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Windy Conditions
Affect the
Drone’s Flight Stability
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Attitude : 3D Orientation ¢
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State-of-Art Flight Management Systems: Problems g

= Have low reactivity & slow response times
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State-of-Art Flight Management Systems: Problems g

= Have low reactivity & slow response times

= Are highly sensitive to external environmental dynamics leading
to fight inaccuracy and instability
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= Have low reactivity & slow response times

= Are highly sensitive to external environmental dynamics leading
to fight inaccuracy and instability

= Are unable to continue flight & require emergency landing
= Manual override

BOSTON
UNIVERSITY

=
e
=
e
S
=
P
s
=
S
=
s
?
S
g
5
@
=
=l


https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

07/2020 14

"

State-of-Art Flight Management Systems: Problems g

= Have low reactivity & slow response times

= Are highly sensitive to external environmental dynamics leading
to fight inaccuracy and instability

= Are unable to continue flight & require emergency landing
= Manual override

= Execute flight control tasks at the maximum possible
frequencies all the time in adverse conditions!
= Loosely “periodic” executions => soft time period bounds
= Statically defined
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Challenges

= Lack of system adaptability to changes in environment

= Lack of timing predictable behavior

= |nefficient use of limited battery power
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smARTflight Contributions to Challenges

= Lack of system adaptability to changes in environment

= Lack of timing predictable behavior

= |nefficient use of limited battery power
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smARTflight Contributions to Challenges P~

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

= Lack of timing predictable behavior

= |nefficient use of limited battery power
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smARTflight Contributions to Challenges P~

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

Criticality = Measure of severity of the consequences to the system in
case of unpredictable behavior

= |nefficient use of limited battery power
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smARTflight Contributions to Challenges

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

Criticality = Measure of severity of the consequences to the system in
case of unpredictable behavior

System Criticality = directly reflects
influence of environment on the system
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smARTflight Contributions to Challenges

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

Criticality = Measure of severity of the consequences to the system in
case of unpredictable behavior

Y

System Criticality = directly reflects Task Criticality = function of task’s
influence of environment on the system importance to maintenance of flight.
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smARTflight Contributions to Challenges P~

= Lack of system adaptability to changes in environment
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= Lack of timing predictable behavior
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smARTflight Contributions to Challenges P~

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

= Lack of timing predictable behavior

vIntroduce real-time (RT) task execution constraints enforced by a real-
time scheduler — deterministic flight

= |nefficient use of limited battery power
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Challenges T~ ¢
v smARTflight Contributions

= Lack of system adaptability to changes in environment
v'Introduce criticality-awareness within the system
v'Dynamic adaptation of execution rates of critical flight controller tasks

= Lack of timing predictable behavior

v'Introduce real-time (RT) task execution constraints enforced by a real-
time scheduler — deterministic flight

= Inefficient use of limited battery power
v Low execution rates of tasks in stable flying conditions
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Autopilots B
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Autopilot Flight Control
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Autopilot Flight Control
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Autopilot Flight Control
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Autopilot Flight Control
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Autopilot Flight Control
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Autopilot Flight Control
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KEY Observation s

Rates of Execution

Flight of
Performance ﬁ Critical Flight

Controller Tasks
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smARTflight Dual Criticality Semantics s

o ] HI (Adverse)
= System Criticality

Dynamic LO(CaIm)
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smARTflight Dual Criticality Semantics s

HI HI . .
. . (Adverse) Flight M
= System Criticality = Task Criticality < (FliantMission
L

Dynamic Static
LO(Ca|m) (Bookkeeping)
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smARTflight Dual Criticality Semantics s

HI HI . .
. . (Adverse) Flight M
= System Criticality = Task Criticality < (FliantMission
L

Dynamic Static
LO(Ca|m) (Bookkeeping)

Task Model

{Ci, |Ti(ro), T;(n1)], [D;(Lo).D;(u1)|, Li, |pi(LO), p;(HI1)|}

Budget Periods Deadlines Task Task Priority

Criticality BOSTON
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smARTflight Dual Criticality Semantics s
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smARTTflight Tasks

Task Name Time Period | Execution Static Criticality Description
(ps) Frequency| Priority (smarrflight)
Cleanflight (Hz) (Vanilla CF)

TASK__SYSTEM 100,000 10 Med-High L O Report system statistics
TASK BAT VOLT 20,000 50 Medium Sample batteryv voltage
TASK _GYROPID | 4,000 / 2,000 | 250 / 500 | Real-Time PISI;‘_I”{)‘;’S{E dG;’llgfo"roi’jngol

(Looptime) / 1,000 / 1,000 (highest)

TASK ACCEL 1,000 1,000 Medium H I Sample Accelerometer data

TASK _ATTITUDE 10,000 100 Medium Calculate current attitude
TASK__ RX 20,000 50 High Process receiver commands
TASK SERITAL 10,000 100 Low LO Serfal communication

with the ground computer

Execution rates (default)

BOSTON
UNIVERSITY
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smARTTlight : System Mode Changes

= System mode changes are asynchronous events
= Triggers: attitude change with respect to Euler angle thresholds

= Attitude task registers the change and propagates the mode change
flag to the scheduler

= smARTTflight scheduler:

Lo Criticality Tasks HI Criticality Tasks

Ti(Lsys = L0) < Ty(Lsys = H1) | Ti(Lsys = LO) > T;(Lsys = H1)

LO w=—p H] HOR — = HI
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smARTTlight : System Mode Changes

= System mode changes are asynchronous events
= Triggers: attitude change with respect to Euler angle thresholds

Threshold = Maximum tolerable transient deflection from the target
attitude

Lo Criticality Tasks HI Criticality Tasks

Ti(Lsys = L0) < Ty(Lsys = H1) | Ti(Lsys = LO) > T;(Lsys = H1)

LO w=—p H] HOR — = HI
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smARTTlight : System Mode Changes

= System mode changes are asynchronous events
= Triggers: attitude change with respect to Euler angle thresholds

= Attitude task registers the change and propagates the mode change
flag to the scheduler

= smARTTflight scheduler:

Lo Criticality Tasks HI Criticality Tasks

Ti(Lsys = L0) < Ty(Lsys = H1) | Ti(Lsys = LO) > T;(Lsys = H1)

LO w=—p H] HOR — = HI
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smARTTflight: Schedulability Framework

= RMS CF: no criticality semantics (standard RMS)
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smARTTflight: Schedulability Framework

= RMS CF: no criticality semantics (standard RMS)

= smARTTflight: extended and modified Liu & Layland’'s RMS
algorithm
= Task rates and priorities adapt
= Ready queue updated @ runtime
= Scheduler quantum reprogramming
= Transient system overload checks to avoid failure
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smARTTflight : Experimental Setup

S%Racing F3 The Bird

O

The
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smARTflight : Experiment Type

& Rear View N Rear View
'
8=~
.“V ‘ -----
o Emulated
Wind
Hl €= | O
smARTflight
Step Attitude Disturbance Attitude Correction
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smARTTflight : Experimental Phases

Vanilla CF smARTTflight
Static Rate Real-Time Scheduler Adaptive Real-Time
Response Times + Criticality
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smARTTflight : Experimental Phases

sSMARTflight

$

Vanilla CF

Real-Time Scheduler Adaptive Real-Time
+ Criticality

BOSTON
UNIVERSITY

m: courtesy: https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

Static Rate
Response Times


https://www.slideteam.net/flying-drone-robot-with-two-propellers.html

07/2020 48

Vanilla Result : 15° Roll-Left Response Times

Critical Tasks

' Default Rates (Hz)

GYROPID /Looptime

ACCEL

ATTITUDE

Roll: Avg. Response Times (s)

1000 | 500 | 250

1000

100 200
185 185 215 | 14

1000
1000
100

13.5

Custom Execution Rates (Hz)
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smARTTflight : Experimental Phases 5

sSMARTflight

Real-Time Adaptive Real-Time
Scheduler + Criticality

$

Vanilla CF

Static Rate
Response Times
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smARTTlight : Experimental Phases

sSMARTflight

Static Rate Real-Time Adaptive Real-Time
Response Times Scheduler + Criticality

Vanilla CF
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smARTTflight : Roll Thresholds

Angular Displacement of the Quadcopter in Roll/Pitch

-14° -10° -5° Target +5° +10 +14
* Trigger Trigger*

HI LO ’L LO HI L

J Target
1 Trigger Trigger 1'

J HI LO ’L LO HI L

Target
l Trigger Trigger
HI LO LO

Target
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Comparison : 15°Roll-Left Response Time

smARTflight Threshold Tuning
20

5 Deg
] 10 Deg
15 14 Deg

10

Response Time (s)

/
,?

NN

Roll-Left Exp
(target * threshold)
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Response Time (s)

Comparison : 15°Roll-Left Response Time

smARTflight Threshold Tuning
20

15

10

5 Deg

10 Deg ﬁ

14 Deg

/
,?

NN

Roll-Left Exp

(target * threshold)

Roll Attitude (Deg)

0 R
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7\ Phase IIl: SmARTflight

Comparison of Three Autopilots
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Autopilot Comparison Results

— Vanilla:1000 Hz
= RMS:1000 Hz

12 7 smARTflight:10 Deg

0.8 —|-

0.6 —

0.4 —-

0.2 —|-

Normalized [Total Error|

o 0 o
_ Roll-Left
Cumulative Absolute Error
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Autopilot Comparison Results

— Vanilla:1000 Hz — 50 ..-. [ Vanilla:1000 Hz
== RMS:1000 Hz X 1l E3 RMS:1000 Hz
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"

Conclusions e

“smARTflight: an environmentally aware, criticality based
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