

smARTflight : An Environmentally-Aware Adaptive Real-Time Flight Management System

Image courtesy: https://www.slideteam.net/flying-drone-robot-with-two-propellers.htm

Anam Farrukh Richard West

• The technology that is fundamentally changing the way we live.

Disinfection

• The technology that is fundamentally changing the way we live.

Remote Package Delivery

• The technology that is fundamentally changing the way we live.

Remote Package Delivery

Flight Management System (Autopilot)

07/2020 9

Windy Conditions Adversely Affect the Drone's Flight Stability

Attitude : 3D Orientation

Have low reactivity & slow response times

State-of-Art Flight Management Systems: Problems

- Have low reactivity & slow response times
- Are highly sensitive to external environmental dynamics leading to fight inaccuracy and instability

State-of-Art Flight Management Systems: Problems

- Have low reactivity & slow response times
- Are highly sensitive to external environmental dynamics leading to fight inaccuracy and instability
- Are unable to continue flight & require emergency landing
 - Manual override

State-of-Art Flight Management Systems: Problems

- Have low reactivity & slow response times
- Are highly sensitive to external environmental dynamics leading to fight inaccuracy and instability
- Are unable to continue flight & require emergency landing
 Manual override
- Execute flight control tasks at the maximum possible frequencies all the time in adverse conditions!
 - Loosely "periodic" executions => soft time period bounds
 - Statically defined

Challenges

Lack of system adaptability to changes in environment

Lack of timing predictable behavior

Lack of system adaptability to changes in environment

Lack of timing predictable behavior

- Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks
- Lack of timing predictable behavior

Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks

Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks

Criticality \triangleq Measure of severity of the consequences to the system in case of unpredictable behavior

System Criticality \triangleq directly reflects influence of environment on the system

Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks

Criticality \triangleq Measure of severity of the consequences to the system in case of unpredictable behavior

System Criticality \triangleq directly reflects influence of environment on the system Task Criticality ≜ function of task's importance to maintenance of flight.

- Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks
- Lack of timing predictable behavior

- Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks
- Lack of timing predictable behavior

Introduce real-time (RT) task execution constraints enforced by a realtime scheduler – deterministic flight

Challenges ✓ smARTflight Contributions

- Lack of system adaptability to changes in environment
 Introduce criticality-awareness within the system
 Dynamic adaptation of execution rates of critical flight controller tasks
- Lack of timing predictable behavior

Introduce real-time (RT) task execution constraints enforced by a realtime scheduler – deterministic flight

Inefficient use of limited battery power

Low execution rates of tasks in stable flying conditions

Autopilots

Autopilots

KEY Observation

Flight Performance Flight Critical Flight Controller Tasks

smARTflight Dual Criticality Semantics

$$\{C_i, [T_i(LO), T_i(HI)], [D_i(LO), D_i(HI)], L_i, [p_i(LO), p_i(HI)]\}$$

Budget Periods

Deadlines

Task Criticality **Task Priority**

smARTflight Tasks

Task Name	$egin{array}{llllllllllllllllllllllllllllllllllll$	Execution Frequency (Hz)	Static Priority (Vanilla CF)	Criticality (smartflight)	Description				
TASK_SYSTEM	100,000	10	Med-High	- 10 -	Report system statistics				
TASK_BAT_VOLT	20,000	50	Medium		Sample battery voltage				
TASK_GYROPID (Looptime)	$4,000 \ / \ 2,000 \ / \ 1,000$	$250 \ / \ 500 \ / \ 1,000$	$\underset{(\text{highest})}{\textbf{Real-Time}}$		Sample Gyroscope + PID-based motor control				
TASK_ACCEL	1,000	1,000	Medium	- HI -	Sample Accelerometer data				
TASK_ATTITUDE	10,000	100	Medium		Calculate current attitude				
TASK_RX	20,000	50	High		Process receiver commands				
TASK_SERIAL	10,000	100	Low	LO	Serial communication with the ground computer				
1	1			1	1				

Execution rates (default)

smARTflight : System Mode Changes

System mode changes are asynchronous events

- Triggers: attitude change with respect to Euler angle thresholds
- Attitude task registers the change and propagates the mode change flag to the scheduler
- smARTflight scheduler:

LO Criticality Tasks $T_i(L_{sys} = LO) \leq T_i(L_{sys} = HI)$ $T_i(L_{sys} = LO) > T_i(L_{sys} = HI)$

smARTflight : System Mode Changes

System mode changes are asynchronous events

Triggers: attitude change with respect to Euler angle thresholds

Threshold \triangleq Maximum tolerable transient deflection from the target attitude

smARTflight : System Mode Changes

System mode changes are asynchronous events

- Triggers: attitude change with respect to Euler angle thresholds
- Attitude task registers the change and propagates the mode change flag to the scheduler
- smARTflight scheduler:

LO Criticality TasksHI Criticality Tasks $T_i(L_{sys} = LO) \leq T_i(L_{sys} = HI)$ $T_i(L_{sys} = LO) > T_i(L_{sys} = HI)$

smARTflight: Schedulability Framework

RMS CF: no criticality semantics (standard RMS)

smARTflight: Schedulability Framework

- RMS CF: no criticality semantics (standard RMS)
- smARTflight: extended and modified Liu & Layland's RMS algorithm
 - Task rates and priorities adapt
 - Ready queue updated @ runtime
 - Scheduler quantum reprogramming
 - Transient system overload checks to avoid failure

smARTflight : Experiment Type

Step Attitude Disturbance

Attitude Correction

Static Rate Response Times **Real-Time Scheduler**

Adaptive Real-Time + Criticality

Vanilla Result : 15^o Roll-Left Response Times

Critical Tasks	Default Rates (Hz)			Custom Execution Rates (Hz)									
gyropid/Looptime	1000	500	250	1000			500				250		
ACCEL	1000			1000			500				250		
ATTITUDE	100		200	100	50	200	100	50	25	200	100	50	
Roll: Avg. Response Times (s)	13.5	18.5	21.5	14	13.5	21.5	33	16.5	20	33	33	32.5	26.5

smARTflight : Experimental Phases

smARTflight : Experimental Phases

smARTflight : Roll Thresholds

Comparison : 15º Roll-Left Response Time

Comparison : 15º Roll-Left Response Time

Autopilot Comparison Results

Autopilot Comparison Results

- Task and system criticality
 - Environmental triggers for system modes
 - Dynamic reconfiguration of task execution frequencies

- Task and system criticality
 - Environmental triggers for system modes
 - Dynamic reconfiguration of task execution frequencies
- Modified rate monotonic scheduling framework

- Task and system criticality
 - Environmental triggers for system modes
 - Dynamic reconfiguration of task execution frequencies
- Modified rate monotonic scheduling framework
- Improved flight performance : {response, energy & absolute error}

- Task and system criticality
 - Environmental triggers for system modes
 - Dynamic reconfiguration of task execution frequencies
- Modified rate monotonic scheduling framework
- Improved flight performance : {response, energy & absolute error}
- Extends legacy autopilots with smart resource management

