
Benchmarking Learned and LSM Indexes for Data Sortedness
Aneesh Raman
Boston University
aneeshr@bu.edu

Andy Huynh
Boston University
ndhuynh@bu.edu

Jinqi Lu
Boston University
jinqilu@bu.edu

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT
Database systems use indexes on frequently accessed attributes to
accelerate query and transaction processing. This requires paying
the cost of maintaining and updating those indexes, which can be
thought of as the process of adding structure (e.g., sort) to an other-
wise unstructured data collection. The indexing cost is redundant
when data arrives pre-structured, i.e., pre-sorted, even if only up
to some degree. While recent work has studied how classic indexes
like B+-trees cannot fully exploit the intrinsic data near-sortedness
during ingestion, there is a lack of this exploration on index designs
like read-optimized learned indexes or write-optimized LSM-trees.

In this paper, we bridge this gap by conducting the first-ever
study on the behavior of state-of-the-art learned indexes and LSM-
trees when varying the degree of data sortedness in an ingestion
workload. Specifically, we build on prior work on benchmarking
data sortedness on B+-trees and we expand the scope to benchmark:
(i) ALEX and LIPP, which are updatable learned index designs; and
(ii) the LSM-tree engine offered by RocksDB. We present in detail,
our evaluation framework and present key insights on the perfor-
mance of learned indexes and LSM-tree designs with respect to data
sortedness. Our observations indicate that learned indexes exhibit
unpredictable performance when ingesting differently sorted data,
while LSM-trees can benefit from sortedness-aware optimizations.
We highlight the potential headroom for improvement and lay the
groundwork for further research in this domain.

1 INTRODUCTION
Data systems often utilize indexing structures on frequently queried
attributes for accelerated query processing tomeet the ever-growing
demand for real-time analysis of large volumes of data. Typically, in-
dexes establish structure or order to the data by paying an indexing
cost which allows for efficient data access. However, if data arrives
fully sorted or sorted only up to some degree, the cost to create
indexes is entirely redundant. This translates into a performance
bottleneck as modern data requirements entail systems to support
fast data ingestion in addition to offering efficient query processing.
Near-Sortedness in Practice. Several applications often gener-
ate near-sorted data, i.e., data is not entirely ordered but close
to being fully ordered. For example, data tables that have corre-
lated attributes [4], intermediate results of previous join opera-
tions [5], aggregated time series, event-based data such as sensor
failures [16, 41] or naturally generated data such as stock market
prices are all near-sorted, but may not necessarily be fully sorted.
The degree to which such data is nearly sorted is characterized
by data sortedness and has been widely explored in sorting and
searching algorithms [5, 8, 9, 21, 25, 42].
Are Indexes Sortedness-Aware? When data is available fully
sorted a priori, the index construction cost can be significantly
amortized through bulk loading [1, 11]. However, the prospect

of exploiting intrinsic data sortedness up to any degree during
index construction has yet to be fully solved. Recent efforts pro-
vide a framework for evaluating indexes with a varying degree
of sortedness through the Benchmark on Data Sortedness (BoDS)
and its follow-up work [33, 34], focusing exclusively on B+-trees.
While B+-trees are often used in commercial data systems due
to their balanced read-write performance [10, 20, 27, 28, 30–32],
several write [6, 7, 17, 24, 29] as well as read optimized indexes
exist [12, 15, 22, 35, 43]. In this work, we expand the scope of bench-
marking near-sorted workloads by testing updatable learned indexes
and LSM-trees.

Learned indexes [12, 15, 22, 43] aim to replace standard index
traversals with an alternative strategy using a hierarchy of machine
learning models that can inexpensively predict the location of a key
(albeit with an error bound). Though initially proposed as a read-
only index structure because re-training the models is expensive,
recent proposals like ALEX [12] and LIPP [43] provide updatable
index designs, enabling wider adoption. ALEX, for instance, uses a
gapped array layout for its data nodes that distribute extra space
between entries to enable a model-driven insertion policy. Evalua-
tions with random insertions show considerable benefits offered
by ALEX over the B+-tree for mixed read-write workloads as the
index easily adapts to changes in data distribution [12]. However,
ingesting near-sorted data could potentially reduce the advantage
learned indexes hold over B+-trees due to less frequent changes in
data distribution and risks potentially overfitting the model.

On the other hand, LIPP stores the exact positions of keys within
the data which eliminates model-based predictions during inser-
tions and provides a fallback during lookups if the models are
inaccurate. LIPP overcomes the drawbacks of other learned index
designs by extending the tree structure during updates caused by
the collision of model predictions and combining it with a dynamic
height adjustment strategy to bound the tree height. Similarly to
ALEX, evaluation of LIPP focused entirely on workloads following
a random insertion order. Thus, LIPP may potentially carry similar
drawbacks to ALEX for near-sorted data; in particular, overfitting
of learned models may have an exacerbated cost as more collisions
may cause expensive dynamic tree adjustments to occur.

Orthogonally, LSM-trees [29] are widely used in modern key-
value stores due to their ability to allow high ingestion rates and
fast reads. To achieve fast data ingestion, LSM-trees buffer writes
in memory, and will periodically flush, merge, and organize data
on storage in logical levels (i.e., compactions) to help amortize the
ingestion cost. Generally, LSM designs—such as RocksDB [14]—are
highly tunable [37] and offer fine-grained control of data move-
ment, the flush and merge policies [23, 36], and the overall layout
of the underlying index. For instance, RocksDB supports partial
compactions [39, 40], where only a subset of files on disk with
overlapping key ranges between logical levels are merged to reduce
write amplification. Partial compactions help RocksDB to support

https://orcid.org/0009-0001-2164-0109

Aneesh Raman, Andy Huynh, Jinqi Lu, and Manos Athanassoulis

1 8 3 4 6 5 7 2 10 9

maximum displacement: L = 6

L = 1 L = 1

out-of-order entries: K = 4

Figure 1: An example of a near-sorted data collection quanti-
fied by the (𝐾, 𝐿)-sortedness metric.

trivial moves [38], through which files with non-overlapping key
ranges can be directly moved between levels through simple pointer
manipulation and does not require re-writing andmerging. This can
potentially benefit workloads that are highly sorted, maintaining
high ingestion rates in LSM-trees.
Contributions and Benchmarking Observations. In this work,
we benchmark the performance of learned index designs: ALEX,
LIPP and the state-of-the-art LSM-tree (using RocksDB); when
varying data sortedness. Our evaluation framework puts together
the data generator from BoDS along with adapters to the different
indexes with the helper scripts written in C++ and Python. We
make our framework available on GitHub so that it can be easily
extended to incorporate other index designs in the future.1 Our key
observations are highlighted as follows:

(1) We establish that any designmust be evaluated over varying
degrees of sortedness in the ingestion workload as standard.

(2) Learned indexes can be unpredictable when varying sort-
edness. Particularly, LIPP can be either 4.4× faster or 1.9×
slower than ALEX, depending on data sortedness.

(3) Learned indexes may also overfit their models when learn-
ing data distribution with high data sortedness. We find
that LIPP fails to ingest fully sorted data through sequential
writes due to repeated collisions creating an unbalanced
left-deep tree.

(4) LSM-trees benefit from optimizations like trivial moves
found in RocksDB, however, this can be further optimized
to exhibit ideal sortedness-awareness. Specifically, when
transitioning between fully sorted to minorly unsorted
workloads, throughput decreases by ≈ 20% while the files
trivially moved are ≈ 5× fewer.

The rest of this paper is structured with §2 covering the relevant
background, §3 discussing our evaluation framework, and §4 show-
ing our key observations.

2 BACKGROUND
In this section, we provide the necessary background on the data
generator from BoDS [33] and the indexes we benchmark.
Benchmark on Data Sortedness (BoDS) [33], provides a frame-
work for evaluation of the performance of data systems when vary-
ing data sortedness in the ingestion workload. The benchmark fea-
tures: (i) a synthetic data generator that creates differently sorted
collections, and (ii) a workload executor that converts the data files
into workloads having only writes or both reads and writes. The
data generator uses an intuitive (𝐾, 𝐿)-sortedness metric, inspired
by [5], that quantifies data sortedness through two parameters: how

1https://github.com/BU-DiSC/bliss_benchmark

NodeData Null
Key

Key
Gap

Key

(a) ALEX (b) LIPP

Exponential search

Data Node
Lookup

LookupInternal Node

......

...
A

daptive R
M

I

M

Gapped array

......

MM

MM

M

M

MMM

M

Figure 2: Overview of ALEX and LIPP: (a) ALEX follows
model-based insertions into the index. Gapped Arrays in
data nodes help amortize write amplification caused by shift-
ing keys during ingestions; (b) Every node in LIPP contains
a bit-vector denoting three entry types: gap or empty space,
data (containing a single entry), or a link to a child node
(created through collisions in predicted locations).

many entries are out-of-order and by how much. The number of out-
of-order entries are denoted by 𝐾 and the maximum displacement
of any out-of-order entry in the data collection is denoted by 𝐿.
Figure 1 shows an example of a near-sorted data stream quantified
by the (𝐾, 𝐿)-sortedness metric. Here, the unordered entries are
marked by the red boxes, and their displacements are visualized
by the arrows. Note that a low 𝐿 signifies local unorderness in the
data as entries are displaced closer to their ideal positions, while a
high 𝐿 points to global unorderness.
Learned Indexes look to replace index traversals through ma-
chine learning models (e.g., regression models) that can accurately
predict the location of a key in the dataset [12, 22, 43]. They do
so by learning the relationship between the keys and their data
positions, i.e., the data distribution. Using models rather than index
traversals reduces the number of disk accesses and comparisons
needed to lookup data in the index, thereby, improving query per-
formance. While learned indexes were traditionally proposed as
read-only structures to avoid expensive re-training overhead during
updates [22], recent effort has proposed updatable variants, most
notably - ALEX [12] and LIPP [43].
ALEX [12] at its core uses a Recursive Model Index (RMI) that
predicts the position of a key in the data. As with a B+-tree, ALEX
builds a tree structure, however, utilizes a different node structure
that can grow or shrink at different rates. Data nodes in the index
use a gapped array between existing entries in the node, unlike the
B+-tree that accumulates gaps at the end of the node, as shown in
Figure 2a. The gapped array reduces the cost of shifting keys for
each insertion as the gaps can directly absorb insertions. Further,
insertions to the index are model-driven, i.e., records are expected
to be closely located to their predicted positions. ALEX also uses
exponential search during lookups that is faster than binary search
when the RMI is highly accurate. As with a learned index, insertions
cause the model’s errors to increase, however, ALEX selectively
retrains the model only when needed with the use of simple cost
models that account for current workload characteristics.
LIPP [43], illustrated in Figure 2b, also uses model-based insertions
for writes to the index, however, with a precise key-to-position

https://github.com/BU-DiSC/bliss_benchmark

Benchmarking Learned and LSM Indexes for Data Sortedness

1. Inputs

3. Test File 4.

Data Generation

LIPP
Indexes

ALEX

Model

Model Model

Model Data

2. Generated Keys

Index Initialization

Coordinator

ResultsWorkload Execution

SQLite & Heatmap

BoDS

...% Sorted...% Sorted...% Sorted
Read

Write

Read/WriteLSM

L1

Ln

... ...

Figure 3: Overview of our benchmarking framework

mapping in the index. Unlike ALEX, which shifts entries in case of
collisions in predicted locations by the RMI model, LIPP chooses to
create a new child node linked to the particular position to hold the
keys. This way, multiple keys can be mapped to a single predicted
location without affecting the prediction errors. Each node in LIPP
contains a model, an array of entries, and a bit vector of entry types
(as elements for that node). Each entry type can either be a gap, or
can contain data (a single entry) or be linked to a child node. The
index tightly bounds the tree height with a dynamic, lightweight re-
adjustment strategy to𝑂 (𝑙𝑜𝑔𝑁), where N is the size of the ingested
data. The strategy chooses the appropriate subtree to determine
when and how to readjust and reduce the tree height.
LSM-trees [29] buffer entries in an in-memory component to opti-
mize ingestion before flushing them as sorted runs to the disk. The
sorted runs are later merged with the existing disk components
through a process termed as compaction. The compaction policy can
also be controlled to either eagerly merge (leveling) or lazily merge
(tiering). Modern LSM-tree engines like RocksDB [14] also allow
for partial compactions [13] with different data movement policies.
Textbook LSM-tree designs perform the same amount of merging
and re-writing of data during compactions, even for fully sorted
data. Meanwhile, partial compactions only compact a subset of files
that have overlapping key ranges to reduce write amplification, as
the amount of data re-written during every merge is minimized.
Further, RocksDB also performs trivial moves [38] that are light-
weight pointer manipulations to move SST files from one level
to the other if there are no overlapping key ranges. This reduces
redundant re-writing and merging of files during compactions.

3 BENCHMARK ARCHITECTURE
In this section, we describe our methods and discuss the mechanics
of the benchmark. Figure 3 provides a graphical overview of the
different components of the benchmark.
Coordinator. For performance, the benchmark is primarily written
in C++, however, we provide a coordinator that links together data
generation, index initialization, workload execution, and recording
results in Python. Performance numbers and logs are stored in a
SQLite database for easy analysis and plotting after benchmarking.
Data Generation.Aswe are concerned with sortedness, we choose
to generate data using BoDS [33]. For results shown in this paper,

we generate data files with 500 million 64-bit keys (≈ 4GB). If the
user prefers a different data generation method, we provide hooks
to allow other data generation programs to be integrated.
Index Initialization. Our benchmark integrates with four modern
index designs: three in-memory indexes, the B+-tree, ALEX, and
LIPP, and the modern LSM-tree through RocksDB. We use the
B+-tree from the TLX library, while ALEXand LIPP both provide
source code online [12, 43]. Each data structure is encapsulated in a
C++ wrapper that specifies how each structure preloads, reads, and
writes data. Any index-specific initialization is performed before
benchmarking. Users can integrate other indexes or data structures
into the benchmark by simply adapting the index wrapper.
Workload Execution. When data files are ingested, the data
stream is split up into four distinct execution phases: a preload
phase, a write phase, an interleaved operations phase, and a read
phase. For example, following the benchmark’s default settings, the
preload phase operates on 40% of the input stream, the write phase
40%, and the interleaved operation phase 20%. Lastly, the read phase
defaults to submitting a number of read queries equal in length
to 25% of the input stream. Read keys are generated uniformly at
random from the set of ingested keys. During ingestion, every key
is associated with a randomly generated payload of fixed length.

Preload phase: By default, the preloading phase will call the equiv-
alent insert operation for each entry in the preload stream. How-
ever, certain data structures may have the ability to perform a
bulk load operation. In such instances, the preloading behavior
can be changed to perform specialized bulk loading that is specific
to each data structure. We utilize bulk loading for the preloading
experiments presented in this paper.

Write phase: Once the preloading completes, the index is bench-
marked with a write phase that consists of sequentially executed
insert operations.

Read phase: The read phase consists of sequentially executed read
operations. Keys generated for the query are selected uniformly at
random from the list of keys already inserted into the data structure.

Interleaved phase: Lastly, the interleaved operation phase com-
bines the read and write phases and randomly selects a uniform
mixture of read and write operations.
Analyzing the Results. Once benchmarking is complete, we pull
performance logs from the SQLite database to produce heatmaps

Aneesh Raman, Andy Huynh, Jinqi Lu, and Manos Athanassoulis

0 1 3 5 10 25 50 100

K (%)

0
1

3
5

10
25

50
10

0

L
(%

)

56.9

56.6 57.2 57.0 57.7 57.7 57.4 57.2

57.0 57.1 56.8 57.5 57.7 56.9 57.3

57.8 56.8 56.9 57.8 57.7 57.7 57.1

57.5 57.0 57.6 57.9 57.7 56.9 57.5

57.4 56.8 57.7 58.0 57.7 57.3 56.9

57.2 56.9 57.5 57.6 57.5 57.1 57.3

56.6 56.5 56.7 56.6 56.9 56.9 56.8

56.00

56.25

56.50

56.75

57.00

57.25

57.50

57.75

58.00

B
u

lk
lo

ad
T

h
ro

u
gh

p
u

t
(M

O
p

s)

Figure 4: A sample heatmap showing the write throughput
in B+-tree when bulk loading the index.

relating the dimensions of sortedness (K and L) to the preload,
read, or write throughput. A sample heatmap is shown in Figure 4.
By default, the x-axis varies the fraction of out-of-order entries
in the data collection (𝐾) while the y-axis varies their maximum
displacement (𝐿). The bottom left (𝐾=0, 𝐿 = 0) corresponds to a
fully sorted data collection, while the top right corner (𝐾 = 100,
𝐿 = 100) corresponds to a fully scrambled data collection. Results
for 𝐾 = 0 or 𝐿 = 0 are left blank as any data collection with even
one of the parameters equalling zero are fully sorted. Every cell in
the heatmap corresponds to a particular evaluation metric denoted
by the corresponding color bar label. For example, Figure 4 shows
the observed throughput while pre-loading a B+-tree index. Note
that we exclude detailed analysis of B+-trees in this benchmark as
it has been extensively covered in prior work [33, 34].

4 EXPERIMENTAL EVALUATION
We now present the experiments to evaluate the behavior of differ-
ent indexes in the presence of variable data sortedness. Note that
we do not aim to compare the three approaches (for example, the
learned indexes are in memory, while RocksDB operates on stor-
age), rather, we attempt to explore the relative behavior of the three
index designs as we vary data sortedness, both for their ingestion
time and, surprisingly, for their query time.
Experimental Setup.Our server is configured with two Intel Xeon
Gold 6230 processors, 384 GB of main memory, a 1 TB Dell P4510
NVMe drive, CentOS 7.9.2009, and a default page size of 4 KB.

4.1 Learned Index
First, we present the results for the read-optimized learned index
structures, namely, ALEX and LIPP.
Index Setup. Both ALEX and LIPP are set up with the default
settings in accordance to their code base [12, 43]. Namely, ALEX is
initialized with a node size of 16MB, and LIPP is initialized with a
bitmap width of 1byte.

4.1.1 Bulk Loading. In this experiment, we measure the bulk load
throughput for ALEX and LIPP with varying degrees of sortedness.
ALEX Performs BestWith Fully Sorted Data.We observe (from
Figure 5a) that ALEX offers the best throughput when the ingested

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

L
(%

)

13

8 8 7 7 7 7 8

8 8 7 8 7 7 8

8 8 8 7 7 7 8

8 12 12 12 7 7 7

8 7 7 7 6 6 7

7 7 6 6 6 5 6

7 9 6 6 5 5 5

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

35

34 35 36 27 37 36 34

35 36 36 26 27 36 34

35 36 36 24 36 36 34

36 36 36 26 30 37 42

37 37 27 36 36 35 43

18 18 15 18 19 20 21

12 12 13 11 12 14 15

6 8 10 12

(a) ALEX : Bulkload Throughput (MOps)

20 30 40

(b) LIPP : Bulkload Throughput (MOps)

K(%)

Figure 5: Bulk loading learned indexeswith differently sorted
data: (a) ALEX benefits from high data sortedness; (b) LIPP
works better with scrambled data.

data is fully sorted or near-sorted, however, it suffers when both 𝐾
and 𝐿 are high (𝐾 ≥ 25% and 𝐿 ≥ 25%) as the throughput drops by
up to 60%. ALEX bulk loads the tree greedily by recursively parti-
tioning the input stream and deciding independently and locally
each internal node’s fanout. The index picks the optimal fanout
by building a fanout tree for every RMI node and calculating the
expected costs using a cost model to traverse the tree to the data
nodes. Although we bulk load a pre-sorted data stream, the possibil-
ity of picking optimal split points without recomputing the fanout
tree is higher when the input stream itself has high data sorted-
ness. However, we also observe an anomaly of high throughput for
𝐿 = 10% and 𝐾 = 3%, 5%, 10% which requires further investigation
into the internals of the index.
LIPP Performs Best with Local Unsortedness.We observe in
Figure 5b that LIPP offers a significantly higher throughput (at
least ≈ 1.5× better) when data is locally out-of-order (𝐿 ≤ 25%).
The index is largely unaffected by local unsortedness (small values
of 𝐿) and its throughput is comparable to ingesting fully sorted
data. In fact, even when all entries are out of order (𝐾 = 100%) but
𝐿 ≤ 25%, LIPP has its highest ingestion rate. Bulk loading in LIPP
starts by creating a Fastest Minimum Conflicting Degree (FMCD)
model for every node, which is used to insert subsequent entries.
If conflicting entries are mapped to the same location, the index
collects them and recursively builds partial subtrees to remap their
positions correctly. Therefore, the bulk loading performance can
be correlated to the number of times the index recursively builds
partial subtrees during conflicts. When 𝐿 is low, the data is more
densely packed, making it easier to pick the optimal split points
with minimum conflicts during bulk loading. This even holds for
𝐾 = 100 as the FMCD algorithm can build an accurate linear model
with minimized conflicts due to well-distributed data. Overall, with
local unsortedness, we expect LIPP to be better equipped to densely
pack nodes during bulk loading.

4.1.2 Writes. Next, we report our observations when measuring
the performance of sequential insertions for both ALEX and LIPP
in Figure 6. Note that we execute the sequential insertions after the
pre-loading phase (after bulk loading each index).
ALEX is Unpredictable When Varying Sortedness.We observe
in Figure 6a that ALEX offers the best throughput when ingest-
ing data with low 𝐾 and 𝐿 (< 10%). The indexing effort during

Benchmarking Learned and LSM Indexes for Data Sortedness

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

L
(%

)

3.9

3.8 3.5 3.4 3.2 2.7 2.4 3.6

3.8 3.5 3.4 3.0 2.5 2.1 3.4

3.8 3.5 3.4 3.0 2.5 2.0 3.3

3.8 3.4 3.2 2.9 2.5 2.0 3.2

3.8 3.4 3.2 2.9 2.5 1.9 3.2

3.6 3.4 3.1 2.8 2.4 1.9 3.0

3.8 3.2 3.1 2.9 2.5 2.0 2.0

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

-1

2 2 2 2 2 2 2

4 4 4 4 3 3 2

5 5 5 4 4 3 2

6 6 6 5 4 3 2

8 9 9 9 7 5 4

16 15 13 12 9 7 4

12 12 11 9 7 6 5

2.0 2.5 3.0 3.5

(a) ALEX : Write Throughput (MOps)

0 5 10 15

(b) LIPP : Write Throughput (MOps)

K (%)

Figure 6: Ingestion Performance of learned indexes in stable-
state: (a) ALEX offers better throughput when ingesting data
with high sortedness; (b) LIPP performs better when the
displacement of unordered entries (𝐿) is larger for a fixed 𝐾 .

stable-state ingestions is expected to be dominated by finding the
correct insertion position in the gapped array (through exponential
search in case of incorrect predictions). When the ingested data
is highly sorted, entries in the data node are likely to be densely
packed, leaving long contiguous runs followed by huge terminal
gaps, similar to a B+-tree. In this case, exponentially searching for
the correct gap is easier, and we believe this is a reason for the
higher throughput. On the other hand, ALEX also performs well
when all entries in the input stream are out-of-order but have low
or moderate displacement (𝐿 ≤ 50%). In this case, a lower 𝐿 implies
fewer contiguous runs of entries in the data node (leaving more
gaps), which may reduce incorrect predictions. The performance
degrades as we increase 𝐿, and ALEX exhibits its worst throughput
for scrambled data (𝐾 = 100, 𝐿 = 100).
LIPP Offers Better Write Throughput for Higher L. Contrary
to pre-loading, we observe from Figure 6b that LIPP performs the
best, by up to 8×, when the ingested data has fewer unorder entries
(𝐾 ≤ 10%) but are displaced further away from their ideal positions
(𝐿 ≥ 25%). The insertion cost in LIPP comes from the readjustment
strategy that may trigger recalibrations of the model. Generally,
for a fixed 𝐾 , an input stream with a higher 𝐿 offers a better sam-
ple exposing a wider range of entries (i.e., higher data resolution)
than one with a low 𝐿 value. Naturally, the model is better trained
to handle conflicts when it is exposed to a coarser sample with
a wider domain (compared to a biased fine-grained sample), thus
requiring fewer re-adjustments or recalibrations. Further, low 𝐿 in
ingested data leads to dense packed nodes during index creation
(as we observe in §4.1.1, which triggers more conflicts in the se-
quential write phase. Meanwhile, LIPP already performs additional
effort in minimizing conflicts during index creation that pays off by
leaving considerable gaps to absorb future insertions, and hence,
the contradictory trend.
LIPP Fails to Sequentially Write Fully Sorted Data. We also
observe in our benchmark that LIPP’s current design fails to ingest
fully sorted data, denoted by a −1 throughput in Figure 6b. Our
investigation reveals that performing sequential writes with fully
sorted data produces too many conflicting model predictions. In
turn, this creates a deep subtree that fails to balance itself even with
the re-adjustment strategy, causing the index to collapse.

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

L
(%

)

20

20 20 20 21 19 21 23

20 20 21 21 20 22 23

20 21 21 20 20 21 23

19 18 20 20 21 21 21

20 20 20 20 21 21 22

20 20 20 20 19 21 22

18 17 21 21 21 22 22

0 1 3 5 10 25 50 10
0

0

1

3

5

10

25

50

100

-1

2 2 2 2 2 2 2

5 6 5 4 4 4 3

7 9 7 7 6 5 4

11 13 11 8 7 6 6

19 20 20 18 16 18 14

22 22 20 18 26 18 43

26 26 27 28 42 28 28

18 20 22

(a) ALEX : Read Throughput (MOps)

0 10 20 30 40

(b) LIPP : Read Throughput (MOps)

K (%)

Figure 7: Lookup performance (existing queries) of the
learned indexes: (a) Overall, ALEX offers a stable lookup per-
formance; (b) Lookups in LIPP are faster when 𝐿 is higher.

LIPP vs. ALEX. As both systems are in memory, and we use the
same setup to compare those systems in prior work [43], we can
report that we corroborate that LIPP has about 2.5× higher insert
throughput (see the K=100%, L=100% points in Figure 6), however,
we uncover a much more interesting comparison. Depending on
the data sortedness LIPP can be from 4.4× faster all the way to
1.9× slower than ALEX. Lastly, LIPP surprisingly fails to insert
fully sorted data. Overall, we argue that the benchmarking analysis
varying data sortedness should be an evaluation standard for all
new index designs moving forward.

4.1.3 Reads. Next, we report in Figure 7 our observations when
executing existing lookups into the learned indexes.
ALEX Offers Comparable Read Performance.We observe from
Figure 7a that the point lookup performance of ALEX is largely
comparable for any degree of sortedness in the ingestion workload.
However, lookups are slightly (up to 10%) faster for higher unsorted-
ness (both 𝐾 and 𝐿 ≥ 25%). Lookups traverse the internal nodes by
using the predictive models until they reach a data node, where an
exponential search may be required to find the accurate position of
the key. When the fraction of unordered entries in the ingested data
is low, we risk potentially overfitting the model during ingestions,
which can result in inaccurate predictions. Overall, ALEX’s lookup
performance is driven by the accuracy of the model.
Lookups in LIPP Depend on Data Sortedness. Likewise, we
observe in Figure 7b that LIPP’s lookup performance benefits from
a larger displacement (𝐿) of entries in the ingested data. We believe
this is a result of exposing the model to unbiased coarser samples
during index construction that, in turn, improves accuracy.

4.2 LSM-trees
We now explore the sortedness-awareness of the state-of-the-art
LSM-tree engine in RocksDB [14]. Here, we perform sequential
writes to the system for every data collection and present our results
in Figure 8 and Figure 9.
RocksDB Setup.We initialized RocksDB with the following set-
tings; compaction style set to kCompactionStyleLevel, buffer size
40MB, entry size 16 bytes, and size ratio 4.
RocksDB Benefits from High Data Sortedness. We observe
from Figure 8 that the LSM-tree in RocksDB offers the best through-
put when the ingested data is fully sorted, and its performance

Aneesh Raman, Andy Huynh, Jinqi Lu, and Manos Athanassoulis

0 1 3 5 10 25 50 100

K (%)

0
1

3
5

10
25

50
10

0

L
(%

)

385

300 290 310 296 305 300 293

281 280 287 285 280 271 282

271 276 268 260 265 281 269

261 252 252 238 264 255 249

249 244 246 255 258 247 241

241 257 248 250 243 233 230

242 241 242 242 237 229 226

240

260

280

300

320

340

360

380

In
ge

st
io

n
T

h
ro

u
gh

p
u

t
(K

O
p

s)

Figure 8: RocksDB offers better performance when ingesting
data with high sortedness.

gradually deteriorates as the data sortedness decreases. Particu-
larly, we find that the system’s write throughput highly depends
on 𝐿, with its performance slowing down by up to 1.7× as the
displacement of unordered entries in the workload increases. An
LSM-tree works best when it is able to capture any lack of sort-
edness within its in-memory buffer so that its flushed sorted runs
have unique ranges. Thus, a higher degree of sortedness results in
lower indexing and merging effort during compactions.
Compactions Increases as Sortedness Decreases. Further, we
observe from Figure 9a that the number of compactions performed
increases as the sortedness in the ingestion workload decreases.
In fact, RocksDB performs up to 2.7× more compactions when
ingesting scrambled data (𝐾 = 100, 𝐿 = 100). Note that we report the
cumulative number of compactions performed during the ingestion
cycle for a specific data collection. As sortedness decreases (increase
in either 𝐾 or 𝐿), the number of overlapping key ranges among
the sorted runs in every level of the tree significantly increases,
resulting in an increase in the number of compactions.
Trivial Moves Benefit from High Data Sortedness. Figure 9b
shows that RocksDB performs more trivial moves with higher data
sortedness, maximizing the metric when ingesting fully sorted
data. Trivial moves enable the system to avoid unnecessary re-
writing and merging (i.e., compactions) when moving files with
non-overlapping ranges between levels through simple pointer ma-
nipulation.When the data sortedness is high, more non-overlapping
files exist, thus, a higher number of trivial moves is performed.
Trivial Moves are Significantly Affected by Even Minor Lack
of Sortedness.We also see from Figure 9b that the number of trivial
moves significantly reduces as we slightly reduce sortedness in the
data. For example, while RocksDB performs 524 trivial moves when
ingesting fully sorted data (𝐾 = 0, 𝐿 = 0), the number of trivial
moves executed (96) are ≈ 5.5× fewer, with 𝐾 = 1%, 𝐿 = 1%. This is
because the in-memory buffer in the LSM tree is not designed to
exploit sortedness, and is entirely flushed once full to make space
for future insertions. By doing so, RocksDB misses the opportunity
to absorb any lack of sortedness in the subsequent buffer cycle,
which is very likely to occur when ingesting near-sorted data. This
results in overlapping key ranges among the sorted runs, which
prohibits them from being eligible for trivial moves and, instead,
must undergo compactions. We point out that LSM systems like

0 1 3 5 10 25 50 10
0

0
1

3
5

10
25

50
10

0
L

(%
)

297

487 501 511 509 512 508 540

570 581 560 570 584 588 617

569 574 555 582 577 624 637

594 573 574 585 607 645 714

568 573 583 596 646 708 793

574 592 585 612 663 755 849

581 616 621 621 659 749 809

(a) Number of Compactions

0 1 3 5 10 25 50 10
0

0
1

3
5

10
25

50
10

0

524

96 89 114 93 113 94 119

110 103 114 106 125 114 101

80 86 78 71 72 98 125

61 44 39 45 65 86 95

36 35 30 50 49 53 61

38 49 47 32 40 38 36

30 34 37 41 56 41 33

(b) Files Trivially Moved

300

400

500

600

700

800

50

75

100

125

150

175

200

K (%)

Figure 9: (a) Compactions increase as data sortedness de-
creases; (b) More trivial moves are executed when ingesting
data with high sortedness.

RocksDB can benefit by partially flushing the buffer to better capture
near-sortedness, like the SWARE paradigm [34].
Other LSM-designs. RocksDB benefits from optimizations like
partial compactions [39, 40] that enable trivial moves [38] to lever-
age data sortedness during ingestion; however, not all LSM-engines
implement these features—e.g., AsterixDB [2, 3] perform full-level
compactions. In such systems, we expect the LSM-tree to perform
redundant indexing effort, repeatedly sort-merging and re-writing
data. Additionally, RocksDB and other LSM-engines have their own
set of customized tuning knobs that alter performance. While tun-
ing LSM-engines has been widely studied [18, 19, 26], identifying
the optimal tuning configurations for exploiting data sortedness
requires further investigation.

5 CONCLUSION
Indexing data structures establish order to otherwise unstructured
incoming data on the indexed attribute to facilitate efficient queries.
When such structure i.e., data sortedness already exists, the index-
ing effort is redundant. Prior work explores the ability of classical
B+-trees to exploit data sortedness to improve ingestion perfor-
mance, while we extend the benchmarking to modern index de-
signs like learned indexes and LSM-trees. We summarize our key
takeaways from our experimental analysis as follows:

(1) Benchmarking index ingestion performance while varying
data sortedness should be a new standard.

(2) Sortedness drives performance benefits of learned indexes.
Specifically, ingestion in LIPP can be anywhere between
4.4× faster to 1.9× slower than ALEX when varying data
sortedness in the workload.

(3) Unpredictable performance of learned indexes given a par-
ticular degree of sortedness requires further exploration
into the internals of the index designs.

(4) LSM-trees by design can absorb some degree of sortedness
due to sort-merging during compactions.

(5) The ability of LSM-trees to exploit trivial moves signifi-
cantly degrades (by ≈ 5×) even when inducing minor un-
sortedness, leaving potential for further optimizations (e.g.,
partially flushing the buffer) to bridge the performance gap.

Overall, we highlight the need for a wider analysis of index perfor-
mance when varying data sortedness. This paper lays the ground-
work for further exploration and potential opportunities for im-
provement in current state-of-the-art index designs.

Benchmarking Learned and LSM Indexes for Data Sortedness

REFERENCES
[1] Daniar Achakeev and Bernhard Seeger. 2013. Efficient Bulk Updates on Multi-

version B-trees. Proceedings of the VLDB Endowment 6, 14 (2013), 1834–1845.
[2] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-based

Tuple Compaction Framework for Apache AsterixDB. Proceedings of the VLDB
Endowment 13, 9 (2020), 1388–1400.

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,
Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Chee-
langi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron,
Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria
Pirzadeh, Vassilis J. Tsotras, Rares Vernica, Jian Wen, and Till Westmann. 2014.
AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment
7, 14 (2014), 1905–1916.

[4] Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate Tree
Indexing. Proceedings of the VLDB Endowment 7, 14 (2014), 1881–1892.

[5] Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and
Carl Staelin. 2011. Detecting and Exploiting Near-Sortedness for Efficient Re-
lational Query Evaluation. In Proceedings of the International Conference on
Database Theory (ICDT). 256–267.

[6] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An
Introduction to B𝜖-trees and Write-Optimization. White Paper (2015).

[7] Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower Bounds for External
Memory Dictionaries. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 546–554.

[8] Svante Carlsson and Jingsen Chen. 1992. On Partitions and Presortedness of
Sequences. In Acta Informatica, Vol. 29. 267–280.

[9] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 275–290.

[10] CouchDB. [n. d.]. Online reference. http://couchdb.apache.org/ ([n. d.]).
[11] Jochen Van den Bercken and Bernhard Seeger. 2001. An Evaluation of Generic

Bulk Loading Techniques. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). 461–470.

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned In-
dex. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 969–984.

[13] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Sa-
vor, and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR).

[14] Facebook. 2021. RocksDB. https://github.com/facebook/rocksdb (2021).
[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2018. A-Tree: A Bounded Approximate Index Structure. CoRR abs/1801.1
(2018).

[16] Nikolaus Glombiewski. 2023. Robust Stream Indexing. Ph. D. Dissertation.
Philipps-Universität Marburg.

[17] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees. In Proceed-
ings of the Biennial Conference on Innovative Data Systems Research (CIDR).

[18] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis.
2022. Endure: A Robust Tuning Paradigm for LSM Trees Under Workload
Uncertainty. Proceedings of the VLDB Endowment 15, 8 (2022), 1605–1618.

[19] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis.
2024. Towards flexibility and robustness of LSM trees. The VLDB Journal (2024),
1–24.

[20] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
2667–2672.

[21] Donald E. Knuth. 1997. The art of computer programming, Volume I: Fundamental
Algorithms (3rd Edition). Addison-Wesley.

[22] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 489–504.

[23] Andrew Kryczka. 2020. Compaction Styles.
https://github.com/facebook/rocksdb/blob/gh-pages-old/talks/2020-07-17-
Brownbag-Compactions.pdf (2020).

[24] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 302–313.

[25] Heikki Mannila. 1985. Measures of Presortedness and Optimal Sorting Algo-
rithms. IEEE Transactions on Computers (TC) 34, 4 (1985), 318–325.

[26] Dingheng Mo, Fanchao Chen, Siqiang Luo, and Caihua Shan. 2023. Learning to
Optimize LSM-trees: Towards A Reinforcement Learning based Key-Value Store
for Dynamic Workloads. CoRR abs/2308.0 (2023).

[27] MongoDB. 2023. Online reference. http://www.mongodb.com/ (2023).
[28] MySQL. 2023. MySQL. https://www.mysql.com/ (2023).
[29] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The log-structuredmerge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
[30] Oracle. 2018. Introducing Oracle Database 18c. White Paper (2018).
[31] PostgreSQL. 2023. PostgreSQL: The World’s Most Advanced Open Source Rela-

tional Database. https://www.postgresql.org (2023).
[32] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems.

McGraw-Hill Higher Education, 3rd edition.
[33] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar, Matthaios Olma,

and Manos Athanassoulis. 2022. BoDS: A Benchmark on Data Sortedness. In
Performance Evaluation and Benchmarking - TPC Technology Conference (TPCTC).
17–32.

[34] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2023. Indexing for Near-Sorted Data. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 1475–1488.

[35] Jun Rao and Kenneth A. Ross. 2000. Making B+-trees Cache Conscious in
Main Memory. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 475–486.

[36] RocksDB. 2020. Leveled Compaction. https://github.com/facebook/rocksdb/wiki/Leveled-
Compaction (2020).

[37] RocksDB. 2021. RocksDB Tuning Guide.
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide (2021).

[38] RocksDB. 2022. RocksDB Trivial Move.
https://github.com/facebook/rocksdb/wiki/Compaction-Trivial-Move (2022).

[39] Subhadeep Sarkar and Manos Athanassoulis. 2022. Dissecting, Designing, and
Optimizing LSM-based Data Stores. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. 2489–2497.

[40] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, andManos Athanassoulis. 2021.
Constructing and Analyzing the LSM Compaction Design Space. Proceedings of
the VLDB Endowment 14, 11 (2021), 2216–2229.

[41] Marc Seidemann, Nikolaus Glombiewski, Michael Körber, and Bernhard Seeger.
2019. ChronicleDB: A High-Performance Event Store. ACM Transactions on
Database Systems (TODS) 44, 4 (10 2019).

[42] Peter Van Sandt, Yannis Chronis, and JigneshM. Patel. 2019. Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 36–53.

[43] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.
2021. Updatable Learned Index with Precise Positions. Proceedings of the VLDB
Endowment 14, 8 (2021), 1276–1288.

	Abstract
	1 Introduction
	2 Background
	3 Benchmark Architecture
	4 Experimental Evaluation
	4.1 Learned Index
	4.2 LSM-trees

	5 Conclusion
	References

