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Outline of today's talk

1. Introduction
2. Related work
3. Risk-averse dense subgraphs (and a bonus extension)
4. Experiments

5. Open problems
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Uncertain graphs are everywhere

?"m

Onhne datlng

Kidney exchanges

Ul

Uncertain (aka stochastic) graphs are ubiquitous!
o PPI networks [Asthana et al., 2004, Krogan et al., 2006]
e Dating apps

Kidney exchange [Roth et al., 2004]

Influence maximization [Kempe et al., 2003]

Injecting privacy [Boldi et al., 2012]
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Uncertain graph model

Existing work has focused on the following model (e.g.,
[Bonchi et al., 2014, Kollios et al., 2013])

e Let G = (V, E, p) be an uncertain graph where p : E — (0, 1].
e Edge e exists with probability p. independently from the rest of
the edges

e We can make this model more general by replacing p with f.,
which is the probability distribution for edge e with parameters
9_;:

w(e) ~ f.(x;0.)Ve € E.

e Each edge brings:
1. Reward — expected weight
2. Risk — variance
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Densest subgraph problem (DSP)

Degree density: | p(S) = e(s) . Eg., P@/p(S) =1

Bl

Objective: max p(S)

DNA motif detection Web community Social network
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Related research - Densest Subgraph Discovery

e DSD is poly-time solvable for non-negative weights! (via max
flows)

e 2-approximation algorithm which uses linear space O(n+ m)
and runs in linear time O(n + m) due to [Charikar, 2000]
(greedily removes the lowest degree node, and returns among the
sequence of n graphs the one with the highest degree density)

e “The densest subgraph problem (DSP) lies at the core of large
scale data mining” [Bahmani et al., 2012]
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Related research - Risk Aversion

[Parchas et al., 2014] Proposed a heuristic to extract a good
possible world to combine risk-aversion with efficiency, but lack
guarantees.

[Tsourakakis et al., 2018] Studied the problem of finding
efficiently risk-averse graph and hypergraph matching algorithms.

[Zou, 2013] DSP on uncertain graphs can be solved in
polynomial time in expectation. (With limitation)

[Miyauchi and Takeda, 2018] DSD on uncertain graphs with far
different modelling assumptions and mathematical objective.
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Risk-averse DSD formulation

Intuitively, our goal is to find a subgraph G[S] induced by S C V
such that:

Z We
® Its average expected reward - |5|) is large.
> o2
M . - E S
® The associated average risk is low = |(5\)

We approach the problem as follows:

e For each edge we create two edges:
@ A positive edge with weight equal to the expected reward, i.e.,
wr(e) = He
® A negative edge with weight equal to the risk of the edge, i.e.,

w(e) = o2.
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Risk-averse DSD formulation

e Our goal is to find a subgraph S C V such that:

@ large positive average degree Wrs(‘s) (large reward)

w(S)

® small negative average degree 5] (small risk)

We combine the two objectives into one objective f : 2¥ — R that
we wish to maximize:

wt(S) + \1S]

S GESWEL

But can we maximize this objective in polynomial time?
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Insights

If we can answer the following query in polynomial time, then by
binary search we can solve the problem:

Does there exist a subset of nodes S C V such that
f(S) > q, where q is a query value?

wT(S) + A\|S]
>
w(S)+ s =77
Z (w+(e) — qw‘(e)) > |51 (gh2 — A1) — Z VTéT) > 4.
ecE(S)« . TV eE(s)

w(e)

Questions: Can we solve the DSP in poly-time when the weights are
negative?
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Hardness

Theorem
The DSP on graphs with negative weights is NP-hard. J

Reduction from MAX-CUT.
Bounding risk: f(S) = % by changing parameter B.

Any efficient algorithm?
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Algorithm - DSP with Negative Weights

Algorithm 1: Peeling

Input: G
n+|V|,H, + G;
for i < nto2 do

Let v be the vertex of H; of minimum degree, i.e.,

d(v) = deg™(v) — deg~(v) (break ties arbitrarily);

Hi_1 < Hi\v;
end
return H; that achieves maximum average degree among H;s, i =1,...,n.

Theorem

Let G(V,E,w), w: E — R be an undirected weighted graph with
possibly negative weights. If the negative degree deg™(u) of any
node u is upper bounded by A, then our Algorithm outputs a set

whose density is at least >
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Bad instance

1o B

o1 ol

Let W = "54. Then, 3W — n < —3. The degrees of the n + 4 nodes

are as follows:

3W-n< -3 < -2 <0<2e+W.
~—— ~~— ~~— ~——

one node n—2 nodes two nodes three nodes
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Heuristic

Algorithm 2: Heuristic-Peeling
Input: G, C € (0,+00)
n« |V|,H, <+ G for i+ nto?2do
Let v be the vertex of H; of minimum degree, i.e.,
d(v) = Cdeg™(v) — deg~(v) (break ties arbitrarily);
H;_l — H,'\V
end
return H; that achieves maximum average degree among H;s, i =1,...,n.

Rule of thumb: Run the above heuristic for various values of C,
and return the best possible subgraph!
We can use our heuristic to develop a new algorithmic primitive!
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Exclusion queries

Problem

Given a multigraph G(V, E, (), where

(:E—{l,..., T} =[T] is the labeling function, and T is
the number of types of edges, and an input set Z C [T] of
edges, how do we find a set of nodes S that (i) induces a
dense subgraph, and (ii) does not induce any edge e such that
le)el?

Approach: Use —W weights for the excluded edge types.

Given the daily Twitter interactions, find a dense
subgraph in follows and quotes but with no replies. (—W = —o0)
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Uncertain graph datasets

Name # of nodes | # of edges
Biogrid 5640 59748
Collins 1622 9074
Gavin 1855 7669
Krogan core 2708 7123
Krogan extended 3672 14317

> TMDB 160784 883842

PPl datasets: Nodes represent proteins and the probability of the edge is equal to

the existence probability of the interaction.

TMDB dataset: Nodes represent actors and the probability of the edge is equal

to probability of two actors collaborate together.
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Multilayer graph datasets

Name # of # of edges

nodes (follows, mentions, retweets, quotes, replies)
© Twitter (Feb. 1) | 621617 | (902834, 387597, 222253, 30018, 63062)
© Twitter (Feb. 2) | 706104 | (1002265, 388669, 218901, 29621, 64 282)
© Twitter (Feb. 3) | 651109 | (1010002, 373889, 218717, 27 805, 59 503)
> Twitter (Feb. 4) | 528594 | (865019, 435536, 269750, 32584, 71802)
© Twitter (Feb. 5) | 631697 | (999961, 396 223, 233464, 30937, 66 968)
© Twitter (Feb. 6) | 732852 | (941353, 407 834, 239486, 31853, 67374)
> Twitter (Feb. 7) | 742566 | (1129011, 406852, 236121, 30815, 68093)
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Experimental findings — Exploring B

We test the trade-off between

and risk by ranging B.

B | Average exp. reward | average risk
0.25 0.18 0.09

1 0.17 0.08

2 0.13 0.06

Gavin dataset (n = 1855, m = 7 669).

f(S) =

wh(S)+ M]S|

Bw—(S)T\2|S]
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Experimental findings — TMDB
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Risk averse DSD results for TMDB:
() average expected weight, () average risk, () output size.

. wt(S)+1|S
Reminder: f(S) = %
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Experimental findings — Exclusion queries on

Twitter

Weset C=1,W = —o0:

Exclusion query ['follow’, ‘mention’]

Exclusion query ['follow’, 'retweet']

Exclusion query ['mention’, 'retweet']
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Degree density for three exclusion queries per each pair of interaction
types over the period of the first week of February 2018. («) Follow
and mention. (3) Follow and retweet. () Mention and retweet.
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Experimental findings - Ranging W, C

C w |S*| pretweet(S*) preP'Y(S*)

1 296 63.44 -0.75

0.1 99 45.67 -0.01
200000 | 200 30.37 0

1 346 72.70 -2.75

1 5 319 68.70 -1.29
200000 | 200 30.38 0

1 351 73.10 -3.31

10 5 351 73.10 -3.31
200000 | 200 30.37 0

Exploring the effect of the negative weight —W on the excluded edge
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Open problems

o Study in greater depth the computational
complexity of DSD with negative weights

e General direction: Design risk-averse algorithms that combine
efficiency, and solid theoretical guarantees
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Thank you! Questions?

email: ctony@bu.edu
web page: http://c752334430.github.io
code: http://github.com/tsourolampis

Slides modified from Babis's work.

GIETE ETyg Yo Tl S YTV E S RETL TN O I Bl N ovel Dense Subgraph Discovery Primitives: Sept, 2019 23 /27


http://c752334430.github.io
http://github.com/tsourolampis

I
references |

[§ Asthana, S., King, O. D., Gibbons, F. D., and Roth, F. P. (2004).

Predicting protein complex membership using probabilistic network
reliability.

Genome research, 14(6):1170-1175.

[§ Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012).
Densest subgraph in streaming and mapreduce.
Proc. VLDB Endow., 5(5):454—465.

@ Boldi, P., Bonchi, F., Gionis, A., and Tassa, T. (2012).
Injecting uncertainty in graphs for identity obfuscation.
Proceedings of the VLDB Endowment, 5(11):1376-1387.

Charalampos E. Tsourakakis®, LRV RN ovel Dense Subgraph Discovery Primitives: Sept, 2019 24 /27



I
references |l

B

Bonchi, F., Gullo, F., Kaltenbrunner, A., and Volkovich, Y. (2014).
Core decomposition of uncertain graphs.
In Proc. of the 20th ACM SIGKDD conference, pages 1316-1325. ACM.

Charikar, M. (2000).
Greedy approximation algorithms for finding dense components in a graph.
In APPROX.

Kempe, D., Kleinberg, J., and Tardos, E. (2003).
Maximizing the spread of influence through a social network.
In Proceedings of KDD 2003, pages 137-146. ACM.

Kollios, G., Potamias, M., and Terzi, E. (2013).
Clustering large probabilistic graphs.
IEEE Transactions on Knowledge and Data Engineering, 25(2):325-336.

Charalampos E. Tsourakakis®, LRV RN ovel Dense Subgraph Discovery Primitives: Sept, 2019 25 /27



I
references ||

@ Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li,
J., Pu, S., Datta, N., Tikuisis, A. P., et al. (2006).

Global landscape of protein complexes in the yeast saccharomyces cerevisiae.
Nature, 440(7084):637.

@ Miyauchi, A. and Takeda, A. (2018).
Robust densest subgraph discovery.
In 2018 IEEE International Conference on Data Mining (ICDM), pages
1188-1193. |IEEE.

[§ Parchas, P., Gullo, F., Papadias, D., and Bonchi, F. (2014).

The pursuit of a good possible world: extracting representative instances of
uncertain graphs.

In Proceedings SIGMOD 2014, pages 967-978.

Charalampos E. Tsourakakis®, LRV RN ovel Dense Subgraph Discovery Primitives: Sept, 2019 26 / 27



I
references |1V

[§ Roth, A. E., Sénmez, T, and Unver, M. U. (2004).
Kidney exchange.
The Quarterly Journal of Economics, 119(2):457-488.

@ Tsourakakis, C. E., Sekar, S., Lam, J., and Yang, L. (2018).
Risk-averse matchings over uncertain graph databases.
arXiv preprint arXiv:1801.03190.

[ Zou, Z. (2013).

Polynomial-time algorithm for finding densest subgraphs in uncertain graphs.

In Proceedings of MLG Workshop.

Charalampos E. Tsourakakis®, LRV RN ovel Dense Subgraph Discovery Primitives: Sept, 2019 27 / 27



