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Abstract. We study the Unsplittable Flow problem (UFP) on trees with
a submodular objective function. The input to this problem is a tree with
edge capacities and a collection of tasks, each characterized by a source
node, a sink node, and a demand. A subset of the tasks is feasible if
the tasks can simultaneously send their demands from the source to the
sink without violating the edge capacities. The goal is to select a feasible
subset of the tasks that maximizes a submodular objective function.
Our main result is an O(k logn)-approximation algorithm for Submodu-
lar UFP on trees where k denotes the pathwidth of the given tree. Since
every tree has pathwidth O(logn), we obtain an O(log2 n) approximation
for arbitrary trees. This is the first non-trivial approximation guarantee
for the problem and it matches the best approximation known for UFP
on trees with a linear objective function.
Our main technical contribution is a new geometric relaxation for UFP
on trees that builds on the recent work of [Bonsma et al., FOCS 2011;
Anagnostopoulos et al., SODA 2014] for UFP on paths with a linear
objective. Our relaxation is very structured and we can combine it with
the contention resolution framework of [Chekuri et al., STOC 2011]. Our
approach is robust and extends to several related problems, such as UFP
with bag constraints and the Storage Allocation Problem.
Additionally, we study the special case of UFP on trees with a linear
objective and upward instances where, for each task, the source node is
a descendant of the sink node. Such instances generalize UFP on paths.
We build on the work of [Bansal et al., STOC 2006] for UFP on paths
and obtain a QPTAS for upward instances when the input data is quasi-
polynomially bounded. We complement this result by showing that, un-
like the path setting, upward instances are APX-hard if the input data
is arbitrary.

1 Introduction

Submodular functions are a rich class of functions with many applications both in
theory and in practice. On the theoretical side, submodularity is a key concept
? Partially supported by the Danish Council for Independent Research DFF-
MOBILEX mobility grant.
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in combinatorial optimization and economics with deep mathematical conse-
quences. On the practical side, submodular functions arise naturally in a variety
of settings such as data summarization, sensor placement, inference in graphical
models, image segmentation, social networks, auctions, and exemplar clustering
[22, 20, 21, 19, 6, 16, 17, 14].

One of the main reasons for the success of submodularity is that it combines
a significant modeling power with a certain degree of tractability. This delicate
balance between generality and tractability has made submodular functions very
appealing, and there has been a significant interest in optimizing submodular
functions subject to a variety of constraints.

The traditional approach to submodular maximization makes extensive use
of the classical Greedy algorithm of Nemhauser, Wolsey, and Fisher [23]. The
Greedy algorithm and its continuous counterparts are well-suited for constraints
such as cardinality, matroids, and knapsack, but they fail to handle other types
of natural constraints. Thus there is an increasing need to develop algorithms
for general constraints.

A major contribution in this direction comes from the work of Chekuri et al.
[13] which has developed a powerful framework for submodular function maxi-
mization with general constraints. Their framework leverages the power of math-
ematical programming relaxations coupled with structured rounding schemes
called contention resolution (CR) schemes. In particular, it unifies several pre-
vious results for special cases (e.g., matroids or knapsack constraints) and thus
captures the types of constraints for which we know how to optimize submodu-
lar functions. This has led to the following very interesting meta-question: For
which type of constraints can we provide structured relaxations that admit good
CR schemes? In this paper, we address this question in the specific case of the un-
splittable flow problem (UFP). In this setting, we are given an edge-capacitated,
undirected graph and a collection of tasks; each task is specified by a source ver-
tex, a sink vertex, and a demand. The goal is to select a maximum profit subset
of the tasks that can be routed unsplittably, i.e., the task’s demand is routed
along a single path from the source to the sink subject to the edge capacities.

The problem is well-studied, and most of the results focus on linear objec-
tives. Despite its apparent simplicity, already UFP on paths captures several
well-studied problems, including the knapsack problem (when the graph is a
single edge) and resource allocation problems. UFP is quite challenging even on
paths and trees, and one of the main reasons for the difficulty is the lack of
LP relaxations with small integrality gaps. The natural LP relaxation for the
problem has an Ω(n) integrality gap even on paths [9], and standard approaches
for strengthening the LP by adding valid inequalities fail to improve the inte-
grality gap significantly [12]. Chekuri et al. [12] gave a novel LP relaxation for
UFP on paths that strengthens the standard LP using clique type of constraints,
and they showed that it has an O(logn) integrality gap. The relaxation of [12]
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can also be extended to trees, and understanding this relaxation has been an
interesting and challenging open question4.

The design of good relaxations for UFP is motivated not only by the goal
of obtaining better approximations for linear objectives, but also by the need
of handling more general constraints and objective functions. In particular, the
current approaches for submodular objectives rely on structured relaxations with
good CR schemes. As a result, there is a discrepancy between the approxima-
tion guarantees for linear and submodular objectives. There has been a long line
of work for UFP on paths with a linear objective that led to a constant fac-
tor approximation [5, 4]; these approaches combine the standard LP relaxation
with dynamic programming techniques. Chekuri et al. [12] give a combinato-
rial greedy algorithm for UFP on trees with a linear objective that achieves an
O(log2 n) approximation. In contrast, for UFP with a submodular objective, only
an O(logn) approximation is known for paths and no non-trivial approximation
was known for trees prior to our work. Chekuri et al. [13] consider instances
of submodular UFP on trees that satisfy a certain assumption, called the no-
bottleneck assumption (NBA)5, and they give a constant factor approximation
for such instances. However, the no-bottleneck assumption is very restrictive and
removing this restriction poses several technical challenges, particularly for the
design of mathematical programming relaxations.

Thus, there has been an extensive work on UFP on paths but relatively fewer
results on trees. Since UFP models the allocation of communication bandwidths
in networks, we believe that it is worthwhile to develop a better understanding
for more complex network topologies, such as trees. Also, submodular objective
functions are much richer than linear objectives, and can model for instance
linear objective functions with additional constraints.
Our contributions. We give the first approximation algorithm for submodular
UFP on trees and the first relaxation with a matching integrality gap. Our al-
gorithm achieves an approximation ratio of O(k logn) on trees with pathwidth
k. As each tree has pathwidth O(logn), this gives an O(log2 n)-approximation
for arbitrary trees, matching the best known result for linear objective func-
tions [12]. For several special cases of the problem, such as paths, spiders, and
caterpillars, our approximation ratio improves to O(logn) (since in those cases
k = O(1)), and such a ratio was not even known for linear objectives. Thus
our result generalizes and improves the best approximations known for UFP on
paths with a submodular objective and UFP on trees with a linear objective.

Theorem 1. There is a O(k · logn) approximation for Submodular UFP on
trees, where k is the pathwidth of the tree and n is the number of nodes in the
tree. Additionally, there is a polynomial-sized relaxation for the problem with a
matching integrality gap.
4 Friggstad and Zao [15] showed an O(log2 n) upper bound on the integrality gap of
the relaxation of [12] for UFP on trees with a linear objective. This upper bound is
shown via a primal-dual analysis which is not suitable for designing a CR scheme.

5 The no-bottleneck assumption states that the maximum demand of any task is at
most the minimum capacity of any edge.



4 Adamaszek et al.

We obtain our result via a new geometric LP relaxation for UFP on trees that
is very different from the clique-based approach of [12]. Our relaxation builds
on a powerful two-dimensional geometric viewpoint developed in the context of
the UFP problem on paths with a linear objective [5]. This viewpoint connects
UFP to structured instances of the Maximum Independent Set of Rectangles
(MISR) problem [1, 10, 11], which in turn allows one to handle instances of UFP
on paths for which the standard LP relaxation fails. The geometry was exploited
to obtain a combinatorial algorithm for such instances that is based on dynamic
programming. A related two-dimensional visualization was used in [2], again as
the basis of a dynamic program. These approaches, however, break down for
submodular UFP on trees; in the two-dimensional viewpoints, an input path
corresponds to a subinterval of the x-axis and this is no longer meaningful for
trees. Also, dynamic programming approaches are not suitable for submodular
objective functions. In contrast to previous work, the focus in this paper is to
translate these geometric insights to an LP relaxation for UFP on trees. We give
a CR scheme for our relaxation that can be combined with the framework of
[13] to obtain approximation guarantees for submodular objectives. The core of
our reasoning is that our LP-formulation not only decides which tasks to select,
but also computes a drawing of them as non-overlapping rectangles on suitable
subpaths of the tree. We remark that our LP is a polynomial-sized extended
formulation and, to the best of our knowledge, this is the first time that an
extended formulation is used in the context of CR schemes.

A very important feature of the CR scheme framework is that it allows one
to combine several constraints, thus extending the applicability of our approach
to two generalized settings. First, in the Submodular Bag-UFP on trees problem,
the input tasks are partitioned into bags and a feasible solution is allowed to
select at most one task per bag [8]6. We obtain an O(k logn) approximation for
Submodular Bag-UFP on trees of pathwidth k. Second, we obtain an O(logn)
approximation for the Submodular Storage Allocation Problem on trees. This
problem has the same input as UFP, with additional requirements that each
selected task gets a private subinterval of width equal to the demand, contained
in [0, ue) for each edge e used by the task. We require that these subintervals
are disjoint for any two tasks sharing an edge of the tree. Intuitively, this models
that each task gets a contiguous portion of the resource spectrum.

Finally, we round up our contributions with the following results for a special
case of UFP on trees with a linear objective function. An instance of UFP on tree
is an upward instance if the input tree is rooted and, for every task, the source
node of the task is an ancestor of the sink node (or vice-versa).

Theorem 2. There is a (1 + ε) approximation algorithm for upward instances
of UFP on trees with running time npoly(log(n/ε)) log(dmax/dmin). In particular, if
the demands are quasi-polynomially bounded, this gives a QPTAS.

6 For linear objective functions, the bag constraints can be “glued” with the objective
function, yielding an instance of Submodular UFP. It is not clear though whether
this holds in general for any initial submodular objective function.
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Unlike for UFP on paths [4], we show that the dependency of the running
time on the term log(dmax/dmin) can not be removed for upward instances of
UFP on trees. In fact, assuming the Exponential Time Hypothesis (ETH), the
running time of our approximation scheme is essentially tight. This illustrates
an inherent distinction between paths and upward instances on trees. Also, it
shows that this is one of the very rare problems that allows a QPTAS on quasi-
polynomially bounded input data but becomes APX-hard on general instances.
Theorem 3. There is a universal constant ε0 such that for all δ > 0 any (1+ε0)-
approximation algorithm for upward instances of UFP on trees runs in time of
at least npoly(logn) log1−δ(dmax/dmin), unless ETH fails. Also, the problem is APX-
hard.

Other related work. The problem of maximizing submodular functions subject
to various constraints is very well-studied and several results are known; we refer
the reader to [13] for an overview. UFP with a linear objective is also extensively
studied. Due to space limitation, we omit a detailed discussion of these results.
The best approximation is a (2 + ε) approximation [2] and a QPTAS [3] for UFP
on paths, and an O(log2 n) approximation for UFP on trees [12].

Formal problem definitions. We consider the Unsplittable Flow problem on trees
(UFP-tree). The input consists of an undirected tree T = (V,E) with edge ca-
pacities ue ∈ Z+, and a set of tasks T . Each task i ∈ T is characterized by
a start vertex si ∈ V , an end vertex ti ∈ V , a demand di ∈ Z+, and a profit
wi ∈ Z+. For each task i ∈ T denote by pi the unique path between si and ti
in T . A feasible solution is a subset of the tasks T ′ ⊆ T satisfying the capacity
constraints

∑
i∈T ′ : pi3e di ≤ ue for each edge e ∈ E. The goal is to find a feasible

solution maximizing w(T ′) :=
∑
i∈T ′ wi.

The Submodular UFP-tree problem is a generalization of UFP-tree, where in-
stead of a linear weight function w we are given a submodular objective function
f : 2T → R+ and the goal is to select a feasible subset T ′ ⊆ T maximizing f(T ′).
A function f : 2T → R+ is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B)
for any two subsets A,B ⊆ T . We assume that f is given as a value oracle, i.e.,
we are given access to an oracle that takes as input any set S and outputs f(S).

In the Bag-UFP-tree problem, in addition to the input of UFP-tree, the input
tasks are partitioned into sets called bags and we are allowed to select at most one
task from each bag. We also consider the Storage Allocation Problem (SAP-tree).
The input to SAP-tree is the same as for UFP-tree, with additional requirement
that for each selected task i in T ′ ⊆ T we have to compute a value h(i) ≥ 0 such
that h(i)+di ≤ ue for each edge e ∈ pi, and [h(i), h(i)+di)∩[h(i′), h(i′)+di′) = ∅
for any two tasks i, i′ ∈ T ′ with pi ∩ pi′ 6= ∅. This corresponds to giving each
task i ∈ T ′ the portion [h(i), h(i) + di) of the resource spectrum.

2 Geometric Relaxation for Submodular UFP on Trees

In this section, we present our O(k · logn) approximation algorithm for Sub-
modular UFP-tree. We first describe a pseudo-polynomial sized LP relaxation for
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UFP-tree with a linear objective function. In Section 2.2, we show how to reduce
the size of the LP to polynomial. In Section 2.3, we extend our algorithm to a
submodular objective function. We defer the description of our results for the
Submodular Bag-UFP and SAP problems to the full version of this paper.

2.1 A Pseudo-polynomial Sized Relaxation

In the following, we give a geometric LP-relaxation for UFP-tree with a linear
objective function. The relaxation has pseudo-polynomial size.
Reduction to intersecting instances. First, we reduce the general case to
the case in which the path of each task contains the root of the tree. We call such
instances intersecting instances. Chekuri et al. [12] showed that, via a standard
centroid decomposition, we can reduce an arbitrary instance to a collection of
intersecting instances at a loss of O(logn) in the approximation ratio.

Lemma 1 (Chekuri et al. [12]). Suppose that there is a polynomial time algo-
rithm for UFP-tree that achieves an α-approximation on intersecting instances.
Then there is a polynomial time O(α· logn) approximation algorithm for the
problem on arbitrary trees. Moreover, this holds for the generalization of the
problem in which the objective function is sub-additive7.

Partitioning into paths. In the remainder of this section, we assume that
we are given an intersecting instance on a tree T of pathwidth k. Intuitively, a
graph has pathwidth k if it has a tree-decomposition of width k in which the
tree describing the decomposition is a path (see e.g. [18] for a formal definition).
Note that every tree has pathwidth at most O(logn) [18]. Our goal is to compute
a O(k)-approximation for such instances, so that using Lemma 1 we obtain a
O(k logn)-approximation for the general problem. First, we split a given tree
into a collection P of paths such that each input task shares an edge with at
most O(k) paths in P. Then, we define a new LP relaxation for the problem with
a randomized rounding with alteration strategy. The relaxation will be based on
a two-dimensional geometric viewpoint for each path in P.

For our path partition P we require that each path P ∈ P is an upward path,
i.e., one endpoint of the path is an ancestor in T of the other endpoint. The
following observation follows from the property of an intersecting instance.

Observation 1 For each task i and each upward path P , if i uses an edge of P
then it uses the top edge of P .

Definition 1. Consider an intersecting instance of UFP-tree on a rooted tree
T . Let P = {P1, . . . , P`} be a collection of paths in T . We say that P is a K-nice
splitting if it has the following properties:
– The paths in P are edge-disjoint, upward paths, partitioning the edges of T .

7 A set function f : 2V → R is sub-additive if f(A ∪ B) ≤ f(A) + f(B) for any two
disjoint sets A and B. Note that a non-negative submodular function is sub-additive.
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– Each task uses an edge of at most K paths in P.

The next lemma shows the existence of a O(k)-nice splitting where k is the
pathwidth of T .

Lemma 2. Consider an intersecting instance I of UFP-tree on a rooted tree T
of pathwidth k. There is a polynomial time algorithm that constructs an O(k)-
nice splitting for I.

Geometric viewpoint. Let P = {P1, . . . , P`} be an O(k)-nice splitting of the
instance that is guaranteed by Lemma 2. We use P to write an LP relaxation
for the problem, based on the following geometric viewpoint. For a path P ∈ P,
let TP be the set of tasks from T using an edge of P .

If we restrict the tasks in our instance to a path P in T , we get an instance
of the Unsplittable Flow problem on paths (UFP-path) in a natural way. For
each task i ∈ TP , the UFP-path instance has a corresponding task whose path is
pi ∩ P . Notice that each task i ∈ TP uses the top edge of P , so we can assume
w.l.o.g. that when traversing the edges of P from top to bottom, their capacities
are non-increasing. We call such an instance a one-sided staircase instance.

We claim that for such an instance of UFP-path on a path P , each feasi-
ble subset of the tasks can be represented as a collection of non-overlapping
rectangles drawn underneath the capacity profile, such that each task i has a
corresponding rectangle of height di whose projection on P is the path of i. We
interpret these rectangles as open sets. We call such a drawing a representing
drawing.

Lemma 3. Consider an instance of UFP-path on a path P in which all of the
tasks use the first edge of P . Any feasible subset of the tasks admits a representing
drawing.

LP relaxation. Using this geometric viewpoint, we write an LP relaxation for
intersecting instances of UFP-tree as follows. Recall that we have an O(k)-nice
splitting P of the tree T . We add constraints to the relaxation to enforce that
there is a representing drawing for the selected tasks on each path P ∈ P; we
remark that these constraints will automatically enforce the capacity constraints.

Variables. The IP has the following variables. For each task i, we have a
variable xi ∈ {0, 1} with the interpretation that xi = 1 if task i is in the solution.
For each path P ∈ P, each task i ∈ TP , and each height h, we have a variable
y(i, h, P ) ∈ {0, 1} with the interpretation that y(i, h, P ) = 1 if the rectangle for
task i is drawn at height h in the representing drawing for P . The allowed heights
h are the ones satisfying h+ di ≤ ue for each edge e ∈ pi ∩P , i.e., such that the
rectangle fits under the capacity profile. We introduce variables y(i, h, P ) only
for such heights.

Constraints. For each path P ∈ P and each task i ∈ TP , we have a constraint∑
h s.t. ∀e∈pi∩P : h+di≤ue

y(i, h, P ) = xi . (1)
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For each path P ∈ P, we add constraints enforcing that in the representing
drawing for P the rectangles do not overlap. This is achieved by imposing con-
straints modeling that any point q underneath the capacity profile is covered by
at most one rectangle. Since all tasks use the first edge of P , it suffices to con-
sider only points q on a vertical line going through the first edge of P , i.e., points
q = (x0, h) where x0 is an arbitrary x-coordinate strictly between the first and
the second vertex of P and h is an integral height that is at most the capacity
of the first edge of P . We use R(i, h, P ) to denote a rectangle representing task i
on P drawn at height h, i.e., R(i, h, P ) is a rectangle of height di, with a bottom
y-coordinate h, and whose projection on the x-axis equal pi ∩ P .

For each path P ∈ P and each point q = (x0, h) as described above we have
a constraint ∑

i∈TP

∑
(h′ : q∈R(i,h′,P ))

y(i, h′, P ) ≤ 1. (2)

We refer to the resulting LP relaxation as Rectangle-LP(P). It clearly has pseudo-
polynomial complexity. In the following, we show an O(k)-approximation based
on LP rounding.
Rounding. Let (x, y) be a feasible solution to Rectangle-LP(P). We use a ran-
domized rounding with alteration strategy (as introduced in [7] to select a subset
of the tasks and a representing drawing for them on each path P ∈ P. We pro-
ceed in two phases. In the selection phase, we pick a subset of the tasks and
determine a drawing for them. The drawing in this phase may contain overlap-
ping rectangles. In the alteration phase, we pick a subset of the selected tasks
whose corresponding rectangles do not overlap.

Selection phase. We select a (not necessarily feasible) set S of tasks. For
each task i, we add i to S independently at random with probability xi/(c1 · k),
where c1 > 1 is a sufficiently large constant that will be determined later. We
refer to the tasks in the random sample S as the selected tasks. Additionally,
for each task i ∈ S and each path P ∈ P such that i ∈ TP , we choose a
rectangle representing the drawing of i on P , as follows. We choose a height h for
the rectangle independently at random according to the probability distribution
{y(i, h, P )/xi}h. Note that the constraints (1) ensure that the values y(i, h, P )/xi
form a probability distribution over the allowed heights h.

Let h(i, P ) be the height chosen for task i on the path P ; we use the rectangle
R(i, h(i, P ), P ) to represent task i on the path P . Let R denote the resulting
drawing, i.e., R is the collection of rectangles selected for the tasks in S. Note
that each rectangle R(i, h, P ) is in R with probability xi · y(i,h,P )

xi
= y(i, h, P ).

Alteration phase. In the alteration phase, we select a subset S′ ⊆ S of the
tasks such that the rectangles R′ ⊆ R representing them on the paths are
non-overlapping. Recall that we view the rectangles as open sets and thus two
rectangles overlap iff they contain a common point in their interiors. We consider
the paths of P in an arbitrary order. For each P ∈ P, let S(P ) = {i ∈ S : i ∈
TP }. Our goal is to choose a subset S′(P ) ⊆ S(P ) such that the rectangles
{R(i, h(i, P ), P ) : i ∈ S′(P )} are non-overlapping. We choose the set of accepted
tasks S′(P ) as follows.
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We order the tasks in S(P ) in non-increasing order according to their de-
mands, breaking ties arbitrarily. We consider the tasks in this order. Let i be the
current task. We add i to S′(P ) if the rectangle R(i, h(i, P ), P ) does not overlap
with any of the rectangles {R(i′, h(i′, P ), P ) : i′ ∈ S′(P )} for the tasks we have
accepted so far.

We refer to the tasks in S′(P ) as the tasks accepted on P , and we refer to
the tasks in S(P )− S′(P ) as the tasks rejected on P . The following key lemma
shows that each selected task i ∈ S(P ) is accepted with a constant probability.
The main observation behind the lemma is that, for each task j that appears
before i in the ordering, if the rectangles R(i, h(i, P ), P ) and R(j, h(j, P ), P )
overlap, then R(j, h(j, P ), P ) contains the top left or the bottom left corner of
R(i, h(i, P ), P ) since dj ≥ di; this allows us to check the constraints only at two
points.

Lemma 4. For any path P and task i ∈ TP , Pr[i /∈ S′(P ) | i ∈ S(P )] ≤
2/(c1 · k).

Finally, we use the sets {S′(P ) : P ∈ P} to select a subset S′ ⊆ S such that
the rectangles R′ ⊆ R representing S′ on each path of P are non-overlapping.
We set S′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S′(P )}, i.e., a task is accepted if it was
accepted for all paths. It follows from Lemma 4 and the union bound that each
selected task is rejected with probability at most |{P ∈ P : i ∈ TP }| · 2

c1k
≤ 1/2

if c1 is sufficiently large8.
We summarize the rounding step in the following lemma.

Lemma 5. Consider an instance of UFP-tree. Suppose that the instance has a
K-nice splitting P and let (x, y) be a feasible solution to Rectangle-LP(P). Let
S be a random sample of the tasks such that each task i is in S independently
at random with probability xi/(4K). There is a polynomial-time algorithm that
constructs a feasible solution S′ ⊆ S such that, for each task i, Pr[i ∈ S′ | i ∈
S] ≥ 1/2.

For linear objective functions, this yields a pseudo-polynomial LP-based
O(k)-approximation for intersecting instances of UFP-tree and, with Lemma 1,
a O(k logn)-approximation for arbitrary instances of UFP-tree.

2.2 A Polynomial-sized Relaxation

In this section, we show how to turn a pseudo-polynomial sized LP in the previous
section to a polynomial sized one. Notice that the pseudo-polynomial running
time is caused by the fact that the rectangles for the tasks in T can be drawn
at pseudo-polynomially many heights. We show that restricting to a polynomial
sized set of heights incurs only an O(1) factor loss in the approximation ratio.
Task classification. For a path P ∈ P and a task i ∈ TP , let bP (i) :=
mine∈pi∩P ue be the bottleneck capacity of i on P . We say that a task i ∈ TP is
big on P if di > 1

16 · bP (i). Otherwise we say that i is small on P .
8 More precisely, if P is ck-nice, then this happens when c1 ≥ 4c.
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Allowed heights. For each path P ∈ P and task i ∈ TP , we will now construct
a set H(i, P ) of allowed heights for drawing the rectangle corresponding to i on
P . If i is big on P , we set H(i, P ) = {bP (i) − di}, i.e., the only allowed height
is obtained by drawing the rectangle for i as high as possible underneath the
capacity profile. If i is small on P , for the integer j such that bP (i) ∈ [2j , 2j+1), we
set H(i, P ) =

⋃
r∈N0: rd2j−3/ne≤2j−1{2j−1 + rd2j−3/ne}. We have |H(i, P )| ≤ 8n.

Let H be the union of all sets H(i, P ). By construction, H has polynomial size.
Restricted LP. Denote by Restricted-Rectangle-LP(P, H) the LP relaxation
where we introduce variables y(i, h, P ) and the constraints (1) and (2) only for
the heights h ∈ H. As H has polynomial size, the size of Restricted-Rectangle-
LP(P, H) is also polynomial. The following lemma argues that the LP restricted
to these heights still admit a good fractional solution. Combining it with Lemma
5 yields the desired polynomial time approximation algorithm for linear UFP-
tree.

Lemma 6. For each feasible integral solution T ′ ⊆ T , there is a feasible frac-
tional solution (x, y) for Restricted-Rectangle-LP(P, H) s.t. (∀i ∈ T ′)xi = 1

64 .

2.3 Submodular Objective via the CR Scheme Framework

In this section, we extend our results to submodular objectives by combining the
results from the previous section with the framework from [13].

Let N be a finite ground set. Let I ⊆ 2N be a family of subsets of N , and
PI a convex relaxation for the constraints imposed by I, such that PI is down-
monotone and solvable.9 Let x ∈ PI and let support(x) = {i ∈ N : xi > 0}. For
any b ∈ [0, 1], let b ·PI = {bx : x ∈ PI}. Let R(x) be a random sample of N such
that each element i ∈ N is in R(x) independently at random with probability
xi. For a set function f : 2N → R+ let F : [0, 1]N → R+ denote the multilinear
extension of f , which is defined as F (x) := E[f(R(x))].

Definition 2 ([13]). For b, c ∈ [0, 1], a (b, c)-balanced CR scheme π for a poly-
tope PI is a procedure that for every x ∈ b · PI and A ⊆ N returns a random
set πx(A) satisfying

(i) πx(A) ⊆ support(x) ∩A and πx(A) ∈ I with probability 1, and
(ii) for all i ∈ support(x), Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c.

We use the CR schemes as in [13]: first, we compute a vector x∗ with F (x∗) ≥
Ω(max{F (x′) : x′ ∈ PI}). Then, we compute a random sample R(x) with x :=
b · x∗. We apply the CR scheme π and obtain the set πx(R(x)). We know that
for each element i we have that Pr[i ∈ R(x)] = b · x∗i and Pr[i ∈ πx(R(x)) |
i ∈ R(x)] ≥ c. Thus, Pr[i ∈ πx(R(x))] ≥ bc · x∗i which can be used to show that
E[f(πx(R(x)))] ≥ Θ(bc) ·max{F (x′) : x′ ∈ PI}.
9 We call a polytope P ⊆ [0, 1]N down-monotone if for all z, z′ ∈ [0, 1]N we have that

z ≤ z′ and z′ ∈ P implies that z ∈ P. The polytope is solvable if one can optimize
any linear function over P in polynomial time.
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Theorem 4 ([13]). Let f : 2N → R+ be a submodular function. Let I ⊆ 2N
be a family of feasible solutions and let PI ⊆ [0, 1]N be a convex relaxation for
I that is down-monotone and solvable. Suppose that there is a (b, c)-balanced
CR scheme for PI . Then there is a polynomial time randomized algorithm that
constructs a solution I ∈ I such that

E[f(I)] ≥ Θ(bc) ·max{F (x) : x ∈ PI}.

To apply the above framework, let P denote the set of points x for which
there exists a vector y such that (x, y) is contained in the polytope defined
by Restricted-Rectangle-LP(P,H). Clearly, P is down-monotone and solvable.
Similarly as in the case of linear objective functions, P contains a fractional
point with large profit according to F : Let T ∗ be an optimal integral solu-
tion. By Lemma 6, 1

64 · 1T ∗ ∈ P. Moreover, it is straightforward to verify that
F
( 1

64 · 1T ∗
)
≥ 1

64f(T ∗). So max{F (x) : x ∈ PI} = Ω(OPT).
By Lemma 5, there is a (1/Θ(k), 1/2)-balanced CR scheme for P. Therefore

we can apply Theorem 4 to obtain our main result for Submodular UFP-tree.
Theorem 5. There is a polynomial time O(k) approximation algorithm for Sub-
modular UFP-tree on intersecting instances and, therefore, an O(k logn) approx-
imation for arbitrary instances, where k is the pathwidth of the tree.
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