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0 Introduction

Cleanflight’s critical flight control comprises of attitude(3D orientation in
space: roll, pitch and yaw) and position(x,y and z) control. The complete
flight control loop can be approximated as a classic linear time invariant
system that can be expressed in time domain as a convolution of its input
signal(reference set point) with the impulse response of the system. The
impulse response is the natural response of a system to a unit impulse that
corresponds to the system’s transfer function(transfer gain from input to
output) in frequency domain(Z transform). The transfer function completely
characterizes a system through its poles and zeros.

In this work we conduct a detailed theoretical analysis of CF’s critical
flight control loop and derive its system level transfer function. This would
enable us to characterize our system and determine its properties in a prin-
cipled way. It would also allow us to conduct a sensitivity analysis on the
various system parameters; in particular the operating frequencies of various
component subsystems(tasks) and the PID controller gains, that affect the
overall stability of the system.

For this analysis, we only consider attitude control(orientation in 3D space
represented as rotations about the roll, pitch and yaw axis of the sensor
frame relative to the earth frame). Our current Cleanflight implementation
on SPRACINGF3 micro-controller board has an active IMU(accelerometer,
gyroscope and magnetometer) sensor chip that communicates discretized as
well as quantized sensor data values(rates of rotation, angle of rotation and
heading information) to the flight controller through an I2C bus. For po-
sition control we would need a GPS and a barometer to estimate the x, y
and z values in 3D space and will be considered in future implementations.
For the rest of this document attitude control and flight control are thus
interchangeably used.

We express Cleanflight’s attitude control as a feedback control loop where
the feedback path incorporates an Attitude and Heading Reference sub-
System(AHRS) namely Madwick&Mahony’s complimentary filter algorithm
for state estimation, to estimate the current attitude of the system from
sampled sensor(IMU+Magnetometer) data. The forward path computes the
error in current attitude from the desired attitude(reference signal) and feeds
it to the PID controller. The output of the controller is mixed with the
throttle input and fed to the motors as standard PWM signals via the ESCs.
The block diagram in Figure 1 represents the overall attitude control system
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where various critical component subsystems are marked in orange circles.
We analyse each critical subsystem in turn and derive their representative
transfer functions in frequency domain.

Figure 1: Cleanflight Flight/Attitude Control Loop
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1 Sub-System 1: Receiver Input Processing

Figure 2: Transmitter-Receiver System with Parallel PWM communication pro-
tocol used between the four main receiver channels(roll:φ, pitch:θ, yaw:ψ and
throttle:f) and the Cleanflight flight controller running on top of an spracingf3
board.

Cleanflight receives user stick inputs as radio control signals from the re-
mote transmitter for each of the Roll(rrawφ ), Pitch(rrawθ ), Yaw(rrawψ ) and
Throttle(rrawf ) commands and converts them into reference set-point angles
and rates for the PID controller. The throttle input(rrawf ), after initial pro-
cessing, is sent directly to the mixer while the roll, pitch and yaw inputs are
processed further and used in determining the attitude error for the overall
flight control loop (figure 1).
Processing of RX data within Cleanflight depends on the type of receiver
protocol used. Receiver protocols determine and control the transfer of data
between the hardware receiver and the flight controller(figure:2). Cleanflight
supports three major classes of protocols: 1. Parallel PWM(1 channel per in-
put pin), 2. PPM and 3. Serial. For the sake of simplicity in the data analysis
we consider the Parallel PWM receiver protocol, where each receiver chan-
nel is connected to a dedicated input pin of the flight controller. Data for
each axis is read from a pre-assigned channel by sampling the corresponding
GPIO pin at a fixed rate(= rx task rate).
We consider our quad to be operating under angle mode(self-level mode).
Under this mode stick deflections directly correspond to the target angle, the
drone should be inclined at, in each of the three axes; roll, pitch and yaw.
After the raw data is sampled(rraw{φ,θ,ψ,f}), an average value is calculated for
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each axis according to the equation:

rdata{φ,θ,ψ,f}[n] =
1

N

N−1∑
k=0

rraw{φ,θ,ψ,f}[n− k] (1)

where N = 3 are the number of samples. The above equation represents a
moving average filter in time domain. Taking the z transform on both sides
of the equation results in:

Rdata
{φ,θ,ψ,f}(z) =

(
1

N

N−1∑
k=0

z−k
)
Rraw
{φ,θ,ψ,f}(z), roc(Havg) ∩ roc(Rraw) (2)

The transfer function for the filter thus becomes:

Havg(z) =
Rdata
{φ,θ,ψ,f}(z)

Rraw
{φ,θ,ψ,f}(z)

=
1

N

N−1∑
k=0

z−k (3)

With N=3 the transfer function can be simplified to a rational form:

Havg(z) =
1

3

(
z2 + z + 1

z2

)
, |z| > 0 (4)

The pole zero plot is shown in figure 3. Since the averaging system is causal
and stable, the Region of Convergence(ROC) for the filter extends outwards
from the two poles at z=0 and includes the unit circle.

Figure 3: Pole zero plot of the Averaging Filter on the z-plane. The two conjugate
zeros lie on the unit circle.
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Further processing of each channel is detailed below:

• Roll & Pitch:

– Time Domain:

rcmd{φ,θ}[n] = rdata{φ,θ}[n]− Cmidrc (5)

where:

∗ Cmidrc = 1500 = configurable constant, fixed to this value for
the analysis to hold.

We do not define any deadband for the roll and pitch axis, imply-
ing that the above equation holds for the entire range of rx values:
1000 to 2000.

– Z Domain:

Rcmd
{φ,θ}(z) = Rdata

{φ,θ}(z)− Cmidrc
(

z

z − 1

)
, roc(Rdata) ∩ (|z| > 1)

(6)

• Yaw:

– Time Domain:

rcmdψ [n] = Crev−dir(r
data
ψ [n]− Cmidrc) (7)

where:

∗ Cmidrc = 1500 = configurable constant

∗ Crev−dir is the unity gain to control the yaw direction

We do not define any dead band for the yaw axis as well implying
that the above equation holds for the entire rx range.
For our analysis we assume the roll, pitch and yaw sticks to be
completely centered on the radio controller. This translates to a
target attitude corresponding to a hover mode with parallel align-
ment to the earth’s xy plane. The flight controller thus detects
the yaw command(rcmdψ ) to lie below a certain threshold and pro-
cesses it further to incorporate corrections for any deviations in
the current measured value of the yaw angle(ψ[n]) from its last
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value. A proportional controller is used for this purpose. The time
equation is as follows:

rcmd−corrψ [n] = rcmdψ [n]−
(
Crev−dirKpmag(ψ[n]− ψ[n− k])

)
(8)

where:

∗ Kpmag = Configurable constant for yaw proportional control

∗ ψ = Measured yaw angle from the AHRS sub-system (equ:
5.6), k is assumed to be 1 for simplicity.

– Z domain:

Rcmd
ψ (z) = Crev−dir(R

data
ψ (z)− Cmidrc) (9a)

Rcmd−corr
ψ (z) = Rcmd

ψ (z)−Ψ(z)

[
Crev−dirKpmag

(
z − 1

z

)]
(9b)

• Throttle:

Throttle stick deflections are mapped to data values according to a
throttle curve. The curve plots the stick deflection over the entire
range, on the (horizontal) independent axis and the throttle percentage
values on the (vertical) dependent axis. Cleanflight provides two config-
urable parameters: throttle expo(exponential): Cthr−expo and throttle
mid: Cthr−mid, to control the shape of the throttle curve. Throttle
expo(Cthr−expo) controls the stick sensitivity around the throttle mid
position(Cthr−mid) by flattening the curve around that point. It thus
allows a softer throttle response at maximum stick resolution around
the throttle mid position. Throttle Mid(Cthr−mid) on the other hand,
controls the position where throttle expo is applied. For our analysis
we consider a straight throttle curve(Cthr−expo = 0) with no inflection
region around the throttle mid-point; Cthr−mid = 50% (figure: 4).
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Figure 4: Cleanflight’s Throttle curve.

Sampled values are mapped according to the curve during the throttle
processing stage. A static look up table is used with the following
mapping equation for the straight line graph(figure:4):

rif [n] = CPWM−min + 100i[n] (10)

where:

– i = index into the table representative of the throttle stick position
on the radio controller. The whole range of stick deflection is
divided into 12 distinct steps thus i ranges from 0 to 11.

– rif = static throttle value at table index i

– CPWM−min = 1000 = minimum throttle constant which adds a
bias to all throttle values calculated from the graph. The bias
brings throttle values within ranges that cleanflight understands:
CPWM−range = CPWM−max − CPWM−min = 2000− 1000 = 1000.

– The slope of the curve is 100 if the dependent variable is i. In
terms of percentage stick movement, the slope is 1 as shown in
the graph in the figure.
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The frequency response of rif [n] is:

Ri
f (z) = CPWM−min + 100I(z) (11)

The stick deflection and hence the table index, i, is calculated at run-
time using rdataf [n] from equation 1:

i[n] =
1

100

(
rdataf [n]− Cmincheck

CPWM−max − Cmincheck

)
CPWM−min (12)

where:

– Cmincheck > CPWM−min = minimum throttle constant above which
the quad is armed. Once the quad arms, all RX values are mea-
sured/calculated with respect to Cmincheck.

– CPWM−max = 2000 = maximum throttle constant

Equation 12 thus maps the sampled and averaged throttle data (rdataf [n])
into a valid index, i for indexing into the throttle look up table, where
i[n] corresponds to the stick deflection at time step n.
The z transform is:

I(z) = Ck(R
data
f (z)− Cmincheck) (13)

where Ck = CPWM−min
100(CPWM−max−Cmincheck)

.

The final processed throttle data: rcmdf [n] after lookup is calculated
as:

rcmdf [n] = rif [n] +

(
ri+1
f [n]− rif [n]

100

)
(100i[n]− b100i[n]c)

= rif [n] + (100i[n]− b100i[n]c)
= rif [n] + 100i[n]− i′ [n]

(14)

where:

–
ri+1
f −rif
100

= 1 = slope of the straight line graph

– rif [n] = value read from the table at index i

– i[n] = index at time step n
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Taking the z transform on both sides of the equation yields:

Rcmd
f (z) = Ri

f (z) + 100I(z)−Z{b100i[n]c} (15a)

= CPWM−min + 200I(z)− I ′(z) (15b)

rcmdf [n] is then sent directly on to the mixer.

1.1 Reference set-points for Roll(φ), Pitch(θ) and Yaw(ψ)

Processed command values from the previous subsection, for each of the three
rotational axes (φ, θ, ψ) are normally passed through a linear smoothing fil-
ter. Cleanflight controls the level of smoothness by a configurable step-size
parameter. For this work, we fix the RC commands at values corresponding
to centered stick positions which basically makes smoothing non-essential.
We thus turn off the smoothing filter.

As the final processing step in determining the reference set-points (rref−rateφ,θ,ψ )
for the roll, pitch and yaw axis, Cleanflight first normalizes the command val-
ues to get corresponding stick deflections that range from -1 to 1:

rdeflectionφ,θ [n] =
rcmdφ,θ [n]

500
(16a)

rdeflectionψ [n] =
rcmd−corrψ [n]

500
(16b)

The z transforms are:

Rdeflection
φ,θ (z) =

Rcmd
φ,θ (z)

500
, roc(Rcmd) (17a)

Rdeflection
ψ (z) =

Rcmd−corr
ψ (z)

500
, roc(Rcmd−corr) (17b)

Deflection values are then mapped to reference set-point rates according to
rotational rate v/s stick position curve(figure:5) for each axis. The shape of
each curve is controlled by 3 configurable parameters that are borrowed from
Betaflight:

1. RC-Rate(Cφ,ψ
rc−rate = 100%): Controls the sensitivity of the sticks. A

higher rate would make the quad more responsive since a small stick
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deflection would translate to a large rotation of the quad about the
corresponding axis. This parameter controls the slope of the curve:
slope = 200Cφ,ψ

rc−rate where the slope for roll and pitch axis is controlled

by the same constant:Cφ
rc−rate.

The left half of figure 5 shows the effect of RC-Rate(= 100%) on each
of the three curves for roll, pitch and yaw. RC-Expo and RC-Super
are set to 0 hence giving a straight line through the mid-stick position
corresponding to 0 rotational speed.

2. RC-Expo(exponential)(Cφ,ψ
rc−expo = 0%): Reduces the sensitivity of the

sticks near the center point while retaining maximum rotation speed at
the min and max points of the deflection range(horizontal axis of the
graph). A 0% value implies a linear relation with no inflection region
around the mid-stick position.

3. RC-Super(Cφ,θ,ψ
rc−super) = 70%: A hybrid combination of RC-Rate and

RC-Expo. This parameter changes the full deflection rate as well as the
center stick precision. A higher value would result in a moderate stick
sensitivity around the mid stick position and high rotational speeds
near stick end points. The right half of figure 5 shows the combined
effect of RC-Super with RC-Rates. This is the curve Cleanflight uses
by default to map stick deflections to set-point rates.
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Figure 5: Left:Effect of RC Rates, Right: Combined effect of RC-Rates and RC-
Super on the rotational speed v/s stick deflection curves for Roll, Pitch and Yaw
channels. [3]

The time equations for the reference rates are:

rref−rateφ,θ [n] =
(200Cφ

rc−rate)r
deflection
φ,θ [n]

1− (Cφ,θ
rc−super

∥∥∥rdeflectionφ,θ [n]
∥∥∥)

(18a)

rref−rateψ [n] =
(200Cψ

rc−rate)r
deflection
ψ [n]

1− (Cψ
rc−super

∥∥∥rdeflectionψ [n]
∥∥∥)

(18b)

For the sake of simplicity of our analysis, we assume the transfer functions
to be:

Href−rate
φ,θ =

Rref−rate
φ,θ (z)

Rdeflection
φ,θ (z)

= M rate−curve
φ,θ (19a)

Href−rate
ψ =

Rref−rate
ψ (z)

Rdeflection
ψ (z)

= M rate−curve
ψ (19b)

Yaw control, irrespective of the mode of operation, is purely rate based. This
implies that the reference rate from equation 18b is directly sent as input to
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the PID controller(sec:2) for yaw control. However, for Roll and Pitch, the
the flight controller’s mode of operation determines the set-point for each
axis’s respective PID controller. For the default acro mode (rate based
mode), the reference rate is determined according to equation 18a but for
angle mode, a set-point angle is calculated instead. This angle is based on
the 1. roll and pitch stick deflection value(equ:16a) and the 2. error in the
current attitude angle from the target inclination in the corresponding axis.
The calculation proceeds in the following sequence of steps:

1. Current roll and pitch angle is determined from the stick deflections:

φtarget[n] = Clevel−angler
deflection
φ [n] (20a)

θtarget[n] = Clevel−angler
deflection
θ [n] (20b)

where Clevel−angle = 55◦ is a configurable constant that linearly maps

the stick deflection onto the target roll and pitch angle. rdeflectionφ,θ lies

within the range
[
−1, 1

]
. Calculating the z transforms yields:

Φtarget(z) = Clevel−angleR
deflection
φ (z), roc(Rdeflection

φ ) (21a)

Θtarget(z) = Clevel−angleR
deflection
θ (z), roc(Rdeflection

θ ) (21b)

2. Next the error in angle is calculated:

eφ[n] = φtarget[n]− Catt−scale(φ[n]− Ctrim
φ ) (22a)

eθ[n] = θtarget[n]− Catt−scale(θ[n]− Ctrim
θ ) (22b)

where:

• Catt−scale : 1
10

Scaling constant for converting deci-degrees to de-
grees for the angle

• φ[n] & θ[n] : Current measured value of the roll and pitch angle.
The current value is determined by the AHRS sub-system(sec:5)
in the feedback path(figure:1).

• Ctrim
φ,θ : Configurable angle trim values. These values can be config-

ured at run-time through a specific combination of roll and pitch
stick inputs. After every change they are saved in the flight con-
troller’s EEPROM. For our purposes we are only interested in
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hover mode, so we intend to keep the roll and pitch sticks cen-
tered and do not intend to change the input during the entire
duration of flight. This means we only need to set the angle trims
once during the configuration stage after system startup. Updat-
ing the trims involves a memory write and read cycle which has
a much higher latency than the loop times for our flight control.
We thus consider the trim values as constants and disconnect them
from the main run-time flight controller loop.
The Z transform of the time equations is:

Eφ(z) = Φtarget(z)− Catt−scaleΦ(z) + Catt−scaleC
trim
φ

(
z

z − 1

)
,

(23a)

where: roc(Φtarget) ∩ roc(Φ) ∩ (|z| > 1)

Eθ(z) = Θtarget(z)− Catt−scaleΘ(z) + Catt−scaleC
trim
θ

(
z

z − 1

)
,

(23b)

where: roc(Θtarget) ∩ roc(Θ) ∩ (|z| > 1)

• As a final step, a proportional gain of a P controller is applied to
the error to calculate the final angle set-point:

rref−angleφ,θ [n] = Plevel−gaineφ,θ[n] (24)

where Plevel−gain = 5 is a proportional constant for P controller.
The transfer function is:

Href−angle
φ,θ =

Rref−angle
φ,θ (z)

Eφ,θ(z)
= Plevel−gain, roc:All z (25)

The reference angle values for roll and pitch are then sent onto the PID
Controller. The next subsection shows the overall RX processing system.
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1.2 Block Diagram of the Overall Receiver Sub-system

Figure 6: Processing of received data for Throttle, Roll, Pitch and Yaw user
commands

18



The final equations are:

Rref−angle
φ (z) =

(
Clevel−anglePlevel−gain

1500

)(
z2 + z + 1

z2

)
Rraw
φ (z)

− Plevel−gain
500

(
z

z − 1

)(
Clevel−angleCmidrc − 500Catt−scaleC

trim
φ

)
−
(
Plevel−gainCatt−scale

)
Φ(z),

(26)

The Region of Convergence of the above equation is an intersection of each
individual term’s ROC.
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2 Sub-System 2: PID Attitude Controller

Roll, Pitch and Yaw are represented by Euler angles φ, θ and ψ respectively.
Error in rate for each of these axis is:

erateφ,θ,ψ[n] = rφ,θ,ψ[n]− yrateφ,θ,ψ[n] (27)

where n is a discrete time step. rφ,θ,ψ[n] is the setpoint rate of rotation(reference
signal) of the quad in each axis and yrateφ,θ,ψ[n] is the current rate of rotation
as sampled from the gyroscope.
The corresponding Z transform of the error signal is:

Erate
φ,θ,ψ(z) = Rφ,θ,ψ(z)− Y rate

φ,θ,ψ(z) (28)

The output of the PID controller for each axis is the sum of P, I and D
terms of the corresponding axis where P, I and D represent Proportional,
Integral and Derivative control outputs respectively for each axis:

uφ,θ[n] = Pφ,θ[n] + Iφ,θ[n] +Dφ,θ[n] (29)

uψ[n] = Pψ[n] + Iψ[n] (30)

The overall transfer function of the PID controller can be determined by
taking the Z transform of equation [29] and equation [30] and using the
property of linearity of Z transforms:

Uφ,θ(z) = Pφ,θ(z) + Iφ,θ(z) +Dφ,θ(z)

= TF P
φ,θ(z)Erate

φ,θ (z)

+ TF I
φ,θ(z)Erate

φ,θ (z)

+ TFD
φ,θ(z)Erate

φ,θ (z)

(31)

Uψ(z) = Pψ(z) + Iψ(z)

= TF P
ψ (z)Erate

ψ (z)

+ TF I
ψ(z)Erate

ψ (z)

(32)

where TF P,I,D(z) are the transfer functions of each of the P,I and D terms of
the PID controller per axis. The overall PID transfer function thus becomes:

Uφ,θ(z)

Erate
φ,θ (z)

= TF P
φ,θ(z) + TF I

φ,θ(z) + TFD
φ,θ(z) (33)
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and:
Uψ(z)

Erate
ψ (z)

= TF P
ψ (z) + TF I

ψ(z) (34)

A block diagram of the PID controller with the corresponding input and
output signals for the Roll(φ) axis is as shown in figure 7. The diagram for
pitch(θ) and yaw(ψ) axis would be similar.

Figure 7: PID Controller for Roll Axis

2.1 Matlab’s 2DoF PID Controller

Betaflight/Cleanflight PID controller uses Matlab’s 2DoF PID Controller as
reference design.

Figure 8: 2DoF PID Controller with feedforward(PD) and feedback(PID) com-
pensator [1]
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It has the following discrete time transfer function [1]:

u = Kp(br − y) +Ki
Ts
z − 1

(r − y) +

(
Kd

Tf

)(
z − 1

z + ( Ts
Tf
− 1)

)
(cr − y) (35)

where

• Kp =proportional gain

• Ki =integrator gain

• Kd =derivative gain

• Ts =sampling time = 1
samplingfreq

• Tf =first order derivative filter time constant

• b =setpoint weight on the proportional term

• c =setpoint weight on the derivative term

Setpoint weights b and c determine the strength of the proportional and
derivative action in the feedforward compensator. For Cleanflight’s PID
controller, b = 1 and c is a tunable value set to a constant during system
configuration. For our case, since we are operating under angle mode, c is
set to 0.

2.2 Time Equations and Transfer Functions

2.2.1 Proportional Control

• Roll & Pitch:
Pφ,θ[n] = CtpaKp,{φ,θ}eφ,θ[n] (36)

where

– Kp,{φ,θ} = proportional gain for roll(φ) and pitch(θ) axis

– Ctpa = TPA(Throttle PID Attenuation) factor = constant if ap-
plied throttle < TPA Threshold

– eφ,θ[n] = error signal at time step n
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The Z transform is as follows:

Pφ,θ(z) = CtpaKp,{φ,θ}Eφ,θ(z) (37)

The transfer function for P term for roll and pitch is:

TF P
φ,θ(z) =

Pφ,θ(z)

Eφ,θ(z)
= CtpaKp,{φ,θ} (38)

• Yaw:
P unfiltered
ψ [n] = CtpaKp,ψeψ[n] (39)

The corresponding Z transform is:

P unfiltered
ψ (z) = CtpaKp,ψEψ(z) (40)

The transfer function of unfiltered P term for yaw is:

P unfiltered
ψ (z)

Eψ(z)
= CtpaKp,ψ (41)

For the yaw term, a first order, low-pass PT1 filter is applied to unfil-
tered Pψ[n].

PLPF
ψ [n] = LPfilter(P unfiltered

ψ [n]) (42)

The filter for a generic input signal(in[n]) is defined as follows:

inLPF [n] = LPfilter(in[n])

=

{
(

Ts
RC + Ts

)(in[n]− inLPF [n− 1])

}
+ inLPF [n− 1]

(43)

where

– in[n] = Pψ[n] = input signal to be filtered at time step n

– inLPF [n− 1] = filtered value from previous time step

– inLPF = filtered output

– Ts = sampling Period = constant PID looptime in seconds set at
system configuration time = 1

PID−sampling−frequency
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– RC = filter time constant = 1
2πfcut−off

, fcut−off is set at configu-

ration time

Thus the final proportional term for yaw:

PLPF
ψ [n] =

{
(

Ts
RC + Ts

)(P unfiltered
ψ [n]− PLPF

ψ [n− 1])

}
+ PLPF

ψ [n− 1]

= CLPF (P unfiltered
ψ [n]− PLPF

ψ [n− 1]) + PLPF
ψ [n− 1]

= CLPFP
unfiltered
ψ [n]− (CLPF + 1)PLPF

ψ [n− 1]

(44)

where CLPF is a constant term = Ts
RC+Ts

. Using the linearity and time
delay property of Z transforms we get the following Z transform for the
filtered proportional term of yaw axis:

PLPF
ψ (z) = CLPFP

unfiltered
ψ (z)− (CLPF + 1)z−1PLPF

ψ (z) (45)

The block diagram representation of the above filter equation and the
corresponding graphical simplification is presented in figure 9.

Figure 9: Block Diagram Representation of Proportional term’s filter function
for Yaw(ψ) axis. The graphical simplification steps are numbered in orange with
step 1 depicting equation 45 and step 3 giving the final simplified form.

From figure 9 step 3 we can determine the final gain for the filter as
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follows:
PLPF
ψ (z)

P unfiltered
ψ (z)

=
CLPF z

z + (CLPF + 1)
(46)

Figure 10 shows the overall transfer function block diagram for yaw
axis’s P term. Thus the final transfer function for yaw is:

TF P
ψ (z) =

PLPF
ψ (z)

Eψ(z)
=
CtpaKp,ψCLPF z

z + (CLPF + 1)

=
CDCz

z + (CLPF + 1)

(47)

where CDC = CtpaKp,ψCLPF is the DC gain.

Figure 10: Transfer Function of Proportional term for Yaw(ψ) axis

2.2.2 Integral Control

The I term considers the history of the error signal values(eφ,θ,ψ) accumulated
over time. Normally for continuous time this corresponds to the following
formula:

I(t) = Ki

∫ t

0

e(τ)dτ (48)

In discrete domain we convert the integral into a sum of distinct non-overlapping
areas under the error signal v/s time graph for each sampling period. This
approximation is done by cleanflight using rectangles to represent accumu-
lated error per sampling period Ts. This sort of approximation is known as
Forward Euler and is represented by the following discrete time formula:

I[n] = I[n− 1] +KiTse[n] (49)

The first part of the equation refers to the accumulated error till [n-1] time
step and the second part gives the approximated accumulated error between
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time step [n] and [n-1] i.e for one sampling time period, Ts. The equation for
the integral term for each axis is thus as follows:

Iφ,θ,ψ[n] = Iφ,θ,ψ[n− 1] +Ki,{φ,θ,ψ}CIdyneφ,θ,ψ[n] (50)

Assumption: For integral control the above equation holds if the motor
mixer output is not saturated and is within range which implies that motor
mix range is < 1.0. The maximum allowable motor mix range(max mix −
min mix) by the Cleanflight mixer for an X configured quadcopter is 3.0 i.e
-1.5 to 1.5. The mix range depends on the final mix value for each motor. De-
tails of mixing are presented in the next section(section:3). For simplification
of analysis we assume that the motor mix range(max mix - min mix) remains
< 1.0 and consequently the integration term never reaches the windup point.

The sampling period for the PID controller in Cleanflight is

Ts =
1

PID − loop− frequency
=

1

2(PID −Nyquist− frequency)

For the purposes of our analysis we assume CIdyn is a constant that is
directly proportional to Ts. The complete equation for CIdyn is as follows:

CIdyn = min

([
1− Cmix−range

][
1

1− Cwindup−pt

]
, 1.0

)
Caccelerator−gainTs

= (Ts)(Cidyn)

(51)

where

• Cmix−range = motor mix range assumed to be constant and < 1.0

• Cwindup−pt = integral windup point is set during system configuration
hence constant, default value = 50%. Cleanflight dynamically scales
the I term if the motor mix is saturated and if the quad cannot adjust
the mix to reduce the error in rate of rotation from the target setpoint
rate.

• Caccelerator−gain = constant. This encapsulates the rate of change of
throttle input which directly affects the change in setpoint rate.

• Cidyn = product of all the constant terms with Ts factored out.
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Thus the discrete time equation [50] then becomes:

Iφ,θ,ψ[n] = Iφ,θ,ψ[n− 1] +Ki,{φ,θ,ψ}CidynTseφ,θ,ψ[n] (52)

Taking the Z transform:

Iφ,θ,ψ(z) = z−1Iφ,θ,ψ(z) +Ki,{φ,θ,ψ}CidynTsEφ,θ,ψ(z)

Iφ,θ,ψ(z)(1− z−1) = Ki,{φ,θ,ψ}CidynTsEφ,θ,ψ(z)
(53)

The transfer function for I term for all 3 axis is:

TF I
φ,θ,ψ(z) =

Iφ,θ,ψ(z)

Eφ,θ,ψ(z)
= (Ki,{φ,θ,ψ}CidynTs)

(
z

z − 1

)
(54)

2.2.3 Derivative Control

Derivative control is only applied to the Roll and Pitch axis. The D term
depends on the rate of change of error signal (equation:27). Since the D
term is sensitive to the presence of high frequency noise in the error signal,
Cleanflight uses two cascaded biquad filters; a notch(band-stop) and low
pass filter, to further filter out the noise from the current gyro data(yφ,θ
in equation:27) for roll and pitch axis. The overall block diagram of the
cascaded filters is as shown in figure [11].

Figure 11: PID D term cascaded filters for roll and pitch axis gyroscope data

We now derive the transfer functions of each filter and compute the overall
transfer function for the combined fourth-order filter. A discrete time biquad
filter’s transfer function(2 poles, 2 zeros) with normalized coefficients(a0 = 1)
is as follows:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(55)
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Notch Filter The specifications of the notch filter and the corresponding
coefficients for the transfer function are:

• Notch Specification:

– lower cut-off freq = fL : constant and configurable on system
startup

– center/notch freq = fc : constant and configurable on system
startup

– wc = 2π fc
Fs

: where Fs = 1
Ts

is the PID loop sampling frequency.

– upper cut-off freq = fH = f2c
fL

– Quality factor - Q = fc
fH−fL

= fc
fBW

where fBW is the bandwidth of
the notch and the quality factor describes how under-damped an
oscillator/filter is. A higher Q value implies lower rate of energy
loss, less damping and sharper=narrower notch.

– α = sin(wc)
2Q

: intermediate variable used in coefficient calculation.

• Notch normalized coefficients:

– b0 = 1
1+α

– b1 = −2cos(wc)
1+α

– b2 = 1
1+α

– a0 = 1

– a1 = −2cos(wc)
1+α

– a2 = 1−α
1+α

Low pass Filter Similarly the specifications of the low pass filter(LPF)
and the corresponding coefficients for the transfer function are:

• LPF Specification:

– cut-off/corner freq = f0 : constant and configurable on system
startup

– w0 = 2π f0
Fs

: where Fs = 1
Ts

is the PID loop sampling frequency.
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– Q = 1√
2

for a Butterworth approximation (maximally flat fre-

quency pass-band gain)

– α = sin(w0)
2Q

: intermediate variable used in coefficient calculation.

• LPF normalized coefficients:

– b0 = 1−cos(w0)
2(1+α)

– b1 = 1−cos(w0)
1+α

– b2 = 1−cos(w0)
2(1+α)

– a0 = 1

– a1 = −2cos(w0)
1+α

– a2 = 1−α
1+α

Cleanflight implements each biquad filter in transposed direct form II topol-
ogy to save on memory storage for previous input values. Figure 12 shows
the topology for the notch filter. Low Pass filter would have a similar topol-
ogy. The corresponding time equations and the transfer function of both the
filters are as follows:

• Notch: Time equations:

ynotchφ,θ [n] = b0yφ,θ[n] + s1[n− 1]

s1[n] = b1yφ,θ[n]− a1ynotchφ,θ [n] + s2[n− 1]

s2[n] = b2yφ,θ[n]− a2ynotchφ,θ [n]

(56)

where s1[n] and s2[n] are intermediate signals initially set to 0.(fig-
ure 12)

• Notch: Transfer Function after taking the Z transform of the time
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Figure 12: PID D term Biquad Notch filter for gyroscope data in direct form II
topology

equation:

Hnotch
φ,θ (z) =

Y notch
φ,θ (z)

Yφ,θ(z)

=
b0z

2 + b1z + b2
z2 + a1z + a2

=
1

1+α
z2 − 2cos(wc)

1+α
z + 1

1+α

z2 − 2cos(wc)
1+α

z + 1−α
1+α

=

(
1

1 + α

)(
z2 − 2cos(wc)z + 1

z2 − 2cos(wc)
1+α

z + 1−α
1+α

)
(57)

• LPF: Time equations:

ynotch,LPFφ,θ [n] = b0y
notch
φ,θ [n] + s1[n− 1]

s1[n] = b1y
notch
φ,θ [n]− a1ynotch,LPFφ,θ [n] + s2[n− 1]

s2[n] = b2y
notch
φ,θ [n]− a2ynotch,LPFφ,θ [n]

(58)

• LPF: Transfer Function after taking the Z transform of the time equa-
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tion:

HLPF
φ,θ (z) =

Y notch,LPF
φ,θ (z)

Y notch
φ,θ (z)

=
b0z

2 + b1z + b2
z2 + a1z + a2

=

1−cos(w0)
2(1+α)

z2 + 1−cos(w0)
1+α

z + 1−cos(w0)
2(1+α)

z2 − 2cos(w0)
1+α

z + 1−α
1+α

=

(
1− cos(w0)

2(1 + α)

)(
z2 + 2z + 1

z2 − 2cos(w0)
1+α

z + 1−α
1+α

)
(59)

The final transfer function of the cascaded filters is:

Hnotch,LPF
φ,θ =

Y notch,LPF
φ,θ (z)

Yφ,θ(z)

= Hnotch
φ,θ (z)×HLPF

φ,θ (z)

(60)

The D term in discrete time is represented as a difference equation which
is an approximation to continuous time differential equation. A generalized
continuous time differential term is presented in equation:(61).

D(t) = Kd
de(t)

dt
(61)

The discrete time equivalent, as implemented for Cleanflight PID controller
is:

Dφ,θ[n] = CtpaKd,{φ,θ}
(eφ,θ[n]− eφ,θ[n− 1])

∆t

= CtpaKd,{φ,θ}
(eφ,θ[n]− eφ,θ[n− 1])

Ts

(62)

where

• Ctpa = TPA(Throttle PID Attenuation) factor = constant if applied
throttle < TPA Threshold - same as in proportional term (equation:36)

• Kd,{φ,θ} = derivative gain for roll and pitch axis
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• eφ,θ[n] = CDdynrφ,θ − ynotch,LPFφ,θ [n] = error signal at time step n for roll
and pitch axis, CDdyn = constant set point weight for the derivative
term(equation:35). This is set to zero in angle mode =⇒ eφ,θ[n] =

−ynotch,LPFφ,θ [n]

• Ts = sampling time period

Taking Z transform of the equation yields:

Dφ,θ(z) =

(
CtpaKd,{φ,θ}

Ts

)(
Eφ,θ(z)− z−1Eφ,θ(z)

)
(63)

The transfer function for D term for roll and pitch axis is:

TFD
φ,θ(z) =

Dφ,θ(z)

Eφ,θ(z)
=

(
CtpaKd,{φ,θ}

Ts

)(
z − 1

z

)
(64)

where:

Eφ,θ(z) = CDdynRφ,θ(z)− Y notch,LPF
φ,θ (z)

= CDdynRφ,θ(z)−
(
Hnotch,LPF
φ,θ (z)× Yφ,θ(z)

)
(65)

2.3 PID Attitude Controller Transfer function

The overall PID transfer function for roll, pitch and yaw from equation:33 & 34
is reproduced below for reference:

• Roll(φ) & Pitch(θ)

TF PID
φ,θ (z) =

Uφ,θ(z)

Erate
φ,θ (z)

(66)

= TF P
φ,θ(z) + TF I

φ,θ(z) + TFD
φ,θ(z) (67)

= CtpaKp,{φ,θ} +(
Ki,{φ,θ,ψ}CidynTs

)(
z

z − 1

)
+(

CtpaKd,{φ,θ}

Ts

)(
z − 1

z

)
(68)
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• Yaw(ψ)

TF PID
ψ (z) =

Uψ(z)

Erate
ψ (z)

(69)

= TF P
ψ (z) + TF I

ψ(z) (70)

=

(
CtpaKp,ψCLPF

)
z

z + (CLPF + 1)
+(

Ki,{φ,θ,ψ}CidynTs

)(
z

z − 1

)
(71)
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3 Sub-System 3: Quadcopter Mixer X

This section presents detailed time and frequency domain analysis for the
mixer(plant) in the feedforward loop that takes its input from the PID con-
troller’s output(uφ,θ,ψ) for each axis, mixes them according to the predefined
mixing configuration constants(depending on the frame type used), adds the
throttle input(rf [n]) uniformly and feeds the output PWM signal to each of
the 4 electronic speed controllers(ESCs) of the quadcopter.

Figure 13: QuadX motor configuration and direction of rotation

The most popular motor mixing configuration is an ”X” configuration
where the four motors on the arms of the quadcopter are mounted in an
”X” formation(figure: 13). The mixing constants for a QuadX as defined in
Cleanflight are presented in table:1.

Motor Number Motor Position Motor Direction Throttle(f) Roll(φ) Pitch(θ) Yaw(ψ)
1© Rear Right CW 1 -1 1 -1
2© Front Right ACW 1 -1 -1 1
3© Rear Left ACW 1 1 1 1
4© Front Left CW 1 1 -1 -1

Table 1: QuadX mixing constants

The time equation for the mixer for each motor, i where i ∈ {1, 2, 3, 4}
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is:

yi[n] = Cmix

Cuφuφ[n]×m{i,φ} +

Cuθuθ[n]×m{i,θ} +

Cuψuψ[n]×m{i,ψ}

+

(
Cfrf [n]×m{i,f}

)
(72)

where

• yi[n] = PWM motor output signal fed to each motor, i.

• Cmix = scaling constant for the entire mix sum to restrict the range of
the mix

• Cu{φ,θ,ψ} = scaling constant for each axis’s pid output

• u[n] pid output for each axis

• m = mixing constant from table:1

• Cf = throttle scaling factor

• rf [n] = throttle input from the receiver

Note for this system, there are 4 time dependent inputs to the mixer i.e.
1. rf [n]: throttle input from the receiver, 2. uφ[n]: control output from the
roll axis PID controller, 3. uθ[n] control output from the pitch axis PID
controller and 4. uψ[n] control output from the yaw axis PID controller.
When we take the z-transform of the above mixing equation:

Yi(z) = Cmix

CuφUφ(z)×m{i,φ} +

CuθUθ(z)×m{i,θ} +

CuψUψ(z)×m{i,ψ}

+

(
CfRf (z)×m{i,f}

)
(73)

The above equation implies that the mixer plant is composed of 4 sub-plants,
the output of which is summed up to get the final PWM motor output.
Figure: 14 gives a pictorial representation of the mixer system of equation:
73.
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Figure 14: CF Quad-X mixer system for a PWM motor output for one motor

From the diagram, the transfer function for each sub-plant becomes:

G{φ,i}(z) =
Y{φ,i}(z)

Uφ(z)
= CmixCuφm{i,φ} (74a)

G{θ,i}(z) =
Y{θ,i}(z)

Uθ(z)
= CmixCuθm{i,θ} (74b)

G{ψ,i}(z) =
Y{ψ,i}(z)

Uψ(z)
= CmixCuψm{i,ψ} (74c)

G{f,i}(z) =
Y{f,i}(z)

Rf (z)
= Cfm{i,f} (74d)

Thus the mixer output equation becomes:

Yi(z) = G{φ,i}(z)Uφ(z) + (75a)

G{θ,i}(z)Uθ(z) + (75b)

G{ψ,i}(z)Uψ(z) + (75c)

G{f,i}(z)Rf (z) (75d)

= Y{φ,i} + Y{θ,i} + Y{ψ,i} + Y{f,i} (75e)

36



4 Sub-System 4: Sensor Processing

4.1 Accelerometer

The accelerometer measures static and dynamic acceleration forces in g
units in each of the three axis; x, y and z of the sensor’s frame i.e a[n] =(
ax[n], ay[n], az[n]

)
. Measurement of the static forces like gravity allows the

flight controller to compute the angle of inclination of the sensor frame with
respect to the earth frame. Details of how this is achieved by Cleanflight is
discussed in the next section(sec:5). This section considers processing of the
raw data from the accelerometer before it is input to the AHRS subsystem.
To be consistent with Euler angle notation used in the previous sections, we
will consider x, y and z axis of the sensor frame to correspond to the roll(φ),
pitch(θ) and yaw(ψ) axis respectively. Cleanflight samples raw accelerom-
eter readings at a constant sampling rate (F acc

s ) and filters high frequency
noise from the measured signals by passing them through a biquad low pass
filter(LPF) as can be seen in figure 15.

Figure 15: Low pass filter for measured raw accelerometer data for all three axes.

The low pass filter is a second order biquad filter similar to the one
presented in section 2.2.3. Equation 55 (reproduced below) is the discrete
time biquad filter’s transfer function with normalized coefficients(a0 = 1).

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(76)

The specifications of the LPF and the corresponding coefficients are:

• LPF Specifications:

– cut-off/corner freq = f0 = 10Hz : constant and configurable on
system startup
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– w0 = 2π f0
Faccs

: where F acc
s = 1

Taccs
is the accelerometer sampling fre-

quency derived from gyroscope’s target loop time. w0 represents
the product of the radian cut-off frequency and the sampling time
period(T accs ) of the accelerometer.

– Q = 1√
2

for a Butterworth filter approximation with maximally
flat pass-band frequency gain

– α = sin(w0)
2Q

: intermediate variable used in coefficients’ calculation.

• For the LPF normalized coefficient (a1, a2, b0, b1 and b2) equations,
please refer to section 2.2.3 under the header: ”Low pass Filter”.

The filter has similar biquad topology as the Notch and Low pass Biquad
filters presented in section 2.2.3. The time equations are:

aLPFx,y,z [n] = b0a
raw
x,y,z[n] + s1[n− 1]

s1[n] = b1a
raw
x,y,z[n]− a1aLPFx,y,z [n] + s2[n− 1]

s2[n] = b2a
raw
x,y,z[n]− a2aLPFx,y,z [n]

(77)

The transfer function of the LPF filter is:

HLPF
acc (z) =

ALPFx,y,z (z)

Arawx,y,z(z)

=
b0z

2 + b1z + b2
z2 + a1z + a2

=

1−cos(w0)
2(1+α)

z2 + 1−cos(w0)
1+α

z + 1−cos(w0)
2(1+α)

z2 − 2cos(w0)
1+α

z + 1−α
1+α

=

(
1− cos(w0)

2(1 + α)

)(
z2 + 2z + 1

z2 − 2cos(w0)
1+α

z + 1−α
1+α

)
(78)

The filtered readings (aLPFx,y,z ) are then manipulated to align with the flight
controller hardware’s forward orientation (aLPF,alignx,y,z ) as shown in the dia-
gram:
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Figure 16: Accelerometer Alignment.

Since changing the alignment has no effect on the frequency response
other than changing the signs and rerouting the input signals, we consider
the transfer functions for the measured signals in each of the three axes as
having a constant gain of 1 or -1 as shown in the following z domain frequency
response equations:

Halign
x =

ALPF,alignx (z)

ALPFy (z)
= −1 (79a)

Halign
y =

ALPF,aligny (z)

ALPFx (z)
= 1 (79b)

Halign
z =

ALPF,alignz (z)

ALPFz (z)
= 1 (79c)

The aligned accelerometer values are then compared with the reference trim
values. A difference or error(eaccx,y,z = aLPF,alignx,y,z − atrimx,y,z) is calculated and fed
to the moving average accumulator(refer to figure 17).

Figure 17: Accelerometer trimming and smoothing filter.
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The trim value for each axis(atrimx,y,z) is calculated during the accelerome-
ter’s configuration phase at the start of the system as an average value of a
certain number of sampled readings for that axis. In the configuration phase,
the accelerometer is held in a horizontal still position, parallel to the ground
such that the sensor frame is completely aligned with the earth frame. This
orientation ensures that the accelerometer measures the reference field of
gravity in the earth frame. Trim values thus provide reference acceleration
forces in each axis.
The difference between measured in-flight values and the pre-calculated trim
values gives the increase/decrease in accelerometer values from the reference
values. The error is then smoothed out or averaged over a fixed number of
samples(N) before being fed to the AHRS subsystem(sec:5). AHRS module
then determines the drone’s angle of inclination in real time.
The moving average filter is a simple low-pass finite impulse response(FIR)
filter. The time equations for the filter are:

ax,avg[n] =
1

N

N−1∑
k=0

eaccx [n− k]

ay,avg[n] =
1

N

N−1∑
k=0

eaccy [n− k]

az,avg[n] =
1

N

N−1∑
k=0

eaccz [n− k]

(80)

where

N =
accelerometer task rate

attitude task rate
(81)

Taking the corresponding Z transforms of the above equations yield:

Ax.avg(z) = Eacc
x (z)

(
1

N

N−1∑
k=0

z−k
)

Ay.avg(z) = Eacc
y (z)

(
1

N

N−1∑
k=0

z−k
)

Az.avg(z) = Eacc
z (z)

(
1

N

N−1∑
k=0

z−k
)

(82)
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The transfer function of the moving average filter thus becomes:

Havg(z) =
Aavg(z)

Eacc
x,y,z(z)

=
1

N

N−1∑
k=0

z−k (83)

In summary, the overall control flow of accelerometer processing is shown in
figure 18 where each sub-component’s transfer function, calculated according
to the forgoing equations in this section, is shown inside the yellow blocks.

Figure 18: Accelerometer Data Processing.

4.2 Magnetometer

The magnetometer measures the direction and magnitude of Earth’s mag-
netic fields in each of the three axes of the sensor frame; m[n] =

(
mx[n],my[n],mz[n]

)
,

in units of gauss(Ga) (1 gauss = 100µ Tesla). Measurement of Earth’s Mag-
netic North provides an absolute reference field in addition to the gravita-
tional field measured by the accelerometer(refer to section: 4.1), to accurately
determine the orientation of the sensor in the earth’s frame. Detailed analy-
sis of the sensor fusion and attitude estimation algorithm is presented in the
next section(sec:5).
Cleanflight samples raw magnetometer data(mraw

x,y,z) at a constant sampling
rate(Fmag

s = compass task execution rate) and then aligns the raw data
in the sensor frame to the quadcopter’s frame, via a clockwise rotation of
270◦. This alignment is similar to the accelerometer data alignment shown
in figure 16. Finally the aligned values(malign

x,y,z ) are compared with the refer-
ence field values(mref

x,y,z) that are determined during the configuration phase
at system startup. The difference between the measured and the reference
values(merror

x,y,z = malign
x,y,z −mref

x,y,z) gives the error or offset in the magnetometer
readings which is then fed to the AHRS sub-system as input. To calculate
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the reference field values(mref
x,y,z), Cleanflight allows 30s of configuration time,

by the end of which, the midrange(mean of the highest and lowest measured
values) of the minimum and the maximum values, sampled for each axis
during configuration, is calculated. Control flow of the magnetometer data
processing is presented in the following figure(fig:19). The transfer functions
for the alignment module are:

Halign
x =

Malign
x (z)

M raw
y (z)

= −1 (84a)

Halign
y =

Malign
y (z)

M raw
x (z)

= 1 (84b)

Halign
z =

Malign
z (z)

M raw
z (z)

= 1 (84c)

Figure 19: Magnetometer Data Processing.
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4.3 Gyroscope

Figure 20: Gyroscope Data Processing.

Figure 20 gives a high level diagrammatic overview of the control flow of
gyroscope’s data in the processing pipeline of the sensor. Gyroscope mea-
sures the angular velocity of the quadcopter in each of the three axis of the
sensor frame(g[n] =

(
gx[n], gy[n], gz[n]

)
) in units of degrees per second(◦/s).

Cleanflight samples raw gyroscope data(grawx,y,z) at a sampling frequency of
F gyro
s = 1

T gyros
= 1

GyroLoopT ime
.The maximum sampling rate for the mpu6050

gyroscope, as stated in the datasheet, is 8kHz. Cleanflight allows further
division of the sampling rate and calculates the actual sampling period as:

T gyros = GyroLoopT ime = (gyro sync denom)× (max sampling period)
(85)

where gyro sync denom is a configurable parameter. An angular velocity off-
set(error) is determined by subtracting the zero reference values in each axis
from the raw measurements in the corresponding axis i.e gerrorx,y,z = grawx,y,z−grefx,y,z.
Reference values are determined during the gyro calibration phase and rep-
resent an average of raw sampled values over a time period of 3s after system
startup. The sensor must be held relatively still during the calibration phase.
The offset values(gerrorx,y,z ) in the sensor frame are then aligned with the quad-
copter frame via a clockwise rotation of 270◦in the same way as alignment was
done for the accelerometer(figure:16) and magnetometer readings. Transfer
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functions of the alignment module are:

Halign
x =

Galign
x (z)

Gerror
y (z)

= −1 (86a)

Halign
y =

Galign
y (z)

Gerror
x (z)

= 1 (86b)

Halign
z =

Galign
z (z)

Gerror
z (z)

= 1 (86c)

The aligned values are subsequently scaled with gyroscope’s sensitivity pa-
rameter ( 1

16.4 lsb/dps
≡ 1

16.4 counts/◦/s
) to convert the digital representa-

tion(lsb) to units of angular velocity(◦/s) and then fed to the first notch
filter. The scale factor is thus represented as constant gain: Hscale in the
frequency domain.

Hscale =
Gscaled
x,y,z

Galign
x,y,z

(87)

Gyroscope data is always susceptible to unwanted interference from low fre-
quency motor vibrations that add themselves as noise to the angular velocity
measurements and thus need to be filtered out. For this purpose Cleanflight
implements two cascaded biquad notch filters and a PT1 low pass filter to
clean the data signal from the noise on each axis. The general form of a
biquad(2nd order) filter was presented in equation 55 in subsection 2.2.3.
The specifications of the notch and low-pass PT1 filter and the expressions
for the coefficients(a1, a2, b0, b1 & b2) of those filters were discussed in detail
and presented for the PID controller module in section 2. Gyro filters use the
same specifications, the only difference being in the cut-off frequency/corner
frequency and the center notch frequency for each filter(figure 20). The time
equations and corresponding z domain transfer functions for each filter are:

• Notch 1 Filter:

– Time Equation:

gN1
x,y,z[n] = b0g

scaled
x,y,z [n] + s1[n− 1]

s1[n] = b1g
scaled
x,y,z [n]− a1gN1

x,y,z[n] + s2[n− 1]

s2[n] = b2g
scaled
x,y,z [n]− a2gN1

x,y,z[n]

(88)
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– Z-domain:

HN1
gyro(z) =

GN1
x,y,z(z)

Gscaled
x,y,z (z)

=
b01z

2 + b11z + b21
z21 + a11z + a21

=
1

1+α1
z2 − 2cos(wc1)

1+α1
z + 1

1+α1

z2 − 2cos(wc1)
1+α1

z + 1−α1

1+α1

=

(
1

1 + α1

)(
z2 − 2cos(wc1)z + 1

z2 − 2cos(wc1)
1+α1

z + 1−α1

1+α1

)
(89)

where:

∗ wc1 = 2π fc1
F gyros

: where F gyro
s = 1

T gyros
and fc1 is the configurable

center/notch frequency

∗ α1 = sin(wc1)
2Q1

: where Q1 is the quality factor for the notch 1
filter

• Notch 2 Filter: The time equation(gN1,N2
x,y,z ) and the transfer function

equation(HN2
gyro =

GN1,N2
x,y,z (z)

GN1
x,y,z

) are the same as Notch 1 with different

parameters that are specific to Notch 2:

– Notch 2 Parameters:

∗ wc2 = 2π fc2
F gyros

∗ α2 = sin(wc2)
2Q2

where Q2 is the quality factor for the notch 2
filter

• PT1 Low Pass Filter:

– Time Equation:

gN1,N2,LPF
x,y,z [n] =

{
CLPF (gN1,N2

x,y,z [n]− gN1,N2,LPF
x,y,z [n− 1])

}
+ gN1,N2,LPF

x,y,z [n− 1]

= CLPFg
N1,N2
x,y,z [n]− (CLPF + 1)gN1,N2,LPF

x,y,z [n− 1]

(90)

where CLPF is a constant term = T gyros

RC+T gyros
and RC = 1

2πfcut−off

is the filter time constant. fcut−off is the configurable cutoff fre-
quency for the low pass filter.
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– Z domain: Simplified transfer function of the PT1 low pass filter:

HLPF
gyro (z) =

GN1,N2,LPF
x,y,z (z)

GN1,N2
x,y,z (z)

=
CLPF z

z + (CLPF + 1)
(91)

The transfer function of the combined filters thus becomes:

Hfilter
gyro (z) = HN1

gyro(z)×HN2
gyro(z)×HLPF

gyro (z) (92)

The filtered gyro readings(gN1,N2,LPF
x,y,z ≡ gfilteredx,y,z ) are output directly from the

gyro processing pipeline in the feedback path of the overall flight controller
system(figure: 1), to calculate the error rate from the set-point rate. This
error is then fed to the PID controller in the feed forward path.
The filtered readings are also numerically integrated within the gyro pro-
cessing pipeline, in a separate branch and passed through a time averaging
filter before being fed to the AHRS sub-system(refer to the system diagram
in Figure:1). The AHRS subsystem(presented in the next section) makes use
of the average gyroscope readings in each axis to determine the attitude of
the quadcopter with respect to the earth’s frame of reference.
The number of accumulated, filtered gyro samples; N, for the average, de-
pends on the ratio of the gyro update task rate to the attitude task rate.
Cleanflight approximates integration of the filtered gyroscope readings with
the trapezoidal rule. The time equations are:

gavg[n] =
gsumx,y,z[n]

NT gyros
(93a)

where

gsumx,y,z[n] = gsumx,y,z[n− 1] +
1

2

(
gfilteredx,y,z [n] + gfilteredx,y,z [n− 1]

)
T gyros (93b)

Taking the corresponding Z transform of the equations yield:

Gavg(z) =

(
1

NT gyros

)
Gsum
x,y,z(z) (94a)

and

Gsum
x,y,z(z) =

(
T gyros

2

)(
z + 1

z − 1

)
Gfiltered
x,y,z (94b)

46



Representing Gavg(z) in terms of Gfiltered
x,y,z :

Gavg(z) =

(
1

2N

)(
z + 1

z − 1

)
Gfiltered
x,y,z (95)

The transfer function of the averaging filter thus becomes:

Havg
gyro =

Gavg(z)

Gfiltered
x,y,z

=

(
1

2N

)(
z + 1

z − 1

) (96)

In summary the control flow of the gyro data processing with all the corre-
sponding sub-component transfer functions are shown in the following figure:

Figure 21: Gyroscope Data Processing with sub-component transfer functions
presented as gains in yellow blocks.

47



5 Sub-System 5: Attitude and Heading Ref-

erence System

Cleanflight’s state estimation theorem accurately determines the current atti-
tude(state/orientation) of the quadcopter with respect to the Earth’s frame
of reference(E) using measured sensor data that is sampled in the sensor
frame(S)(the system diagram in Figure:1 shows the state estimation module
in the feedback path). Raw data is obtained from the MARG(Magnetic,
Angular rate and Gravity) sensor array that includes the IMU(tri-axis gy-
roscope + tri-axis accelerometer) and the tri-axis magnetometer. The data
is then processed and averaged over a certain number of sampling periods
(exact number of samples depends on the ratio between the rate of execution
of the attitude task and the sampling rate of the respective sensor task
i.e accelerometer, gyro, and compass) before it is input to the Atti-
tude and Heading Reference sub-system(AHRS). Figure 22 represents the
high-level diagram of the AHRS sub-system.

Figure 22: Attitude and Heading Reference Sub-system of Cleanflight with mea-
sured inputs from the MARG sensor array

Equations 97, 98 & 99 represent the corresponding tri-axis components
of the sampled input vectors(bold face) from the 3 sensors at time step n.

• Accelerometer Input:

Sâavg[n] = [ax, ay, az] where Sâavg[n] =
aavg[n]√

a2x + a2y + a2z
(97)

• Magnetometer Input:

Sm̂[n] = [mx,my,mz] where Sm̂[n] =
m[n]√

m2
x +m2

y +m2
z

(98)
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• Gyroscope Input:
Sgavg[n] = [gx, gy, gz] (99)

Note:

• The leading superscript (S) denotes the frame, measurements are with ref-
erence to i.e. the sensor frame in which the sensor measurements were
sampled.

• The hat symbol: ˆdenotes a normalized vector. Accelerometer and magne-
tometer values are normalized with their corresponding magnitudes.

• The vector subscript: avg represents averaged values over a fixed number of
samples for each axis. The subscript is omitted for each individual vector
component for a neater representation.

Figure 23: AHRS subsystem for Cleanflight:Implementation of Madgewick &
Mahony’s sensor fusion algorithm

The AHRS sub-system (figure:23) in CF implements Mahony’s Nonlinear Di-
rect Complementary Filter Algorithm. The algorithm performs low-pass filtering
on a low-frequency estimate obtained from the accelerometer and magnetometer
measurements, and high-pass filtering on a high-frequency estimate obtained from
integration of gyroscope(angular velocity) measurements, and optimally fuses the
two to obtain an all-frequency attitude estimate of the sensor [4]. The filter uses
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earth’s gravitational and magnetic fields to provide an absolute reference of the sen-
sor’s orientation. An error is determined between the reference and the measured
fields of gravity and magnetic north and subsequently compensated via propor-
tional and integral feedback compensation before being fused with the gyroscopic
data. Proportional feedback decides the cross-over frequency between the low and
high pass filters and the integral feedback corrects for time dependent zero-bias
drift in the gyroscope data. The zero bias drifts over time due to the changes in
the physical properties of the sensor. This adds a DC component to the measured
angular velocity which thus dominates the low frequency content making the at-
titude estimation from gyroscope data unreliable at low angular frequencies. In
contrast, the accelerometer and magnetometer are susceptible to high frequency
noise that invalidates attitude estimations using these sensors at higher angular
frequencies.

In addition magnetic distortion can result in the measured direction of Earth’s
magnetic field due to the presence of ferromagnetic materials in the vicinity of
the magnetometer. This is corrected by defining the reference direction of Earth’s

magnetic field in the Earth frame(
E
b̂[n] = [bx, by, bz]) in terms of the measured

direction of the field in the Sensor frame(Sm̂[n] = [mx,my,mz]) which is mapped

to the Earth frame(
E
ĥ[n] = [hx, hy, hz]). Cleanflight assumes that the reference

direction of magnetic field is strictly perpendicular to the direction of gravity i.e.

lies only in the horizontal plane ⊥ to the Z axis i.e.
E
b̂[n] = [bx, 0, 0]. Similarly the

measured direction in the Earth frame is assumed to have no vertical component

i.e.
E
ĥ[n] = [hx, hy, 0]. The normalized reference direction of magnetic North in

earth frame is thus calculated as:

E
b̂[n] =

[√
h2x + h2y 0 0

]
(100)

5.1 Quaternion Algebra

Cleanflight models the flight controller system as a first order kinematic system and
implements Madgwick’s C code interpretation of Mahony’s algorithm in quaternion
form(4D complex number) for its AHRS subsystem.

• The normalized quaternion representation; ES q̂[n] =
[
qw qx qy qz

]
is used

to represent orientation of the sensor frame(leading subscript S) with respect
to the earth frame(leading superscript E) in 3D space at time step n.

• Quaternion product is represented by
⊗

.

• The quaternion conjugate denoted by ∗ is used to swap relative frames for an
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orientation i.e. E
S q̂[n](orientation of S frame wrt E frame) is the conjugate

of S
E q̂[n](orientation of E frame wrt S frame).

• The time equations of the AHRS algorithm use the quaternion rotation
operator(equation:101) to map measured field vectors(gravity and magnetic
north) in the sensor frame coordinates to earth frame coordinates.

• Quaternion algebra avoids singularity points in rotation calculations, that
would otherwise exist in Euler angle(roll:φ, pitch:θ, yaw:ψ ) rotations, by
representing such rotations about all three of the axes(X,Y and Z) in a
tightly coupled and compact manner.

The quaternion rotation in time domain for a vector Sv in the sensor frame results
in a rotated vector Ev in the earth frame:

Ev[n] = S
Eq̂[n]

⊗
Sv[n]

⊗ S

Eq̂
*[n] (101a)

= S
EQ

Sv[n] (101b)

where

S
EQ[n] =

 1− 2q2y − 2q2z 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2q2x − 2q2z 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2q2x − 2q2y

 (101c)

Similarly the inverse(conjugate) quaternion rotation for a vector Ev in the earth
frame results in a rotated vector Sv in the sensor frame:

Sv[n] =
S

Eq̂
*[n]

⊗
Ev[n]

⊗
S
Eq̂[n] (102a)

=
S
EQ

t Ev[n] (102b)

= E
SQ

Ev[n] (102c)

= E
Sq̂[n]

⊗
Ev[n]

⊗E

Sq̂
*[n] (102d)

where

S
EQ

t[n] =

 1− 2q2y − 2q2z 2(qxqy + qwqz) 2(qxqz − qwqy)
2(qxqy − qwqz) 1− 2q2x − 2q2z 2(qyqz + qwqx)
2(qxqz + qwqy) 2(qyqz − qwqx) 1− 2q2x − 2q2y

 (102e)

5.2 Error from Accelerometer Measurements

Reference field of gravity in the earth frame is parallel to the Z axis i.e.
E
Ĝ =[

0 0 1
]
. Rotation of the reference field of gravity to sensor frame is:

S
Ĝ[n] =

S

Eq̂
*[n]

⊗E
Ĝ
⊗

S
Eq̂[n] (103)
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The error is calculated as the cross product between the reference gravity field in

the sensor frame;
S
Ĝ[n] and the measured gravity field; S âavg[n](equation :97):

Seacc[n] = S âavg[n]× S
Ĝ[n] (104)

5.3 Error from Magnetometer Measurements

From equation 100 we have the reference direction of the magnetic field in the earth

frame(
E
b̂[n]), represented in terms of measured direction of the field in the earth

frame;
E
ĥ[n]. The measured field in the earth frame is obtained via a quaternion

rotation of the measured field vector in the sensor frame (Sm̂[n]) using equation
101.

E
ĥ[n] =

[
hx hy 0

]
= S

Eq̂[n]
⊗

Sm̂[n]
⊗ S

Eq̂
*[n]

(105)

The error vector wrt the earth frame is calculated as the cross product between
reference and measured magnetic fields in the earth frame:

Eemag[n] =
E
ĥ[n]× E

b̂[n]

=
[
0 0 ez

] (106)

Error in the sensor frame is computed as follows (refer to equation: 102):

Semag[n] =
S

Eq̂
*[n]

⊗
Eemag[n]

⊗
S
Eq̂[n] (107)

5.4 Error Compensation: PI feedback control

The total error is fed into the PI controller. The corresponding time equations
are:

Setotal[n] = Seacc[n] + Semag[n] (108)

• Proportional Control:

Sup,att[n] = Kp,att
Setotal[n] (109)

where

– Kp,att = proportional gain for total error in the attitude(att) estimate
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• Integral Control:

] Sui,att[n] = Sui,att[n− 1] +Ki,att
Setotal[n]Ts,att (110)

where

– Ki,att = integral gain for error

The equation gives accumulated error till time step [n-1] summed with error
between time step [n] and [n-1] i.e for one sampling time period; Ts,att (1/task
rate) for the attitude task.

The controller output is thus:

Suatt[n] = Sup,att[n] + Sui,att[n] (111)

5.5 Integration with Gyroscope Measurements

The gyroscope input(equation:99) is fused with the controller’s output:

SΩ[n] = Sgavg[n] + Suatt[n] (112)

The quaternion derivative describes the rate of change of orientation of the earth
frame with respect to the sensor frame and is calculated as:

S
Eq̇[n] =

1

2
S
Eq̂[n− 1]

⊗
SΩ[n] (113)

The sensor orientation is computed by taking the numerical integral of the quater-
nion derivative from equation 113, with known initial value of the estimate.

S
Eq[n] = S

Eq̂[n− 1] + S
Eq̇[n]Ts,att (114)

where

• S
Eq[n] = attitude estimate of orientation

• S
Eq̂[n− 1] = previous attitude estimate of orientation

• Ts,att = sampling period of the attitude task

Finally the estimate is normalized:

S
Eq̂[n] =

S
Eq[n]∥∥S
Eq[n]

∥∥ (115)
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5.6 Attitude in terms of Roll, Pitch and Yaw Angles

The quaternion estimate is used to compute attitude values for each individual
Euler angle:

• Roll angle in degrees:

φ[n] = tan−1
(

2(qyqz + qwqx)

1− 2q2x − 2q2y

)
(116)

• Pitch angle in degrees:

θ[n] = π/2− cos−1
(
− 2(qxqz − qwqy)

)
(117)

• Yaw angle in degrees:

ψ[n] = − tan−1
(

2(qxqy + qwqz)

1− 2q2y − 2q2z

)
(118)

5.7 Frequency domain

Each sensor input to the AHRS sub-system has three real valued, time dependent
components corresponding to the measured sensor value in each of the three axis;
SX, SY and SZ, in the sensor frame. Their corresponding Z transforms are:

• Accelerometer:

a[n] =
[
ax[n] ay[n] az[n]

]
(119a)

ax[n]←→ Ax(z)

ay[n]←→ Ay(z)

az[n]←→ Az(z)

a[n]←→ A(z) (119b)

• Gyroscope:

g[n] =
[
gx[n] gy[n] gz[n]

]
(120a)

gx[n]←→ Gx(z)

gy[n]←→ Gy(z)

gz[n]←→ Gz(z)

g[n]←→ G(z) (120b)
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• Magnetometer:

m[n] =
[
mx[n] my[n] mz[n]

]
(121a)

mx[n]←→Mx(z)

my[n]←→My(z)

mz[n]←→Mz(z)

m[n]←→M(z) (121b)

The state estimate of the sensor, represented by a unit quaternion(refer to time
domain analysis in the previous sub-sections) has four real-valued, time dependent
component signals; S

E q̂[n] =
[
q̂w[n] q̂x[n] q̂y[n] q̂z[n]

]
. The frequency domain

analysis of quaternions is an active area of research and hence out of scope of this
work. We thus represent the Z transform of a quaternion as: Z{q}. For a detailed
analysis of Z transforms of 4-tuple complex numbers(quaternions), refer to 2016’s
SIBCON paper [2].

The AHRS sub-system is a MIMO (Multiple Input and Multiple Output) sys-
tem with 3 different inputs from the three sensors namely accelerometer, magne-
tometer and gyroscope and three Euler angle outputs namely roll(φ[n]), pitch(θ[n])
and yaw(ψ[n]) that are derived from the quaternion estimate. Each Euler angle is
independent of the other two Euler angles and can be computed individually(refer
to sub-section 5.6). The Euler angles describe an orientation of the sensor frame
achieved by independent sequential rotations, from alignment with the earth frame,
of ψ around SZ, θ around SY and φ around SX. From the previous discussion
of the AHRS algorithm we can safely assume that the attitude estimate depends
linearly on the gyroscope input and the error calculated from the accelerometer
and magnetometer inputs. The following frequency analysis elaborates on this:

Z{q[n]} = Z{q[n− 1]}+ Z{q̇[n]}Ts,att ← (equation 114) (122a)

Z{q̇[n]} =
1

2
Z{q[n− 1]

⊗
Ω[n]} ← (equation 113) (122b)

Z{Ω[n]} = Z{gavg[n]}+ Z{uatt[n]} ← (equation 112)

= G(z) + Uatt(z) (122c)

Uatt(z) = Up(z) + Ui(z) where ← (equation 111) (122d)

Up(z) = KpEtotal(z) and ← (equation 109)

Ui(z) = KiT{s,att}

(
z

z − 1

)
Etotal(z) ← (equation 110)

Etotal(z) = Eacc(z) + Emag(z) (122e)
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This implies:
Uatt(z)

Etotal(z)
= Kp +KiT{s,att}

(
z

z − 1

)
(123)

Thus:

Z{Ω[n]} = G(z) +

[
Kp +KiTs

(
z

z − 1

)]
Eacc(z) +

[
Kp +KiTs

(
z

z − 1

)]
Emag(z)

(124)
We assume the transfer function of S

E q̂[n] with respect to the input Ω[n] is:

Z{q̂[n]}
Z{Ω[n]}

= D =⇒

Z{q̂[n]} = D

(
Z{Ω[n]}

) (125)

The frequency relation between accelerometer and magnetometer inputs; â[n] and
m̂[n], and the corresponding error terms is non linear and much too complicated.
To keep the complexity down we consider the entire transfer function of the AHRS
subsystem as a blackbox with respect to the accelerometer and magnetometer in-
puts. The transfer functions with respect to each sensor input and their corre-
sponding block diagram depictions are presented as follows:

• Gyroscope:
Z{q̂[n]}
G(z)

= Dgyro = D (126)

Figure 24: Control flow between gyroscope input and the attitude estimate out-
put.

• Accelerometer:
Z{q̂[n]}
A(z)

= Dacc (127)
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Figure 25: Control flow between accelerometer input and the attitude estimate
output.

• Magnetometer:
Z{q̂[n]}
M(z)

= Dmag (128)

Figure 26: Control flow between magnetometer input and the attitude estimate
output.

• Summarized linear relation between the attitude estimate in quaternion form
and each sensor input can be thus represented as:

Z{q̂[n]} = DgyroG(z) +DaccA(z) +DmagM(z) (129)
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Individual Euler angle output for roll, pitch and yaw can be derived from the
quaternion state estimate using time equations presented in sub-section:5.6. We
consider the transfer function between each Euler angle and the state estimate in
quaternion form as:

φ(z)

Z{q[n]}
= Dφ

θ(z)

Z{q[n]}
= Dθ

ψ(z)

Z{q[n]}
= Dψ (130a)

The overall simplified AHRS sub-system is shown in Figure:27:

Figure 27: Control flow between sensor inputs and attitude estimate in terms of
Euler angles.

5.7.1 Sampling Frequency of the AHRS sub-system

We observe that CF’s attitude task’s sampling frequency information is implicitly
contained within the individual sub-module transfer functions of the AHRS sub-
system. As a side effect of avoiding complexity of Z transforms for hypercomplex
numbers, we lose control of the tunable task sampling frequency parameter. Thus
for the purposes of our analysis of the overall CF flight controller loop, we explicitly
choose a range of sampling frequencies for the AHRS sub-system (Cleanflight by
default uses 100Hz).

The minimum sampling frequency is set based on Madgewick’s findings [5]
from his investigation into the effect of sampling rate on the performance of the
orientation filter. According to [5], static and dynamic performance, measured as
the root mean square values of the error in Euler angles between the actual and
estimated values from the filter, remains constant for sampling frequencies above
50Hz. Also a tolerable error in attitude results at frequencies as low as 10Hz. Thus
using Madgwick’s results as baseline, we choose our minimum frequency as 10Hz.
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On the other hand the maximum frequency is restricted by the highest sampling
frequency of the sensor hardware. An accurate estimate of the attitude would
need atleast one measured value from each of the three sensors hence we take the
minimum of all three sensor tasks’(gyroscope, accelerometer and compass)
sampling frequency as our maximum frequency bound for the attitude task.
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