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Abstract
We consider the Minimum Submodular Cost Allocation (MSCA) problem [3]. In this problem,
we are given k submodular cost functions f1, . . . , fk : 2V → R+ and the goal is to partition
V into k sets A1, . . . , Ak so as to minimize the total cost

∑k
i=1 fi(Ai). We show that MSCA

is inapproximable within any multiplicative factor even in very restricted settings; prior to our
work, only Set Cover hardness was known. In light of this negative result, we turn our attention to
special cases of the problem. We consider the setting in which each function fi satisfies fi = gi+h,
where each gi is monotone submodular and h is (possibly non-monotone) submodular. We give
an O(k log |V |) approximation for this problem. We provide some evidence that a factor of k
may be necessary, even in the special case of Hypergraph Labeling [3]. In particular, we formulate
a simplex-coloring conjecture that implies a Unique-Games-hardness of k − 1 − ε for k-uniform
Hypergraph Labeling and label set [k]. We provide a proof of the simplex-coloring conjecture for
k = 3.1

1 Introduction

Labeling problems arise in a number of applications including document classification, image
segmentation, facility location, and others. The general problem asks for a labeling of a
ground set V by k labels in a way that minimizes a certain notion of “cost"; this cost can
penalize “similar elements" being labeled differently, or elements being assigned a label that
they “do not prefer". A classical example is the Graph Multiway Cut problem where given
a graph G = (V,E) with k terminals t1, . . . , tk ∈ V , we want to partition the vertices into
k disjoint sets S1, . . . , Sk such that ti ∈ Si and we minimize the number of edges between
different parts. Over time, more general versions of this problem have been proposed in
order to capture the fact that vertices might have more nuanced (weighted) preferences to be
labeled in a certain way [16], relationships more general than pairwise might be present [11],
etc. This led to the study of problems such as Metric Labeling [16], 0-Extension [4], and Node-
weighted / Hypergraph Multiway Cut [10]. The main object of our study is an abstract version
of this problem, the Minimum Submodular Cost Allocation (MSCA) problem, introduced in
[3]. In this problem, the cost function associated with each label is a submodular function;
f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for every A,B ⊆ V .

Minimum Submodular Cost Allocation (MSCA). Given k submodular functions
f1, . . . , fk : 2V → R+, find a partition (A1, . . . , Ak) of V that minimizes

∑k
i=1 fi(Ai).
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2 Hardness of Submodular Cost Allocation

This captures problems such as Graph Multiway Cut, Hypergraph Multiway Cut, and Uniform
Metric Labeling due to the fact that the cut function in graphs and hypergraphs is submod-
ular. However, MSCA is considerably more general than these problems. The special case of
the problem in which each of the functions fi is monotone is equivalent to the Submodular
Facility Location problem considered by Svitkina and Tardos [24] who gave an O(log |V |)-
approximation and a matching hardness via a reduction from Set Cover. Following previous
work, Chekuri and Ene [3, 2] considered several special cases of the MSCA problem in which
the functions are non-monotone but they have additional structure. In [3] it was shown
that, if each function fi is the sum of a monotone submodular function gi and a symmetric
submodular function h that is the same for all of the labels, one can achieve an O(log |V |)
approximation. Furthermore, several well-studied partitioning problems such as Graph Mul-
tiway Cut and Node-weighted Multiway Cut can be cast as special cases of MSCA in which
the functions fi arise from a single underlying submodular function. Submodular Multiway
Partition, a special case of MSCA, was proposed as a unifying umbrella for these problems
[25] and shown to admit a (2− 2/k)-approximation which is best possible [2, 7].

Despite this progress, the MSCA problem itself was not very well understood. On the
hardness side, prior to our work the best lower bound for the general MSCA problem was
the Set Cover hardness shown by Svitkina and Tardos [24] for the special case in which all of
the functions are monotone. On the positive side, no approximation guarantees have been
known for the MSCA problem with non-monotone functions. This is perhaps surprising,
since submodular minimization problems typically admit at least polynomial approximation
factors; for example, O(|V |) or Õ(

√
|V |) approximations are achievable for several minimiz-

ation problems with submodular costs [14, 12, 23]. One of the main questions left open by
previous work was to bridge this wide gap.

Our results. In this paper, we show that the MSCA problem is in fact inapproximable
within any multiplicative factor even in very restricted settings. The following theorem
formally states our main hardness result.

I Theorem 1. It is NP-hard to decide whether the optimal value for a Minimum Submodular
Cost Allocation problem is zero, even for k = 3 and functions of the form fi(S) = ci(S) +
δGi

(S) where ci(S) =
∑
j∈S cij with 0/1 coefficients cij and δGi

is the cut function of a
directed graph2 Gi.

As an intermediate result, we prove the NP-completeness of two related combinatorial prob-
lems that we call Lattice Matching and Partition Matching (see Section 2); we believe this
might be of independent interest.
In light of this negative result, we turn our attention to special cases of the problem. In
particular, we consider the following problem introduced in [3].

Monotone-restricted MSCA. For each i ∈ [k], let gi : 2V → R+ be a monotone submod-
ular function (the “assignment cost). and let h : 2V → R+ be a (possibly non-monotone)
submodular function (the “separation cost"). The Monotone-restricted MSCA problem is the
special case of MSCA in which fi = gi + h for each i ∈ [k].

As mentioned above, [3] gave an O(log |V |) approximation for a special case where the sep-
aration cost function h is symmetric. This is best possible even for h = 0 which yields the
Submodular Facility Location problem [24]. In this paper, we give an O(k log |V |) approxima-

2 The cut function of G = (V,A) is δG(S) = |{(v, w) ∈ A : v ∈ S,w /∈ S}|.
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tion for the general Monotone-restricted MSCA problem in which the separation cost function
h is not necessarily symmetric.

I Theorem 2. There is an O(k log |V |)-approximation for the Monotone-restricted MSCA
problem.

Our approach is based on a reduction to the symmetric case via symmetrization of the sep-
aration cost h. This result, although quite straightforward, provides us with a very general
setting in which the MSCA problem admits a non-trivial approximation. The remaining
question is whether the factor of k in Theorem 2 can be eliminated. We provide some evid-
ence that the factor of k may be necessary for the following special case of the problem,
introduced in [3].
Hypergraph Labeling. Given a hypergraph H = (V,E) with edge weights w(e) ≥ 0
and vertex assignment costs c(v, i) ≥ 0, find a labeling ` : V → [k] so as to minimize∑
v∈V c(v, `(v)) +

∑
e∈E:|`[e]|>1 w(e).

In other words, we want to minimize the assignment costs of the vertices plus the weight of
the edges that are cut (receive multiple labels). This problem is a common generalization
of Uniform Metric Labeling [16] and Hypergraph Multiway Cut [18]; i.e., instead of pairwise
relationships we consider multi-tuple interactions and we also have modular assignment
costs. On the other hand, Hypergraph Labeling can be cast as a special case of Monotone-
restricted MSCA (see [3] or Section 4). Building on the work of Kleinberg and Tardos [16]
for Uniform Metric Labeling, Chekuri and Ene [3] gave a d-approximation for the Hypergraph
Labeling problem, where d is the maximum size of a hyperedge. Our result above gives an
O(k log |V |)-approximation for Hypergraph Labeling.

We provide some evidence that a factor of k might be necessary, in particular when
k = d. We propose a conjecture (somewhat reminiscent of Sperner’s Lemma [22]) which
implies that a natural LP relaxation of the Hypergraph Labeling problem has integrality gap
k − 1 for k-uniform hypergraphs and any approximation factor below k − 1 would refute
the Unique Games Conjecture (using a general result of [7]). We prove the conjecture in the
special case of k = 3 and thus we obtain an integrality gap and Unique Games hardness of
2− ε for this case; previously, only an integrality gap of 4/3 was known [16].
Organization. The rest of the paper is organized as follows. In Section 2, we prove
the inapproximability of the general MSCA problem, as well as the NP-completeness of
the related Lattice Matching and Partition Matching problems. In Section 3, we show our
approximation result for the Monotone-restricted MSCA problem. In Section 4, we discuss
a conjecture that would imply hardness for the Hypergraph Labeling problem. Some details
and proofs are deferred to the appendix.

2 Hardness of Minimum Submodular Cost Allocation

If k = 2, the MSCA problem can be reduced to submodular function minimization as follows.
Let f : 2V → R+ be the function such that f(S) = f1(S) + f2(V \ S). It is easy to see that
f is submodular (Proposition 16). A submodular function can be minimized in polynomial
time [5, 19, 21, 13, 15], and therefore MSCA is in P when k = 2.

The main result of this section is that for k ≥ 3, the MSCA problem does not admit any
finite approximation factor. In particular, we prove that for k ≥ 3 it is NP-hard to decide
whether the optimal solution has value zero or nonzero. We use functions in a particular
form, using the cut function of a directed graph: δG(S) = | {(v, w) ∈ A(G) : v ∈ S,w /∈ S} |.
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I Theorem 3. It is NP-hard to decide whether the optimal value for an instance of MSCA
is zero, even for k = 3 and functions of the form fi(S) = ci(S) + δGi(S) where ci is a linear
function and δGi

is the cut function of a directed graph Gi.

We start with the following well-known fact. For any non-negative submodular function,
the collection of sets of zero value forms a Boolean lattice (see Proposition 14; we recall
that a Boolean lattice is a family of sets L ⊆ 2V closed under unions and intersections,
i.e. ∀A,B ∈ L;A ∩ B ∈ L, A ∪ B ∈ L). This observation suggests that the question of
checking for solutions of zero value is related to the following problem that we call Lattice
Matching.
Lattice Matching. Given k Boolean lattices L1,L2, . . . ,Lk ⊂ 2V (by a suitable compact
representation), find k disjoint sets S1 ∈ L1, . . . , Sk ∈ Lk such that

⋃k
i=1 Si = V .

We show that this problem is NP-complete for k ≥ 3, by a reduction from 1-in-3 SAT [20].
A technical issue is the question of representing a lattice compactly on the input. For this
purpose we use a representation of lattices by directed graphs that goes back to Birkhoff [1].
In fact this construction also provides explicit submodular functions whose zeros are exactly
the points of the respective lattice, and hence we prove Theorem 3.

A special case of a lattice is the collection of all unions of sets from some partition
(collection of disjoint sets) Pi. Thus the Lattice Matching problem has the following natural
special case.
Partition Matching. Given k collections of sets P1, . . . ,Pk ⊂ 2V , where each Pi is a
partition of a subset of V (the sets in Pi are disjoint), find disjoint sets S1, . . . , S` ∈

⋃k
i=1 Pi

such that
⋃`
i=1 Si = V .

Just like the problems above, the Partition Matching problem is in P for k ≤ 2. We prove
that this problem is NP-complete for k = 5. We leave it as an open question whether it is
NP-complete for k = 3 and k = 4.

2.1 Representation of lattices by directed graphs
In the following, we describe how to encode a Boolean lattice using a directed graph, and
how this connects MSCA and Lattice Matching. We follow the construction of [8].

I Definition 4. Given a lattice L ⊆ 2V such that ∅ ∈ L, let VL =
⋃
{S : S ∈ L}. For each

v ∈ VL, let D(v) =
⋂
{S : S ∈ L, v ∈ S}. We define a directed graph GL = (VL, A) where

A = {(v, w) : v ∈ VL, w ∈ D(v), w 6= v}.

The following lemma is implicit in [1, 8]. We include a simple proof for completeness.

I Lemma 5. For every lattice L ⊆ 2V such that ∅ ∈ L, the directed graph GL encodes the
lattice in the sense that S ∈ L if and only if S ⊆ VL and GL has no arcs from S to VL \ S.

Proof: If S ∈ L, then S ⊆ VL by the properties of the lattice. Also, for each each v ∈ S,
D(v) =

⋂
{S′ ∈ L : v ∈ S′} ⊆ S and hence all arcs originating at v stay within S.

Conversely, if S ⊆ VL and there are no arcs leaving S, we know that for each v ∈ S,
D(v) ⊆ S. By the properties of lattices, D(v) =

⋂
{S′ ∈ L, v ∈ S′} ∈ L. If S 6= ∅, we get

that S =
⋃
v∈S D(v) ∈ L. If S = ∅, then S ∈ L by assumption. �

Thus the directed graph GL encodes the lattice L in a compact way: its description has size
O(n2), where n = |V |. Furthermore, we observe that this description provides a submodular
function whose zeros are exactly the sets in L.
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I Lemma 6. For a lattice L ⊂ 2V defined by the directed graph GL, the following function
is submodular and its zeros are exactly the sets in L:

fL(S) = |S \ VL|+ δGL(S)

where δGL(S) = | {(v, w) ∈ A(GL) : v ∈ S,w /∈ S} | is the directed cut function of GL.

Proof: By Lemma 5, S ∈ L if and only if S ⊆ VL and there are no arcs from S to outside
of S in GL, which occurs if and only if fL(S) = 0. �

It follows that the Lattice Matching problem — where the lattices are given by its associ-
ated directed graph — is equivalent to checking whether the MSCA instance in which the
functions are {fLi

| i ∈ [k]} has zero cost. To prove Theorem 3, it remains to prove the
NP-completeness of Lattice Matching under this encoding.

2.2 NP-completeness of Partition Matching and Lattice Matching
In this section, we prove that the Lattice Matching problem is NP-complete for k = 3.
First, as a warm-up, let us prove that its special case, the Partition Matching problem, is
NP-complete for k = 7. We reduce from the following NP-complete problem [9].
3-bounded 3-set Packing. Given a system of triples T ⊆ 2V such that each element
of V is contained in at most 3 triples, it is NP-complete to decide whether there exists a
collection of disjoint triples covering V .

I Theorem 7. Partition Matching is NP-complete for k = 7.

Proof: Given an instance of 3-bounded 3-set Packing, we observe that each triple intersects
at most 6 other triples (2 for each of its elements). Thus we can inductively color the triples
with 7 colors in such a way that intersecting triples get different colors. We define Pi to
be the collection of all triples of color i. We obtain an instance of Partition Matching with
k = 7, for which it is NP-complete to decide whether there exists a collection of disjoint
triples covering V . �

For lower values of k, we use more careful reductions from the Monotone 1-in-3 SAT problem
[20].
Monotone 1-in-3 SAT. Given a formula

∧m
i=1(xi1 ∨ xi2 ∨ xi3) (without negations), it is

NP-complete to find a Boolean assignment such that in each clause (xi1 ∨xi2 ∨xi3), exactly
one variable is True and two variables are False.

I Theorem 8. Partition Matching is NP-complete for k = 5.

Proof: Given an instance of Monotone 1-in-3 SAT, we produce an instance of Partition
Matching as follows. We define a ground set V consisting of

An element vj for each variable xj .
Two elements xij ,¬xij for each occurrence of a variable xj in clause i.

On this ground set, we define the following 5 collections of sets:
P1 contains for each variable xj a set {vj} ∪ {xij : ∀clause i containing variable xj}.
P2 contains for each variable xj a set {vj} ∪ {¬xij : ∀clause i containing variable xj}.
P3 contains for each clause xi1 ∨ xi2 ∨ xi3 a set {xii1 ,¬x

i
i2
,¬xii3}.

P4 contains for each clause xi1 ∨ xi2 ∨ xi3 a set {¬xii1 , x
i
i2
,¬xii3}.

P5 contains for each clause xi1 ∨ xi2 ∨ xi3 a set {¬xii1 ,¬x
i
i2
, xii3}.
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We call the sets in P1 ∪ P2 variable-assignment sets, and the sets in P3 ∪ P4 ∪ P5 clause-
assignment sets. Observe that in each collection Pi, the sets are pairwise disjoint. I.e., we
have an instance of Partition Matching with k = 5.

If there is a Boolean assignment such that exactly one variable is each clause is satisfied,
we produce a solution of Partition Matching as follows. For each variable xj = True, we
choose the variable-assignment set containing vj that is in P2 (i.e. containing all the elements
¬xij). For each variable xj = False, we choose the variable-assignment set containing vj that
is in P1 (i.e. containing all the elements xij). Finally, for each clause xi1 ∨ xi2 ∨ xi3 , we
choose the set corresponding to its assignment, from either P3, P4 or P5. It is easy to verify
that these sets are disjoint and cover the entire ground set V .

Conversely, let us assume that there is a collection of disjoint sets F ⊂ P1 ∪ P2 ∪ P3 ∪
P4 ∪P5 that covers the ground set V . Since F must cover the element vj for each variable,
it must contain a variable-assignment set in either P1 or P2 (no other sets contain vj).
This choice determines a Boolean assignment: we set xj = True if vj is covered by a set
from P2, and xj = False if vj is covered by a set from P1. Now, consider the 6 elements
xii1 ,¬x

i
i1
, xii2 ,¬x

i
i2
, xii3 ,¬x

i
i3
for clause i. Exactly 3 of these elements are covered by sets from

P1 and P2, hence the remaining 3 elements must form a clause-assignment set in P3∪P4∪P5.
These clause-assignment sets correspond to satisfying assignments and hence the formula is
satisfied by the Boolean assignment that we defined. �

Finally, we prove that Lattice Matching is NP-complete for k = 3. Note that here we use
the full flexibility of the Lattice Matching problem; we do not know whether the Partition
Matching problem is NP-complete for k = 3.

I Theorem 9. Lattice Matching is NP-complete for k = 3.
Proof: We use the same reduction as in the proof of Theorem 8, but we combine the 5
partitions into 3 lattices. Specifically, using the notation from the proof above, we define
L1 = cl(P1 ∪ P3)
L2 = cl(P2)
L3 = cl(P4 ∪ P5)

where cl(P) means all the sets that can be generated from P by taking unions and intersec-
tions. By construction, L1,L2,L3 are lattices that contain all the sets that were contained
in P1, . . . ,P5 (as well as some additional sets). In the case of a satisfiable formula, we can
still choose disjoint sets covering V as above. Let Si be the union of those of these sets that
are contained in Li (i.e., Si is also in Li), and S1 ∪ S2 ∪ S3 = V is a feasible solution of
the Lattice Matching problem. The potential issue with this construction is that we might
have created a feasible solution of the Lattice Matching problem in case the formula is not
satisfiable. Let us argue that this is not the case.

For each variable xj , the element vj is contained only in the variable-assignment sets
arising from P1 and P2, and sets formed by unions of these variable-assignment sets with
other sets in L1 = cl(P1 ∪ P3),L2 = cl(P2). Recall that these two variable assignment sets
appear in P1,P2 respectively, and so their union/intersection is not part of the lattices that
we generate. Therefore, vj must be covered by a set that was generated from one of the two
variable-assignment sets for xj ; depending on which one is used, we set xj to True (if the
set {vj ,¬xij ,¬xi

′

j , . . .} is used) or False (if the set {vj , xij , xi
′

j , . . .} is used).
By our construction of the three lattices, for each clause xi1 ∨ xi2 ∨ xi3 , some of the

respective elements xii1 , x
i
i2
, xii3 ,¬x

i
i1
,¬xii2 ,¬x

i
i3
are going to appear as singletons in a lattice.

In L1, we get new sets obtained by intersecting sets in P1 and P3: Specifically, this is the
singleton {xii1} for each clause xi1 ∨ xi2 ∨ xi3 (and sets obtained by taking unions of these
singletons with other sets in P1 ∪ P3). In L2, we obtain only the unions of sets in P2
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(which are disjoint). In L3, we obtain by intersection the singleton {¬xii1} for each clause
xi1 ∨ xi2 ∨ xi3 , and again sets obtained by unions with other sets in P4 ∪ P5 (recall the
definitions of P1,P2,P3,P4 and P5).

Observe that the construction is not symmetric with respect to the three elements of a
clause such as xii1 ∨ x

i
i2
∨ xii3 . While {xii1} and {¬x

i
i1
} appear as sets in L1,L3 respectively,

{xii2} and {¬x
i
i2
} do not appear as singletons in any lattice. This is because xii2 appears in

exactly one set in P4, and ¬xii2 appears in exactly one set in P3 and one set in P5. Thus we
do not form any intersections that can produce {xii2} or {¬x

i
i2
}. By the same argument, we

do not form any intersections that can produce a pair containing xii2 or ¬xii2 . Every set in
L1,L2,L3 that contains xii2 or ¬xii2 contains either the variable-assignment set {vj , . . . , }, or
a triple corresponding to a satisfying assignment of the i-th clause, e.g. {xii1 ,¬x

i
i2
,¬xii3}. If

xi2 was set to True, then ¬xii2 is covered by a variable-assignment set but xii2 is not because
that would cause vj to be covered twice. Therefore, the only way that xii2 can be covered
is by a triple corresponding to a satisfying assignment of the i-th clause. By the same
argument, this assignment is consistent with our assignment of variables. We can repeat
this argument for each clause; it proves that if there is a feasible solution of the Lattice
Matching problem, then our assignment satisfies every clause of the formula. �

3 Monotone-restricted MSCA Algorithm

In the previous section, we showed that the MSCA problem does not admit any multiplic-
ative approximation whatsoever. This can be viewed as evidence that MSCA is “not the
right generalization" of problems like Multiway Cut, Uniform Metric Labeling, etc. In this
section we restrict MSCA to some extent, so that we still obtain a fairly general partitioning
problem but one that allows some non-trivial approximation. We consider the Monotone-
restricted MSCA problem in which each assignment cost function gi is an arbitrary monotone
submodular function and the separation cost function h is an arbitrary submodular function
(but the same one for all label values). We seek a partitioning (or labeling) (S1, S2, . . . , Sk)
minimizing

∑k
i=1(gi(Si) + h(Si)).

We observe that, for any submodular function h, h′(S) = h(S) +h(V \S) is a symmetric
submodular function (see Proposition 17 in the appendix). Since h′ is symmetric, we can
use the algorithm of [3] to construct a labeling for the instance of Monotone-restricted MSCA
in which the assignment costs are given by gi and the separation cost is given by h′. For
any labeling, we can relate its h′ cost to its h cost as follows.

I Proposition 10. Let (A1, . . . , Ak) be a labeling. We have

k∑
i=1

h(Ai) ≤
k∑
i=1

h′(Ai) ≤ k
k∑
i=1

h(Ai).

Proof: The first inequality follows from the fact that h is non-negative. Therefore it suffices
to show the second inequality. A non-negative submodular function is sub-additive and thus
we have

h(V \Ai) = h(∪j 6=iAj) ≤
∑
j 6=i

h(Aj).

Therefore
∑k
i=1 h(V \Ai) ≤ (k − 1)

∑k
i=1 h(Ai) and

∑k
i=1 h

′(Ai) ≤ k
∑k
i=1 h(Ai). �

Let OPT and OPT′ be the costs of the optimal solution for the original instance in which
the separation cost function is h and the modified instance in which the separation cost
function is h′, respectively. By the above, OPT′ ≤ k ·OPT. Let (A1, . . . , Ak) be the solution
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constructed by the algorithm of [3] for the modified instance. The result of [3] is that there
is an O(log |V |)-approximation for Monotone-restricted MSCA whenever the functions gi are
monotone submodular and h is symmetric submodular. It follows that

k∑
i=1

gi(Ai) +
k∑
i=1

h(Ai) ≤
k∑
i=1

gi(Ai) +
k∑
i=1

h′(Ai) ≤ O(log |V |)OPT′ ≤ O(k log |V |)OPT.

Therefore we have the following theorem.

I Theorem 11. There is an O(k log |V |)-approximation for the Monotone-restricted MSCA
problem.

We remark that the factor of log |V | is necessary due to the hardness of the Submodular
Facility Location problem, which is the case of h = 0. The same hardness can be obtained
when h is a simple symmetric submodular function and the gi’s are modular functions —
see Appendix B.

4 Hypergraph Labeling and Sperner’s Colorings

In this section, we consider the Hypergraph Labeling problem, which is a special case of
Monotone-restricted MSCA (see Section 1 for a definition). As we have shown in the previous
section, Monotone-restricted MSCA (and thus Hypergraph Labeling) admits an O(k log |V |)
approximation, where k is the number of labels. Also, the Hypergraph Labeling problem was
shown to admit a d-approximation when the size of each hyperedge is at most d [3]. We
provide some evidence that a factor of k might be necessary for this problem, in particular
when d = k.

4.1 LP relaxations for Hypergraph Labeling
Chekuri and Ene [3] gave a convex-programming relaxation (LE-Rel) for MSCA that is based
on the Lovász extension of a submodular function. Let us review the convex relaxation
LE-Rel in the special case of the Hypergraph Labeling problem. In LE-Rel, we have variables
xv,i for v ∈ V, i ∈ [k]. Recall that the objective function in Hypergraph Labeling can be
modeled as

∑k
i=1 fi(Si) where fi(S) = gi(S) + h(S), gi(S) =

∑
v∈S c(v, i) and

h(S) =
∑

e∈E:r(e)∈S,e 6⊆S

w(e)

is the rooted version of the hypergraph cut function, for some choice of a root r(e) ∈ e for
every e ∈ E.

The LE-Rel relaxation is based on the Lovász extension of the objective functions fi(S).
By linearity, the Lovász extension f̂i(x) can be written as f̂i(x) = ĝi(x)+ĥ(x) =

∑
v∈V c(v, i)xv,i+

ĥ(x) since the function gi is linear. The Lovász extension of the rooted hypergraph cut func-
tion h can be written as follows: for a uniformly random threshold λ ∈ [0, 1],

ĥ(x) =
∑
e∈E

w(e) Pr[xr(e) > λ & ∃v ∈ e;xv ≤ λ] =
∑
e∈E

w(e)(xr(e) −min
v∈e

xv)

(see [6] for details). The objective function of LE-Rel is
∑k
i=1 f̂i(xi) =

∑k
i=1(ĝi(xi) + ĥ(xi)),

where xi ∈ RV is the assignment vector for label i. We note that
∑k
i=1 xr(e),i = 1 by the
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assignment constraint in LE-Rel, and hence we have
k∑
i=1

ĥ(xi) =
∑
e∈E

w(e)
(

1−
k∑
i=1

min
v∈e

xv,i

)
.

Hence we can write the full LE-Rel relaxation for Hypergraph Labeling as follows.

LE-Rel for Hypergraph Labeling

min
∑
v∈V

k∑
i=1

c(v, i)xv,i +
∑
e∈E

w(e)
(

1−
k∑
i=1

min
v∈e

xv,i

)
:

k∑
i=1

xv,i = 1 ∀v ∈ V

xv,i ≥ 0 ∀v ∈ V, i ∈ [k]

Formally, this is not in the form of a linear program but it is easy to see that the expression
minv∈e xv,i can be replaced by a new variable ze,i with constraints ze,i ≤ xv,i∀v ∈ e. We
prefer to keep the form above for compactness.

Next, we observe that this LP is equivalent to the “Local Distribution LP" considered
in [7]. In the Local Distribution LP, we have xv,i variables as above, and also ye,α variables
for each hyperedge e ∈ E and each possible assignment α ∈ [k]e. The hyperedge variables
ye,α can be interpreted as a distribution over labelings of the respective hyperedge e. The
hyperedge variables must be consistent with the vertex variables in the sense that all assign-
ments such that αv = i should add up to

∑
α∈[k]e:αv=i ye,α = xv,i. The Local Distribution

LP reads as follows.

Local Distribution LP for Hypergraph Labeling

min
∑
v∈V

k∑
i=1

c(v, i)xv,i +
∑

e∈E,α6=(`,`,...,`)

w(e)ye,α :

∑
α∈[k]e,αv=i

ye,α = xv,i ∀v ∈ e ∈ E, i ∈ [k]

k∑
i=1

xv,i = 1 ∀v ∈ V

xv,i, ye,α ≥ 0 ∀v, i, e, α

Consider a feasible assignment to the variables xv,i. Given this assignment, the Local
Distribution LP aims to minimize the cut cost

∑
α6=(`,`,...,`) ye,α for each hyperedge e, subject

to the condition
∑
α∈[k]e;αv=i ye,α = xv,i. We claim that the optimal way to do this is to

set ye,(i,i,...,i) = minv∈e xv,i for each i ∈ [k], and then distribute the remaining mass 1 −∑k
i=1 minv∈e xv,i among variables ye,α where α contains more than 1 label, so as to satisfy the

consistency constraints
∑
α∈[k]e,αv=i ye,α = xv,i. This is possible to do greedily, since as long

as we have
∑
α∈[k]e ye,α < 1, there is some label for each vertex such that

∑
α∈[k]e,αv=i ye,α <

xv,i, and so we can increase the variable ye,α for the corresponding assignment. This achieves
the objective value of

∑
v∈V

∑k
i=1 c(v, i)xv,i +

∑
e∈E w(e)(1 −

∑k
i=1 minv∈e xv,i), identical

to that of LE-Rel. On the other hand, minv∈e xv,i is the maximum value that we can assign
to ye,(i,i,...,i) without violating the consistency constraints, so the contribution of hyperedge
e cannot be lower than 1−

∑k
i=1 minv∈e xv,i, just like in LE-Rel.
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The work of [7] implies that for any variant of Min CSP including the Not-Equal predicate
(which is the case here), it is Unique-Games-hard to achieve any approximation better than
the integrality gap of the Local Distribution LP. Therefore, the LP presented here (in either
equivalent form) is in some sense the optimal tool to consider when developing approximation
algorithms for the Hypergraph Labeling problem.

4.2 A Simplex Coloring Conjecture
In this section, we describe a conjecture that would imply an integrality gap close to k − 1
for the k-uniform Hypergraph Labeling problem with label set [k].
Sperner’s Simplex example. Let q ≥ 1 be an integer and consider the (k−1)-dimensional
simplex defined by

∆ =
{

x = (x1, x2, . . . , xk) ∈ Rk : x ≥ 0,
k∑
i=1

xi = q

}
.

We consider a vertex set of all the points in ∆ with integer coordinates:

V =
{

a = (a1, a2, . . . , ak) ∈ Zk : a ≥ 0,
k∑
i=1

ai = q

}
.

We define an (unweighted) k-uniform hypergraph H = (V,E) on this vertex set whose
hyperedges are indexed by b ∈ Zk+ such that

∑k
i=1 bi = q − 1: we have

E =
{
e(b) : b = (b1, b2, . . . , bk) ∈ Zk,b ≥ 0,

k∑
i=1

bi = q − 1
}

where
e(b) = {(b1 + 1, b2, . . . , bk), (b1, b2 + 1, . . . , bk), . . . , (b1, b2, . . . , bk + 1)}.

For each vertex a ∈ V , we have a list of admissible labels L(a), which is

L(a) = {i ∈ [k] : ai > 0}.

Formally, in the setting of the Hypergraph Labeling problem, we define the assignment cost
to be c(a, i) = 0 whenever i ∈ L(a) and c(a, i) = ∞ otherwise. We also define the edge
weights to be w(e) = 1 for all e ∈ E.

We call a labeling ` : V → [k] Sperner-admissible if `(a) ∈ L(a) for each a ∈ V .
The reader may notice that this is a restriction identical to the framework of Sperner’s
Lemma [22], where the points on each lower-dimensional face can be labeled only with
colors corresponding to vertices of that face. The conclusion of Sperner’s Lemma is that
there must exist a cell (a scaled copy of the simplex ∆) whose vertices have all k colors. We
remark that this cell might not be a member of E since E consists only of scaled copies of
∆ without rotation. Nevertheless, we need a different statement here.
I Conjecture 12. For any Sperner-admissible labeling ` : V → [k], there are at least

(
q+k−3
k−2

)
hyperedges e ∈ E that are not monochromatic under `.
Let us comment on where the expression

(
q+k−3
k−2

)
comes from. The total number of hy-

peredges in E is the number of partitions of q−1 into a sum of k nonnegative integers. By a
well-known combinatorial argument, this is equal to the number of choices of k− 1 barriers
from among (q − 1) + (k − 1) points and barriers, which is |E| =

(
q+k−2
k−1

)
. Similarly, the
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number of hyperedges that are adjacent to a given facet of the simplex (e.g. those satisfying
bk = 0) is equal to the number of hyperedges in a similarly defined (k − 2)-dimensional
simplex, which is

(
q+k−3
k−2

)
. We conjecture that the labeling minimizing the number of non-

monochromatic hyperedges is one that labels all vertices a with a1 > 0 by label 1, and then
it labels all vertices with a1 = 0 arbitrarily (subject to the restrictions given above). Under
this labeling, all the hyperedges e(b) such that b1 > 0 are labeled monochromatically by 1.
The only hyperedges that receive more than 1 label are those where b1 = 0, and the number
of such hyperedges is

(
q+k−3
k−2

)
as we argued above.

Implications for the integrality gap. Let us see what this conjecture would imply for the
Hypergraph Labeling problem. We can view the geometric description above naturally as an
LP solution for the Hypergraph Labeling problem where vertex a is mapped to xa = 1

qa. By
construction, for each point xa the nonzero coordinates are exactly those in the admissible
list L(a), so the assignment cost of this LP solution is

∑
v∈V c(v, i)xv,i = 0. To compute

the cut cost, consider a single hyperedge e(b). The contribution of this hyperedge is

1−
k∑
i=1

min
v∈e(b)

xv,i = 1−
k∑
i=1

1
q
bi = 1

q

since we have
∑k
i=1 bi = q − 1 for every hyperedge e(b). Thus, each hyperedge contributes

1
q to the LP cost and in total we have

LP = 1
q
|E| = 1

q

(
q + k − 2
k − 1

)
.

In contrast, Conjecture 12 implies that for any feasible solution, at least
(
q+k−3
k−2

)
hyperedges

must be non-monochromatic and hence OPT ≥
(
q+k−3
k−2

)
. For q →∞, we obtain

OPT

LP
=
(
q+k−3
k−2

)
1
q

(
q+k−2
k−1

) = q

q + k − 2(k − 1)→ k − 1.

So Conjecture 12 implies that the integrality gap can be arbitrarily close to k − 1 and
consequently any approximation algorithm with a factor below k−1 would refute the Unique
Games Conjecture [7].

4.3 Proof of Conjecture 12 for k = 3
I Proposition 13. In the example above for k = 3 and q ≥ 1, for any Sperner-admissible
labeling ` : V → [3] there are at least q triangles in E that are not monochromatic.

Proof: We prove this statement by induction on q. If q = 1, then we have only one
hyperedge in E which is required to be labeled (1, 2, 3), so the statement holds.

If q > 1, let V ′ = V \ {a ∈ V : a1 = 0} and E′ = E ∩
(
V ′

3
)
. Observe that H ′ = (V ′, E′) is

the same hypergraph that our construction gives for q − 1, but the labeling restrictions are
somewhat different. In particular, in V the bottom row (vertices with a1 = 0) is allowed to
be labeled only by colors {2, 3}, while in V ′ the bottom row (vertices with a1 = 1) can be
labeled by all 3 colors.

Consider any labeling ` : V → [3]. We distinguish two cases. If there is no vertex a ∈ V ′
such that a1 = 1 and `(a) = 1, then the labeling on V ′ is Sperner-admissible and we can
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V ′

V

1

2 3

1

1

2

2

1

3

3

3

2 2 3 3

1

2 3

2 2 3

Figure 1 A Sperner-admissible coloring for k = 3 and q = 5. The set E of hyperedges consists
of the shaded triangles. At least q = 5 triangles must be non-monochromatic (in gray). The sets V
and V ′ are as in the proof.

apply induction to H ′ = (V ′, E′). The inductive hypothesis says that there are at least q−1
non-monochromatic triangles in E′. Moreover, the bottom row of V is colored {2, 3} and
its endpoints have different colors. Therefore, there is an edge in the bottom row which is
labeled {2, 3}. This gives 1 additional non-monochromatic triangle in E \ E′, for a total of
q non-monochromatic triangles in E.

The remaining case is that there are some vertices in the bottom row of V ′ (a1 = 1),
labeled `(a) = 1. Let the number of such vertices be s. Let us define a modified coloring
`′ : V ′ → {2, 3} where

`′(a) = `(a) if a1 > 1 or `(a) 6= 1,
`′(a) = 2 if `(a) = 1, a1 = 1 and a2 > 0,
`′(a) = 3 if `(a) = 1, a1 = 1 and a2 = 0 (which implies a3 = q − a1 − a2 > 0).

To summarize, starting from `, we changed s labels in the bottom row of V ′ from 1 to 2
or 3. How many non-monochromatic triangles could we have added this way? The only
new non-monochromatic triangles under `′ are those that were labeled (1, 1, 1) under ` and
they were adjacent to the bottom row. There could have been at most s− 1 such triangles,
because each of them contains two vertices of the bottom row and the leftmost and rightmost
vertex labeled 1 can appear only once in such a triangle. Therefore, we added at most s− 1
non-monochromatic triangles under `′ compared to `.

Now, `′ is a Sperner-admissible labeling of H ′ = (V ′, E′). By the inductive hypothesis,
there are at least q−1 non-monochromatic triangles in E′ under `′. Consequently, there are
at least (q − 1) − (s − 1) = q − s non-monochromatic triangles in E′ under the labeling `.
In addition, there are s non-monochromatic triangles in E \ E′, since every vertex labeled
1 in the bottom row of V ′ contributes one such triangle (its neighbors in the bottom row of
V cannot be labeled 1). Therefore, there are at least q non-monochromatic triangles in E
under `. �
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A Basic lemmas

The following lemmas are folklore. We include the proofs for completeness.
I Proposition 14. For every non-negative submodular function f : 2V → R+, the set L =
{S ⊆ V : f(S) = 0} forms a lattice, i.e., it is closed under unions and intersections.
Proof: Let f(A) = f(B) = 0. Then f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) = 0, and f is
nonnegative, so we must have f(A ∪B) = f(A ∩B) = 0 as well. �

I Proposition 15. Let f : 2V → R be a submodular function. Let g : 2V → R be the function
such that g(S) = f(V \ S) for all S ⊆ V . Then g is also submodular.
Proof: Consider any two sets A and B. Using the submodularity of f , we have

g(A) + g(B) = f(V \A) + f(V \B)
≥ f((V \A) ∩ (V \B)) + f((V \A) ∪ (V \B))
= f(V \ (A ∪B)) + f(V \ (A ∩B))
= g(A ∪B) + g(A ∩B).

�

I Proposition 16. Let f1, f2 : 2V → R be submodular functions. Then f(S) = f1(S)+f2(V \
S) is also submodular.
Proof: By Proposition 15, g2(S) = f2(V \ S) is a submodular function. Hence, f(S) =
f1(S) + g2(S) is also submodular. �

I Proposition 17. Let f : 2V → R be a submodular function. Let f ′ be the following function:
f ′(S) = f(S) + f(V \ S) for each set S ⊆ V . Then f ′ is submodular and symmetric.
Proof: We have f ′(V \S) = f(V \S)+f(S) = f ′(S) so f ′ is symmetric. By Proposition 15,
f ′ is also submodular. �

B Hardness of Monotone-restricted MSCA

In this section, we show that Monotone-restricted MSCA is Set Cover hard even if the assign-
ment cost functions gi are modular and the separation cost function h is symmetric. This
shows that the factor of logn in Theorem 11 is necessary. In fact, for the special case of
Monotone-restricted MSCA where the separation cost function h is symmetric submodular,
it was already known that an O(logn)-approximation can be achieved [3].

I Theorem 18. There is an approximation preserving reduction from the Set Cover problem
to the special case of Monotone-restricted MSCA in which each assignment cost function
gi is modular and the separation cost function h is symmetric. Moreover, each function gi
satisfies gi(S) =

∑
v∈S c(v, i), where c(v, i) is either zero or infinity. The function h satisfies

h(A) = 0 if A ∈ {∅, V } and h(A) = 1 otherwise.

I Remark. The function h : 2V → R that satisfies h(A) = 0 if A ∈ {∅, V } and h(A) = 1
otherwise, is the cut function of a hypergraph on the vertex set V that has a single hyperedge
containing all the vertices. This function is known to be symmetric submodular, which is
easy to verify directly as well.
Our reduction is based on the reduction of Svitkina and Tardos [24] for Monotone MSCA.
Consider an instance of Set Cover consisting of a set V = {v1, . . . , vn} of n elements and a
collection S = {S1, . . . , Sk} of k sets. We construct an instance of Monotone-restricted MSCA
as follows. The ground set is the set V of elements in the Set Cover instance. We have a
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label i for each set Si in S. For each element v and each label i, we have an assignment cost
c(v, i) that is equal to zero if v ∈ Si and ∞ otherwise. The assignment cost function gi for
the i-th label is defined as follows: gi(A) =

∑
v∈A c(v, i) for each set A ⊆ V . The separation

function h is defined as above: h(A) = 0 if A ∈ {∅, V } and h(A) = 1 otherwise.
Note that we may assume that there does not exist a set in S that covers all the elements,

since otherwise the solution consisting of such a set is an optimal solution (and this does
not happen in hard instances of Set Cover).

I Lemma 19. Suppose that there does not exist a set in S that covers all the elements. Then
the Set Cover instance has a solution consisting of t sets if and only if the Monotone-restricted
MSCA instance has a solution of cost t.

Proof: Consider a solution S ′ ⊆ S for the Set Cover instance. We construct a labeling
A1, . . . , Ak inductively as follows. We let A1 = S1 if S1 ∈ S ′ and A1 = ∅ otherwise.
Consider an index i ≥ 2. We let Ai = Si \ (A1 ∪ · · · ∪Ai−1) if Si ∈ S ′ and Ai = ∅ otherwise.

Note that the resulting sets A1, . . . , Ak are disjoint and they cover all the elements. Since
Ai ⊆ Si, we have c(v, i) = 0 for each v ∈ Ai and thus gi(Ai) = 0. Additionally, h(Ai) = 1
only if Si ∈ S ′. Therefore the total separation cost of the labeling is at most |S ′|.

Conversely, consider a solution A1, . . . , Ak for the Monotone-restricted MSCA instance.
Note that we may assume that the solution has finite cost and thus gi(Ai) = 0 for all labels
i. It follows that Ai ⊆ Si for each i. We construct a set cover S ′ as follows. For each i such
that Ai is non-empty, we add Si to S ′. Since the sets Ai cover all the elements and Ai ⊆ Si
for each i, the sets of S ′ cover all the elements as well. Since V /∈ S, Ai 6= V for all i. Thus
the cost of the labeling is equal to the number of non-empty sets in the labeling, which in
turn it is equal to |S ′|. �
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