
 Ran Canetti
 Yilei Chen
 Leonid Reyzin
 Ron Rothblum

Fiat-Shamir
and correlation
intractability

from strong KDM
secure

encryptions

1

2

Trailer

3In a field of wealth

I have iO. I have a
Random Oracle.

I have a Bitcoin.

4
They had nothing

iO is broken.

Random oracle
doesn’t exist.

5On the land of liberty

Feel free to
assume iO.

Free access to
Random oracle!

Equal number of Bitcoin
for every member!

6
They are enslaved

7
At the moment of glory

Fiat-Shamir

8
At the moment of glory

Subexponential iO,
exponential
input-hiding
obfuscation

 Kalai, Rothblum,
Rothblum ‘17

Fiat-Shamir

9

Fiat-Shamir and correlation intractability
 from

subexponentially secure iO and
exponentially secure input-hiding obfuscation

They raise, united

10

Fiat-Shamir and correlation intractability
 from

subexponentially secure iO and
exponentially secure input-hiding obfuscation

exponentially KDM secure
encryption schemes

They raise, united

11

Directors

12

Ran Canetti
Yilei Chen

Leonid Reyzin
Ron Rothblum

13

How to capture the properties of a “good
enough” cryptographic hash function?

14

Fiat-Shamir ‘86, Bellare-Rogaway ‘93:

Can model cryptographic hash functions as “Random Oracles”

15

Fiat-Shamir ‘86, Bellare-Rogaway ‘93:

Can model cryptographic hash functions as “Random Oracles”

16

x

y
≈

Fiat-Shamir ‘86, Bellare-Rogaway ‘93:

Can model cryptographic hash functions as “Random Oracles”

17

x

y
≈

Fiat-Shamir ‘86, Bellare-Rogaway ‘93:

Can model cryptographic hash functions as “Random Oracles”

Build efficient crypto schemes (secure under heuristics):
- Efficient CCA secure encryptions
- Hash-and-sign paradigm
- Many applications

18

Examples

19

20

H(X)=0000000000110….110010111101

Desired property:
Find an input X such that H(X) has a prefix of d 0s takes roughly 2d steps.

 d

21

Fiat, Shamir 86: Turning an interactive protocol => non-interactive

22

P
a

V

b (public coins)

c

An interactive protocol for a language L and an instance x:

Fiat, Shamir 86: Turning an interactive protocol => non-interactive

23

P
a

V

b (public coins)

c

An interactive protocol for a language L and an instance x:

FS
==> P V

a, b=h(a), c

Fiat, Shamir 86: Turning an interactive protocol => non-interactive

A publicly accessible
hash function: h

24

P
a

V

b (public coins)

c

An interactive protocol for a language L and an instance x:

FS
==> P V

a, b=h(a), c

Fiat, Shamir 86: Turning an interactive protocol => non-interactive

A publicly accessible
hash function: h

Goal: preserve the original properties of the protocol, e.g. completeness and soundness.

25

Does the Random oracle
model oversimplifies the
problem in the reality?

Fiat, Shamir

26

Does the Random oracle
model oversimplifies the
problem in the reality?

Fiat, Shamir

Can we define a more
concrete property that
captures what we want?

27

Today:

Correlation Intractability
“infeasibility of finding ‘sparse’ input-output relations”

--- Canetti, Goldreich, Halevi 1998

28

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

29

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

x

y
 . .
. . . .
. . . .

 …………….
 . .

30

Implicitly: relations that are intractable on truly random functions

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[AdvO -> x: R(x, O(x))=1] < negl.

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

x

y
 . .
. . . .
. . . .

 …………….
 . .

31

Implicitly: relations that are intractable on truly random functions

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[AdvO -> x: R(x, O(x))=1] < negl.

*Can naturally generalize to multi-input-output relations

For all (non-uniform) p.p.t. Adversary:
PrAdv, O[AdvO -> x1, x2: R(x1, O(x1), x2, O(x2))=1] < negl.

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

32

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

x

y

c

33

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c
Partial constant relation: R(x, y) = 1, if the first half of y=c’

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

x

y

c’ ⭑

34

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c
Partial constant relation: R(x, y) = 1, if the first half of y=c’

*Examples for interesting multiple-input-output relations

Collision relation: R(x1, y1, x2, y2) = 1, if y1=y2 and (not x1=x2)

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

35

Correlation intractability [Canetti, Goldreich, Halevi ‘98]

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

36

Correlation intractability [Canetti, Goldreich, Halevi ‘98]

For all sparse relations R:

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

37

Correlation intractability [Canetti, Goldreich, Halevi ‘98]

Adversary Challenger
h

For all sparse relations R:

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

38

Correlation intractability [Canetti, Goldreich, Halevi ‘98]

Adversary Challenger

x, (as a result, y=h(x))

Adversary wins if R(x, h(x))=1

h

For all sparse relations R:

Sparse Relations

“For each input (x),
the fraction of outputs (y) in the relation is negligible”

39

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Exercise: Prove CI w.r.t. simple relations from your favorite hash function.

40

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin

41

H(???...?)=000000….XYZ3d83h

42

H(???...?)=000000….XYZ3d83h

Correlation intractability [Canetti, Goldreich, Halevi 98]
For all relations of negligible density, all polynomial adversaries
succeed with negligible probability.

43

H(???...?)=000000….XYZ3d83h

Correlation intractability [Canetti, Goldreich, Halevi 98]
For all relations of negligible density, all polynomial adversaries
succeed with negligible probability.

Quantitative correlation intractability [This work]
For all relations of density D, all adversaries running in time T
succeed with probability f(D, T).

The smallest possible f to hope for: f(D,T) = DT

44

H(???...?)=000000….XYZ3d83h

In fact, SHA256 doesn’t satisfy the best-possible quantitative CI.

AsicBoost takes advantage of Merkle-Damgard to speed up bitcoin mining.

45

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

46

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

x

y

47

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir: Long story ...

48

A
a

B

b (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86: 3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible
hash function: h

49

Fiat, Shamir relation: [Hada, Tanaka 99, Dwork et al 03]
R(a, b)=1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c) accepts

R is a sparse relation following the soundness of the 3 round proof system.
The membership of R is typically not polynomial-time decidable due to “∃ c”.

A
a

B

b (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86: 3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible
hash function: h

50

Difficulty to prove the Fiat-Shamir property:

[Goldwasser, Kalai ‘03] impossibility for arguments.
[Barak, Lindell, Vadhan ‘06] Define “Entropy preserving”, it implies FS for proofs.
[Dodis, Ristenpart, Vadhan ‘12] “Entropy preserving” is necessary for FS for proofs.
[Bitansky et al. ‘13] for proof systems, impossible from black-box reductions to
falsifiable assumptions.

A
a

B

b (public coins)

c

FS
=>

A B

a, b=h(a), c

Fiat, Shamir 86: 3 round proof system => 1 round argument

An interactive protocol for a language L and an instance x:

A publicly accessible
hash function: h

51

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

52

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

[CGH 98]
Correlation intractability is impossible to achieve

53

Bitcoin price
live

54

Breaking news:
Correlation intractability is impossible to achieve.

Bitcoin price
live

55In a field of wealth

I have iO. I have a
Random Oracle.

I have a Bitcoin.

56

Breaking news:
Correlation intractability is impossible to achieve.

I still have iO.
Kidding me?

Seriously?

57

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

[CGH 98]
Correlation intractability is impossible to achieve

58

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

[CGH 98]
Correlation intractability is impossible to achieve … in some cases.

59

Breaking news:
Correlation intractability is impossible to achieve.

Bitcoin price
live

60

Breaking news:
Correlation intractability is impossible to achieve in some cases

Bitcoin price
live

61

Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

62

Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1 iff y=x(x)

63

Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1 iff y=x(x)

Adversary Challenger
h

64

Canetti, Goldreich, Halevi:
H cannot be correlation intractable if the key is short !!!

Consider the “Diagonal” relation:

 RH(x, y)=1 iff y=x(x)

Adversary Challenger
h

x=h, y=h(h)=x(x)

Adversary wins if RH(x, x(x))=1

65

x

h < |x| impossible [CGH ‘98]

y

66

x

h
 h

< |x| impossible [CGH ‘98]

|x|+|y| still impossible [CGH ‘98]

y

67

x

h
 h

>|x|+|y| may be possible!!

< |x| impossible [CGH ‘98]

|x|+|y| still impossible [CGH ‘98]

 h

y

68

Possible for hash functions with even just ‘slightly’ longer keys… not too bad.

Functions from {0,1}*→{0,1}m can never be correlation intractable.

x

h
 h

>|x|+|y| may be possible!!

< |x| impossible [CGH ‘98]

|x|+|y| still impossible [CGH ‘98]

 h

y

69

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin need quantitative hardness

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

Fiat-Shamir: Long story ...

“Diagonal relation”: RH(x, y) = 1 if y=x(x) [CGH 98]

“Small family relation”: RH(x, y) = 1 if ∃ h ∊ H s.t. y=h(x) [this work]

70

Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin Require moderately hardness

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

“Diagonal relation”: RH(x, y) = 1 if y=x(x)

“Small family relation”: RH(x, y) = 1 if ∃ h ∊ H s.t. y=h(x)

71

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin Require moderately hardness

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

“Diagonal relation”: RH(x, y) = 1 if y=x(x)

“Small family relation”: RH(x, y) = 1 if ∃ h ∊ H s.t. y=h(x)

Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.
Constraints: the key must be longer than |x|+|y|, the seed must be longer than |x|.

72

Summary:

Goals: 1-input-output; capture as much relations as possible; Including Fiat-Shamir.
Constraints: the key must be longer than |x|+|y|, the seed must be longer than |x|.
Obvious difficulty: prove “weird” relations.

Examples: Interesting sparse relations

Constant relation: R(x, y) = 1, if y=c

Partial constant relation: R(x, y) = 1, if the first half of y=c’

Bitcoin Require moderately hardness

Fiat-Shamir for proofs: R(a, b) = 1 if x ∉ L and ∃ c s.t. Verifier(x, a, b, c)=1

Fixed point relation: R(x, y) = 1 if y=x (or prefix of x if |y|<|x|)

“Diagonal relation”: RH(x, y) = 1 if y=x(x)

“Small family relation”: RH(x, y) = 1 if ∃ h ∊ H s.t. y=h(x)

73

Other concrete properties for RO-like hash functions:

Perfect one-wayness [Canetti 97, Canetti, Micciancio, Reingold 98]

Non-malleability [Boldyreva, Cash, Fischlin, Warinschi 09]

Magic Functions [Dwork, Naor, Reingold, Stockmeyer 03]

Entropy preservation [Barak, Lindell, Vadhan 04]

Seed-incompressibIe CI [Halevi, Myers, Rackoff 08]

Correlated-Input security [Goyal, O'Neill, Rao 11]

Universal Computational Extractor [Bellare, Hoang, Keelveedhi 13]

ELF [Zhandry 16]

74

?

75

Canetti, Chen, Reyzin (TCC 2016-A)
IO(Puncturable.PRF) is correlation intractable for bounded relations.
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive
functions.

76

Canetti, Chen, Reyzin (TCC 2016-A)
IO(Puncturable.PRF) is correlation intractable for bounded relations.
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO(Puncturable.PRF) is correlation intractable for all sparse relations, therefore
implies the soundness of Fiat-Shamir for proofs.
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding
obfuscation for multi-bit point functions.

77

Canetti, Chen, Reyzin (TCC 2016-A)
IO(Puncturable.PRF) is correlation intractable for bounded relations.
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO(Puncturable.PRF) is correlation intractable for all sparse relations, therefore
implies the soundness of Fiat-Shamir for proofs.
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding
obfuscation for multi-bit point functions.

78

Canetti, Chen, Reyzin (TCC 2016-A)
IO(Puncturable.PRF) is correlation intractable for bounded relations.
Assuming subexponential iO, subexponential owf, input-hiding obfuscation for evasive
functions.

Kalai, Rothblum, Rothblum (Crypto 2017)
IO(Puncturable.PRF) is correlation intractable for all sparse relations, therefore
implies the soundness of Fiat-Shamir for proofs.
Assuming subexponential iO, subexponential owf, exponentially secure input-hiding
obfuscation for multi-bit point functions.

79

This work:

[Kalai, Rothblum, Rothblum ‘17] is right!

80

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with ...

81

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m* and CT <- Enc(k*, m*)

82

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m* and CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:

83

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m* and CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:

 For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[Adv(Enc(k, f(k))) -> k] <

s(n)
2n , where n = secp = |k|

84

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties:
- For all key k*, a random ciphertext CT decrypts to a random message m.
- For all key k* and message m*, the following distributions are the same:

CT s.t. Dec(k*, CT) = m* and CT <- Enc(k*, m*)

(2) Exponentially hard KDM security for all key-dependency function f:

 For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[Adv(Enc(k, f(k))) -> k] <

s(n)
2n

We provide parameters where ElGamal and Regev encryptions plausibly
satisfy that level of security.

, where n = secp = |k|

85

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

 For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[Adv(Enc(k, f(k))) -> k] <

s(n)
2n , where n = secp = |k|

For the instantiations from ElGamal or Regev, the assumptions are morally:

86

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

 For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[Adv(Enc(k, f(k))) -> k] <

s(n)
2n , where n = secp = |k|

For the instantiations from ElGamal or Regev, the assumptions are morally:
Discrete-log where polynomial time adv succeeds with probability
no-better-than-guessing + KDM for any f.
LWE where polynomial time adv succeeds in key-recovery with probability
no-better-than-guessing + KDM for any f.

87

The instantiations from ElGamal or Regev do not suffice for
the quantitative correlation intractability required for Bitcoin
(will explain later).

H(???...?)=000000….XYZ3d83h

88

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f:

 For all f (possibly inefficient), any polytime Adv, for all superpoly function s

Pr
k
[Adv(Enc(k, f(k))) -> k] <

s(n)
2n , where n = secp = |k|

How do we get around the black-box lower bound of [Bitansky et al. 13]?

89

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.

90

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.
NIZK for NP. (soundness is from FS; zero-knowledge need to prove)

91

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Corollary: under the same assumptions, we get
Fiat-Shamir for proof.
NIZK for NP.
[Reingold, Rothblum, Rothblum ‘16]: Constant round doubly efficient IP for
any language computable in polytime and fixed polynomial space.
=> a non-interactive one
(for non-interactive delegation with public verifiability, previous results assume
RO, or iO, or “mmaps-looking FHE” by [Paneth-Rothblum ‘17])

92

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.

93

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.
Keygen: CT <-

r
 CTspace.

H: {0,1}n -> {0,1}l, H
CT

 (k) = Dec(k, CT).

94

This work:

Correlation intractability for all sparse relations from symmetric encryption
schemes with
(1) Natural statistical properties.
(2) Exponentially hard KDM security for all key-dependency function f.

Construction of the hash function.
Keygen: CT <-

r
 CTspace.

H: {0,1}n -> {0,1}l, H
CT

 (k) = Dec(k, CT).

[Fiat-Shamir, ‘86]

95

Rest of
the talk

Explain the assumption.
Explain the proof idea.
Possible relaxations & generalizations.

96

Instantiation via Regev’s scheme.

Parameters: n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n
sk: s∊ [-B, B]n’;
Enc(sk, b): sample a∊Z

q
n; sample e∊ [0, q/2). CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT): z - <a,s> , then round by 2.

97

Instantiation via Regev’s scheme.

Parameters: n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n
sk: s∊ [-B, B]n’;
Enc(sk, b): sample a∊Z

q
n; sample e∊ [0, q/2). CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT): z - <a,s> , then round by 2.

Hash function (to l bit output): H
A,Z

(x): Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

98

Instantiation via Regev’s scheme.

Parameters: n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n
sk: s∊ [-B, B]n’;
Enc(sk, b): sample a∊Z

q
n; sample e∊ [0, q/2). CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT): z - <a,s> , then round by 2.

Hash function (to l bit output): H
A,Z

(x): Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.

99

Instantiation via Regev’s scheme.

Parameters: n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n
sk: s∊ [-B, B]n’;
Enc(sk, b): sample a∊Z

q
n; sample e∊ [0, q/2). CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT): z - <a,s> , then round by 2.

Hash function (to l bit output): H
A,Z

(x): Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.
Exponential KDM assumption: hard for polynomial time algorithms to find s
with better-than-guessing probability given a, y = <a,s> + b⋅q/2 + e.

100

Instantiation via Regev’s scheme.

Parameters: n = security parameter, B = O(n), q=O(n3), n’ s.t. (2B+1)n’ = 2n
sk: s∊ [-B, B]n’;
Enc(sk, b): sample a∊Z

q
n; sample e∊ [0, q/2). CT: a, z = <a,s> + b⋅q/2 + e

Dec(sk, CT): z - <a,s> , then round by 2.

Hash function (to l bit output): H
A,Z

(x): Z - Ax ∊Z
q

l , then round by 2.
(it is not a RO-like function due to approx. linearity.)

Statistical properties are easy to verify.
Exponential KDM assumption: hard for polynomial time algorithms to find s
with better-than-guessing probability given a, y = <a,s> + b⋅q/2 + e.

Lattice open problem: find a polynomial time algorithm for LWE with
polynomial modulus that achieves better-than-guessing success probability.

101

If we don’t worry about KDM for a moment, then it is discrete log.

Instantiation via ElGamal

102

If we don’t worry about KDM for a moment, then it is discrete log.

Any polynomial time algorithm success with probability poly(n)/2n

Is there a group where this assumption is plausible?

Instantiation via ElGamal

103

If we don’t worry about KDM for a moment, then it is discrete log.

Any polynomial time algorithm success with probability poly(n)/2n

Is there a group where this assumption is plausible?

Discrete log over finite
field (of size roughly 2n)

T(n) time,
~ 1 success probability

Polytime,
P success probability

Pollard’s rho algorithm T(n) = exp(n/2) P = poly(n)⋅ 2-n

Index calculus algorithm T(n) = exp(n1/3 (logn)2/3) ???

Instantiation via ElGamal

104

The success prob. of index calculus in polynomial time:
We don’t know how to achieve

better-than-guessing success probability.

Exercise: find a polytime algorithm for discrete-log over finite field
that achieves better-than-guessing success probability.

105

In the online-offline model:
The offline phase gets g, F

q
, runs infinite time, keep polysize advice.

The online phase gets h = gx, and the advice, runs in polytime.
Claim: index-calculus achieves 2-n/C success probability for any constant C.

106

In the online-offline model:
The offline phase gets g, F

q
, runs infinite time, keep polysize advice.

The online phase gets h = gx, and the advice, runs in polytime.
Claim: index-calculus achieves 2-n/C success probability for any constant C.

How:
The offline phase gets g, F

q
, picks a polynomial bound B=nC, computes all the

log
g
(p) for p in {2, 3, 5, 7, …, B}

The online phase gets h = gx, picks a random r, compute w = h ⋅ gr = gx+r mod q.
Then see if all the factors of w are below B. [Rankin 1938: 2-n/C]
If so, w = 2x2 ⋅3x3 ⋅5x5 ⋅ … ⋅BxB
Then x = log

g
(2)⋅x2 + log

g
(3)⋅x3 + … + log

g
(B)⋅xB -r mod φ(q).

Used also in the Logjam attack [Adrian et al., CCS15]

107

Discrete log over elliptic curve groups:

(“bad” means subexponential time algorithms are known)
MOV 93: supersingular is bad.
ADH 94: hyperelliptic is bad.
GHS 02: Composite order extension over F

2
 is bad.

Semeav 04: Summation polynomial is useful but I don’t know how.
Gaudry 09 and Diem 11: Yes it is useful to attack some fields.
…
Still no algorithm achieves non-trivial running time or success probability for
E(F

q
) where q is a prime, #E(F

q
) has a large prime factor.

108

Discrete log over elliptic curve groups:

(“bad” means subexponential time algorithms are known)
MOV 93: supersingular is bad.
ADH 94: hyperelliptic is bad.
GHS 02: Composite order extension over F

2
 is bad.

Semeav 04: Summation polynomial is useful but I don’t know how.
Gaudry 09 and Diem 11: Yes it is useful to attack some fields.
…
Still no algorithm achieves non-trivial running time or success probability for
E(F

q
) where q is a prime, #E(F

q
) has a large prime factor.

For discrete-log problem, Shoup 97 showed generic algorithm that runs in time
T can only achieve success prob T2/2n

109

Discrete log over elliptic curve groups:

(“bad” means subexponential time algorithms are known)
MOV 93: supersingular is bad.
ADH 94: hyperelliptic is bad.
GHS 02: Composite order extension over F

2
 is bad.

Semeav 04: Summation polynomial is useful but I don’t know how.
Gaudry 09 and Diem 11: Yes it is useful to attack some fields.
…
Still no algorithm achieves non-trivial running time or success probability for
E(F

q
) where q is a prime, #E(F

q
) has a large prime factor.

For discrete-log problem, Shoup 97 showed generic algorithm that runs in time
T can only achieve success prob T2/2n

For Bitcoin, T time ~ T2 success probability doesn’t suffice for “decentralize”.

110

Rest of
the talk

Explain the assumption. ✅
Explain the proof idea.
Possible relaxations & generalizations.

111

Proof idea:

Again, [Kalai, Rothblum, Rothblum ‘17] is right!

112

Proof idea:

Again, [Kalai, Rothblum, Rothblum ‘17] is right!

Translate correlation intractability where many possible x can be the right
answer, to some property where only one x* is the right answer.

113

Proof idea:

Again, [Kalai, Rothblum, Rothblum ‘17] is right!

Translate correlation intractability where many possible x can be the right
answer, to some property where only one x* is the right answer. Cost an
exponential loss in the success probability in the underlying assumption.

114

Proof idea:

Again, [Kalai, Rothblum, Rothblum ‘17] is right!

Translate correlation intractability where many possible x can be the right
answer, to some property where only one x* is the right answer. Cost an
exponential loss in the success probability in the underlying assumption.

KRR17: some property = finding the input in the Input-hiding obfuscation.
Transition is done by iO + puncturing (computational).

115

Proof idea:

Again, [Kalai, Rothblum, Rothblum ‘17] is right!

Translate correlation intractability where many possible x can be the right
answer, to some property where only one x* is the right answer. Cost an
exponential loss in the success probability in the underlying assumption.

KRR17: some property = finding the input in the Input-hiding obfuscation.
Transition is done by iO + puncturing (computational).

This work: some property = key recovery in a KDM ciphertext. Transition is
done via statistical properties.

116

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

117

x

y
 . .
. . . .
. . . .

 …………….
 . .

Pad

=>
x

y
 . .
. . . .
. . . .

 …………….
 . .

From any R, pad it to R’ so that
(1) R’ is still sparse,
(2) every x has almost equal number of y.

118

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [Adv(CT)-> k and (k, Dec(k, CT)) ∊ R] > v.

Fix a sparse relation R with density d

119

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [Adv(CT)-> k and (k, Dec(k, CT)) ∊ R] > v.

1. Averaging over one of the 2n possible inputs k*:
Pr

CT, k*
 [Adv(CT)-> k and k=k* and (k*, Dec(k*, CT)) ∊ R] > v⋅2-n.

Fix a sparse relation R with density d

120

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [Adv(CT)-> k and (k, Dec(k, CT)) ∊ R] > v.

2. k*, m* randomly, CT’ s.t. Dec(k*, CT’)=m*

Pr
k*, m*, CT’

 [Adv(CT’)-> k and k=k* and (k*, m*) ∊ R] > v⋅2-n.

Fix a sparse relation R with density d

-- For all k*, a random CT
decrypts to a random msg.

1. Averaging over one of the 2n possible inputs k*:
Pr

CT, k*
 [Adv(CT)-> k and k=k* and (k*, Dec(k*, CT)) ∊ R] > v⋅2-n.

121

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [Adv(CT)-> k and (k, Dec(k, CT)) ∊ R] > v.

2. k*, m* randomly, CT’ s.t. Dec(k*, CT’)=m*

Pr
k*, m*, CT’

 [Adv(CT’)-> k and k=k* and (k*, m*) ∊ R] > v⋅2-n.

3. k* randomly, m* s.t. (k*, m*)∊ R; CT’ s.t. Dec(k*, CT’)=m*
Pr

(k*, m*)∊rR, CT’
 [Adv(CT’=Enc(k*, m*))-> k*] > (v/d)⋅2-n.

Fix a sparse relation R with density d

-- For all k*, a random CT
decrypts to a random msg.

-- conditional probability

1. Averaging over one of the 2n possible inputs k*:
Pr

CT, k*
 [Adv(CT)-> k and k=k* and (k*, Dec(k*, CT)) ∊ R] > v⋅2-n.

122

Keygen: CT <-
r
 CTspace. H: {0,1}n -> {0,1}l, H

CT
 (k) = Dec(k, CT).

0. Suppose by contradiction:
Pr

CT
 [Adv(CT)-> k and (k, Dec(k, CT)) ∊ R] > v.

2. k*, m* randomly, CT’ s.t. Dec(k*, CT’)=m*

Pr
k*, m*, CT’

 [Adv(CT’)-> k and k=k* and (k*, m*) ∊ R] > v⋅2-n.

3. k* randomly, m* s.t. (k*, m*)∊ R; CT’ s.t. Dec(k*, CT’)=m*
Pr

(k*, m*)∊rR, CT’
 [Adv(CT’=Enc(k*, m*))-> k*] > (v/d)⋅2-n.

Fix a sparse relation R with density d

-- For all k*, a random CT
decrypts to a random msg.

-- Exponential KDM

-- conditional probability

-- For all k*,m*, CT’=Enc(k*,m*) is stat. close to CT’ s.t. Dec(k*, CT’)=m*

1. Averaging over one of the 2n possible inputs k*:
Pr

CT, k*
 [Adv(CT)-> k and k=k* and (k*, Dec(k*, CT)) ∊ R] > v⋅2-n.

123

Rest of
the talk

Possible relaxations & generalizations.

Bigger success probability?
Weaker KDM assumptions?

124

What if someone achieves success prob. 2-n/10 for DLOG over E(F
q
)?

125

What if someone achieves success prob. 2-n/10 for DLOG over E(F
q
)?

Impact on DLOG over elliptic curve groups:
must explore additional structure, due to [Shoup 97]

126

What if someone achieves success prob. 2-n/10 for DLOG over E(F
q
)?

Impact on DLOG over elliptic curve groups:
must explore additional structure, due to [Shoup 97]

Impact on our result.
Fun fact: 2-n/10 >> poly(n) ⋅ 2-n, ☹

Condition to form a contradiction:
2-n/10 < non-negl/(d⋅2n) => d>2-9n/10

=> the density of a non-trivial relation has to be larger than 2-9n/10

=> |output| > 9n/10, where n = |input|
=> Implies e.g. Fiat-Shamir for protocols where

|first msg| = n, |second msg|=9n/10, soundness = 2-9n/10

127

KDM

To imply general Fiat-Shamir, we need KDM for
unbounded key-dependency functions.

128

KDM

To imply general Fiat-Shamir, we need KDM for
unbounded key-dependency functions.

Schemes that supports KDM for affine functions
([Boneh, Halevi, Hamburg, Ostrovsky 08], etc.)
Schemes that bootstrap to bounded functions
([Barak, Haitner, Hofheinz, Ishai 10], etc.)

129

KDM

To imply general Fiat-Shamir, we need KDM for
unbounded key-dependency functions.

Schemes that supports KDM for affine functions
([Boneh, Halevi, Hamburg, Ostrovsky 08], etc.)
Schemes that bootstrap to bounded functions
([Barak, Haitner, Hofheinz, Ishai 10], etc.)

We don’t know any method that implies unbounded
KDM and at the same time guarantees exponentially
hard key-recovery.

130

KDM

To imply general Fiat-Shamir, we need KDM for
unbounded key-dependency functions.

Schemes that supports KDM for affine functions
([Boneh, Halevi, Hamburg, Ostrovsky 08], etc.)
Schemes that bootstrap to bounded functions
([Barak, Haitner, Hofheinz, Ishai 10], etc.)

We don’t know any method that implies unbounded
KDM and at the same time guarantees exponentially
hard key-recovery.

Assuming KDM security for
Enc(k, m) = Ext(owf(k)) + m?

131

Summary:

Correlation intractability for all sparse relations (implies Fiat-Shamir) from
symmetric encryption schemes with
(1) Natural statistical properties;
(2) Exponentially hard KDM security for all key-dependency function f.

132

Future directions

Multiple-input-output relations

Quantitatively correlation intractable.

133

Correlation intractability for multiple-input-output relations.

It will be more useful.

For example, lots of Fiat-Shamir application in practices starts from an argument.

As another example, Gennaro-Halevi-Rabin signature.

Of course, need to bypass the impossibility results by CGH and Goldwasser-Kalai.

Maybe start from “simple” relations.

134

Quantitative correlation intractability.

[Ball, Rosen, Sabin, Vasudevan 17] “proof of useful work”, can we do it for hash functions?

The CGH impossibility results for f: {0,1}*→{0,1}m also holds for relatively sparse CI.

Corollary: Domain extension techniques (like Merkle-Damgard) might preserve collision
resistance, but do not preserve correlation intractability.

In fact, AsicBoost takes advantage of Merkle-Damgard to speed up bitcoin mining.
*(but that’s not because of CGH impossibility)

Achieve f: {0,1}*→{0,1}m that is quantitatively CI for “bitcoin relation”?

135

Thanks for
your time!

