

FlyOS : Integrated Modular Avionics for Autonomous Multicopters

Image courtesy: https://www.slideteam.net/flying-drone-robot-with-two-propellers.htm

Anam Farrukh Richard West

Federated Avionics: Core Architecture communication **Mission** network Computer **Flight Management Processing** Redundant X Controller Control **Data Logging** Computer BOSTO **Bridge/Switch/Router**

Federated Avionics: Challenges

- Communication costs
 - Limited reactivity to high-frequency changes to mission objectives

Federated Avionics: Challenges

- Communication costs
 - Limited reactivity to high-frequency changes to mission objectives
- Software & hardware upgrade/replacement costs
 - Support for only simple & limited functionality

Federated Avionics: Challenges

- Communication costs
 - Limited reactivity to high-frequency changes to mission objectives
- Software & hardware upgrade/replacement costs
 Support for only simple & limited functionality
- Increased size, weight and power (SWaP)
 - Limits hardware + software redundancy

A step towards: Integrated Modular Avionics

Integrated Modular Avionics: Challenge

Isolation

Integrated Modular Avionics: Challenge

Integrated Modular Avionics: Challenge

Run-time Interference

Fault Propagation

Integrated Avionics: Core Architecture

Mission	Logger	Redundant	Flight Processing	
Computer		Controller	& Control	
Partition	Partition	Partition	Partition	
1	2	3	4	
IMA Host Software				

Integrated Avionics: Core Architecture

Integrated Avionics: Core Architecture

A Novel Design Framework Integrated Modular Avionics

Separation Kernel

Distributed System-on-a-Chip

Separation Kernel

Distributed System-on-a-Chip

Separation Kernel

Symbiotic Coexistence

Separation Kernel

Image courtesy: https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

Isolated

Regimes

FlyOS					
I/O Devices	CPU Cores	Memory			

Aero Compute Board

Camera

FlyOS Architecture: Avionic Functions

Real-Time Flight Management System (Autopilot)

Sensing Processing + Control Actuation

2

Autonomous Mission Control

Software Redundancy:

Sandboxed Architecture -

Software Redundancy:

- Function OR Timing faults
- Application redundancy
- Hot Standby activation

- Function OR Timing faults
- Application redundancy
- Hot Standby activation

- Kernel OR entire System faults
- Guest redundancy local VMM
- Replica coordination
- Device-handoff

Application-level

- Function OR Timing faults
- Application redundancy
- Hot Standby activation

FlyOS Evaluation

BirdCage : Hardware-In-the-Loop Setup

The Bird S500 Quadcopter Frame

FlyOS : Experimental Scenarios

Attitude Stabilization with an External Disturbance Face-image Detection (static) & Tracking (moving) Recover Stable Flight after a Motor fault

FlyOS : Experimental Scenarios

II : Autonomous Tracking

https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

II : Autonomous Detection & Tracking

FlyOS : Experimental Scenarios

III : Failover Control

 Stale motor updates

Stall Heartbeat

 Activate Hover-in-place

Separation-Kernel

Separation-Kernel

Separation-Kernel

Separation-Kernel

Separation-Kernel

Separation-Kernel

Thank You

