
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

QuIT your B+-tree for the Quick Insertion Tree
Aneesh Raman
Boston University
aneeshr@bu.edu

Konstantinos Karatsenidis
Boston University
karatse@bu.edu

Shaolin Xie
Boston University
slxie@bu.edu

Matthaios Olma
MongoDB

matt.olma@mongodb.com

Subhadeep Sarkar
Brandeis University

subhadeep@brandeis.edu

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT
Search trees, like B+-trees, are often used as index structures in
data systems to improve query performance at the cost of index
construction and maintenance. For state-of-the-art B+-tree designs
used in commercial data systems, this cost is negligible if the data
arrives as fully sorted on the index attribute. Further, production
systems employ a fast-path ingestion technique for B+-trees that
directly appends the incoming entries to the tail leaf if the data
is fully sorted, drastically reducing the index construction cost.
However, this is only effective if the incoming data arrives fully
sorted or with an extremely small number of out-of-order entries.
In addition, the state-of-the-art sortedness-aware design (SWARE)
navigates a tradeoff between reads andwrites by buffering incoming
data to absorb near-sortedness, which comes at the cost of slower
query performance and increased overall design complexity.

To address these challenges, we present Quick Insertion Tree
(QuIT), a sortedness-aware indexing data structure that improves
ingestion performance with minimal design complexity and no read
overhead. QuIT maintains in memory a pointer to the predicted-
ordered-leaf (𝑝𝑜ℓ𝑒) that provides a sortedness-aware fast-path op-
timization, and facilitates faster index ingestion. The key benefit
comes from accurately predicting 𝑝𝑜ℓ𝑒 throughout data ingestion.
Further, QuIT achieves high memory utilization by maintaining
tightly packed leaf nodes when the ingested data arrives as near-
sorted. This, in turn, helps improve performance during range
lookups. Overall, we demonstrate that QuIT outperforms B+-tree
(SWARE) by up to 3× (2×) for ingestion, while maintaining the same
point lookup performance (up to 1.23× faster). QuIT also accesses
up to 2× fewer leaf nodes than the B+-tree during range lookups.

1 INTRODUCTION
Database indexes accelerate query processing by offering fast ac-
cess to selection predicates. B+-tree indexes [12, 19] are used as
the primary index data structure by several popular data systems
ranging from relational row-stores [31, 32, 34, 35] like Oracle, SQL
Server, PostgreSQL and MySQL to NoSQL systems [13, 20, 30] like
MongoDB due to their ability to allow efficient point and range
queries. The improved query performance, however, comes at the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

0

250 inserts

fully near less
sortedness

0

1000
lookups

la
te

n
cy

(n
s)

(a) sortedness awareness

read
cost

design
complexity

memory
utilization

tuning
complexity

25

50

tail SWARE QuIT

better

(b)

Figure 1: (a) QuIT significantly outperforms the existing base-
lines for any degree of sortedness; and (b) QuIT offers high
sortedness-awareness with no additional read penalty while
also striking a better right balance between design complex-
ity, tuning, and memory utilization than other baselines.

cost of constructing and maintaining the index as new data is in-
serted, updated, or deleted from the database [3]. With modern
applications requiring data systems to also support faster data in-
gestion in addition to efficient query processing, the indexing cost
becomes prohibitive for workloads with high ingestion rates.

In a B+-tree [12], ingesting a key involves accessing the root
note, traversing the tree to find the appropriate leaf node whose
range can fit the key, and inserting the key into that node in sorted
order. This essentially adds structure to the data by establishing
a sorted order to the data at the leaf level of the index. The tree
traversal, coupled with the required splitting of nodes as the tree
grows, heavily consumes the bulk of the indexing cost. There exist
techniques that accelerate index ingestion when we have access
to the entire dataset a priori (e.g., bulk-loading [1, 15]). However,
for insertions taking place throughout workload execution, bulk
loading is not feasible, and hence, data systems revert to standard
ingestion using expensive top-to-bottom tree traversals.
Leveraging Data Sortedness. Our thesis is that since indexing
adds structure to an otherwise unstructured data collection by cre-
ating a fully sorted version of the data, the indexing effort should be
minimal when the data arrives with some intrinsic order [38]. The
key idea here is identifying the correct location (i.e., leaf node),
to insert a new key without performing expensive tree traversals.
A simple case is when data arrives fully sorted – insertions are
always right-deep and are applied only to the tail (right-most) leaf
node of the index. Here, maintaining a pointer to the tail leaf suf-
fices to alleviate the indexing effort. In fact, due to its simplicity,
this technique is employed in popular commercial systems (e.g.,
fast-path optimization in PostgreSQL [34]). However, the tail-leaf
optimization is only effective when data arrives fully sorted and
fails to capture varying degrees of near-sortedness [37]. A small

1

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

number of outliers, equal to the capacity of a single leaf node, is
enough to render the tail-leaf optimization useless.

In practice, several applications generate data that is close-to
being fully sorted (i.e., near-sorted). Examples include stock market
data, aggregated time-series, intermediate results of joins [5], sorted
files that received a small number of updates [5], and correlated
columns [2], among others. Recent work on sortedness awareness
for indexing (SWARE) [38] aims to exploit partial order in the in-
coming data by intelligently buffering entries and opportunistically
bulk loading them on the fly (into an underlying index, e.g., B+-tree)
to accelerate index ingestion. The advantages gained by applying
the SWARE paradigm to a B+-tree are illustrated in Fig. 1a, which
shows the average ingestion cost when ingesting 500M entries (in-
teger key-value pairs) with varying data sortedness. We benchmark
the B+-tree with tail-leaf optimization enabled (henceforth referred
to as tail or tail-B+-tree) the SWARE design (equipped with a 40MB
buffer), and our approach. Note that all experiments use the same
underlying B+-tree implementation to ensure a fair comparison.

While SWARE outperforms the tail-B+-tree with near-sorted
data, it falls back to a B+-tree otherwise. The improved ingestion
performance is beneficial for write-heavy workloads, however, ac-
cessing the buffer at query time makes SWARE slower for point
queries. To reduce the read penalty, SWARE uses a more complex
design for the buffer by employing additional data structures (i.e.,
Zonemaps [29] and Bloom filters [9]), still having up to 26% slower
point queries than B+-tree. This requires additional tuning, reduces
maintainability, and as a result, hinders adoption.
An ideal tree index should offer high sortedness-awareness through
minimal design complexity without hurting query performance.

Simplifying Sortedness-Awareness. In this work, we propose to
exploit any intrinsic sortedness in the ingested data to optimize the
indexing effort, with the specific goal of incurring minimal addi-
tional complexity in the index design. To that end, we propose two
fast-path insertion optimizations named last-insertion-leaf (ℓ𝑖ℓ) and
predicted-ordered-leaf (𝑝𝑜ℓ𝑒). The key intuition in both techniques
is that they offer a predictor of in-order insertions and direct them
to the appropriate leaf to avoid expensive tree traversals.

First, we replace the naïve predictor of fast-path insertions from
the rightmost (tail) leaf to the last-insertion-leaf (ℓ𝑖ℓ). This change
allows near-sorted ingestion streams to quickly “come back” to the
appropriate leaf if we have a small number of unordered entries.
While this helps to increase the number of fast-path insertions,
inserting an out-of-order entry results in up to two missed fast-
path inserts (one top-insert for the unordered entry and another to
switch back to the correct leaf node for subsequent entries).

Ideally, we would like to always perform a fast-path insertion,
even following an outlier. This is enabled by our second optimiza-
tion, which is more sophisticated than ℓ𝑖ℓ yet has minimal design
complexity. Specifically, we maintain a pointer to the predicted-
ordered-leaf (𝑝𝑜ℓ𝑒), which is initiated to the tail leaf. When we
receive out-of-order entries, we do not eagerly update 𝑝𝑜ℓ𝑒 , rather,
when the node is split, we decide which of the two resulting nodes
should be identified as 𝑝𝑜ℓ𝑒 based on the ingested data.
Eliminating Overheads. In the worst case, both techniques easily
fall back to regular index ingestion, which is exactly as efficient
as the underlying B+-tree. This way, we avoid a fraction of tree

traversals without incurring any other overhead. The required
metadata is also minimal: one pointer to the fast-path (ℓ𝑖ℓ or 𝑝𝑜ℓ𝑒),
the smallest and largest values that the fast-path node can accept,
and only for 𝑝𝑜ℓ𝑒 , the size and the smallest key of the previous leaf.
Quick Insertion Tree. We propose Quick Insertion Tree (QuIT), a
lightweight indexing data structure that supports fast data ingestion
using the 𝑝𝑜ℓ𝑒 fast-path optimization. QuIT adapts to the sortedness
of the incoming data to facilitate fast index appends. In the ingestion
experiment shown in Figure 1a, QuIT outperforms the tail-B+-tree
by up to ≈ 2.5×, and the SWARE design by ≈ 2×.

Since 𝑝𝑜ℓ𝑒 is identified as a node receiving ordered entries, we
use an In-order Key estimatoR (IKR) to guide its update policy (in-
spired by the inter-quartile range [14]). Using IKR enables QuIT
to employ a variable split factor that better packs in-order entries
in its leaf nodes, in addition to redistributing entries between un-
derutilized leaf nodes. This helps the index to improve both space
utilization when ingesting near-sorted data and read performance
during range lookups. Further, point lookups in QuIT are similar to
B+-tree, hence, QuIT ingestion benefits come with no read penalty.

Figure 1b shows a qualitative comparison between tail-B+-tree,
SWARE, and QuIT based on sortedness-awareness (ingestion bene-
fits), read cost, complexity, tuning, and memory utilization. Overall,
QuIT outperforms both the tail-leaf optimization found in produc-
tion systems and the SWARE paradigm for sortedness awareness
without incurring any additional read penalty. QuIT achieves this
with little to no tuning, minimal design complexity, and improved
memory utilization. Further, QuIT employs classical concurrency
strategies to allow for multi-threaded execution with some addi-
tional care for themetadata used. Overall, QuIT’s lightweight design
allows for easy adoption into production data systems.
Contributions. Our work offers the following contributions:
• We propose two simple, yet powerful fast-path optimizations

for B+-trees: ℓ𝑖ℓ that reuses the last-insertion-leaf to avoid a full
tree traversal, and 𝑝𝑜ℓ𝑒 that exploits near-sortedness to predict
which leaf should receive the next in-order insertion (§3).
• We present an In-order Key Estimator (§4.1) that updates 𝑝𝑜ℓ𝑒

(§4.2). IKR also allows for variable-split ratio and redistribution
in leaf nodes to ensure higher space utilization (§4.3).

• We integrate the above techniques with minimal metadata and
tuning (§4.4) and support for concurrent execution (§4.5) into
the Quick Insertion Tree(or QuIT), a general-purpose index that
supports sortedness-aware fast ingestion.

• We extensively evaluate QuIT and its core components (§5). We
show that QuIT significantly outperforms a state-of-the-art B+-
tree by up to 2.5× and SWARE by up to 2× during near-sorted
data ingestion. QuIT is also 1.26× faster than SWARE during
point lookups and improves its memory footprint by up to 49%
when compared to B+-tree.
• Finally, we demonstrate that QuIT scales well with data size and

with concurrent execution.

2 BACKGROUND AND MOTIVATION
In this section, we provide the necessary background to data sort-
edness and the associated index construction and maintenance cost.
We discuss the existing optimization techniques that attempt to
exploit sortedness as a resource, and why they fall short.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

QuIT your B+-tree for the Quick Insertion Tree

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 2 4 3 5 7 6 8 9 10(a)

1 2 3 300 5 700 6 8 9 10(b)

1 8 3 6 5 4 7 2 10 9(c)

out-of-order entries

outliers

out-of-order entries: K = 5

maximum displacement: L = 6

Figure 2: Examples of (a) out-of-order entries and (b) outliers
in a data collection. (c) The𝐾−𝐿-sortednessmetric effectively
captures the number of out-of-order entries as 𝐾 and the
maximum displacement of out-of-order entries as 𝐿.

Quantifying Data Sortedness. Data sortedness captures the differ-
ence between the arrival order and indexed order of data over the in-
dexed attribute. Several metrics have been proposed in the literature
that aim to quantify the sortedness of a stream of data [5, 11, 24, 28].
One way to quantify data sortedness is to count the number of
entries that are out of order in a dataset [28]. By this quantification,
a fully sorted data collection has no out-of-order entries, whereas a
scrambled data collection has all or nearly all of its entries out of
order. A nearly-sorted data collection has only a few out-of-order en-
tries in an otherwise sorted data collection. In general, out-of-order
entries are identified as those that are smaller than their preceding
key in a monotonically increasing data stream, as shown in Fig. 2a,
or vice versa. Further, entries that deviate considerably from the
overall expected value in a near-sorted data stream and that may
(or may not) be in order with respect to their preceding entry are
categorized as outliers. For example, in Fig. 2b, although the entries
300 and 700 are in order with their respective preceding keys, they
are considered outliers as they deviate significantly in magnitude
with neighboring entries. Note that outliers are easy to identify
when the data set is available in its entirety, however, identifying
them accurately in an incoming data stream is challenging.
The K−L-Sortedness Metric. The 𝐾−𝐿-sortedness metric [37]
inspired by Ben-Moshe et. al. [5] more comprehensively quantifies
data sortedness by accounting for both the out-of-order entries and
the distance by which they are out of order. The number of out-of-
order entries is denoted by 𝐾 , and the maximum displacement of
an unordered entry from its in-order position is denoted by 𝐿. An
example of a nearly sorted data collection based on𝐾−𝐿-sortedness
is shown in Fig. 2c where 𝐾=5 entries are out of place and the out-
of-place entries are displaced by at most of 𝐿=6 index positions.
Sortedness-Aware Indexes.Raman et al. [38] proposed the SWARE
indexing paradigm that captures the sortedness of a data stream
using an in-memory buffer and opportunistically bulk load (on-the-
fly) incoming data to the underlying tree index (e.g., B+-tree). This
helps improve the ingestion performance for near-sorted or even
less-sorted data streams, as shown in Figure 1a.

The benefits gained by buffering entries during ingestion come
at the expense of query performance, as every query now has to
first search the buffer. SWARE partially addresses this overhead by
employing auxiliary data structures like Zonemaps [29] and Bloom
filters [9], in addition to a query-driven partial-sorting technique

0 0.01 0.05 0.1 0.5 1 3 5 10

% out-of-order entries (K)

0

50

100

%
fa

st
-i

n
se

rt
s

tail-B+-tree

Figure 3: The tail-leaf optimization is effective only for an
extremely high degree of sortedness and leads to no fast-
inserts when 1% or of the entries are out of order.

that is inspired by Cracking [21, 22]. Yet, point queries in SWARE
are up to 26% slower than the baseline B+-tree, a cost that becomes
prohibitive as the fraction of reads in the workload increases.

More importantly, adding Zonemaps and Bloom filters to the
design implies that insertions to the index are no longer simple
appends to the buffer. Every insert first checks if it is arriving in-
order to the preceding key, and if otherwise, performs a linear scan
of the Zonemaps to identify overlapping pages within the buffer.
Additionally, the inserted key is also indexed through a couple
of layers of Bloom filters that require re-calibration during every
buffer flush. The memory buffer and the metadata (including the
auxiliary data structures) also increase the memory footprint (e.g.,
for indexing 1 TB of data, the memory requirement can be more
than 10 GB). Thus, in addition to imposing a penalty on the lookup
performance, SWARE also requires careful tuning to ensure that
the benefits of buffering outweigh tree traversals during regular
insertions to guarantee overall performance improvement.
Tail-Leaf Insertion. Tail-leaf insertion in B+-trees is a simple
and effective fast-path optimization that benefits from incremental
in-order ingestion to the index. The tail-leaf fast-path essentially
maintains one additional pointer to the rightmost leaf (tail) of the
index along with its smallest allowed value. Any newly ingested
key that is greater or equal to that value is directly inserted into
the tail-leaf that is naturally cached, rather than traversing the tree.
While this optimization is rarely useful when data does not arrive
in sorted order, surprisingly, this fast-path optimization fails to
accelerate index ingestion even when data arrives near-sorted. As
soon as the number of outliers inserted exceeds one node worth
of data, the tail-leaf only contains outliers, resulting in a “stale”
fast-path. This results in future insertions (even for near-sorted
data) reverting to traditional incremental ingestion to the index
(referred to as top-inserts) and missing the opportunity to utilize
the fast-path (referred to as fast-inserts).
Tail-leaf is OnlyHelpful for ExtremelyHigh Sortedness. Fig. 3
shows the fraction of fast-inserts when ingesting 5M integers into
a tail-B+-tree, as we vary data sortedness. Specifically, we vary the
fraction of out-of-order entries, which are positioned uniformly and
randomly in the workload. As expected, the tail-leaf optimization is
effective for sorted data (i.e., 0% out-of-order entries) or extremely
near-sorted data (i.e., very few out-of-order entries). Thus, while we
get negligible top-inserts for 0.01% out-of-order entries, the tail-leaf
optimization’s efficiency drops to only 23% (11%) fast-inserts for
0.05% (0.1%) out-of-order entries, and, ultimately, to less than 1%
fast-inserts for 1% out-of-order entries and beyond. This renders the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) (b)

(c)

(e)

insert a

a

if a in lil range

insert b if b not in
lil range

b

insert c

c < split_key

lil old lilupdated lil

(d) c ≥ split_key

newly split
nodeif

c i
n lil

 ra
nge

lil

c

c

lil

lil

Figure 4: Fast-path ingestion using ℓ𝑖ℓ : (a) a newly inserted
key is added to ℓ𝑖ℓ if within ℓ𝑖ℓ-range; (b) a top-insert updates
ℓ𝑖ℓ pointer to the leaf node where we insert the key; (c) when
an insert to ℓ𝑖ℓ causes a split, (d) ℓ𝑖ℓ is updated if 𝑐 ≥ 𝑠𝑝𝑙𝑖𝑡_𝑘𝑒𝑦;
otherwise (e) ℓ𝑖ℓ stays as is.

tail-leaf optimization impractical for most near-sorted workloads
as fast-path ingestion is very rarely used.

3 REINVENTING FAST-PATH OPTIMIZATION
We now propose last-insertion-leaf (ℓ𝑖ℓ), a renewed fast-path op-
timization technique for B+-trees that offers superior ingestion
performance for near-sorted workloads, and lay the groundwork
for predicted-ordered-leaf (𝑝𝑜ℓ𝑒), QuIT’s key ingredient.
Tracing the Leaf of the Last Insertion. Contrary to the tail-leaf
optimization, we maintain a pointer to the last-insertion-leaf or
ℓ𝑖ℓ for short. At any point during a workload execution, ℓ𝑖ℓ points
to the leaf node to which the most recent entry was inserted. A
subsequent insert may be added to the ℓ𝑖ℓ-node if it falls within
its range as shown in Fig. 4a. Otherwise, we revert to a top-insert
followed by an update to the ℓ𝑖ℓ-pointer (Fig. 4b). The ℓ𝑖ℓ-pointer
is also updated if a newly inserted entry results in splitting the ℓ𝑖ℓ-
node (Fig. 4c). In this case, we update the ℓ𝑖ℓ-pointer if the inserted
key is placed into the newly created node from the split (Fig. 4d),
or keep it unchanged otherwise (Fig. 4e).
Modeling ℓ𝑖ℓ Benefits. We quantify the expected efficiency of
ℓ𝑖ℓ by estimating the fraction of data that would be fast-inserted
into the tree as a function of the out-of-order entries. Ideally, a
sortedness-aware index would fast-insert all in-order entries and
perform top-inserts only for entries that are out of order. However,
ℓ𝑖ℓ performs a top-insert both when (a) an out-of-order entry fol-
lows an in-order entry (outlier or not) and (b) an in-order entry
follows an outlier. Conversely, ℓ𝑖ℓ would only succeed when we
have two in-order entries in a row. We calculate the probability of
two consecutive entries being in order as follows. We assume that
we insert 𝑛 entries into a B+-tree and that a fraction, 𝑘 , of those
entries are out of order. Then, the number of in-order entries, 𝑦, is:
𝑦 = 𝑛 · (1 − 𝑘), and the probability of a fast-insert (which happens
when two consecutive entries are in-order), 𝐹𝐼 , is given as:

𝐹𝐼 =
𝑦

𝑛
· 𝑦 − 1
𝑛 − 1 ≈

for large 𝑛

(𝑦
𝑛

)2
= (1 − 𝑘)2 (1)

0 0.01 0.05 0.1 0.5 1 3
% out-of-order entries (K)

0

20

40

60

80

100

%
fa

st
in

se
rt

s

(a) tail-B+-tree `i`-B+-tree

0 20 40 60 80 100
% out-of-order entries (K)

0

25

50

75

100

%
fa

st
-i

n
se

rt
s

(b) tail `i` Ideal

Figure 5: (a) The last-insertion-leaf optimization significantly
outperforms tail-leaf insertions in B+-trees for highly sorted
data. (b) Simulation of the expected fraction of top-inserts
using the ℓ𝑖ℓ-pointer while varying data sortedness.

Evaluating ℓ𝑖ℓ .While the tail-leaf optimization results in virtually
no fast-inserts even with only 1% out-of-order entries, Eq. (1) shows
that ℓ𝑖ℓ should manage to achieve 98% fast-inserts in the same
workload, which is corroborated experimentally. Fig. 5a shows the
fraction of fast-inserts (on the y-axis) when ingesting 5𝑀 entries
(integer K-V pairs) as we vary the fraction of out-of-order entries
𝑘 in the x-axis. Firstly, for fully sorted data both the tail and ℓ𝑖ℓ
optimizations invoke their respective fast-path insertion routines
and avoid expensive top-inserts altogether. We observe that ℓ𝑖ℓ
is indeed able to perform 98% fast-inserts for a workload with
𝑘 = 1%, 90% fast-inserts for a workload with 𝑘 = 5% while also
performing around almost no fast-inserts for 𝑘 = 100%. The very
few fast-inserts for the latter are due to two consecutive out-of-
order entries targeting with a very low probability the same node,
which is slightly higher initially when the tree is small.

The superior benefits of ℓ𝑖ℓ against the tail-leaf optimization is
because the latter works well only when an incoming entry can
be correctly positioned in the tail leaf, the probability of which
is very low. On the other hand, we observe a gradual decrease of
fast-inserts performed in ℓ𝑖ℓ as we decrease data sortedness. While
ℓ𝑖ℓ initially points to the tail leaf, it updates to the last insertion leaf
as soon as we encounter an entry that is top-inserted elsewhere.
This allows all subsequent in-order entries to be ingested through
the fast path to the new ℓ𝑖ℓ-node or revert to the “correct” leaf node
if ℓ𝑖ℓ points to a leaf filled with outliers.
Headroom of Improving ℓ𝑖ℓ . While ℓ𝑖ℓ ’s design offers the oppor-
tunity to perform better than the state-of-the-art tail-leaf optimiza-
tion, there is still a lot of room for improvement. To quantify the
headroom of improvement, we compare the expected number of
fast-inserts performed by ℓ𝑖ℓ with the theoretical ideal design of
a sortedness-aware fast-path optimization. We use Eq. (1) to esti-
mate the number of fast-inserts as a fraction of the workload, while
the ideal is all in-order entries. Fig. 5b, shows that while ℓ𝑖ℓ (solid
black line) is expected to clearly outperform tail-leaf insertion (in
dashed black line) – from the experiment in Fig. 5a, the number
of fast-inserts quickly drops as the number of out-of-order entries
increases. Instead, for an ideal sortedness-aware index (green line
with a triangle marker), the fraction of fast inserts are expected to be
linearly proportional to the in-order entries. The area between the
solid black and green lines presents the headroom for improvement.

Focusing on themissed opportunity, ℓ𝑖ℓ performs two top-inserts
per out-of-order entry: (i) one for an out-of-order entry, and (ii)
one for the in-order after ℓ𝑖ℓ is updated to the wrong leaf.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

QuIT your B+-tree for the Quick Insertion Tree

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Optimal sortedness-awareness should incur, at most, one top-insert
per out-of-order entry.

Thus, we expect that the number of top-inserts (that can be 3-4×
more expensive than fast inserts depending on the height of the
tree) will be halved by such an ideal design, reducing substantially
the overall cost of near-sorted data ingestion. Finally, when insert-
ing near-sorted data we can improve the space utilization of the
index by better packing leaf nodes with in-order entries and using
a variable split ratio [38]. On the other hand, for tail-leaf optimiza-
tion and ℓ𝑖ℓ , the higher the data sortedness the lower the space
utilization, since every node split will leave a half-full node that
will never receive any future insert.

Next, we propose a new design that bridges the aforementioned
performance headroom with a more robust fast-path optimization,
while also offering better space utilization.

4 QUICK INSERTION TREE
We present Quick Insertion Tree (QuIT), an indexing data structure
that is sortedness-aware by design and offers superior ingestion
performance along with better space utilization when ingesting
near-sorted data. At its foundation, QuIT is similar to B+-tree – its
root and internal nodes contain a list of keys and pointers, while
the leaf nodes contain the data entries. However, QuIT employs
a sortedness-aware fast-path optimization that benefits ingestion
workloads that have at least some degree of intrinsic data sortedness.
If the data is completely scrambled, QuIT effectively behaves like B+-
tree for writes. The key advantage of QuIT over other sortedness-
aware counterparts [38] is the lack of any additional read penalty
when compared to a B+-tree. It also has minimal design complexity
and requires little to no tuning. Through the rest of this section, we
present the architecture of the Quick Insertion Tree.

4.1 A Robust Fast-Path Optimization
Predicting the Ordered Leaf. In Section 3 (Fig. 5b), we pointed out
that an ideal sortedness-aware index would perform expensive top-
inserts only for entries that are out of order, while all other entries
should be ingested using the fast path. The fundamental limitation
of ℓ𝑖ℓ is that it naïvely switches the fast-path access pointer (i.e.,
the ℓ𝑖ℓ-pointer) based on the most recent insert, even if the entry
ingested is out of order. We address this by replacing ℓ𝑖ℓ with a
new leaf node pointer to the predicted-ordered-leaf (𝑝𝑜ℓ𝑒) node, that
tracks the leaf that is most likely to accept the future in-order entries.
Similarly to ℓ𝑖ℓ , out-of-order entries are top-inserted. However,
unlike ℓ𝑖ℓ , the pointer to 𝑝𝑜ℓ𝑒 may be updated only when 𝑝𝑜ℓ𝑒 splits.
The newly created node from the split will be identified as 𝑝𝑜ℓ𝑒 if
its smallest key is not an outlier, while 𝑝𝑜ℓ𝑒 remains unchanged
otherwise. To guide this update policy, we build a lightweight outlier
predictor called In-order Key estimatoR (IKR).
Identifying Outliers. Assume we are inserting entries into the
index with keys following an increasing order. Let 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒 and
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 denote the respective number of entries in 𝑝𝑜ℓ𝑒 and
its preceding node 𝑝𝑜ℓ𝑒_prev. We want to identify if 𝑝𝑜ℓ𝑒 needs
to be updated upon split. Now, let 𝑝 and 𝑞 be the values of the
smallest key in the 𝑝𝑜ℓ𝑒_prev and 𝑝𝑜ℓ𝑒 , as shown in Fig. 6a. Since
𝑝𝑜ℓ𝑒 contains in-order entries, 𝑞 is not an outlier, and necessarily
𝑝 is also not an outlier as it precedes 𝑞. When splitting, we would

p q r
pole_prev pole pole_next

p q r
pole_prev pole pole_next

p q r
pole_prev pole pole_next

updated pole

if r ≤ x if r > x

(a)

(b) (c)

Figure 6: Updating 𝑝𝑜ℓ𝑒: (a) post splitting 𝑝𝑜ℓ𝑒, we use the
smallest key (𝑟) in the newly split node (𝑝𝑜ℓ𝑒_next) and com-
pare to an estimation (𝑥) from the IKR; (b) if 𝑟 ≤ 𝑥 , we update
𝑝𝑜ℓ𝑒; otherwise, (c) if 𝑟 > 𝑥 we leave 𝑝𝑜ℓ𝑒 as is.

Algorithm 1: Updating predicted-ordered-leaf
Data: 𝑝 = 𝑝𝑜ℓ𝑒_prev𝑚𝑖𝑛 , 𝑞 = 𝑝𝑜ℓ𝑒𝑚𝑖𝑛 , 𝑒𝑛𝑡𝑟𝑦 = (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
Init: scale = 1.5

1 if 𝑞 ≤ 𝑘𝑒𝑦 < 𝑝𝑜ℓ𝑒𝑚𝑎𝑥 then // fast-insert

2 if 𝑝𝑜ℓ𝑒 is full then
3 𝑝𝑜ℓ𝑒_next← 𝑝𝑜ℓ𝑒.𝑠𝑝𝑙𝑖𝑡 (); // return new leaf

4 𝑒 ← 𝑝𝑜ℓ𝑒_next𝑚𝑖𝑛 ;

5 𝑥 ← 𝑞 +
(

𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒 · scale;

6 if 𝑒 ≤ 𝑥 then
7 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
8 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next;

9 𝑝𝑜ℓ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑛𝑡𝑟𝑦);
10 else
11 𝑙𝑡 ← 𝑡𝑜𝑝_𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑛𝑡𝑟𝑦); // return leaf that accepts

12 if 𝑙𝑡 = 𝑝𝑜ℓ𝑒_next then // 𝑝𝑜ℓ𝑒 catches up

13 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
14 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next;

like to identify whether the smallest key in the new node created
from the split, 𝑟 (i.e., the split key), is an outlier. This helps decide
whether to keep the pointer to 𝑝𝑜ℓ𝑒 unchanged (if 𝑟 is an outlier)
or move 𝑝𝑜ℓ𝑒 to the new node (if 𝑟 is not an outlier).

Our lightweight IKR estimator (inspired by Interquartile Range
outlier detection [14]) calculates the maximum acceptable domain
for a non-outlier key. Any key beyond this range is considered an
outlier (denoted by 𝑥) as follows:

𝑥 = 𝑞 +
(

𝑞 − 𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒 · scale (2)

The term 𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

in Eq. (2) calculates the density between 𝑝
and 𝑞 (two non-outliers). To ensure enough data for prediction, we
bound 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 50% (which is always true in traditional
B+-tree-node-splitting). The scale allows a small buffer to capture
small deviations in density that are inherent in the data. Following
standard practice [14], we use scale = 1.5. Consequently, from
Eq. (2), any 𝑘𝑒𝑦 > 𝑥 is considered an outlier.

4.2 Fast-Path Insertion in 𝑝𝑜ℓ𝑒
We now describe the application of 𝑝𝑜ℓ𝑒 as a fast-path ingestion
technique in the Quick Insertion Tree and outline the steady-state
insertion algorithm in Algorithm 1.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 2: Variable split strategy
Data: 𝑞 = 𝑝𝑜ℓ𝑒𝑚𝑖𝑛 , 𝑒𝑛𝑡𝑟𝑦 = (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
Init: scale = 1.5, 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 = 𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

2
1 if 𝑙𝑒𝑎𝑓 ≠ 𝑝𝑜ℓ𝑒 then
2 𝑙𝑒𝑎𝑓 .𝑠𝑝𝑙𝑖𝑡 (𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠); // split leaf at 50%

3 else if 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 then // use IKR

4 𝑙 ← 𝑙𝑒𝑎𝑓 .𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑞 +
(

𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· scale);

5 if 𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 then
// take one non-outlier to new node

𝑝𝑜ℓ𝑒_next← 𝑝𝑜ℓ𝑒.𝑠𝑝𝑙𝑖𝑡 (𝑙 − 1);
6 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
7 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next
8 else

// move all outliers to new node

𝑝𝑜ℓ𝑒_next← 𝑙𝑜𝑙 .𝑠𝑝𝑙𝑖𝑡 (𝑙);
9 else

// redistribute entries from 𝑝𝑜ℓ𝑒_prev

10 𝑙𝑜𝑙 .𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑝𝑜ℓ𝑒_prev);

Initialization. The initial state of the index is represented by a
single leaf node in the tree that is also its root. We also mark this leaf
as 𝑝𝑜ℓ𝑒 . When this leaf first splits, we create a new root node and
add the pivot pointers to its two child nodes (similar to a B+-tree).
We mark the leaf that received the latest insert as the 𝑝𝑜ℓ𝑒-node.
Steady State. In steady-state, an entry inserted to the index utilizes
𝑝𝑜ℓ𝑒 if its key is within the range of 𝑝𝑜ℓ𝑒𝑚𝑖𝑛 and 𝑝𝑜ℓ𝑒𝑚𝑎𝑥 , i.e., the
smallest and largest keys that can be insrted into 𝑝𝑜ℓ𝑒 . When 𝑝𝑜ℓ𝑒
is also the tail-leaf, we omit the upper bound check on 𝑝𝑜ℓ𝑒𝑚𝑎𝑥 .
Splitting the 𝑝𝑜ℓ𝑒-node. Once 𝑝𝑜ℓ𝑒 is full, we split it and update
the pointer to 𝑝𝑜ℓ𝑒 as shown in Fig. 6. We refer to the newly created
node from the split as 𝑝𝑜ℓ𝑒_next. We compare 𝑥 from Eq. (2) with
the smallest key in 𝑝𝑜ℓ𝑒_next, denoted by 𝑟 . We update 𝑝𝑜ℓ𝑒 to
𝑝𝑜ℓ𝑒_next if 𝑟 ≤ 𝑥 (Fig. 6b), and leave it as-is otherwise (Fig. 6c).
Catching Up to Predicted Outliers.When 𝑟 > 𝑥 (i.e., when 𝑟 is
an outlier), we infer that all entries of the new node are outliers.
So, any future in-order entries will belong to the node that was
split, and thus, we do not update 𝑝𝑜ℓ𝑒 after splitting. Eventually, if
keys are largely in-order, entries in the 𝑝𝑜ℓ𝑒-node may catch up to
previously marked outliers in 𝑝𝑜ℓ𝑒_next. Hence, when an entry is
top-inserted to 𝑝𝑜ℓ𝑒_next, we check if it is still an outlier using IKR
and, only if not, update 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_next.

4.3 Improving Space Utilization
The 𝑝𝑜ℓ𝑒 optimization offers a robust and sortedness-aware fast-
path access to the leaf level of the index that avoids tree traversals
for in-order data to boost ingestion performance. However, the
current design retains the same worst-case space utilization as a B+-
tree when ingesting fully-sorted data. That is, due to consecutive
right-deep insertions, every node will be exactly half full, wasting
50% of space. Ideally, a sortedness-aware index should exploit the
underlying data sortedness to improve its space utilization.
FindingBetter Split-Points.QuIT exploits IKR and 𝑝𝑜ℓ𝑒 to further
improve space utilization. First, in Algorithm 2, we detail a variable

p q p q
updated pole

p q p q

split at l

p q

l

p q q’

redistribute and propagate q’ to parent

q’ = new pole_min

l

move one non-outlier

l l

(a)

(b)

(c)

} }Before splitting after splitting

polepole_prev

Figure 7: The default split position is in the middle of 𝑝𝑜ℓ𝑒
(50%). When 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 50%, we use IKR to identify out-
liers. (a) If outliers occupy < 50% of 𝑝𝑜ℓ𝑒 (𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠),
we split at 𝑙 − 1, moving a non-outlier value to the newly
split node and update 𝑝𝑜ℓ𝑒; (b) Otherwise, we split at 𝑙 (us-
ing the default IKR) and keep 𝑝𝑜ℓ𝑒-pointer as is; (c) When
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 < 50%, we redistribute entries to 𝑝𝑜ℓ𝑒_prev, un-
til 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 = 50%.

split strategy in the leaf nodes through which ordered data can
be more tightly packed. We re-use IKR to identify the outliers and
determine the optimal split-points for the node. Note that this is
fundamentally different from Algorithm 1, where we first split 𝑝𝑜ℓ𝑒
by default at 50% and only use the IKR to update the 𝑝𝑜ℓ𝑒-pointer.
Below, we discuss the major decisions in Algorithm 2.
Splitting a Node that is Not the 𝑝𝑜ℓ𝑒-node. Similar to a classical
B+-tree, we split a leaf node that is not 𝑝𝑜ℓ𝑒 at 50% (𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 =
𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/2 in lines 1-2).
Splitting 𝑝𝑜ℓ𝑒 When 𝑝𝑜ℓ𝑒_prev is At Least Half-full. When
𝑝𝑜ℓ𝑒 is about to split and its preceding node (𝑝𝑜ℓ𝑒_prev) is at least
half-full, we use IKR to safely identify the split position of an in-
order key. We identify the position (𝑙) of the first key greater than
the estimated acceptable value lower bound in 𝑝𝑜ℓ𝑒 (line 4).
When 𝑝𝑜ℓ𝑒 Contains Only Few Outliers. If 𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠
(i.e., if 𝑝𝑜ℓ𝑒 mostly contains in-order entries), we split the node
(and update it as 𝑝𝑜ℓ𝑒) at 𝑙 − 1 (lines 7-9), taking one in-order value
to the newly created node from the split, as shown in Fig. 7a. This
ensures that the split leaf is at least half full while the new 𝑝𝑜ℓ𝑒 has
more space to accommodate future fast-insertions.
When 𝑝𝑜ℓ𝑒 Contains Mostly Outliers.When 𝑙 ≤ 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 ,
𝑝𝑜ℓ𝑒 contains mostly outliers. In this case, we split 𝑝𝑜ℓ𝑒 at 𝑙 , and
move all outliers to the newly created node from the split (as shown
in Fig. 7b). We leave the pointer to 𝑝𝑜ℓ𝑒 unchanged as it now has
enough space for future fast-insertions.
Redistribution When 𝑝𝑜ℓ𝑒_prev is Less than Half-full. In case
that at 𝑝𝑜ℓ𝑒-splitting time, 𝑝𝑜ℓ𝑒_prev is less than half full (e.g., due
to an earlier variable split), using IKR may lead to an inaccurate
estimation as it does not have enough data. Instead, we redistribute
entries (line 10) from 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev until the latter is exactly
half full (shown in Fig. 7c). This allows future splits in the 𝑝𝑜ℓ𝑒
node to use the variable split strategy.
Resetting Fast-Path When 𝑝𝑜ℓ𝑒 Goes Stale. As with any other
fast-path optimization, there exists a scenario where 𝑝𝑜ℓ𝑒 becomes

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

QuIT your B+-tree for the Quick Insertion Tree

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Index B+-tree tail-B+-tree ℓ𝑖ℓ-B+-tree QuIT

root_id ✓ ✓ ✓ ✓

head_id ✓ ✓ ✓ ✓

tail_id ✓ ✓ ✓ ✓

𝑓 𝑝_path[] ✓ ✓ ✓

𝑓 𝑝_size ✓ ✓ ✓

𝑓 𝑝_min ✓ ✓ ✓

𝑓 𝑝_max ✓ ✓

𝑓 𝑝_id ✓ ✓

𝑝𝑜ℓ𝑒_prev_size ✓

𝑝𝑜ℓ𝑒_prev_min ✓

𝑝𝑜ℓ𝑒_prev_id ✓

𝑝𝑜ℓ𝑒_fails ✓

Table 1: Metadata used by different indexes. QuIT needs less
than 20 bytes of additional metadata

stale due to certain workload characteristics, leading to unexpect-
edlymany top-inserts. For example, this can be caused byworkloads
that do not exhibit any sortedness, or by corner cases of specific
sequences of in-order and out-of-order insertions that may throw
IKR off. We recover from the stale state by resetting 𝑝𝑜ℓ𝑒 to the
leaf that accepted the latest insert. However, unlike ℓ𝑖ℓ , we do not
adjust 𝑝𝑜ℓ𝑒 for every top-insert. Rather, we do so only if we have
already performed a number of consecutive top-inserts. We set this
threshold as 𝑇𝑅 = ⌊

√︁
𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⌋ to offer a balanced outcome.

Metadata Digest.We summarize the overall metadata used by the
B+-tree and its variants that use a fast-path optimization, namely,
tail and ℓ𝑖ℓ , as well as QuIT, in Table 1. We denote by the prefix
𝑓 𝑝 any metadata common to all fast-path optimization. Note that
𝑓 𝑝_path (inspired by PostgreSQL [34]) stores the root-to-leaf path
to the fast-path node. This allows efficient access to internal nodes
that are ancestors of the fast-path node during splits. We highlight
that QuIT requires only a few bytes of additional state for the entire
tree to offer sortedness-aware ingestion with no read penalty.

4.4 Other QuIT Operations
Lookups. Lookups in QuIT are identical to the classical B+-tree. A
point lookup-path starts at the root node and uses key comparisons
to follow the pivot pointers, to navigate to the appropriate leaf
node that may contain the target entry. A binary search on the keys
in the leaf node returns whether the search key is present in the
index or not. A range lookup on keys in the range [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], first
performs a point lookup on 𝑠𝑡𝑎𝑟𝑡 to locate the first key ≥ 𝑠𝑡𝑎𝑟𝑡 . It
then uses the interlinked pointers in the leaf node to scan entries
across leaf nodes until an entry ≥ 𝑒𝑛𝑑 is found.
Deletes. Delete operations in QuIT are also exactly the same as
the B+-trees. Deletion of an entry begins with a point lookup on
the target key. If the key is found, in QuIT, we typically remove
the key from the corresponding leaf node and apply rebalancing to
ensure that the leaf node and all internal nodes leading to the leaf
node are at least half full. Only deletes of entries in the 𝑝𝑜ℓ𝑒-node
do not rebalance eagerly. In case the key marked to delete is the
only key in 𝑝𝑜ℓ𝑒 , we reset 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev.

4.5 Concurrency Control
Concurrency control protocols that have been widely studied for
B+-trees [4, 7] can be applied out-of-the-box to QuIT.
Locking Protocol for Ingestion. In B+-trees, the internal nodes
simply redirect searches to the next level that contains either an
internal node or a leaf node. Hence, completely and exclusively
locking the entire path is wasteful. We employ a simple protocol
inspired by classical lock-crabbing [18].

Classical lock-crabbing [18] starts at the root node and descends
down the tree, acquiring exclusive locks at every node along the
insertion path. If a node along the path is not full, an insertion
does not result in a split. Therefore, all the acquired locks in the
preceding levels of the path are released. A lock on the entire path
is acquired only when every node along the path is full. The locks
are retained until the insertion completes, as a split in the lowest
level of the tree (i.e., the leaf node) can potentially propagate to
every internal node along the path, including the root.

Every insert in QuIT first acquires a lock on the fast-path meta-
data to verify if a 𝑝𝑜ℓ𝑒 insertion can be utilized. If the key is within
the range of the fast-path access, and 𝑝𝑜ℓ𝑒 is not full, an exclusive
lock of the 𝑝𝑜ℓ𝑒 leaf is acquired and released post-insertion. When
𝑝𝑜ℓ𝑒 is full, we acquire locks to the preceding levels of the index
(i.e., the internal nodes), by utilizing the lock-crabbing protocol on
𝑓 𝑝_path. Additionally, a split would either result in the creation of
a new node or a redistribution of entries from 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev. In
the former case, we only acquire a lock on themetadata of 𝑝𝑜ℓ𝑒_prev
(i.e., 𝑝𝑜ℓ𝑒_prev_id, 𝑝𝑜ℓ𝑒_prev_min, and 𝑝𝑜ℓ𝑒_prev_size). For redis-
tribution, we also acquire a lock on 𝑝𝑜ℓ𝑒_prev and its associated
metadata. For a top-insert, we utilize lock-crabbing, as in a B+-tree.
Locking Protocol for Lookups. Concurrent lookups in QuIT
essentially follow the same procedure as in a B+-tree with lock-
crabbing. We start from the root node, albeit, acquiring shared locks
on every internal node along the access path. Once a shared lock
on a node is obtained, we immediately unlock its parent. Range
lookups similarly obtain a lock on the first leaf node that is accessed
by the query. However, we also acquire shared locks on subsequent
leaf nodes that are accessed through the interlinked pointers.

5 EVALUATION
We now show the benefits of QuIT by comparing it to (i) a textbook
B+-tree (we call this a classical B+-tree) that only performs top-
inserts, (ii) a B+-tree with tail-leaf insertion enabled (we call this a
tail-B+-tree), (iii) a B+-tree with the last-insertion-leaf optimization
(we call this a ℓ𝑖ℓ-B+-tree), and the state-of-the-art sortedness-aware
index design, SWARE [38]. We test using various configurations,
varying data sortedness and data size, stress-testing the fast-path,
and we also experiment with real-world data.
Experimental Setup. We run experiments using our in-house
server with 128GB of DDR5 main memory at 4800 MHz and a
1.9TB NVMe SSD. The server runs Rocky Linux (version 9.3) and
is equipped with two sockets of Intel Xeon Gold (6442𝑌) 2.6 GHz
processors (24 cores), each capable of supporting 48 threads.
Index Design and Default Setup.We use an in-memory imple-
mentation of the B+-tree (inspired by state-of-the-art [8]), and im-
plement tail, ℓ𝑖ℓ , and 𝑝𝑜ℓ𝑒 optimizations on this platform. We also

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 1 3 5 10 25 50 100

% out-of-order entries (K)

0

1

2

3

4

S
p

ee
d

u
p

B+-tree tail-B+-tree `i`-B+-tree QuIT

Figure 8: QuIT outperforms all current baselines for any
degree of data sortedness during ingestion.

implement QuIT on the same platform that includes features such as
the variable-split, redistribute, and reset strategies. We use the same
B+-tree implementation as the underlying index when comparing
with the SWARE paradigm by extending the API to support bulk
loading. For the SWARE buffer, we deploy the open-sourced code1
out-of-the-box and default to a buffer size equivalent to 1% of the to-
tal data size. The default entry size in all our experiments is 8B (with
4B keys), and we use a 4KB page size that fits up to 510 entries in the
leaf nodes. We set 𝑇𝑅 = ⌊

√︁
𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⌋ = ⌊

√
510⌋ = 22 to trigger

a reset of the 𝑝𝑜ℓ𝑒 fast-path in QuIT. We make our code available
on GitHub at https://github.com/BU-DiSC/quick-insertion-tree.
Workloads. To evaluate QuIT with varying degrees of sortedness,
using the workload generator from the Benchmark on Data Sorted-
ness (BoDS) [37]. BoDS uses the 𝐾 − 𝐿-sortedness metric to create
a family of differently sorted data collections. The generator takes
as arguments (i) the number of entries (𝑁) in the data collection,
(ii) the number of unordered entries (𝐾) and (iii) the maximum
displacement (𝐿) both as a fraction of the total data size, (iv) the
distribution of data sortedness (𝛼, 𝛽), and (v) a seed value.
Default Workload. For our experiments, we set 𝑁=500M to gen-
erate datasets of size 4GB. The skew-parameters 𝛼 and 𝛽 are set to 1
to uniformly distribute the unordered entries. Our query workloads
(executed post data ingestion) contain 5M (1% of total data size)
point lookups that are generated uniformly and randomly on exist-
ing keys in the index. Further, our query workloads also contain
1000 range lookups that are generated for random ranges in the
key domain with three levels of selectivity: 0.1%, 1%, and 10%.

5.1 Benefits of Quick Insertion Tree
We first demonstrate the benefits of QuIT against three baselines –
classical B+-tree, tail-B+-tree, and ℓ𝑖ℓ-B+-tree for ingestion, memory
utilization and query performance. In these experiments, we vary
the fraction of out-of-order entries (𝐾) in the data collection while
setting their maximum displacement (𝐿) to 100%.
QuIT Outperforms the State of the Art in Insert Performance.
Fig. 8 shows the speedup (y-axis) during ingestion for tail-B+-tree,
ℓ𝑖ℓ-B+-tree, and QuIT relative to the classical B+-tree when varying
data sortedness (x-axis). QuIT significantly outperforms the tail-
B+-tree and the classical B+-tree in terms of raw data ingestion
performance. For fully sorted data, both QuIT and a tail-B+-tree
1SWARE code-base: https://github.com/BU-DiSC/sware

0 1 3 5 10 25 50 100

% out-of-order entries (K)

0

25

50

75

100

%
fr

ac
ti

on
of

in
se

rt
s

fast-inserts

tail-B+-tree `i`-B+-tree QuIT top-inserts

Figure 9: QuIT considerably reduces the top-insertions by
using the 𝑝𝑜ℓ𝑒 optimization for any degree of sortedness.

offer ≈ 3× better performance than a classical B+-tree, as entries
are directly inserted to the tail leaf using the fast-path optimization,
rather than performing tree traversals. However, the performance
of the tail-B+-tree degrades very quickly as the data becomes even
slightly unsorted, making it comparable to that of a classical B+-
tree. QuIT, on the other hand, exploits any inherent data sortedness
and offers up to ≈ 2.5× better performance for near-sorted data
(𝐾 < 25%). Even for less-sorted data (𝐾=25%), QuIT is still 1.4×
better than both the classical B+-tree and tail-B+-tree, as both the
baselines always perform top-inserts, accumulating a redundant
indexing cost. The tail-B+-tree performs better than the classical
B+-tree only with fully sorted data by allowing fast-path ingestion
to the right-most leaf node in the index. This fast-path, however,
becomes stale with even near-sorted data (𝐾 ≥ 1%), leading to
performance degradation as its window to capture unorderedness
in the data is too narrow (limited to the tail-leaf’s range).Meanwhile,
QuIT carefully adapts its fast-path (i.e., 𝑝𝑜ℓ𝑒) to the data sortedness,
thereby, delivering better performance.
QuIT Offers a More Robust Performance than ℓ𝑖ℓ-B+-tree. In
Fig. 8, we also observe that QuIT performs up to 10% better during
ingestion than the ℓ𝑖ℓ-B+-tree. The ℓ𝑖ℓ optimization is simple and
effective in improving ingestion performance over a tail-B+-tree,
and in fact, offers comparable performance to QuIT when the data
is very nearly sorted (𝐾<5%). However, as the data becomes less
sorted, QuIT’s benefits become more pronounced and is signifi-
cantly able to outperform the ℓ𝑖ℓ-B+-tree (and all other baselines)
due to its robust fast-path optimization.

This can be explained by the trend we observe in Fig. 9 that
shows the fraction of insertions that utilize the fast-path (y-axis)
as we vary data sortedness (x-axis). Here, we omit the classical
B+-tree, since it only performs top-inserts. The tail-B+-tree (grey
bar with vertical lines) performs fast-inserts only for fully sorted
data, and even a minor increase in the unorderedness causes a steep
degradation in its ability to utilize the fast-path, thereby, reducing it
to a classical B+-tree. The ℓ𝑖ℓ-B+-tree performs significantly more
fast-inserts, limiting top-inserts to only ≈ 35% of the total insertions
even when the data is almost scrambled (𝐾=50%). This matches
the expectation from Eq. (1) presented earlier in §3. Meanwhile,
QuIT is the most efficient, performing approximately only as many
top-inserts as there are out-of-order entries, and very closely re-
sembles the optimal sortedness-aware index behavior discussed
in Fig. 5b. This is because ℓ𝑖ℓ simply updates its fast-path access

8

https://github.com/BU-DiSC/quick-insertion-tree
https://github.com/BU-DiSC/sware

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

QuIT your B+-tree for the Quick Insertion Tree

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0

25

50

75

100

av
g

le
af

oc
c.

(%
)

(a)
B+-tree QuIT

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0.0

0.5

1.0

n
or

m
.

lo
ok

u
p

la
t.

(b)

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0.0

0.5

1.0

1.5

2.0

fe
w

er
n

od
e

ac
ce

ss
es

(×
)

(c) σ=0.1% σ= 1% σ=10%

Figure 10: (a) Variable split factor in QuIT allows for higher occupancy in the leaf nodes; (b) Point lookups do not incur any
read overhead; (c) Range queries are faster as they access fewer nodes during lookups.

Index % unordered entries

0% 1% 3% 5% 10% 25% 50% 100%

QuIT 1.96× 1.5× 1.41× 1.32× 1.16× 1.09× 1.01× 1×
Table 2: Space reduction of QuIT over all B+-tree baselines.
ℓ𝑖ℓ-B+-tree and tail-B+-tree are omitted because they have
the same memory footprint as the basic B+-tree.

pointer based on the last insertion to the index (even during top-
inserts). Meanwhile, QuIT has a more robust maintenance scheme
that utilizes 𝑝𝑜ℓ𝑒 as well as its reset strategies that help effectively
and efficiently predict the fast-path to inserting the data.
QuIT Improves theOverallMemoryUtilization.The IKR-based
variable node split strategy in QuIT is crucial to reduce the overall
memory footprint of the index. Table 2 compares the normalized
memory footprint of the indexes, the lower signifying the better.
The memory utilization of the tail-B+-tree and the ℓ𝑖ℓ-B+-tree is
identical to that of classical B+-tree, as they all split a full node
in half. We observe that QuIT’s memory footprint is up to 1.96×
smaller due to better space utilization on the leaf nodes, as shown
in Fig. 10a. Here, we vary the data sortedness on the x-axis and
show the average leaf node occupancy (i.e., # entries in a leaf node)
as a fraction of the leaf capacity on the y-axis. The worst-case space
utilization for the classical B+-tree (and consequently, all other base-
lines) occurs when ingesting fully sorted data, as every node is only
half full due to right-deep insertions. QuIT alleviates this memory
overhead by variable splitting guided by IKR. With near-sorted data
(1%≤𝐾≤10%), the average leaf occupancy of the classical B+-tree is
between 51-54%, while QuIT offers an average leaf occupancy be-
tween 62-74%. The variable split strategy in QuIT allows for tightly
packing the leaf nodes that receive ordered inserts through the
𝑝𝑜ℓ𝑒 . Further, redistribution also increases leaf occupancy when
𝑝𝑜ℓ𝑒_prev is less than half full, utilizing previously unused space.
For less sorted or fully scrambled data, QuIT is able to match the
leaf occupancy of the classical B+-tree.
QuIT Does Not Incur Any Overhead For Point Lookups. QuIT
performs exactly as many accesses during point lookups as a clas-
sical B+-tree, as the lookup algorithms are identical. Hence, QuIT
does not incur any overhead for point lookups. From Fig. 10b, we
observe that point lookups in QuIT can in fact, be slightly faster
(≈ 2% on average) as the tree is smaller due to better space utiliza-
tion. This results in the overall size of the index nodes in QuIT being
smaller than the system’s cache, effectively leading to a marginal
performance improvements.

QuIT is Faster for Range Lookups. Range lookups are faster
in QuIT, as shown in Fig. 10c, when ingesting near-sorted data.
We observe that range queries access up to 2× fewer leaf nodes
(≈ 1.3× on average) compared to the B+-tree when the ingested data
has high sortedness (𝐾≤10%). This benefit gradually declines as
sortedness decreases since space utilization in B+-tree also improves.
However, even with low data sortedness (𝐾 ≥ 25%), range lookups
in QuIT access 1.15× fewer leaf nodes than the B+-tree, directly
correlating to improved performance. Overall, QuIT benefits from
the variable split and redistribute strategies that tightly pack the
leaf nodes, whereas, the B+-tree experiences its worst-case space
amplification when ingesting data with a high degree of sortedness.

5.2 Sensitivity Analysis
We now vary several aspects of the workload and experiment with
different data sortedness levels, different data sizes, and different
sequences of insertions that stress test fast-path ingestion.

5.2.1 Varying Data Sortedness. First, we compare the performance
of QuIT against the ℓ𝑖ℓ-B+-tree as we vary data sortedness. Here,
we show the fraction of fast-inserts performed during ingestion
in the ℓ𝑖ℓ-B+-tree and QuIT in Fig. 11a-11b, while we indicate the
space utilization in both the indexes by measuring the average leaf
occupancy in Fig. 11c-11d.
Fast-insertions Decrease as 𝐾 Increases. We observe in Fig. 11a
that the fraction of fast-insertions performed by both the ℓ𝑖ℓ-B+-
tree and QuIT decreases as we increase the unordered entries (𝐾) in
the workload.While both the indexes are comparable in their ability
to perform fast-insertions for highly sorted data, the QuIT’s benefits
are more pronounced when the ingested data becomes less sorted.
For less-sorted data (𝐾=25%) and fairly scrambled data (𝐾=50%),
QuIT performs, respectively, 15% and 20% more fast-inserts than
the ℓ𝑖ℓ-B+-tree. The latter pays an additional penalty (with a top-
insert) for moving the fast-path node back to the ordered position
for every out-of-order insertion. QuIT, with a robust 𝑝𝑜ℓ𝑒 as the
fast-path, avoids these naïve movements.
Fast-insertions are Not Affected by Varying 𝐿.We also observe
in Fig. 11a and 11b that the fraction of fast-inserts performed is
unaffected by the increase in 𝐿 in the ingested workload. This
holds for both ℓ𝑖ℓ-B+-tree and QuIT because the use of fast-path
optimization depends on the inserted entry being out-of-order with
respect to the range of the target leaf page (for both ℓ𝑖ℓ and 𝑝𝑜ℓ𝑒).
Even with small values of 𝐿 (e.g., 𝐿=1%) and uniform sortedness
distribution [37], the median displacement of out-of-order entries
is ≈0.5% of the total data size. This is much larger than the range

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0 1 3 5 25 50

K (%)

1

3

5

25

50

L
(%

)

100 99 94 91 57 26

100 98 94 90 57 25

100 98 94 90 56 25

100 98 94 90 56 25

100 98 94 90 56 25

`i`(a)

0 1 3 5 25 50

K (%)

100 100 96 92 70 46

100 99 96 92 71 46

100 99 96 93 71 47

100 99 96 93 71 47

100 99 96 93 71 47

QuIT(b)

0 1 3 5 25 50

K (%)

50 50 51 52 60 62

50 50 51 52 60 61

50 51 51 52 60 61

50 51 51 52 60 62

50 50 51 52 60 62

`i`(c)

0 1 3 5 25 50

K (%)

100 74 72 69 65 61

100 74 74 70 67 61

100 75 72 68 64 60

100 75 72 67 65 61

100 73 72 67 64 61

QuIT(d)
% fast inserts % avg leaf occupancy

Figure 11: Comparing ℓ𝑖ℓ-B+-tree and QuIT when varying data sortedness in the ingestion workload: (a) ℓ𝑖ℓ performs best with
high data sortedness; (b) QuIT maximizes fast inserts when compared to ℓ𝑖ℓ ; (c) B+-tree (and ℓ𝑖ℓ-B+-tree) suffers worst-case
space amplification for high data sortedness; (d) QuIT outperforms B+-tree’s space utilization for any degree of data sortedness.

of entries in a leaf page. Only when 𝐿 is extremely small are the
out-of-order entries likely to fit within the leaf-page’s range and
can utilize the fast-path optimization.
Space Utilization Increases as 𝐾 Increases.When comparing
the space utilization of the ℓ𝑖ℓ-B+-tree and QuIT in Fig. 11c and 11d,
we observe that the average leaf occupancy in ℓ𝑖ℓ-B+-tree increases
as the ingestion workload becomes less sorted, while an inverse
trend is observed in QuIT. Since ℓ𝑖ℓ makes no effort to improve
the index’s memory footprint, the space utilization in ℓ𝑖ℓ-B+-tree
is identical to the classical B+-tree. ℓ𝑖ℓ-B+-tree’s worst-case space
amplification occurs for highly sorted data as almost 50% of the
space reserved for future insertions after every split is left largely
unused. However, as the data becomes less sorted, this reserved
space is useful to accommodate the out-of-order insertions.

Meanwhile, QuIT achieves optimal space utilization for fully
sorted data, while outperforming ℓ𝑖ℓ-B+-tree (and in turn, the clas-
sical B+-tree) by up to 24% for near-sorted data, due to the variable
split and redistribute strategies employed when splitting the fast-
path node (i.e., 𝑝𝑜ℓ𝑒). The average leaf occupancy in QuIT decreases
with lower data sortedness, as the fast-path utilization reduces and
top-insertions are more pronounced. This results in QuIT’s space
utilization being comparable to a B+-tree (and ℓ𝑖ℓ-B+-tree) when
the fraction of out-of-order entries in the ingested data is very high.
Note that we can also tune QuIT to avoid being 100% full for the
fully-sorted data if we anticipate out-of-order entries in the future
and we want to avoid propagating splits.

5.2.2 Sensitivity Analysis on Data Size. Next, we analyze the scala-
bility of QuIT by increasing the number of entries ingested into the
index from 50M to 4B (scaling the data size from 40MB to 32GB).
We pick candidate data collections reflecting three degrees of data
sortedness - (i) fully sorted data (𝐾=0%), (ii) nearly-sorted data
(𝐾=𝐿=5%) that has a sizeable fraction of out-of-order entries, and
(iii) less sorted data (𝐾=𝐿=25%) that has significantly many out-
of-order entries. Table 3 summarizes our results when compared
to the classical B+-tree. We observe that QuIT’s ability to utilize
its fast-path and exploit sortedness in the ingested workload re-
mains unaffected as the data size grows. The observed fraction of
fast-inserts is 100% for fully sorted data, ≈ 95% for nearly-sorted

Sortedness Metric Data Size (GB)
0.4 2 4 8 16 32

fully sorted Speedup 3.13× 3.19× 3.23× 3.25× 3.27× 3.31×
% fast-inserts 100% 100% 100% 100% 100% 100%

nearly sorted Speedup 2.43× 2.52× 2.56× 2.57× 2.61× 2.77×
% fast-inserts 95.2% 95.2% 95.2% 95.2% 95.2% 95.2%

less sorted Speedup 1.31× 1.32× 1.33× 1.34× 1.35× 1.35×
% fast-inserts 74.6% 74.6% 76.4% 74.6% 74.6% 74.6%

Table 3: QuIT scales with data size.

data, and ≈ 75% for less sorted data. This aligns with the expected
optimal performance for a sortedness-aware index from Fig. 5b.
The speedup during ingestion, however, is slightly amplified when
scaling the data size and the number of levels in the tree grows.
Scaling data size results in longer tree traversals and, therefore,
an increase in indexing cost (top-insert) and maintenance. QuIT
continues to employ fast-path insertions enabled by 𝑝𝑜ℓ𝑒 , offering
an amortized indexing cost. Overall, QuIT is at least 2× faster than
B+-tree when ingesting near-sorted data.

5.2.3 Stress Testing the Fast-Path. Wenow explore the performance
of the fast-path optimizations in tail-B+-tree, ℓ𝑖ℓ-B+-tree, and 𝑝𝑜ℓ𝑒-
B+-tree (i.e., QuIT without variable split, redistribute, and reset
strategies), along with the full design of QuIT for workloads that
alternate between near-sorted and fully scrambled. We anticipate
that such aworkloadwill be harder to predict and use it to stress-test
all fast-path optimizations and IKR. We ingest into each index 25M
entries divided into 5 segments (of 5M entries), alternating between
near-sorted data (𝐾=10%) or scrambled data (𝐾=100%), while we
default 𝐿 to 100%. We visualize this workload using the position
(x-axis) and the value (y-axis) of the keys inserted in Fig. 12a.

Fig. 12b shows the number of entries ingested to the index us-
ing the fast path (on y-axis) at different snapshots on the x-axis
(i.e., one for each segment). Note that a flat line in any segment
implies that the index performed only top-inserts. We observe
that the tail-B+-tree very quickly reaches the stale state and fails
to perform fast-path insertion as soon as the data becomes even
slightly unordered. The ℓ𝑖ℓ-B+-tree continues to perform fast-path
insertion when the data is nearly sorted, while only performing

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

QuIT your B+-tree for the Quick Insertion Tree

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0

10

20

va
lu

es
(M

)

(a)

0 5 10 15 20 25

inserts (M)

0

5

10

to
ta

l
fa

st
-i

n
se

rt
s

(M
) (b)

tail-B+-tree

`i`-B+-tree

po`e-B+-tree

QuIT

Figure 12: Stress testing the Fast-path optimizations under
workloads with varying densities of data sortedness: (a) a
workload that varies sortedness density by alternating be-
tween near-sorted and scrambled data in different data seg-
ments; (b) performance of tail, ℓ𝑖ℓ , and 𝑝𝑜ℓ𝑒 optimizations in
B+-trees when comparing fast-insertions in QuIT.

top-inserts for the scrambled data segments. Meanwhile, the 𝑝𝑜ℓ𝑒-
B+-tree marginally outperforms the ℓ𝑖ℓ-B+-tree in the first near-
sorted data segment, and subsequently, only performs top-inserts
for the remaining workload. This is because 𝑝𝑜ℓ𝑒 is trapped in a
stale state after the first scrambled segment of data (between keys
5M and 10M). QuIT addresses the limitations of 𝑝𝑜ℓ𝑒 and recovers
from this stale state with the help of its reset strategy (described
in §4.3), allowing continued use of the fast-path when inserting
near-sorted data. A robust fast-path ingestion strategy (like 𝑝𝑜ℓ𝑒)
coupled with the reset strategy helps QuIT outperform ℓ𝑖ℓ-B+-tree
by performing ≈ 11% more fast-path insertions.

5.3 QuIT under Concurrent Execution
We now benchmark QuIT and compare it with the classical B+-tree
as we have more threads concurrently using the two indexes. We
experiment with three levels of sortedness as defined already and
report the raw throughput in terms of operations per second.
QuIT Scales Better Than B+-tree for Inserts. Ingesting near-
sorted data using multiple threads is expected to have high con-
tention because most insertions target the same leaf. As a result,
we expect that having multiple threads will hurt performance for
both B+-tree and QuIT. However, we anticipate that the lightweight
insertion of QuIT’s fast path would lead to a shorter critical section.
Fig. 13a corroborates our expectations, showing that despite both
indexes having contention with a higher number of threads, QuIT
offer 1.5-2× higher throughput than B+-tree in most cases. We also
note that QuIT’s benefit increases with higher concurrency.
QuIT Scales Better Than B+-tree for Reads. As expected, read
queries in both trees behave very similarly since QuIT’s read path is
essentially the same aswith the classical B+-tree. Fig. 13b shows that
both trees scale almost perfectly until 8 threads, with the scaling
slowing down for 16 threads.

5.4 Comparing with SWARE
Wenow compareQuIT vs. SA-B+-tree, the state-of-the-art sortedness-
aware index that employs the SWARE design [36]. We ingest 500M

1 2 4 8 16
0

5M

10M

(a) inserts

fully sorted

near-sorted

less sorted

1 2 4 8 16
0

5M

10M

(b) lookups

threads

th
ro

u
gh

p
u

t
(o

p
./

se
c) QuIT B+-tree

Figure 13: QuIT scales better during concurrent execution.

entries (4GB) into both indexes and measure (i) the average la-
tency per insertion; and (ii) the average point lookup latency, when
varying the fraction of out-of-order entries in the data collection
(defaulting 𝐿=100%). Note that we utilize a more optimized B+-
tree (also used in QuIT) than the one provided with the SWARE
codebase 2 as the underlying tree index in the SA-B+-tree. SWARE
originally packs a B𝜖 -tree [6] that also functions as a B+-tree when
appropriately tuned. This, however, introduces orthogonal com-
plexities and overheads that we avoid in our B+-tree prototype.
QuIT Outperforms SWARE During Ingestion. Fig. 14a shows
that QuIT offers significantly better latency per ingestion than
the SA-B+-tree for any data sortedness. Even when ingesting fully
sorted data, QuIT offers a 16% improvement over the SA-B+-tree, as
every insert can be directly appended to the fast-path node (𝑝𝑜ℓ𝑒).
Despite SA-B+-tree performing opportunistic bulk loading on-the-
fly, it still pays a cost to index the data in the buffer through two
levels of Bloom filters (the global and per-page Bloom filters) and
the Zonemaps, in addition to costs associated with data movement
in the buffer after every flush operation. Likewise, for near-sorted
data (𝐾≤10%), QuIT is at least 1.5× (and 1.86× on average) better
than SA-B+-tree during ingestion. The additional costs incurred
by the SA-B+-tree to update the necessary metadata (i.e., identi-
fying non-overlapping zones, Zonemaps, and Bloom filters) for
facilitating opportunistic bulk loading far exceed the costs asso-
ciated with maintaining QuIT’s metadata, primarily due to the
latter’s lightweight index design. Thus, QuIT’s outperforms SA-
B+-tree during near-sorted data ingestion. Both indexes perform
top-inserts for those entries that cannot utilize the fast-path op-
timization (opportunistic bulk loading in the case of SA-B+-tree).
As data sortedness decreases, top-inserts are more pronounced,
thus, the average latency for an insertion increases for both indexes.
QuIT and SA-B+-tree are have comparable performance for less
sorted (𝐾≥25%) or scrambled data.
QuIT Offers Faster Lookups than SWARE. Fig. 14b compares
the lookup performance of SA-B+-tree and QuIT with varying
data sortedness. Here, we perform 5M point lookups (generated
uniformly and randomly) on the ingested keys for both indexes.
QuIT does not incur any read overhead due to its lightweight design,
while the SA-B+-tree incurs an additional cost of scanning the
buffer for the target key. While SA-B+-tree employs additional data
structures like Bloom filters and Zonemaps, as well as techniques
like query-driven partial sorting to reduce this cost, it still pays
an increased cost compared to QuIT, which simply performs a B+-
tree lookup. Overall, QuIT outperforms the SA-B+-tree by up to
26%. Only when querying the index after ingesting fully sorted

2https://github.com/Bu-DiSC/sware

11

https://github.com/BU-DiSC/sware

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Aneesh Raman, Konstantinos Karatsenidis, Shaolin Xie, Matthaios Olma, Subhadeep Sarkar, and Manos Athanassoulis

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0

100

200

300

400

500

in
se

rt
la

te
n

cy
(n

s)

(a) SWARE QuIT

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0

500

1000

1500

qu
er

y
la

te
n

cy
(n

s)

(b)

Figure 14: Comparing the SA-B+-tree andQuIT: (a) A complex
design allows SA-B+-tree to opportunistically bulk load near-
sorted data while QuIT maximizes fast insertions through
index appends; (b) SA-B+-tree incurs a read-overhead while
QuIT is marginally faster than the B+-tree.

data, the SA-B+-tree offers an ≈ 8% improvement over QuIT as
the queries targeting keys still in the SWARE buffer are answered
faster, because, for fully sorted data, entries in the buffer can make
the most efficient use of Zonemaps and interpolation search [42].

5.5 Indexing Real-World Data
Real-world data frequently exhibit a degree of near-sortedness
that may be unknown or difficult to quantify, where the K-L met-
ric may not be a natural descriptor. For example, Fig. 15 shows
the closing_price data from two stock price instruments: (i)
NIFTY, that is the equity benchmark index of the National Stock
Exchange, India; and (ii) SPXUSD, that is the S&P 500 index. We
obtain the intra-day stock price data at one-minute timeframes
(sources listed in footnote3 and 4). Both datasets contain ≈ 1.4M
entries and 2.2M entries, respectively. We see an overall upward
trend that intuitively implies near-sortedness.
QuIT Offers Best Performance for Real-World Data. Fig. 15c
shows the speedup offered when ingesting the stock price data
into the tail-B+-tree, SA-B+-tree, ℓ𝑖ℓ-B+-tree, and QuIT, normalized
vs. the baseline B+-tree. QuIT offers a ≈ 30% improvement on
average during ingestion when compared to the tail-B+-tree. In fact,
our approach offers the maximum speedup among all baselines,
even outperforming the state-of-the-art sortedness-aware index by
≈ 8% and 5% for the NIFTY and SPXUSD instruments, due to its
lightweight design. Overall, tree indexes like B+-tree-based designs
benefit from sortedness-aware ingestion optimizations even when
intrinsic data sortedness is hard to quantify or predict, as shown
by the ingestion speedup offered by both SWARE and QuIT.

6 RELATEDWORK
There is a plethora of B+-tree variants optimizing for data ingestion.
We recognize two design patterns aiming to reduce the cost of in-
cremental data insertion: (i) approaches that optimize tree traversal
and insertion operations by taking maximum advantage of modern
hardware, and (ii) approaches that re-design the internal structure
of the tree to amortize the cost of insertions across the workload.
Specifically, the CSB-tree [39] resizes nodes to make all operations
cache-conscious and minimize cache misses. The PLI-tree [41], T-
tree [26], YATS-tree [23], Partitioned B+-trees [17] and B𝜖 -trees [6]
adapt the data layout in nodes to their corresponding use case. For

3https://github.com/aeron7/nifty-banknifty-intraday-data
4https://github.com/FutureSharks/financial-data

0

20000 (a) NIFTY

time
0

2000

(b) SPXUSD

c
l
o
s
i
n
g
_
p
r
i
c
e

NIFTY SPXUSD
0.0

0.5

1.0

1.5

2.0

sp
ee

d
u

p
(×

)

(c)
tail B+-tree

SWARE

`i`-B+-tree

QuIT

Figure 15: Real-world data can often carry implicit sorted-
ness, for example, in closing prices of stock instruments like:
(a) NIFTY, and (b) SPXUSD. (c) QuIT offers the best ingestion
performance for such near-sorted data.

instance, B𝜖 -trees trade-off fan-out for per-node buffers that can
batch insertions. This allows the B𝜖 -tree to amortize the ingestion
cost, while the buffers are gradually flushed down the index. Finally,
Bw-trees [27] are log-structured and take a latch-free approach us-
ing a delta update scheme with dynamically sized pages. The nodes
of the Bw-tree are only logical and do not occupy fixed physical
locations on main memory or storage. Bw-trees design eliminates
thread blocking and is optimized for modern hardware.

These B+-tree designs improve ingestion performance, however,
they are unaware of prospective gains opportunities from taking
advantage implicit sortedness of the incoming data. The SWARE
indexing paradigm takes advantage of sortedness by using a combi-
nation of in-memory buffering and bulk-loading to optimize index
ingestion [38]. However, its gains require a complex design that
utilizes additional resources, adversely affecting the lookup perfor-
mance. Meanwhile, QuIT offers sortedness-awareness index inges-
tion through a lightweight design and minimal metadata footprint.
Applicability to Data Streaming and Time Series. Time series
indexing assumes that data ingestion follows an expected increas-
ing order [25, 33, 43–45]. Streaming systems often use a buffer to
capture the arrival skew within time-based windows [40] that allow
for effective data series comparisons [10, 16]. QuIT can eliminate
the need for the additional buffer as in-order data will always be
fast-inserted, leaving the arrival data skew to be captured by the
fraction of top-inserts performed, as we demonstrate in §5.2.3.

7 CONCLUSION
Commercial data systems employ fast-path optimization techniques
to amortize the cost of index construction during data ingestion. For
B+-trees fast-path ingestion helps avoid tree traversals, inserting
entries directly to the tail leaf if the inserted data is fully sorted.
However, this tail-leaf fast path becomes stale when the data is
not fully sorted. We address this by proposing two new fast-path
ingestion strategies for B+-trees – ℓ𝑖ℓ and 𝑝𝑜ℓ𝑒 – that target near-
sorted data. Further, we present QuIT, a lightweight index design
that reduces the indexing cost proportionally to the sortedness of
the indexed data. In addition, QuIT improves the memory footprint
of the index, while also offering better lookup performance. Overall,
QuIT outperforms the tail fast-path (and SWARE) by up to 2.5×
(2×) when ingesting near-sorted data while offering on average 20%
better space utilization when compared to the B+-tree. The reduced
memory footprint helps QuIT access up to 2× fewer nodes during
range lookups, while it does not incur overhead for point lookups.

12

https://github.com/aeron7/nifty-banknifty-intraday-data
https://github.com/FutureSharks/financial-data

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

QuIT your B+-tree for the Quick Insertion Tree

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

REFERENCES
[1] Daniar Achakeev and Bernhard Seeger. 2013. Efficient Bulk Updates on Multi-

version B-trees. Proceedings of the VLDB Endowment 6, 14 (2013), 1834–1845.
[2] Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate Tree

Indexing. Proceedings of the VLDB Endowment 7, 14 (2014), 1881–1892.
[3] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica, Stratos

Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Meth-
ods: The RUM Conjecture. In Proceedings of the International Conference on
Extending Database Technology (EDBT). 461–466.

[4] Rudolf Bayer and Karl Unterauer. 1977. Prefix B-trees. ACM Transactions on
Database Systems (TODS) 2, 1 (1977), 11–26.

[5] Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and
Carl Staelin. 2011. Detecting and Exploiting Near-Sortedness for Efficient Re-
lational Query Evaluation. In Proceedings of the International Conference on
Database Theory (ICDT). 256–267.

[6] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An
Introduction to B𝜖-trees and Write-Optimization. White Paper (2015).

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[8] Timo Bingmann. 2007. STX B+ Tree. https://github.com/bingmann/stx-btree
(2007).

[9] Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426.

[10] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
2651–2658.

[11] Svante Carlsson and Jingsen Chen. 1992. On Partitions and Presortedness of
Sequences. In Acta Informatica, Vol. 29. 267–280.

[12] Douglas Comer. 1979. The Ubiquitous B-Tree. Comput. Surveys 11, 2 (1979),
121–137.

[13] CouchDB. [n. d.]. Online reference. http://couchdb.apache.org/ ([n. d.]).
[14] Frederik M. Dekking, Cornelis Kraaikamp, Hendrik P. Lopuhaä, and Ludolf E.

Meester. 2005. A Modern Introduction to Probability and Statistics. Springer
London. 488 pages.

[15] Jochen Van den Bercken and Bernhard Seeger. 2001. An Evaluation of Generic
Bulk Loading Techniques. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). 461–470.

[16] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. A Survey on the Evolution of Stream Processing Systems.

[17] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees. In Proceed-
ings of the Biennial Conference on Innovative Data Systems Research (CIDR).

[18] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Transactions on
Database Systems (TODS) 35, 3 (2010).

[19] Goetz Graefe. 2011. Modern B-Tree Techniques. Foundations and Trends in
Databases 3, 4 (2011), 203–402.

[20] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
2667–2672.

[21] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR).

[22] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory
Column-Stores. Proceedings of the VLDB Endowment 4, 9 (2011), 586–597.

[23] Chris Jermaine, Anindya Datta, and Edward Omiecinski. 1999. A Novel In-
dex Supporting High Volume Data Warehouse Insertion. In Proceedings of the
International Conference on Very Large Data Bases (VLDB). 235–246.

[24] Donald E. Knuth. 1997. The art of computer programming, Volume I: Fundamental
Algorithms (3rd Edition). Addison-Wesley.

[25] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2018. Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.
Proceedings of the VLDB Endowment 11, 6 (2018), 677–690.

[26] Tobin J. Lehman and Michael J. Carey. 1986. A Study of Index Structures for
Main Memory Database Management Systems. In Proceedings of the International
Conference on Very Large Data Bases (VLDB). 294–303.

[27] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 302–313.

[28] Heikki Mannila. 1985. Measures of Presortedness and Optimal Sorting Algo-
rithms. IEEE Transactions on Computers (TC) 34, 4 (1985), 318–325.

[29] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proceedings of the International Conference
on Very Large Data Bases (VLDB). 476–487.

[30] MongoDB. 2023. Online reference. http://www.mongodb.com/ (2023).
[31] MySQL. 2023. MySQL. https://www.mysql.com/ (2023).
[32] Oracle. 2018. Introducing Oracle Database 18c. White Paper (2018).
[33] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence

Analytics. ACM SIGMOD Record 44, 2 (2015), 47–52.
[34] PostgreSQL. 2023. PostgreSQL: The World’s Most Advanced Open Source Rela-

tional Database. https://www.postgresql.org (2023).
[35] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems.

McGraw-Hill Higher Education, 3rd edition.
[36] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar, Matthaios Olma,

and Manos Athanassoulis. 2022. BoDS: A Benchmark on Data Sortedness. In
Proceedings of the TPC Technology Conference on Performance Evaluation \&
Benchmarking (TPCTC).

[37] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2022. OSM-tree: A Sortedness-Aware Index. CoRR abs/2202.0 (2022).

[38] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2023. Indexing for Near-Sorted Data. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE).

[39] Jun Rao and Kenneth A. Ross. 2000. Making B+-trees Cache Conscious in
Main Memory. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 475–486.

[40] Utkarsh Srivastava and JenniferWidom. 2004. Flexible TimeManagement in Data
Stream Systems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS). 263–274.

[41] Kristian Torp, Leo Mark, and Christian S Jensen. 1998. Efficient Differential
Timeslice Computation. IEEE Trans. Knowl. Data Eng. 10, 4 (1998), 599–611.

[42] Peter Van Sandt, Yannis Chronis, and JigneshM. Patel. 2019. Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 36–53.

[43] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 1555–1566.

[44] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. The VLDB Journal 25, 6 (2016), 843–866.

[45] Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management:
Fulfilling the Need for Big Sequence Analytics. In Proceedings of the IEEE Inter-
national Conference on Data Engineering (ICDE). 1677–1678.

13

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Reinventing fast-path optimization
	4 Quick Insertion Tree
	4.1 A Robust Fast-Path Optimization
	4.2 Fast-Path Insertion in lol
	4.3 Improving Space Utilization
	4.4 Other QuIT Operations
	4.5 Concurrency Control

	5 Evaluation
	5.1 Benefits of Quick Insertion Tree
	5.2 Sensitivity Analysis
	5.3 QuIT under Concurrent Execution
	5.4 Comparing with SWARE
	5.5 Indexing Real-World Data

	6 Related Work
	7 Conclusion
	References

