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Trailer



3In a field of wealth 

I have iO. I have a 
Random Oracle.

I have a Bitcoin.
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They had nothing

iO is broken.

Random oracle 
doesn’t exist.



5On the land of liberty

Feel free to 
assume iO.

Free access to 
Random oracle!

Equal number of Bitcoin 
for every member!
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They are enslaved
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At the moment of glory 

Fiat-Shamir
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At the moment of glory 

Subexponential iO, 
exponential 
input-hiding 
obfuscation

 Kalai, Rothblum, 
Rothblum ‘17

Fiat-Shamir
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Fiat-Shamir and correlation intractability
 from 

subexponentially secure iO and 
exponentially secure input-hiding obfuscation

They raise, united
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Fiat-Shamir and correlation intractability
 from 

subexponentially secure iO and 
exponentially secure input-hiding obfuscation

exponentially KDM secure 
encryption schemes

They raise, united



11

Directors
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Ran Canetti 
Yilei Chen

Leonid Reyzin 
Ron Rothblum
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How to capture the properties of a “good 
enough” cryptographic hash function?
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Fiat-Shamir ‘86, Bellare-Rogaway ‘93: 

Can model cryptographic hash functions as “Random Oracles”
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Can model cryptographic hash functions as “Random Oracles”
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Can model cryptographic hash functions as “Random Oracles”
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x

y
≈

Fiat-Shamir ‘86, Bellare-Rogaway ‘93: 

Can model cryptographic hash functions as “Random Oracles”

Build efficient crypto schemes (secure under heuristics):
- Efficient CCA secure encryptions
- Hash-and-sign paradigm
- Many applications 
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Examples
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H(X)=0000000000110….110010111101

Desired property:
Find an input X such that H(X) has a prefix of d 0s takes roughly 2d steps.

 d
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Fiat, Shamir 86:  Turning an interactive protocol => non-interactive



22

P
a

V

b  (public coins)

c

An interactive protocol for a language L and an instance x:

Fiat, Shamir 86:  Turning an interactive protocol => non-interactive
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P
a

V

b  (public coins)

c

An interactive protocol for a language L and an instance x:

FS
==> P V

a, b=h(a), c

Fiat, Shamir 86:  Turning an interactive protocol => non-interactive

A publicly accessible 
hash function: h
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P
a

V

b  (public coins)

c

An interactive protocol for a language L and an instance x:

FS
==> P V

a, b=h(a), c

Fiat, Shamir 86:  Turning an interactive protocol => non-interactive

A publicly accessible 
hash function: h

Goal: preserve the original properties of the protocol, e.g. completeness and soundness.
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Does the Random oracle 
model oversimplifies the 
problem in the reality?

Fiat, Shamir
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Does the Random oracle 
model oversimplifies the 
problem in the reality?

Fiat, Shamir

Can we define a more 
concrete property that 
captures what we want? 
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Today:

Correlation Intractability
“infeasibility of finding ‘sparse’ input-output relations”

--- Canetti, Goldreich, Halevi 1998
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Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”

x

y
          .           .
.      .      . . 
. .      .        . 
 ..   .        . 
     ……………. 
   .             .
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Implicitly: relations that are intractable on truly random functions

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[ AdvO -> x: R(x, O(x))=1 ] < negl.

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”

x

y
          .           .
.      .      . . 
. .      .        . 
 ..   .        . 
     ……………. 
   .             .
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Implicitly: relations that are intractable on truly random functions

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[ AdvO -> x: R(x, O(x))=1 ] < negl.

*Can naturally generalize to multi-input-output relations

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[ AdvO -> x1, x2:   R(x1, O(x1), x2, O(x2))=1 ] < negl.

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”

x

y

c
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c
Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”

x

y

c’ ⭑
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c
Partial constant relation:    R(x, y) = 1, if the first half of y=c’

*Examples for interesting multiple-input-output relations

Collision relation:    R(x1, y1, x2, y2) = 1, if y1=y2 and (not x1=x2)

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Correlation intractability  [Canetti, Goldreich, Halevi ‘98]

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Correlation intractability  [Canetti, Goldreich, Halevi ‘98]

For all sparse relations R:

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Correlation intractability  [Canetti, Goldreich, Halevi ‘98]

Adversary Challenger
h

For all sparse relations R:

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Correlation intractability  [Canetti, Goldreich, Halevi ‘98]

Adversary Challenger

x, (as a result, y=h(x))

Adversary wins if R( x, h(x) )=1

h

For all sparse relations R:

Sparse Relations

“For each input (x), 
the fraction of outputs (y) in the relation is negligible”
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Exercise: Prove CI w.r.t. simple relations from your favorite hash function.
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin
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H(???...?)=000000….XYZ3d83h
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H(???...?)=000000….XYZ3d83h

Correlation intractability [ Canetti, Goldreich, Halevi 98 ]
For all relations of negligible density, all polynomial adversaries 
succeed with negligible probability.
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H(???...?)=000000….XYZ3d83h

Correlation intractability [ Canetti, Goldreich, Halevi 98 ]
For all relations of negligible density, all polynomial adversaries 
succeed with negligible probability.

Quantitative correlation intractability [ This work ]
For all relations of density D, all adversaries running in time T 
succeed with probability f(D, T).

The smallest possible f to hope for:  f(D,T) = DT
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H(???...?)=000000….XYZ3d83h

In fact, SHA256 doesn’t satisfy the best-possible quantitative CI.

AsicBoost takes advantage of Merkle-Damgard to speed up bitcoin mining. 
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

x

y
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir:                       Long story ...
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A
a

B

b  (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86:  3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible 
hash function: h
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Fiat, Shamir relation: [ Hada, Tanaka 99, Dwork et al 03 ]
R(a, b)=1  if   x ∉ L  and  ∃ c  s.t. Verifier(x, a, b, c) accepts

R is a sparse relation following the soundness of the 3 round proof system.
The membership of R is typically not polynomial-time decidable due to “∃ c”.

A
a

B

b  (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86:  3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible 
hash function: h
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Difficulty to prove the Fiat-Shamir property:

[ Goldwasser, Kalai ‘03 ] impossibility for arguments.
[ Barak, Lindell, Vadhan ‘06 ] Define “Entropy preserving”, it implies FS for proofs.
[ Dodis, Ristenpart, Vadhan ‘12 ] “Entropy preserving” is necessary for FS for proofs.
[ Bitansky et al. ‘13 ] for proof systems, impossible from black-box reductions to 
falsifiable assumptions.

A
a

B

b  (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86:  3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible 
hash function: h
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs:      R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1 
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs:      R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1 

[ CGH 98 ]
Correlation intractability is impossible to achieve



53

Bitcoin price 
live
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Breaking news: 
Correlation intractability is impossible to achieve.

Bitcoin price 
live



55In a field of wealth 

I have iO. I have a 
Random Oracle.

I have a Bitcoin.
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Breaking news: 
Correlation intractability is impossible to achieve.

I still have iO.
Kidding me?

Seriously?
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs:      R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1

[ CGH 98 ]
Correlation intractability is impossible to achieve 
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs:      R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1

[ CGH 98 ]
Correlation intractability is impossible to achieve … in some cases.
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Breaking news: 
Correlation intractability is impossible to achieve.

Bitcoin price 
live
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Breaking news: 
Correlation intractability is impossible to achieve in some cases

Bitcoin price 
live
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Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!
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Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1  iff  y=x(x) 
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Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1  iff  y=x(x) 

Adversary Challenger
h
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Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1  iff  y=x(x) 

Adversary Challenger
h

x=h, y=h(h)=x(x)

Adversary wins if RH( x, x(x) )=1
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x

h < |x|  impossible [CGH ‘98]

y
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x

h
 h

< |x|  impossible [CGH ‘98]

|x|+|y|  still impossible [CGH ‘98]

y
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x

h
 h

>|x|+|y| may be possible!!

< |x|  impossible [CGH ‘98]

|x|+|y|  still impossible [CGH ‘98]

 h

y
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Possible for hash functions with even just ‘slightly’ longer keys… not too bad.

Functions from {0,1}*→{0,1}m can never be correlation intractable.

x

h
 h

>|x|+|y| may be possible!!

< |x|  impossible [CGH ‘98]

|x|+|y|  still impossible [CGH ‘98]

 h

y
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin       need quantitative hardness

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

Fiat-Shamir:                       Long story ...

“Diagonal relation”:            RH(x, y) = 1  if  y=x(x)    [ CGH 98 ]  

“Small family relation”:       RH(x, y) = 1  if  ∃ h ∊ H s.t. y=h(x)   [ this work ]   
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Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.

Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin                                Require moderately hardness

Fiat-Shamir for proofs:       R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1 

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

“Diagonal relation”:            RH(x, y) = 1  if  y=x(x) 

“Small family relation”:       RH(x, y) = 1  if  ∃ h ∊ H s.t. y=h(x) 
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Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin                                Require moderately hardness

Fiat-Shamir for proofs:       R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1 

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

“Diagonal relation”:            RH(x, y) = 1  if  y=x(x) 

“Small family relation”:       RH(x, y) = 1  if  ∃ h ∊ H s.t. y=h(x) 

Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.
Constraints: the key must be longer than |x|+|y|, the seed must be longer than |x|.
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Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.
Constraints: the key must be longer than |x|+|y|, the seed must be longer than |x|.
Obvious difficulty: prove “weird” relations.

Examples: Interesting sparse relations

Constant relation:              R(x, y) = 1, if y=c

Partial constant relation:    R(x, y) = 1, if the first half of y=c’

Bitcoin                                Require moderately hardness

Fiat-Shamir for proofs:       R(a, b) = 1  if  x ∉ L and  ∃ c  s.t. Verifier(x, a, b, c)=1 

Fixed point relation:           R(x, y) = 1 if y=x  (or prefix of x if |y|<|x|)

“Diagonal relation”:            RH(x, y) = 1  if  y=x(x) 

“Small family relation”:       RH(x, y) = 1  if  ∃ h ∊ H s.t. y=h(x) 
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Other concrete properties for RO-like hash functions:

Perfect one-wayness  [ Canetti 97, Canetti, Micciancio, Reingold 98 ]

Non-malleability  [ Boldyreva, Cash, Fischlin, Warinschi 09 ]

Magic Functions  [ Dwork, Naor, Reingold, Stockmeyer 03 ] 

Entropy preservation  [ Barak, Lindell, Vadhan 04 ]

Seed-incompressibIe CI  [ Halevi, Myers, Rackoff 08 ]

Correlated-Input security  [ Goyal, O'Neill, Rao 11 ]

Universal Computational Extractor  [ Bellare, Hoang, Keelveedhi 13 ]

ELF  [ Zhandry 16 ]
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?
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Canetti, Chen, Reyzin (TCC 2016-A)
IO( Puncturable.PRF ) is correlation intractable for bounded relations. 
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive 
functions.



76

Canetti, Chen, Reyzin (TCC 2016-A)
IO( Puncturable.PRF ) is correlation intractable for bounded relations. 
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive 
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO( Puncturable.PRF ) is correlation intractable for all sparse relations, therefore 
implies the soundness of Fiat-Shamir for proofs. 
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding 
obfuscation for multi-bit point functions.
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Canetti, Chen, Reyzin (TCC 2016-A)
IO( Puncturable.PRF ) is correlation intractable for bounded relations. 
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive 
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO( Puncturable.PRF ) is correlation intractable for all sparse relations, therefore 
implies the soundness of Fiat-Shamir for proofs. 
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding 
obfuscation for multi-bit point functions.
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Canetti, Chen, Reyzin (TCC 2016-A)
IO( Puncturable.PRF ) is correlation intractable for bounded relations. 
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive 
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO( Puncturable.PRF ) is correlation intractable for all sparse relations, therefore 
implies the soundness of Fiat-Shamir for proofs. 
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding 
obfuscation for multi-bit point functions.
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This work:

[ Kalai, Rothblum, Rothblum ‘17 ] is right!
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with ...
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m*     and     CT <- Enc(k*, m*)
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m*     and     CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m*     and     CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:

  For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[ Adv( Enc(k, f(k)) ) -> k ] < 

s(n)
2n , where n = secp = |k|
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m*     and     CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:

  For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[ Adv( Enc(k, f(k)) ) -> k ] < 

s(n)
2n

We provide parameters where ElGamal and Regev encryptions plausibly 
satisfy that level of security.

, where n = secp = |k|
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

  For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[ Adv( Enc(k, f(k)) ) -> k ] < 

s(n)
2n , where n = secp = |k|

For the instantiations from ElGamal or Regev, the assumptions are morally:
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

  For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[ Adv( Enc(k, f(k)) ) -> k ] < 

s(n)
2n , where n = secp = |k|

For the instantiations from ElGamal or Regev, the assumptions are morally:
Discrete-log where polynomial time adv succeeds with probability 
no-better-than-guessing + KDM for any f.
LWE where polynomial time adv succeeds in key-recovery with probability 
no-better-than-guessing + KDM for any f.
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The instantiations from ElGamal or Regev do not suffice for 
the quantitative correlation intractability required for Bitcoin 
(will explain later).

H(???...?)=000000….XYZ3d83h
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

  For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[ Adv( Enc(k, f(k)) ) -> k ] < 

s(n)
2n , where n = secp = |k|

How do we get around the black-box lower bound of [ Bitansky et al. 13 ]?
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.
NIZK for NP. (soundness is from FS; zero-knowledge need to prove)
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.
NIZK for NP.
[Reingold, Rothblum, Rothblum ‘16]: Constant round doubly efficient IP for 
any language computable in polytime and fixed polynomial space.
=> a non-interactive one 
(for non-interactive delegation with public verifiability, previous results assume 
RO, or iO, or “mmaps-looking FHE” by [Paneth-Rothblum ‘17])
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.
Keygen: CT <-

r
 CTspace.     

H: {0,1}n -> {0,1}l,    H
CT

 (k) = Dec(k, CT).
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This work:

Correlation intractability for all sparse relations from symmetric encryption 
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.
Keygen: CT <-

r
 CTspace.     

H: {0,1}n -> {0,1}l,    H
CT

 (k) = Dec(k, CT).

[ Fiat-Shamir, ‘86 ]
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Rest of 
the talk

Explain the assumption.
Explain the proof idea.
Possible relaxations & generalizations.
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Instantiation via Regev’s scheme.

Parameters:  n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n 
sk:  s∊ [-B, B]n’;   
Enc(sk, b):  sample a∊Z

q
n; sample e∊ [0, q/2).  CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT):  z - <a,s> , then round by 2.



97

Instantiation via Regev’s scheme.

Parameters:  n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n 
sk:  s∊ [-B, B]n’;   
Enc(sk, b):  sample a∊Z

q
n; sample e∊ [0, q/2).  CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT):  z - <a,s> , then round by 2.

Hash function (to l bit output):  H
A,Z

(x):  Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)



98

Instantiation via Regev’s scheme.

Parameters:  n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n 
sk:  s∊ [-B, B]n’;   
Enc(sk, b):  sample a∊Z

q
n; sample e∊ [0, q/2).  CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT):  z - <a,s> , then round by 2.

Hash function (to l bit output):  H
A,Z

(x):  Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.



99

Instantiation via Regev’s scheme.

Parameters:  n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n 
sk:  s∊ [-B, B]n’;   
Enc(sk, b):  sample a∊Z

q
n; sample e∊ [0, q/2).  CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT):  z - <a,s> , then round by 2.

Hash function (to l bit output):  H
A,Z

(x):  Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.
Exponential KDM assumption: hard for polynomial time algorithms to find s 
with better-than-guessing probability given a, y = <a,s> + b⋅q/2 + e.



100

Instantiation via Regev’s scheme.

Parameters:  n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n 
sk:  s∊ [-B, B]n’;   
Enc(sk, b):  sample a∊Z

q
n; sample e∊ [0, q/2).  CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT):  z - <a,s> , then round by 2.

Hash function (to l bit output):  H
A,Z

(x):  Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.
Exponential KDM assumption: hard for polynomial time algorithms to find s 
with better-than-guessing probability given a, y = <a,s> + b⋅q/2 + e.

Lattice open problem: find a polynomial time algorithm for LWE with 
polynomial modulus that achieves better-than-guessing success probability.
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If we don’t worry about KDM for a moment, then it is discrete log.

Any polynomial time algorithm success with probability poly(n)/2n

Is there a group where this assumption is plausible? 

Discrete log over finite 
field (of size roughly 2n)

T(n) time, 
~ 1 success probability

Polytime, 
P success probability

Pollard’s rho algorithm T(n) = exp(n/2) P = poly(n)⋅ 2-n

Index calculus algorithm T(n) = exp( n1/3 (logn)2/3 ) ???

Instantiation via ElGamal
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The success prob. of  index calculus in polynomial time: 
We don’t know how to achieve 

better-than-guessing success probability. 

Exercise: find a polytime algorithm for discrete-log over finite field 
that achieves better-than-guessing success probability. 
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In the online-offline model: 
The offline phase gets  g, F

q
, runs infinite time, keep polysize advice.

The online phase gets  h = gx, and the advice, runs in polytime.
Claim: index-calculus achieves 2-n/C  success probability for any constant C.
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In the online-offline model: 
The offline phase gets  g, F

q
, runs infinite time, keep polysize advice.

The online phase gets  h = gx, and the advice, runs in polytime.
Claim: index-calculus achieves 2-n/C  success probability for any constant C.

How:
The offline phase gets  g, F

q
, picks a polynomial bound B=nC, computes all the 

log
g
(p)   for p in {2, 3, 5, 7, …, B}

The online phase gets  h = gx, picks a random r, compute w = h ⋅ gr = gx+r mod q. 
Then see if all the factors of w are below B.  [ Rankin 1938: 2-n/C ]
If so, w = 2x2 ⋅3x3  ⋅5x5  ⋅ …  ⋅BxB  
Then x = log

g
(2)⋅x2 + log

g
(3)⋅x3 + … + log

g
(B)⋅xB -r  mod φ(q). 

Used also in the Logjam attack  [ Adrian et al., CCS15 ]
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Discrete log over elliptic curve groups:

(“bad” means subexponential time algorithms are known)
MOV 93: supersingular is bad.
ADH 94: hyperelliptic is bad.
GHS 02: Composite order extension over F

2
 is bad.

Semeav 04: Summation polynomial is useful but I don’t know how.
Gaudry 09 and Diem 11: Yes it is useful to attack some fields.
…
Still no algorithm achieves non-trivial running time or success probability for 
E(F

q
) where q is a prime, #E(F

q
) has a large prime factor.
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Discrete log over elliptic curve groups:

(“bad” means subexponential time algorithms are known)
MOV 93: supersingular is bad.
ADH 94: hyperelliptic is bad.
GHS 02: Composite order extension over F

2
 is bad.

Semeav 04: Summation polynomial is useful but I don’t know how.
Gaudry 09 and Diem 11: Yes it is useful to attack some fields.
…
Still no algorithm achieves non-trivial running time or success probability for 
E(F

q
) where q is a prime, #E(F

q
) has a large prime factor.

For discrete-log problem, Shoup 97 showed generic algorithm that runs in time 
T can only achieve success prob T2/2n

For Bitcoin, T time ~ T2 success probability doesn’t suffice for “decentralize”.
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Rest of 
the talk

Explain the assumption. ✅
Explain the proof idea.
Possible relaxations & generalizations.
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Proof idea: 

Again, [ Kalai, Rothblum, Rothblum ‘17 ] is right!

Translate correlation intractability where many possible x can be the right 
answer, to some property where only one x* is the right answer. Cost an 
exponential loss in the success probability in the underlying assumption.

KRR17: some property = finding the input in the Input-hiding obfuscation. 
Transition is done by iO + puncturing (computational).

This work: some property = key recovery in a KDM ciphertext. Transition is 
done via statistical properties.
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Keygen: CT <-
r
 CTspace.     H: {0,1}n -> {0,1}l,    H

CT
 (k) = Dec(k, CT).



117

x

y
          .           .
.      .      . . 
. .      .        . 
 ..   .        . 
     ……………. 
   .             .

Pad

=>
x

y
          .           .
.      .      . . 
. .      .        . 
 ..   .        . 
     ……………. 
   .             .

From any R, pad it to R’ so that 
(1) R’ is still sparse, 
(2) every x has almost equal number of y.
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3. k* randomly, m* s.t. (k*, m*)∊ R; CT’ s.t. Dec(k*, CT’)=m*
Pr

(k*, m*)∊rR, CT’
 [ Adv( CT’=Enc(k*, m*)  )-> k* ] > (v/d)⋅2-n. 

Fix a sparse relation R with density d

-- For all k*, a random CT 
decrypts to a random msg.
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Pr
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Keygen: CT <-
r
 CTspace.     H: {0,1}n -> {0,1}l,    H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [ Adv( CT )-> k  and  ( k, Dec(k, CT) ) ∊ R  ] > v.

2. k*, m* randomly,  CT’ s.t. Dec(k*, CT’)=m*

Pr
k*, m*, CT’

 [ Adv( CT’ )-> k  and  k=k*  and  ( k*, m* ) ∊ R  ] > v⋅2-n. 

3. k* randomly, m* s.t. (k*, m*)∊ R; CT’ s.t. Dec(k*, CT’)=m*
Pr

(k*, m*)∊rR, CT’
 [ Adv( CT’=Enc(k*, m*)  )-> k* ] > (v/d)⋅2-n. 

Fix a sparse relation R with density d

-- For all k*, a random CT 
decrypts to a random msg.

-- Exponential KDM

-- conditional probability 

-- For all k*,m*, CT’=Enc(k*,m*) is stat. close to  CT’ s.t. Dec(k*, CT’)=m*

1. Averaging over one of the 2n possible inputs k*:
Pr

CT, k*
 [ Adv( CT )-> k  and  k=k*  and  ( k*, Dec(k*, CT) ) ∊ R  ] > v⋅2-n. 
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Rest of 
the talk

Possible relaxations & generalizations.

Bigger success probability?
Weaker KDM assumptions?
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What if someone achieves success prob. 2-n/10 for DLOG over E(F
q
)?

Impact on DLOG over elliptic curve groups: 
must explore additional structure, due to [Shoup 97]

Impact on our result.
Fun fact:    2-n/10 >> poly(n) ⋅ 2-n,   ☹

Condition to form a contradiction: 
2-n/10 < non-negl/(d⋅2n)  =>  d>2-9n/10

=> the density of a non-trivial relation has to be larger than 2-9n/10

=> |output| > 9n/10, where n = |input|
=> Implies e.g. Fiat-Shamir for protocols where 

|first msg| = n, |second msg|=9n/10, soundness = 2-9n/10
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KDM

To imply general Fiat-Shamir, we need KDM for 
unbounded key-dependency functions. 
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KDM

To imply general Fiat-Shamir, we need KDM for 
unbounded key-dependency functions. 

Schemes that supports KDM for affine functions 
( [Boneh, Halevi, Hamburg, Ostrovsky 08], etc.) 
Schemes that bootstrap to bounded functions
( [Barak, Haitner, Hofheinz, Ishai 10], etc.) 

We don’t know any method that implies unbounded 
KDM and at the same time guarantees exponentially 
hard key-recovery.

Assuming KDM security for 
Enc(k, m) = Ext( owf(k) ) + m?
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Summary:

Correlation intractability for all sparse relations (implies Fiat-Shamir) from 
symmetric encryption schemes with
(1) Natural statistical properties;
(2) Exponentially hard KDM security for all key-dependency function f.
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Future directions

Multiple-input-output relations

Quantitatively correlation intractable.
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Correlation intractability for multiple-input-output relations.

It will be more useful. 

For example, lots of Fiat-Shamir application in practices starts from an argument.

As another example, Gennaro-Halevi-Rabin signature.

Of course, need to bypass the impossibility results by CGH and Goldwasser-Kalai.

Maybe start from “simple” relations.
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Quantitative correlation intractability.

[ Ball, Rosen, Sabin, Vasudevan 17 ] “proof of useful work”, can we do it for hash functions?

The CGH impossibility results for f: {0,1}*→{0,1}m also holds for relatively sparse CI.

Corollary: Domain extension techniques (like Merkle-Damgard) might preserve collision 
resistance, but do not preserve correlation intractability. 

In fact, AsicBoost takes advantage of Merkle-Damgard to speed up bitcoin mining. 
*(but that’s not because of CGH impossibility)

Achieve f: {0,1}*→{0,1}m  that is quantitatively CI for “bitcoin relation”?
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Thanks for 
your time!


