functions that depend on only two variables
(in this case the edges); it is unclear whether this is suitable
for arbitrary symmetric functions.

As we remarked, SYM-SUB-MP and SUB-MP were
considered in several papers [23], [29], [22] with HYPER-
GRAPH MULTIWAY CUT and K-WAY HYPERGRAPH CUT
as interesting applications for SUB-MP. These papers pri-
marily relied on greedy methods. It was noted in [22]
that HYPERGRAPH MULTIWAY CUT and NODE WEIGHTED
MULTIWAY CUT are essentially equivalent problems. Garg,
Vazirani and Yannakakis [14] gave a 2(1− 1

k )-approximation
for NODE WEIGHTED MULTIWAY CUT [14] via a natural
distance based LP relaxation; we note that this result is non-
trivial and relies on proving the existence of a half-integral
optimum fractional solution. It is noted in [5] that SUBMP-
REL gives a new and strictly stronger relaxation for NODE
WEIGHTED MULTIWAY CUT (via the connection to HYPER-
GRAPH MULTIWAY CUT). The previous best approximation
for SUB-MP was (k−1) [29]. As we already remarked, ob-
taining a constant factor approximation for SUB-MP without
a mathematical programming relaxation like SUBMP-REL
is difficult given the lack of combinatorial algorithms for
special cases like NODE WEIGHTED MULTIWAY CUT.

Submodular functions play a fundamental role in classical
combinatorial optimization. In recent years there have been
several new results on approximation algorithms for prob-

lems with objective functions that depend on submodular
functions. In addition to combinatorial techniques such as
greedy and local-search, mathematical programming meth-
ods have been particularly important. It is natural to use the
Lovász extension for problems involving minimization since
the extension is convex; see [17], [15], [5] for instance. For
maximization problems involving submodular functions the
multilinear extension introduced in [2] has been useful [25],
[19], [20], [26], [8].

2. SYMMETRIC SUBMODULAR MULTIWAY PARTITION

We consider the following algorithm to round a feasible
solution x to SUBMP-REL.

SYMSUBMP-ROUNDING
let x be a feasible solution to SUBMP-REL
pick θ ∈ [0, 1] uniformly at random
for i = 1 to k

A(i, θ)← {v | x(v, i) ≥ θ}
A(θ)←

⋃
1≤i≤k A(i, θ)

U(θ)← V −A(θ)
for i = 1 to k

A′i ← A(i, θ)
〈〈uncross A′1, . . . , A

′
k〉〉

while there exist i 6= j such that A′i ∩A′j 6= ∅
if (f(A′i) + f(A′j −A′i) ≤ f(A′i) + f(A′j))

A′j ← A′j −A′i
else

A′i ← A′i −A′j

return (A′1, · · · , A′k−1, A
′
k ∪ U(θ))

We prove the following theorem.

Theorem 2.1. For a symmetric submodular function f ,
the algorithm SYMSUBMP-ROUNDING outputs a valid
multiway partition of expected cost at most 1.5 ·

∑k
i=1 f̂(xi).

The algorithm does θ-rounding in the interval [0, 1] to obtain
(random) sets A(i, θ) for i = 1, . . . , k. Let OPTFRAC =∑k
i=1 f̂(xi) (the notation is with the implicit understand-

ing that x is an optimal fractional solution). Note that
E[f(A(i, θ))] = f̂(xi) and hence

∑k
i=1 E[f(A(i, θ))] =∑k

i=1 f̂(xi) = OPTFRAC. The lemma below shows that the
uncrossing operation does not increase the cost. This was
used in the context of multiway cuts previously [24], [5];
we include the proof for completeness.

Lemma 2.2 ([5]). Let A′1, . . . , A
′
k denote the sets after

uncrossing the sets A(1, θ), . . . , A(k, θ). If f is a symmetric
submodular function then ∪ki=1A

′
i = ∪ki=1A(i, θ) and

k∑
i=1

f(A′i) ≤
k∑
i=1

f(A(i, θ)).

Proof: In each uncrossing step we replace A′i and A′j
either by A′i and A′j −A′i or by A′i−A′j and A′j . Since f is



submodular and symmetric, f is posi-modular; that is, for
any two sets X and Y , f(X)+f(Y ) ≥ f(X−Y )+f(Y −
X). Therefore, for any two sets X and Y , min{f(X−Y )+
f(Y ), f(X) + f(Y − X)} is at most f(X) + f(Y ). Thus
it follows by induction that

∑k
i=1 f(A′i) ≤

∑k
i=1 f(A(i, θ))

and ∪ki=1A
′
i = ∪ki=1A(i, θ).

Lemma 2.3. If f is a symmetric submodular function,

E
θ∈[0,1]

[f(U(θ))] ≤ 1

2
OPTFRAC.

Proof: By setting δ = 1 in Theorem 1.5, we get

OPTFRAC ≥
∫ 1

0

f(V − U(θ))dθ +

∫ 1

0

f(U(θ))dθ.

Since f is symmetric, f(V −U(θ)) = f(U(θ) for all θ and
hence,

OPTFRAC ≥ 2

∫ 1

0

f(U(θ))dθ = 2 E
θ∈[0,1]

[f(U(θ))].

The random partition returned by the algorithm is
(A′1, . . . , A

′
k−1, A

′
k ∪ U(θ)). A non-negative submodular

function is sub-additive, hence f(A′k ∪ U(θ)) ≤ f(A′k) +
f(U(θ)). The expected cost of the partition is

k−1∑
i=1

E[f(A′i)] + E[f(A′k ∪ U(θ))]

≤
k∑
i=1

E[f(A′i)] + E[f(U(θ))]

≤
k∑
i=1

E[f(A(i, θ))] + E[f(U(θ))] (Using Lemma 2.2)

≤ OPTFRAC +
1

2
OPTFRAC (Using Lemma 2.3)

= 1.5OPTFRAC.

This finishes the proof of Theorem 2.1. It is not hard to
verify that the algorithm runs in polynomial time. One
can easily derandomize the algorithm as follows. The only
randomness is in the choice of θ. As θ ranges in the interval
[0, 1], the collection of sets {A(i, θ) | 1 ≤ i ≤ k} changes
only when θ crosses some x(vj , i) value. Thus there are at
most nk such distinct values. We can try each of them as a
choice for θ and pick the least cost partition obtained among
all the choices.

Achieving a (1.5 − 1
k )-aproximation: We can improve

the approximation to 1.5 − 1
k as follows. We relabel the

terminals so that k = arg max1≤i≤k f̂(xi). We perform
θ-rounding with respect to the first k − 1 terminals in
order to get the sets A(i, θ) for each i 6= k, and we
let U(θ) = V − ∪1≤i≤k−1A(i, θ). We uncross the sets
{A(i, θ) | 1 ≤ i < k} to get k − 1 disjoint sets A′i, and
we return (A′1, · · · , A′k−1, U(θ)). We can prove a variant

of Theorem 1.5 that shows that the expected cost of U(θ)
is at most OPTFRAC/2, even when U(θ) is the set of all
vertices that are unallocated when we perform θ-rounding
with respect to only the first k′ terminals, for any k′ ≤ k.
The proof of this extension, though closely based on the
proof of Theorem 1.5, is notationally and technically messy,
and we omit it in this version of the paper. The total expected
cost of the sets A′1, · · · , A′k−1 is at most (1 − 1

k )OPTFRAC

(since we saved on f̂(xk)), and the expected cost of U(θ)
is at most OPTFRAC/2.

3. SUBMODULAR MULTIWAY PARTITION

In this section we consider SUB-MP when f is an
arbitrary non-negative submodular function. We choose θ ∈
(1/2, 1] to ensure that the sets {A(i, θ) | 1 ≤ i ≤ k} are
disjoint.

SUBMP-HALF-ROUNDING
let x be a feasible solution to SUBMP-REL
pick θ ∈ (1/2, 1] uniformly at random
for i = 1 to k

A(i, θ)← {v | x(v, i) ≥ θ}
A(θ)←

⋃
1≤i≤k A(i, θ)

U(θ)← V −A(θ)
return (A(1, θ), · · · , A(k − 1, θ), A(k, θ) ∪ U(θ))

Proof of Theorem 1.2: In the following, we show that
SUBMP-HALF-ROUNDING achieves a 2-approximation for
SUB-MP. As before, let OPTFRAC =

∑k
i=1 f̂(xi). Since f

is sub-additive, the expected cost of the partition returned
by SUBMP-HALF-ROUNDING is

E
θ∈(1/2,1]

[
k−1∑
i=1

f(A(i, θ)) + f(A(k, θ) ∪ U(θ))

]

≤ E
θ∈(1/2,1]

[
k∑
i=1

f(A(i, θ)) + f(U(θ))

]
(f is sub-additive)

= 2

(
k∑
i=1

∫ 1

1/2

f(A(i, θ))dθ +

∫ 1

1/2

f(U(θ))dθ

)

= 2

(
OPTFRAC −

k∑
i=1

∫ 1/2

0

f(A(i, θ))dθ +

∫ 1

1/2

f(U(θ))dθ

)
.

To show that the expected cost is at most 2OPTFRAC

it suffices to show that
∑k
i=1

∫ 1/2

0
f(A(i, θ))dθ ≥∫ 1

1/2
f(U(θ))dθ. Setting δ = 1/2 in Theorem 1.5 we obtain

k∑
i=1

∫ 1/2

0

f(A(i, θ))dθ

≥
∫ 1/2

0

f(V − U(θ))dθ +

∫ 1

0

f(U(θ))dθ

≥
∫ 1

1/2

f(U(θ))dθ (f is non-negative).



Thus SUBMP-HALF-ROUNDING achieves a randomized 2-
approximation for SUB-MP. The algorithm can be deran-
domized in the same fashion as the one for symmetric
functions.

Improving the factor of 2: As we remarked earlier the
VERTEX COVER problem can be reduced in an approxima-
tion preserving fashion to SUB-MP, and hence it is unlikely
that the factor of 2 for SUB-MP can be improved. The
approximation ratio (and also the integrality gap) has been
improved recently to 2(1− 1

k ) [10].

4. PROOF OF MAIN THEOREM

In this section we prove Theorem 1.5, our main technical
result. We recall some relevant definitions. Let x be a
solution to SUBMP-REL. We are interested in analyzing θ-
rounding when θ is chosen uniformly at random from an
interval [1− δ, 1] for some δ ≥ 0. In this section we use the
terminology of labels instead of terminals. For a label i let
A(i, θ) = {v ∈ V | x(v, i) ≥ θ} be the set of all vertices
that are assigned/allocated to i for some fixed θ. Note that
for distinct labels i, i′ the sets A(i, θ) and A(i′, θ) may not
be disjoint if θ ≤ 1/2, although they are disjoint if θ > 1/2.
Let A(θ) =

⋃
1≤i≤k A(i, θ) be the set of all vertices that are

allocated to the terminals when θ is the chosen threshold. We
let U(θ) = V −A(θ) denote the set of unallocated vertices.
With this notation in place we restate Theorem 1.5.

Theorem 4.1. For any δ ∈ [1/2, 1], we have

k∑
i=1

∫ δ

0

f(A(i, θ))dθ ≥ (kδ − δ − 1)f(∅)

+

∫ δ

0

f(A(θ))dθ +

∫ 1

0

f(U(θ))dθ.

The proof of the above theorem is somewhat long and
technical. At a high-level it is based on induction on the
number of vertices relative to a particular ordering that we
discuss now. In the following, we use i to index over the
labels, and we use j to index over the vertices. For vertex vj ,
let αj = maxi x(vj , i) be the maximum amount to which
x assigns vj to a label. We renumber the vertices so that
0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ 1. For notational convenience
we let α0 = 0 and αn+1 = 1. Further, for each vertex vj
we let `j be a label such that αj = x(vj , `j); note that `j is
not necessarily unique unless αj > 1/2.5

We observe that in θ-rounding, vj is allocated to a
terminal (that is, vj ∈ A(θ)) if and only if θ ≤ αj ; otherwise
vj ∈ U(θ) and thus it is unallocated. It follows from our
ordering that U(θ) = {v1, v2, . . . , vj−1} iff θ ∈ (αj−1, αj ]

5An alert reader may notice that we do not distinguish between terminals
and non-terminals. In fact the theorem statement does not rely on the fact
that terminals are assigned fully to their respective labels. The only place
we use the fact that x(si, i) = 1 for each i is to show that θ-rounding
based algorithms produce a valid multiway partition with respect to the
terminals.

and in this case A(θ) = V − U(θ) = {vj , . . . , vn}.
Thus, prefixes of the ordering given by the α values are
the only interesting sets to consider when analyzing the
rounding process from the point of view of allocated and
unallocated vertices. To help with notation, for 1 ≤ j ≤ n
we let Vj = {v1, v2, . . . , vj} and V0 = ∅. The following
proposition captures this discussion.

Proposition 4.2. Let α0 = 0 and let j be any index such
that 1 ≤ j ≤ n. For any θ ∈ (αj−1, αj ], A(θ) = V − Vj−1

and U(θ) = Vj−1.

It helps to rewrite the expected cost of f(A(θ)) and f(U(θ))
under θ-rounding in a more convenient form given below.

Proposition 4.3. Let r ∈ [0, 1], and let h be the largest
value of j such that αj ≤ r. We have∫ r

0

f(A(θ))dθ =

h∑
j=1

αj(f(V−Vj−1)−f(V−Vj))+rf(V−Vh)

and∫ r

0

f(U(θ))dθ =

h∑
j=1

αj(f(Vj−1)− f(Vj)) + rf(Vh).

Proof: Recall from Proposition 4.2 that A(θ) = V −
Vj−1 when θ ∈ (αj−1, αj ]. Therefore,∫ r

0

f(A(θ))dθ =

h∑
j=1

∫ αj

αj−1

f(A(θ))dθ +

∫ r

αh

f(A(θ)dθ

=

h∑
j=1

(αj − αj−1)f(V − Vj−1) + (r − αh)f(V − Vh)

= rf(V − Vh) +

h∑
j=1

αj(f(V − Vj−1)− f(V − Vj)).

The second identity follows from a very similar argument.

The inductive approach: Recall that numbering the vertices
in increasing order of their α values ensures that U(θ) is Vj
for some 0 ≤ j ≤ n. Let xj be the restriction of x to Vj .
Note that xj gives a feasible allocation of Vj to the k labels
although it does not necessarily correspond to a multiway
partition with respect to the original terminals. Also, note
that the function f when restricted to Vj is still submodular
but may not be symmetric even if f is. In order to argue
about xj we introduce additional notation. Let Aj(i, θ) =
A(i, θ) ∩ Vj , Aj(θ) = A(θ) ∩ Vj , and Uj(θ) = U(θ) ∩
Vj . In other words, Aj(θ) and Uj(θ) are the allocated and
unallocated sets if we did θ-rounding with respect to xj that
is defined over Vj .

Let ρj =
∑k
i=1

∫ δ
0
f(Aj(i, θ))dθ; we have ρ0 = kδf(∅).

Note that the left hand side of the inequality in Theorem 1.5
is ρn =

∑k
i=1

∫ δ
0
f(An(i, θ))dθ, since An(i, θ) = A(i, θ).



To understand ρn we consider the quantity ρj−ρj−1 which
is easier since ρj and ρj−1 differ only in vj . Recall that `j
is a label such that αj = maxki=1 x(vj , i). The importance
of `j is that if vj is allocated then it is allocated to `j (and
possibly to other labels as well). We express ρj − ρj−1 as
the sum of two quantities with the term for `j separated out.

Proposition 4.4.

ρj − ρj−1 =

∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ)) dθ

+
∑
i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ)) dθ.

We prove the following two key lemmas by using of
submodularity of f appropriately.

Lemma 4.5. For any δ ∈ [1/2, 1] and for any j such that
1 ≤ j ≤ n,

∑
i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

≥ f(Vj)− f(Vj−1) + αj(f(Vj−1)− f(Vj)).

Summing the left hand side in the above lemma over all j
and applying Proposition 4.3 with r = 1 we obtain:

Corollary 4.6.

n∑
j=1

∑
i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ


≥
∫ 1

0

f(U(θ))dθ − f(∅).

Our second key lemma below is the more involved
one. Unlike the first lemma above we do not have
a clean and easy expression for a single term∫ δ

0
(f(Aj(`j , θ))− f(Aj−1(`j , θ)) dθ but the sum over all

j gives a nice telescoping sum that results in the bound
below.

Lemma 4.7. Let δ ∈ [0, 1] and let h be the largest value of
j such that αj ≤ δ.

n∑
j=1

(∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))dθ

)

≥
∫ δ

0

f(A(θ))dθ − δf(∅).

The proofs of the above lemmas are given in Sections 4.1
and 4.2 respectively. We now finish the proof of Theorem 1.5
assuming the above two lemmas.

Proof of Theorem 1.5: Let h be the largest value of j such
that αj ≤ δ. From Proposition 4.4 we have

k∑
i=1

∫ δ

0

f(A(i, θ))dθ = ρn = ρ0 +

n∑
j=1

(ρj − ρj−1)

= ρ0 +

n∑
j=1

(∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))dθ

)

+

n∑
j=1

∑
i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ


(Use Proposition 4.4)

≥ ρ0 +

∫ δ

0

f(A(θ))dθ − δf(∅)

+

n∑
j=1

∑
i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ


(Use Lemma 4.7)

≥ ρ0 +

∫ δ

0

f(A(θ))dθ − δf(∅) +

∫ 1

0

f(U(θ))dθ − f(∅)

(Use Corollary 4.6)

≥ (kδ − δ − 1)f(∅) +

∫ δ

0

f(A(θ))dθ +

∫ 1

0

f(U(θ))dθ.

We used ρ0 = δkf(∅) in the final inequality.

4.1. Proof of Lemma 4.5

Recall that the lemma states that for δ ∈ [1/2, 1] and for
any j,∑

i 6=`j

∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

≥ f(Vj)− f(Vj−1) + αj(f(Vj−1)− f(Vj)).

Proof of Lemma 4.5: Fix j and label i. We have∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

=

∫ min(δ,x(vj ,i))

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

since Aj(i, θ) = Aj−1(i, θ) when θ is in the interval
(min(δ, x(vj , i)), δ] (or the interval is empty). When θ ≤
x(vj , i) we have Aj(i, θ) = Aj−1(i, θ) + vj . Since f is
submodular and Aj−1(i, θ) ⊆ Vj−1, it follows that, for any
θ ≤ x(vj , i), we have

f(Aj(i, θ))− f(Aj−1(i, θ))

= f(Aj−1(i, θ) + vj)− f(Aj−1(i, θ))

≥ f(Vj−1 + vj)− f(Vj−1)

= f(Vj)− f(Vj−1).



Therefore,∫ δ

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

=

∫ min(δ,x(vj ,i))

0

(f(Aj(i, θ))− f(Aj−1(i, θ))dθ

≥
∫ min(δ,x(vj ,i))

0

(f(Vj)− f(Vj−1))dθ

= min(δ, x(vj , i))(f(Vj)− f(Vj−1)).

Note that, for any i 6= `j , x(vj , i) ≤ δ: if αj ≤ δ, the claim
follows, since x(vj , i) ≤ αj ; otherwise, since δ ≥ 1/2 and∑
i x(vj , i) = 1, it follows that x(vj , i) ≤ δ for all i 6= `j .

Therefore, by using the previous bound,∑
i 6=`j

∫ δ

0

(f(Aj(i, θ)− f(Aj−1(i, θ))dθ

≥
∑
i 6=`j

min(δ, x(vj , i))(f(Vj)− f(Vj−1))

=
∑
i 6=`j

x(vj , i)(f(Vj)− f(Vj−1))

= (1− x(vj , `j))(f(Vj)− f(Vj−1))

= f(Vj)− f(Vj−1) + αj(f(Vj−1)− f(Vj)).

4.2. Proof of Lemma 4.7

We recall the statement of the lemma. Let δ ∈ [0, 1] and let
h be the largest value of j such that αj ≤ δ. We want to
show that

n∑
j=1

(∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))dθ

)

≥
∫ δ

0

f(A(θ))dθ − δf(∅).

Our goal is to obtain a suitable expression that
is upper bounded by the quantity

∫ δ
0

(f(Aj(`j , θ)) −
f(Aj−1(`j , θ))dθ. It turns out that this expression has sev-
eral terms and when we sum over all j they telescope to
give us the desired bound.

We begin by simplifying
∫ δ

0
(f(Aj(`j , θ)) −

f(Aj−1(`j , θ))dθ by applying submodularity. The following
proposition follows from the fact that f is submodular and
Aj(`j , θ) ⊆ Aj(θ).

Proposition 4.8. For any j such that 1 ≤ j ≤ n,∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))) dθ

≥
∫ min(αj ,δ)

0

(f(Aj−1(θ) + vj)− f(Aj−1(θ))) dθ.

Proof: If θ ∈ [0,min(δ, αj)] we have Aj(`j , θ) =
Aj−1(`j , θ) + vj . If θ ∈ (min(δ, αj), δ] then Aj(`j , θ) =
Aj−1(`j , θ). Therefore∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))) dθ

=

∫ min(δ,αj)

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))) dθ

=

∫ min(δ,αj)

0

(f(Aj−1(`j , θ) + vj)− f(Aj−1(`j , θ))) dθ

Since f is submodular and Aj−1(`j , θ) ⊆ Aj−1(θ), it
follows that, for any θ ≤ αj ,

f(Aj(`j , θ))−f(Aj−1(`j , θ)) ≥ f(Aj−1(θ)+vj)−f(Aj−1(θ))

and the proposition follows.

Let ∆j =
∫ αj

0
(f(Aj−1(θ) + vj)− f(Aj−1(θ))) dθ, and

Λj =
∫ αj

δ
(f(Aj−1(θ) + vj)− f(Aj−1(θ))) dθ. Note that

the right hand side of the inequality in Proposition 4.8 is
equal to ∆j if j ≤ h, and it is equal to ∆j −Λj otherwise.
Proposition 4.9 and Proposition 4.11 express ∆j and Λj in
a more convenient form.

Let Vj′,j = {vj′ , vj′+1, · · · , vj} for all j′ and j such that
j′ ≤ j; let Vj′,j = ∅ for all j′ and j such that j′ > j.

Proposition 4.9.

∆j =

n∑
j′=1

(αj′ − αj′−1)(f(Vj′,j)− f(Vj′,j−1)).

Proof: It follows Proposition 4.2 that, if θ ∈
(αj′−1, αj′ ], A(θ) = Vj′,n and Aj(θ) = Vj′,j . Therefore

∆j =

∫ αj

0

(f(Aj−1(θ) + vj)− f(Aj−1(θ))dθ

=

j∑
j′=1

∫ αj′

αj′−1

(f (Aj−1(θ) + vj)− f (Aj−1(θ))) dθ

=

j∑
j′=1

(αj′ − αj′−1)(f(Vj′,j)− f(Vj′,j−1))

=

n∑
j′=1

(αj′ − αj′−1)(f(Vj′,j)− f(Vj′,j−1)).

The last line follows from the fact that, if j′ > j, Vj′,j =
Vj′,j−1 = ∅.

The corollary below follows by simple algebraic manipula-
tion; see Appendix A in [4] for a proof.

Corollary 4.10.
n∑
j=1

∆j =

n∑
j=1

αj(f(V − Vj−1)− f(V − Vj)).

We now consider Γj .



Proposition 4.11. For all j > h where h is the largest index
such that αh ≤ δ,

Λj = (αh+1 − δ)(f(Vh+1,j)− f(Vh,j−1))

+

n∑
j′=h+2

(αj′ − αj′−1)(f(Vj′,j)− f(Vj′,j−1)).

Proof: For notational convenience let βh = δ and βj =
αj for all j > h. It follows Proposition 4.2 that, if θ ∈
(βj′−1, βj′ ], A(θ) = Vj′,n and Aj(θ) = Vj′,j . Therefore

∫ αj

δ

(f(Aj−1(θ) + vj)− f(Aj−1(θ)))dθ

=

j∑
j′=h+1

∫ βj′

βj′−1

(f(Aj−1(θ) + vj)− f(Aj−1(θ)))dθ

=

j∑
j′=h+1

(βj′ − βj′−1)(f(Vj′,j)− f(Vj′,j−1))

=

n∑
j′=h+1

(βj′ − βj′−1)(f(Vj′,j)− f(Vj′,j−1)).

The last line follows from the fact that, if j′ > j, Vj′,j =
Vj′,j−1 = ∅. The lemma follows by noting that

n∑
j′=h+1

(βj′ − βj′−1)(f(Vj′,j)− f(Vj′,j−1))

= (αh+1 − δ)(f(Vh+1,j)− f(Vh,j−1))

+

n∑
j′=h+2

(αj′ − αj′−1)(f(Vj′,j)− f(Vj′,j−1)).

The corollary below follows by simple algebraic manipula-
tion; see Appendix A in [4] for a proof.

Corollary 4.12.

n∑
j=h+1

Λj =

n∑
j=h+1

αj(f(V − Vj−1)− f(V − Vj))

− δ(f(V − Vh)− f(∅)).

Now we finish the proof.

Proof of Lemma 4.7: We apply Proposition 4.8 in the first
inequality below, and then Corollary 4.10 and Corollary 4.12

to derive the third line from the second.
n∑
j=1

∫ δ

0

(f(Aj(`j , θ))− f(Aj−1(`j , θ))) dθ

≥
n∑
j=1

∫ min(αj ,δ)

0

(f(Aj−1(θ) + vj)− f(Aj−1(θ))) dθ

=

n∑
j=1

∆j −
n∑

j=h+1

Λj

=

h∑
j=1

αj(f(V − Vj−1)− f(V − Vj))

+ δ(f(V − Vh)− f(∅))

=

∫ δ

0

f(A(θ))dθ − δf(∅).

The last equality follows from Proposition 4.3.

5. CONCLUSIONS AND OPEN PROBLEMS

The main open question is whether the integrality gap of
SUBMP-REL for SYM-SUB-MP is stricly smaller than the
bound of (1.5− 1

k ) we showed in this paper. Karger et al. [18]
rely extensively on the geometry of the simplex to obtain
a bound of 1.3438 for GRAPH MULTIWAY CUT via the
relaxation from [3]. However, we mention that the rounding
algorithms used in [18] have natural analogues for rounding
SUBMP-REL but analyzing them appears challenging for an
arbitrary symmetric submodular function.

Zhao, Nagamochi and Ibaraki [29] considered a common
generalization of SUB-MP and K-WAY SUB-MP where we
are given a set S of terminals with |S| ≥ k and the goal is to
partition V into k sets A1, . . . , Ak such that each Ai contains
at least one terminal and

∑k
i=1 f(Ai) is minimized. Note

that when |S| = k we get SUB-MP and when S = V we
get K-WAY SUB-MP. The advantage of the greedy splitting
algorithms developed in [29] is that they extend to these
more general problems. However, unlike the case of SUB-
MP, there does not appear to be an easy way to write a
mathematical programming relaxation for this more general
problem; see [7] for a relaxation in the case of graphs.
An interesting open problem here is whether the k-way
cut problem in graphs admits an approximation better than
2(1− 1

k ).
Related to the above questions is the complexity of K-WAY

SUB-MP when k is a fixed constant. For SYM-SUB-MP
a polynomial-time algorithm was claimed in [23] although
no formal proof has been published; this generalizes the
polynomial-time algorithm for graph k-cut problem first
developed by Goldschmidt and Hochbaum [16]. There has
been particular interest in the special case of K-WAY SUB-
MP, namely, the hypergraph k-cut problem [28], [22], [12].
It is an open problem whether the hypergraph k-cut problem
has a polynomial time algorithm for k = 4.
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