

Computer Science 105
Introduction to Databases and Data Mining

Boston University, Fall 2021

Unit 1a: Database Fundamentals

Course Overview ... 1
Fundamental Facts About Data and Databases pre-lecture: 13 / in-lecture: 16
The Relational Model: Foundations; Primary and Foreign Keys 27 / 37
Constraints and Null Values; Designing a Database ... 42 / 46

Unit 1b: The SQL Query Language
Simple SELECT Commands .. 53 / 59
Pattern Matching; Comparisons with NULL; Removing Duplicates; Aggregates 66 / 77
Subqueries; GROUP BY and HAVING .. 84 / 92
Data Types; Creating Tables and Inserting Rows .. 100 / 104
Cartesian Product; Joins .. 110 / 121
Outer Joins ... 128 / 131
Other Commands; Practice with Queries ... 141 / 145
More Practice with Queries ... 149

Unit 2: Writing Programs Using Python
Getting Started; Programming Building Blocks .. 153 / 165
Built-in Functions; User Input; List Basics; Loops .. 177 / 185
Writing Functions; Cumulative Computations .. 193 / 198
Making Decisions; Working with Numbers ... 204 / 212
Working with Strings and Lists ... 220 / 223
Using Objects; Splitting and Joining Strings .. 229 / 233
Accessing a Database from Python ... 236 / 241
Review: Strings and Lists; Accessing a Databases .. 252
Working with Text Files; File Writing .. 257 / 259
Reading Text Files ... 265 / 269
File-Reading Revisited .. 277

Unit 3: Data Visualization
Notes for this unit will be provided separately.

Unit 4: Data Mining
Fundamentals ... 283 / 289
Evaluating a Model Learned in Data Mining; More Fundamentals 301 / 307
Classification Learning Using the 1R Algorithm; More on Evaluating Models 317 / 325
Classification Learning: Learning a Decision Tree ... 337 / 343
More Practice with Classification Learning ... 355
Numeric Estimation; Using Weka .. 364
Association Learning ... 374
Discretizing Data ... 391
Preparing Your Data .. 394
Case Study: Predicting Patient Outcomes .. 401

Introduction to Databases
and Data Mining

Course Overview

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Welcome to CS 105!

• This course examines how collections of data are
organized, stored, and processed.

• Topics include:

• databases

• programming

• data mining

• data visualization

CS 105, Boston University Fall 2021 1

Broad Goals of the Course

• To give you computational tools for working with data

• To give you insights into databases and data mining

• help you to understand their increasingly important role

• To expose you to the discipline of computer science

• to how computer scientists think and solve problems

“Computer science is not so much the science of
computers as it is the science of solving problems
using computers.”

- Eric Roberts, Stanford

• financial data

• commercial data

• scientific data

• socioeconomic data

• etc.
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAG
AGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATT
TTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGAC
AGATAAAAATTACAGAGTACACAACATCCATGAACGCATTAGCACCACCATTA
CCACCACCATCACCATTACCACAGGTAAGGTGCGGGCTGACGCGTACAGGAAA
CACAGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGT
AACGAGGTAACAACCATGGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAAC
GTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCCAGGCAGGGGCAGGTG
GCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGATAGC
TTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAGAGT
GTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTA
TTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGA
TAAAAATTACAGAGTACACAACATCCATGAACGCATTAGCACCACCATTACCA
CCACCATCACCATTACCACAGGTAAGGTGCGGGCTGACGCGTACAGGAAACAC
AGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGTAAC
GAGGTAACAACCATGGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTT
TTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCCAGGCAGGGGCAGGTGGCC
ACCGTCCTCTC

Data, Data Everywhere!

CS 105, Boston University Fall 2021 2

Databases

• A database is a collection of related data.

• example: the database behind StudentLink

• other examples?

• Managed by some type of database management system
(DBMS)

• a piece of software (a program) that allows users to
store, retrieve, and update collections of data

• Example: the UN Database (data.un.org)

The Amount of Data Is Exploding!

from "An Analysis of Factors Relating to Energy and Environment in Predicting Life Expectancy",
CS 105 Final Project by Valerie Belding '12

CS 105, Boston University Fall 2021 3

Relational Databases

• Most data collections are managed by a DBMS that employs
a way of organizing data known as the relational model.

• examples: IBM DB2, Oracle, Microsoft SQL Server,
Microsoft Access

• In the relational model, data is organized into tables of records.

• each record consists of one or more fields

• example: a table of information about students

id name address class dob
12345678 Jill Jones Warren Towers 100 2007 3/10/85

25252525 Alan Turing Student Village A210 2010 2/7/88

33566891 Audrey Chu 300 Main Hall 2008 10/2/86

45678900 Jose Delgado Student Village B300 2009 7/13/88

66666666 Count Dracula The Dungeon 2007 11/1431

...

SQL

• A relational DBMS has an associated query language
called SQL that is used to:

• define the tables

• add records to a table

• modify or delete existing records

• retrieve data according to some criteria

• example: get the names of all students who live in
Warren Towers

• example: get the names of all students in the
class of 2024, and the number of courses they are taking

• perform computations on the data

• example: compute the average age of all students who
live in Warren Towers

CS 105, Boston University Fall 2021 4

Example Database

• A relational database containing data obtained from imdb.com

• We'll use SQL to answer (or at least explore) questions like:

• How many of the top-grossing films of all time have won
one or more Oscars?

• Does the Academy discriminate against older women?

Beyond Relational Databases

• While relational databases are extremely powerful, they are
sometimes inadequate/insufficient for a given problem.

• Example: DNA sequence data
>gi|49175990|ref|NC_000913.2| Escherichia coli K12, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTA
AATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAA
ACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGA
CAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTC
TGCGTGTTGCCGATATTCTGGAAAGCAATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGAT
GATTGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTTGACGGGACTCGCCGCCGCCCAG
CCGGGGTTCCCGCTGGCGCAA

• common queries involve looking for similarities or patterns

• what genes in mice are similar to genes in humans?

• need special algorithms (problem-solving procedures)

• biologists store this data in text files and use simple
computer programs to process it

• we'll learn to write simple programs using Python

CS 105, Boston University Fall 2021 5

• Informally, data mining is the process of finding patterns in data.

• Example:
customized recommendations

• Example: detecting credit-card fraud

Data MINING Everywhere!

Data MINING Everywhere!

CS 105, Boston University Fall 2021 6

Structure of the Course

• databases (4 weeks)

• programming in Python (4 weeks)

• data graphics/visualization (1 week)

• data mining (4 weeks)

Course Materials

• Required: The CS 105 Coursepack

• use it during pre-lecture and lecture – need to fill in the blanks!

• PDF version is available on Blackboard

• recommended: get it printed

• one option: FedEx Office (Cummington & Comm Ave)

• Required in-class software: Top Hat Pro platform

• used for pre-lecture quizzes and in-lecture exercises

• create your account and purchase a subscription ASAP
(see Lab 0 for more details)

CS 105, Boston University Fall 2021 7

Traditional Lecture Classes

• The instructor summarizes what you need to know.

• Readings are assigned, but may not actually be done!

• Dates back to before the printing press.

• Many technological developments since then!

Limitations of the Traditional Approach

• You get little or no immediate feedback.

• Research shows that little is learned from passive listening.

• need to actively engage with the material

• Homework provides active engagement, but in-class
engagement provides added benefits.

CS 105, Boston University Fall 2021 8

Lectures in this Class

• Based on an approach called peer instruction.

• developed by Eric Mazur at Harvard

• Basic process:

1. Question posed (possibly after a short intro)

2. Solo vote (no discussion yet)

3. Small-group discussions (in teams of 3)
• explain your thinking to each other
• come to a consensus

4. Group vote
• each person in the group should enter the same answer

5. Class-wide discussion

Benefits of Peer Instruction

• It promotes active engagement.

• You get immediate feedback about your understanding.

• I get immediate feedback about your understanding!

• It promotes increased learning.

• explaining concepts to others benefits you!

Crouch, C., Mazur, E.
Peer Instruction: Ten years of
experience and results.

traditional instruction

peer Instruction

CS 105, Boston University Fall 2021 9

Preparing for Lecture

• Short video(s) and/or readings

• fill in the blanks as you watch the videos!

• Short online reading quiz or other exercise

• complete by 1 p.m. of the day of lecture
(unless noted otherwise)

• won't typically be graded for correctness

• your work should show that you've prepared for lecture

• no late submissions accepted

• Preparing for lecture is essential!

• gets you ready for the lecture questions and discussions

• we won't cover everything in lecture

Course Website
http://www.cs.bu.edu/courses/cs105

• not the same as the Blackboard site for the course

• use the Blackboard link to access:

• the pre-lecture readings/videos

• the pre-lecture quizzes/exercises

• the lecture notes – posted after lecture

posted by 36 hours
before lecture

CS 105, Boston University Fall 2021 10

Labs

• Attendance is required

• begin next week

• Will help you prepare for and get started on the assignments

• Will also reinforce essential skills

• ASAP: Complete Lab 0 (on the course website)

• setup Top Hat account/subscription

• setup a CS account before your first lab session

• some other tasks to prepare you for the semester

Requirements / Grading

Preparation and participation (10%)

• lecture preparation

• attendance/participation – full credit if you:
• make 85% of the votes over the entire semester
• attend 85% of the labs

• Nine homework assignments (25%)

• Final project (10%): done in teams of three

• Three quizzes (25%)

• Final exam (30%)

CS 105, Boston University Fall 2021 11

Course Staff

• Instructor: Dave Sullivan (dgs@cs.bu.edu)

• Teaching fellow

• Office hours and contact info. will be available on the
main course Web site:

http://www.cs.bu.edu/courses/cs105

• For questions on content, homework, etc.:

• use Piazza

• send e-mail to cs105-staff@cs.bu.edu

Other Details of the Syllabus

• Collaboration / academic misconduct

• Policies:

• lateness

• please don't request an extension unless it's an
emergency!

• grading

• Please read the syllabus carefully and make sure that you
understand the policies and follow them carefully.

• Let us know if you have any questions.

CS 105, Boston University Fall 2021 12

Pre-Lecture
Fundamental Facts About Data

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Measuring Data: Bits and Bytes

• All data values are stored as binary numbers.

• sequences of 0s and 1s (e.g., 1001000110110100)

• A bit is a single 0 or 1.

• One byte is 8 bits.

• example: 01101100

• Other common units:
name approximate size exact size
kilobyte (KB) 1000 bytes 210 = 1024 bytes
megabyte (MB) 1 million bytes 220 bytes

gigabyte (GB) _____________ _____________

CS 105, Boston University Fall 2021 13

Processing Data: the CPU

• At the heart of every computer is its CPU.

• short for central processing unit

• Includes hardware for processing data stored in binary form.

• example: a circuit for adding two binary numbers

• The CPU can only store a small amount of data at a time.

• the values it is currently processing

Storing Data: Memory

• Used to store programs and other data that are currently in use.

• Values stored in memory are read into
the CPU to be processed.

• The results of operations performed by
the CPU can be written back to memory.

• Advantage of memory: short access times

• can read from/write to memory in _____________________

• Disadvantages:

• relatively expensive

• contents are lost when the power is turned off

memory

CPU

CS 105, Boston University Fall 2021 14

Storing Data: Secondary Storage

• Used to store programs and other data for later use.

• examples: hard disks, floppy disks, CD/DVD drives

• Advantages of hard disks:

• relatively inexpensive

• contents are not lost
when the power goes off

• Disadvantage: long access times

• data is transferred in blocks
(4 KB or 8 KB)

• takes _______________ to read one block

• in that time, a modern CPU
can perform millions of operations!

• it's important to minimize the number
of times that the disk is accessed

hard disk

memory

CPU

CS 105, Boston University Fall 2021 15

Database Fundamentals

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Measuring Data: Bits and Bytes

• All data values are stored as binary numbers.

• sequences of 0s and 1s (e.g., 1001000110110100)

• A bit is a single 0 or 1.

• One byte is 8 bits.

• example: 01101100

• Other common units:
name approximate size exact size
kilobyte (KB) 1000 bytes 210 = 1024 bytes
megabyte (MB) 1 million bytes 220 bytes
gigabyte (GB) 1 billion bytes 230 bytes

less common, but increasingly needed:
terabyte (TB) 1 trillion bytes 240 bytes
petabyte 1015 bytes 250 bytes

CS 105, Boston University Fall 2021 16

Which component of the computer
contains the hardware needed to
add binary numbers?

A. primary storage

B. secondary storage

C. central processing unit

D. hard disk

A. It stores the programs and other data
that are currently in use.

B. It can only store a small amount of data.

C. Data stored in memory can be accessed
in nanoseconds.

D. Data stored in memory will still be there after
the computer is shut off.

E. more than one of the above

Which of these statements about
the computer's memory is NOT true?

hard disk

memory

CPU

CS 105, Boston University Fall 2021 17

• TRS-80 Model III
• 64 KB of memory

• 2.03 MHz processor

• Pixel 2
• 4 GB of memory

• 2.35 GHz processor

A. It is a type of secondary storage.

B. Its price is relatively inexpensive.

C. It takes a relatively long time to access the
data stored on a disk.

D. Data is transferred to and from a disk in small blocks
that are typically 4 bytes or 8 bytes in size.

E. more than one of the above

Which of these statements about
a hard disk is NOT true?

hard disk

memory

CPU

CS 105, Boston University Fall 2021 18

The Flow of Data

• We use a hard disk to store programs and data
that we don't want to lose.

• To work with data stored on disk,
we first read it from disk into memory.

• Once data is in memory, it can be read
into the CPU and processed.

• Results of CPU operations are written
back to memory.

• When we create new values in memory
that we want to keep, we need to eventually
write them to disk.

• usually wait as long as possible to do this. why?

memory

CPU

hard disk

Database vs. Database Management System

• A database is a collection of data.

• it is not a program

• it does not need to be on a computer
• example: the paper card catalogs that libraries maintained

• A database management system is a program that manages
one or more databases.

• abbreviation = DBMS

CS 105, Boston University Fall 2021 19

Key Functions of a DBMS

1. efficient storage

2. providing a logical view of data

3. query processing

4. transaction management

• Let's look at each of them in turn.

1. Efficient Storage

• Recall: accessing the disk is very inefficient.

• A DBMS organizes the data on disk in ways that allow it
to reduce the number of disk accesses.

• Example:

• a database with 100,000 records

• a given record is between 64-256 bytes long

• An inefficient approach:

• give each record 256 bytes
(even when it's shorter than that)

• scan through the database until you
find the record you're looking for

• may require thousands of disk reads!

a 4KB block of records

CS 105, Boston University Fall 2021 20

1. Efficient Storage (cont.)

• A more efficient approach:

• give each record only as much space as it needs

• use a special index structure
• allows the DBMS to locate a particular record

without looking at every record

• can dramatically reduce the number of disk accesses
• as few as 1-3!

• A DBMS can also spread a database over multiple disks.

• allows for larger collections of data

• the disks can be accessed in parallel,
which speeds things up

• another advantage of using multiple disks?

2. Providing a Logical Representation of Data

• The DBMS takes care of translating between the representations.

• makes the user's job much easier!

• This is an example of abstraction.

• hide low-level details behind a simpler representation

• an important concept in computer science

id name address class dob
12345678 Jill Jones Warren Towers 100 2007

25252525 Alan Turing Student Village A210 2010 2/7/88

...

physical
representation
of our data

logical representation (tables, fields, etc.)

id name address class dob
12345678 Jill Jones Warren Towers 100 2007 3/10/85

25252525 Alan Turing Student Village A210 2010 2/7/88

...

(bytes on disk blocks,
index structures, etc.)

disks

CS 105, Boston University Fall 2021 21

3. Query Processing

• A DBMS has some type of query language.

• example: SQL

• includes commands for:
• adding new records
• modifying or deleting existing records
• retrieving data according to some criteria

• The DBMS performs the low-level steps needed to execute
a given command.

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

4. Transaction Management

$500 $250
begin transaction

CS 105, Boston University Fall 2021 22

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

$250$450

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

• add $50 to pink

$300$450

CS 105, Boston University Fall 2021 23

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

• add $50 to pink

• Without a transaction, bad things could happen!

$250
begin transaction

remove $50 from blue
*** CRASH ***
Money is lost!

$450

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

• add $50 to pink

• Without a transaction, bad things could happen!

• By using a transaction for
the balance transfer, we
ensure that all of the steps
happen, or none do.

• all or nothing!$250$450
remove $50 from blue

CS 105, Boston University Fall 2021 24

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

• add $50 to pink

• Without a transaction, bad things could happen!

• By using a transaction for
the balance transfer, we
ensure that all of the steps
happen, or none do.

• all or nothing!$250$450
remove $50 from blue

*** CRASH ***

4. Transaction Management

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: balance transfer of $50 from blue to pink

• remove $50 from blue

• add $50 to pink

• Without a transaction, bad things could happen!

• By using a transaction for
the balance transfer, we
ensure that all of the steps
happen, or none do.

• all or nothing!$500 $250
remove $50 from blue

*** CRASH ***
restore original state

CS 105, Boston University Fall 2021 25

4. Transaction Management (cont.)

• Other examples:

• making a flight reservation
select flight, reserve seat, make payment

• making an online purchase

• making an ATM withdrawal

• Ensure that operations by different users don’t overlap in
problematic ways.

• example: what’s wrong with the following?

remove 500 from blue

add 500 to pink

user's balance transfer

read blue balance
read pink balance
if (blue + pink < minimum)

charge the user a fee

bank's check for clients below minimum balance

Database Applications

• A database application is a separate piece of software that
interacts with a DBMS.
• examples:

• StudentLink

• a web interface to a library database

• Makes it easier for users to access the database.

• without needing to know the query language

• the application makes queries on their behalf

(Figure 1-15 of Kroenke)

CS 105, Boston University Fall 2021 26

Pre-Lecture
The Relational Model

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What Is a Data Model?

• A formal way of describing:

• pieces of data (data items)

• relationships between data items

• constraints on the values of data items

• We'll focus on the relational model – the dominant data model
in current database systems.

CS 105, Boston University Fall 2021 27

The Relational Model: Basic Concepts

• A database consists of a collection of tables.

• Example of a table:

• Each row in a table holds data that describes either:

• an entity (a person, place, or thing!)

• a relationship between two or more entities

• Each column in a table represents one attribute of an entity.

id name address email
12345678 Jill Jones Warren Towers 100 jjones@bu.edu

25252525 Alan Turing Student Village A210 aturing@bu.edu

33566891 Audrey Chu 300 Main Hall achu@bu.edu

45678900 Jose Delgado Student Village B300 jdelgad@bu.edu

66666666 Count Dracula The Dungeon count@bu.edu

...

Relational Model: Terminology

• Two sets of terminology:

table = ___________

row = ___________

column = ___________

• We'll use both sets of terms.

CS 105, Boston University Fall 2021 28

Requirements of a Relation

• Each column must have a unique name.

• The values in a column must be of the same type
(i.e., must come from the same domain).

• Each cell must contain a single value.

• example: we can't do something like this:

• No two rows can be identical.

• identical rows are known as duplicates

id name … phones
12345678 Jill Jones ... 123-456-5678, 234-666-7890

25252525 Alan Turing ... 777-777-7777, 111-111-1111

...

Schema of a Relation

• The schema of a relation consists of:
• the name of the relation
• the names of its attributes
• the domains (possible values) of the attributes

(although we’ll often ignore them)

• If we name our earlier
table Student, its
schema would be:

CS 105, Boston University Fall 2021 29

Pre-Lecture
Keys, Candidate Keys, and Primary Keys

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Keys

• A key is an attribute or collection of attributes that can be used
to uniquely identify a row in a relation.

• allows us to distinguish one row from another

• A relation may have more than one possible key.

• possible keys for the Student relation include:

• id

•

•

•

id name … email
12345678 Jill Jones ... jjones@bu.edu

25252525 Alan Turing ... aturing@bu.edu

...

CS 105, Boston University Fall 2021 30

Candidate Key

• A candidate key is a minimal collection of attributes that is a key.

• minimal = no unnecessary attributes are included

Candidate Key (cont.)

• Consider a table describing the courses in which students
are enrolled:

student course credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 31

Candidate Key (cont.)

• Consider a table describing the courses in which students
are enrolled:

key? candidate key?

student

student, course

student, course, credit status

student course credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Primary Key

• When defining a relation, we typically choose one of the
candidate keys as the primary key.

• The database records are arranged on disk to allow for quick
retrieval using the value of the primary key.

• In a schema, we underline the primary key attribute(s).

• example: Student(id, name, address, class, dob)

CS 105, Boston University Fall 2021 32

Pre-Lecture
Capturing Relationships

Using Foreign Keys

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Relations and Keys

• Let's say that we have the following relations:

Student(id, name, address, email)

Faculty(id, name, office, phone)

Department(name, office, phone)

name office phone
computer science MCS 140 617-353-8919

english 236 Bay State Rd. 617-353-2506

mathematics MCS 140 617-353-2560

...

id name office phone
11111 Ted Codd MCS 207 617-353-1111

55555 Grace Hopper MCS 222 617-353-5555

77777 Edgar Dijkstra MCS 266 617-353-7777

...

id name address email
12345678 Jill Jones Warren Towers 100 jjones@bu.edu

25252525 Alan Turing Student Village A210 aturing@bu.edu

...

CS 105, Boston University Fall 2021 33

Capturing Relationships

• In addition to storing info. about entities, we also use relations
to capture relationships between two or more entities.

Capturing Relationships (cont.)

• One relationship we might want to capture is the relationship
between students and their advisors.

• We can do so by expanding the Student relation
to include an attribute called advisor .

• stores the faculty ID of a student's advisor

id name … advisor
12345678 Jill Jones ... 11111

25252525 Alan Turing ...

...

id name office phone
11111 Ted Codd MCS 207 617-353-1111

55555 Grace Hopper MCS 222 617-353-5555

77777 Edgar Dijkstra MCS 266 617-353-7777

...

Faculty

Student
Examples:
Jill Jones' advisor is Ted Codd.

Alan Turing's advisor is
Edgar Dijkstra.

CS 105, Boston University Fall 2021 34

Foreign Keys

• advisor is an example of a foreign key – an attribute that takes
on values from the primary-key column of another relation

• the name of a foreign key does not need to match the name
of the corresponding primary key

• each value in a foreign-key column must match one of
the values in the corresponding primary-key column

id name … advisor
12345678 Jill Jones ... 11111

25252525 Alan Turing ... 55555

...

id name office phone
11111 Ted Codd MCS 207 617-353-1111

55555 Grace Hopper MCS 222 617-353-5555

77777 Edgar Dijkstra MCS 266 617-353-7777

...

Faculty

Student

More Examples of Foreign Keys

• We can view students' majors as a relationship between
students and departments.

• If students can have at most one major, we can capture the
relationship by making the major part of the Student relation.

• add a foreign-key attribute called major

• it takes on values from the primary key of Department

id name … major
12345678 Jill Jones ... computer science

25252525 Alan Turing ... mathematics

...

Student

Department
name office phone
computer science MCS 140 617-353-8919

english 236 Bay State Rd. 617-353-2506

mathematics MCS 140 617-353-2560

...

CS 105, Boston University Fall 2021 35

More Examples of Foreign Keys (cont.)

• If students can have multiple majors, we can't just add an
attribute for it to Student.

• why?

Department
name office phone
computer science MCS 140 617-353-8919

english 236 Bay State Rd. 617-353-2506

mathematics MCS 140 617-353-2560

...

id name … major
12345678 Jill Jones ... computer science,english

25252525 Alan Turing ... mathematics

...

Student

More Examples of Foreign Keys (cont.)

• If students can have multiple majors, we can't just add an
attribute for it to Student.

• why?

• Instead, we create a separate relation that has two foreign keys:

• one with values from the primary key of Student

• one with values from the primary key of Department

id name …
12345678 Jill Jones ...

25252525 Alan Turing ...

...

student department
12345678 computer science

12345678 english

... ...

Student Department

MajorsIn

name …
computer science ...

english ...

... ...

CS 105, Boston University Fall 2021 36

The Relational Model:
Foundations; Primary and Foreign Keys

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Which of these statements about
the Movie table is NOT true?

Movie(id, name, year, rating, runtime)

A. Another name for the Movie table is the Movie relation.

B. The Movie table has five tuples.

C. The primary key of Movie is the combination (name, year).

D. more than one of the above

id name year rating runtime
12345 Star Wars: The Force Awakens 2015 PG-13 138

78910 Avatar 2009 PG-13 162

23232 Titanic 1997 PG-13 194

90210 Finding Dory 2016 PG 97

55555 Toy Story 3 2010 G 103

01111 Ocean's Eleven 2001 PG-13 116

...

CS 105, Boston University Fall 2021 37

Could We Do This?

Movie(id, name, year, rating, runtimes)

• Assume that a given movie can have multiple versions.
• e.g., the cinematic release and a special "director's cut"

• Could we capture the runtimes of all of the versions
as shown above?

id name year rating runtimes
12345 Star Wars: The Force Awakens 2015 PG-13 138, 150

78910 Avatar 2009 PG-13 162, 194

23232 Titanic 1997 PG-13 194

90210 Finding Dory 2016 PG 97

55555 Toy Story 3 2010 G 103

01111 Ocean's Eleven 2001 PG-13 116

...

We Could Do This....

Movie(id, name, year, rating, runtime1, runtime2)
id name year rating runtime1 runtime2
12345 Star Wars: The Force Awakens 2015 PG-13 138 150

78910 Avatar 2009 PG-13 162 194

23232 Titanic 1997 PG-13 194

90210 Finding Dory 2016 PG 97

55555 Toy Story 3 2010 G 103

01111 Ocean's Eleven 2001 PG-13 116

...

CS 105, Boston University Fall 2021 38

Here's a relation with info about rooms on campus...

Room(id, building, room_num, capacity)

id building room_num capacity

54321 CAS 522 208

33333 CAS 224 133

24680 CAS B12 121

11111 HAR 105 373

10101 COM 101 240

66666 CGS 129 410

Which of these are candidate keys of this relation?

Room(id, building, room_num, capacity)

A. id

B. (building, room_num)

C. (id, building)

D. A and B, but not C

E. A, B, and C

id building room_num capacity

54321 CAS 522 208

33333 CAS 224 133

24680 CAS B12 121

11111 HAR 105 373

10101 COM 101 240

66666 CGS 129 410

candidate key:
• can be used to

uniquely identify
a given row

• none of the attributes
are unnecessary

CS 105, Boston University Fall 2021 39

Which of these are keys of this relation?

Room(id, building, room_num, capacity)

A. id

B. (building, room_num)

C. (id, building)

D. A and B, but not C

E. A, B, and C

id building room_num capacity

54321 CAS 522 208

33333 CAS 224 133

24680 CAS B12 121

11111 HAR 105 373

10101 COM 101 240

66666 CGS 129 410

key:
• can be used to

uniquely identify
a given row

Recall: Foreign Keys

• If students can have multiple majors, we can't just add an
attribute for majors to Student.

• why?

• Instead, we create a separate relation that has two foreign keys:

• one with values from the primary key of Student

• one with values from the primary key of Department

id name …
12345678 Jill Jones ...

25252525 Alan Turing ...

...

student department
12345678 computer science

12345678 english

... ...

Student Department

MajorsIn

name …
computer science ...

english ...

... ...

• What is the primary key
of MajorsIn?

CS 105, Boston University Fall 2021 40

Example of Creating a Relational Database

• Let's say that we're building a database for our
new e-commerce website:

TerrierStuff.com

Boston University Terriers NCAA car mat
$39.99

sp
or

ts
ki

ds
.c

om

Example of Creating a Relational Database

• Let's say that we're building a database for our
new e-commerce website, TerrierStuff.com

• What relations might it make sense to include?
(Give a partial schema for each.)

• What are possible primary keys for each relation?
(underline the attributes in the schema)

• Where could foreign keys be used?

CS 105, Boston University Fall 2021 41

Pre-Lecture
Constraints and Null Values

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Constraints

• In the relational model, we can specify constraints on the
values of an attribute.
• criteria that the values must meet

• If we attempt to add a row that would violate a constraint,
the database management system (DBMS) will prevent us
from doing so.

CS 105, Boston University Fall 2021 42

Uniqueness Constraints

Student(id, name, address, email)

• When we specify a primary key, the DBMS imposes a
uniqueness constraint on those attribute(s).

• each row must have unique value(s) for those attribute(s)

• example: we can't add this row to Student:

(25252525, Alex Hamilton, 45B Smith Hall, aham@bu.edu)

• could we add this row?

(44444444, Jill Jones, Student Village A100, jill44@bu.edu)

id name address email

12345678 Jill Jones Warren Towers 100 jjones@bu.edu

25252525 Alan Turing Student Village A210 aturing@bu.edu

33566891 Audrey Chu 300 Main Hall achu@bu.edu

45678900 Jose Delgado Student Village B300 jdelgad@bu.edu

66666666 Count Dracula The Dungeon count@bu.edu

Uniqueness Constraints (cont.)

Movie(name, year, rating, runtime)

• If the primary key is a combination of attributes, each row
must have a unique combination of values for those attributes.

• example: we can add these rows to Movie:

(Ocean's Eleven, 1960, PG-13, 127)

(American Sniper, 2015, R, 133)

• we can't add this row: why?

(Avatar, 2009, R, 170)

name year rating runtime

Star Wars: The Force Awakens 2015 PG-13 138

Avatar 2009 PG-13 162

Titanic 1997 PG-13 194

Finding Dory 2016 PG 97

Toy Story 3 2010 G 103

Ocean's Eleven 2001 PG-13 116

CS 105, Boston University Fall 2021 43

Referential Integrity Constraints

• When we specify a foreign key, the DBMS imposes a
referential integrity constraint on those attribute(s).

• the foreign key attribute(s) must take on values that are
already in the corresponding primary key

• examples: can we add these rows to Student?

(33333333, Alex Hamilton, ..., 22222)
(33333333, Alex Hamilton, ..., 11111)

id name … advisor
12345678 Jill Jones ... 11111

25252525 Alan Turing ... 55555

id name office phone
11111 Ted Codd MCS 207 617-353-1111

55555 Grace Hopper MCS 222 617-353-5555

77777 Edgar Dijkstra MCS 266 617-353-7777

Faculty

Student

Null Values

• Recall: all values in a given column must be of the same
data type or domain.

• By default, most data types include a special value called null.

• Null values can be used to indicate:

• that the value of an attribute is unknown

• that there is no value for that attribute in a given row

• example:

id name … major
12345678 Jill Jones ... computer science

25252525 Alan Turing ... mathematics

33333333 Dan Dabbler ... null

Student

CS 105, Boston University Fall 2021 44

Null Values (cont.)

• We can't put a null value in a primary-key column.

• We can put a null value in a foreign-key column.

• even though null is not in the corresponding primary key

• allows us to indicate the absence of a relationship

• We can also tell the DBMS that we don't want a given column
to include any null values.

CS 105, Boston University Fall 2021 45

Constraints and Null Values;
Designing a Database

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

One of the tables in our upcoming movie database...
Person(id, name, dob, pob)

over 2400 people (actors and directors)!

id name dob pob

0000007 Humphrey Bogart 1899-12-25 New York, NY, USA

0000030 Audrey Hepburn 1929-05-04 Brussels, Belgium

0000133 Geena Davis '79 1956-01-21 Wareham, MA, USA

0000151 Morgan Freeman 1937-06-01 Memphis, TN, USA

0000158 Tom Hanks 1956-07-09 Concord, CA, USA

0000194 Julianne Moore '83 1960-12-03 Fayetteville, NC, USA

...

CS 105, Boston University Fall 2021 46

Which of these could NOT be added to Person?
Person(id, name, dob, pob)

A. (0000007, James Bond, 1920-11-11, London)

B. (4444444, Morgan Freeman, 1937-06-01, Memphis)

C. (0000030, Audrey Hepburn, 1988-10-05, Boston)

D. A and C, but not B

E. A, B, and C

id name dob pob

0000007 Humphrey Bogart 1899-12-25 New York, NY, USA

0000030 Audrey Hepburn 1929-05-04 Brussels, Belgium

0000133 Geena Davis '79 1956-01-21 Wareham, MA, USA

0000151 Morgan Freeman 1937-06-01 Memphis, TN, USA

0000158 Tom Hanks 1956-07-09 Concord, CA, USA

0000194 Julianne Moore '83 1960-12-03 Fayetteville, NC, USA

Another table in our upcoming movie database...
Oscar(movie_id, person_id, type, year)

• movie_id takes on values from the id column in the Movie table

• person_id takes on vales from the id column in the Person table

• example: the first tuple tells us the 2016 Best Actor award went
to Leonardo DiCaprio (0000138) for The Revenant (1663202).

• What are movie_id and person_id examples of?

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

CS 105, Boston University Fall 2021 47

Another table in our upcoming movie database...
Oscar(movie_id, person_id, type, year)

• What does NULL mean?

• Note that NULL is not a string (a piece of text)!

• NULL (or null) is a special value that means
the absence of a value.

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

Another table in our upcoming movie database...
Oscar(movie_id, person_id, type, year)

• Would (type, year) work as the primary key?

• What about (person_id, year)?

• What about (person_id, type, year)?

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

CS 105, Boston University Fall 2021 48

Let's assume there are no NULLs...
Oscar(movie_id, person_id, type, year)

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 1111111 BEST-PICTURE 2016

...

Which of these could NOT be added to Oscar?
Oscar(movie_id, person_id, type, year)

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 1111111 BEST-PICTURE 2016

...

A. (7777777, 0000138, BEST-ACTOR, 2017)

B. (2222222, 1111111, BEST-ACTRESS, 2016)

C. (4444444, 0488953, BEST-ACTRESS, 2016)

D. A and C, but not B

E. A, B, and C

CS 105, Boston University Fall 2021 49

Would the DBMS allow or reject these operations?

• adding (12345678, John Smith, …) to Student
i S

• adding (33333333, Howdy Doody, …) to Student

• adding (12345678, physics) to MajorsIn
d_

• adding (25252525, english) to MajorsIn

id name …
12345678 Jill Jones ...

25252525 Alan Turing ...

student_id dept_name
12345678 computer science

12345678 english

Student(id, name, ...) Department(name, ...)

MajorsIn(student_id, dept_name)

name …
computer science ...

english ...

Assume that these are
all of the rows in each table.

Rules of Thumb for Database Design

• Give each type of entity its own relation.

• Connect related entities using foreign keys.

• Use a separate table to capture a type of relationship
if a given entity can have more than one relationship of that type.

• because you cannot have a multi-valued attribute

CS 105, Boston University Fall 2021 50

Rules of Thumb for Database Design

• Give each type of entity its own relation.

• Connect related entities using foreign keys.

• Use a separate table to capture a type of relationship
if a given entity can have more than one relationship of that type.

• because you cannot have a multi-valued attribute

Example Design: University Database

• Here's the full schema of a simplified university database.

• four relations that store info. about a type of entity:
Student(id, name)
Department(name, office)
Room(id, name, capacity)
Course(name, start_time, end_time, room_id)

• two relations that capture relationships between entities:
MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

• The Course relation also captures a relationship – the
relationship between a course and the room in which it meets.

• We underline the primary key of each relation.

• what would the primary key of Enrolled be?

CS 105, Boston University Fall 2021 51

Foreign Keys in the University Database

Student(id, name)
Department(name, office)
Room(id, name, capacity)
Course(name, start_time, end_time, room_id)
MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

• Foreign keys we've already discussed:

• student_id in MajorsIn (takes on values from id in Student)

• dept_name in MajorsIn (takes on values from name in
Department)

• What other foreign keys make sense?

•

•

•

CS 105, Boston University Fall 2021 52

Pre-Lecture
The SQL Query Language:

Simple SELECT Commands

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name

12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

name office

comp sci MCS 140

mathematics MCS 140

the occult The Dungeon

english 235 Bay State Road

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student Room

Course

Department

Enrolled MajorsIn

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

CS 105, Boston University Fall 2021 53

SELECT (from a single table)

• Sample query:
SELECT student_id
FROM Enrolled
WHERE credit_status = 'grad';

• Basic syntax:
SELECT column1, column2, …
FROM table
WHERE selection condition;

• the FROM clause specifies which table you are using

• the WHERE clause specifies which rows should be
included in the result

• the SELECT clause specifies which columns should be
included

Important notes:
• Non-numeric column

values are surrounded
by single quotes.

• Table/column names
and SQL keywords
are not surrounded by
quotes.

SELECT (from a single table) (cont.)

• Example:

SELECT student_id
FROM Enrolled
WHERE credit_status = 'grad';

Enrolled

student_id

45678900

45678900

SELECT
student_id

WHERE credit_status = 'grad';

student_id course_name credit_status

45678900 CS 460 grad

45678900 CS 510 grad

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 54

Selecting Entire Columns

• If there's no WHERE clause, the result will consist of one or
more entire columns. No rows will be excluded.

SELECT student_id
FROM Enrolled;

Enrolled

student_id

12345678

25252525

45678900

33566891

45678900

SELECT
student_id

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Selecting Entire Rows

• If we want the result to include entire rows (i.e., all of the
columns), we use a * in the SELECT clause:

SELECT *
FROM Enrolled
WHERE credit_status = 'grad';

WHERE credit_status = 'grad';

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

student_id course_name credit_status

45678900 CS 460 grad

45678900 CS 510 grad

CS 105, Boston University Fall 2021 55

The WHERE Clause

SELECT column1, column2, …
FROM table
WHERE selection condition;

• The selection condition must be an expression
that evaluates to either true or false.

• example: credit_status = 'grad'

• can include any column from the table(s) in the FROM clause

• The results of the SELECT command will include only those
tuples for which the selection condition evaluates to true.

Simple Comparisons

• The simplest selection condition is a comparison that uses
one of the following comparison operators:

operator name

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal to

!= not equal to

CS 105, Boston University Fall 2021 56

Practice

• Write a query that finds the names and capacities of all
rooms that hold at least 70 people.

SELECT
FROM
WHERE

Practice

• Write a query that finds the names and capacities of all
rooms that hold at least 70 people.

SELECT
FROM Room
WHERE

CS 105, Boston University Fall 2021 57

Practice

• Write a query that finds the names and capacities of all
rooms that hold at least 70 people.

SELECT

FROM

WHERE

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

5000 CAS 314 80

name capacity

CAS Tsai 500

CAS BigRoom 100

EDU Lecture Hall 100

CAS 314 80

CS 105, Boston University Fall 2021 58

The SQL Query Language:
Simple SELECT Commands

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Why Learn SQL?

• Desktop database systems like Access provide tools for
manipulating data in a database.

• However, these tools don't allow you to perform
all possible types of queries.

• For more flexibility and power, we use SQL.

• a query language

• In addition, knowledge of SQL is needed to perform
queries from within a program.

CS 105, Boston University Fall 2021 59

SQLite

• An open-source relational DBMS (RDBMS)

• It can be easily downloaded and used on any common type
of platform (Windows, Mac, Linux).

• including the machines in the lab

• A SQLite database (i.e., a collection of tables) is stored in
a single file.

• cross-platform: can create the file on one machine/OS,
and use it on a different OS

DB Browser for SQLite

• A user-friendly program for working with a SQLite database.

• Instructions for obtaining it will be in PS 2.

CS 105, Boston University Fall 2021 60

How could we get all info about movies
released in 2010?

A. C.

B. D.

SELECT all
FROM Movie
WHERE year = 2010;

SELECT year = 2010
FROM Movie;

FROM Movie
SELECT year = 2010;

SELECT *
FROM Movie
WHERE year = 2010;

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

How could we get all info about movies
released before 2010?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

CS 105, Boston University Fall 2021 61

How could we get the name and runtime of movies
released before 2010?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

How could we get the name and runtime of
of all movies?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

CS 105, Boston University Fall 2021 62

Forming More Complex Selection Conditions

• We often want to combine conditions or take the opposite of one.

• SQL provides logical operators for this purpose:

name example and meaning
AND SELECT name, capacity

FROM Room
WHERE capacity >= 100 AND capacity <= 200;

true if both parts are true, and false otherwise

OR SELECT name, capacity
FROM Room
WHERE capacity < 50 OR capacity > 250;

false if both parts are false, and true otherwise

NOT SELECT *
FROM COURSE
WHERE NOT(name = 'CS 105' OR name = 'CS 111');

true if the original condition is false, and false if it is true

Range Comparisons

• SQL also provides a special operator called BETWEEN
for checking if a value falls within a range of values.

• For example, instead of writing:
SELECT id
FROM Room
WHERE capacity >= 100 AND capacity <= 200;

we can write
SELECT id
FROM Room
WHERE capacity BETWEEN 100 AND 200;

CS 105, Boston University Fall 2021 63

How could we get the name and runtime
of both Titanic and Toy Story 3?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

...

Movie

A.

B.

C.

D. more than one of the above

SELECT name, runtime
FROM Movie
WHERE name = 'Titanic' AND name = 'Toy Story 3';

SELECT name, runtime
FROM Movie
WHERE name = 'Titanic' OR name = 'Toy Story 3';

SELECT name, runtime
FROM Movie
WHERE name = 'Titanic' OR 'Toy Story 3';

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name

12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

name office

comp sci MCS 140

mathematics MCS 140

the occult The Dungeon

english 235 Bay State Road

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student Room

Course

Department

Enrolled MajorsIn

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

CS 105, Boston University Fall 2021 64

Practice with Simple SQL Queries

• Write a query that finds all information about CAS 315.

• Write a query that lists the names and start times of all courses.

• Write a query that gets the ID numbers of student(s) who are
taking CS 105 for undergraduate (ugrad) credit.

CS 105, Boston University Fall 2021 65

Pre-Lecture
SQL: Pattern Matching,

Comparisons Involving NULL

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name

12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

name office

comp sci MCS 140

mathematics MCS 140

the occult The Dungeon

english 235 Bay State Road

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student

Room

Department

Enrolled MajorsIn

Our simple university database...

name start_time end_time room_id

CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

CS 999 19:30:00 21:30:00 NULL

Course

CS 105, Boston University Fall 2021 66

Pattern Matching

• This won't work:
SELECT name, capacity
FROM Room

WHERE name = 'CAS';

• This will:
SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

• Let's say we want the names
and capacities of all rooms
in CAS.

• the names begin with 'CAS'

• need to find courses with
names matching this pattern

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

Room

The LIKE Operator and Wildcards

• Use LIKE whenever we need to match a pattern.

• Form the pattern using one of more wildcard characters:

• % stands for 0 or more arbitrary characters

• _ stands for a single arbitrary character

CS 105, Boston University Fall 2021 67

More Examples of Pattern Matching

SELECT name

FROM Student
WHERE name LIKE '%u%';

SELECT name
FROM Student
WHERE name LIKE '__u%';

SELECT name
FROM Student
WHERE name LIKE '%u';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

name
Alan Turing

Audrey Chu

Count Dracula

2 underscores

Comparisons Involving NULL

• a room_id of NULL indicates the course is only offered online

• How could we find all of the online-only courses?

• This query produces no results!
SELECT name
FROM Course
WHERE room_id = NULL;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

CS 999 19:30:00 21:30:00 NULL

Course

CS 105, Boston University Fall 2021 68

Comparisons Involving NULL

• Because NULL is a special value, any comparison involving
NULL that uses the standard operators is always false.

• The following will always be false:
room_id = NULL

room_id != NULL

NULL = NULL

• SQL provides special operators:
• IS NULL

• IS NOT NULL

• This query will find the online-only courses:
SELECT name
FROM Course
WHERE room_id IS NULL;

CS 105, Boston University Fall 2021 69

Pre-Lecture
SQL: Removing Duplicates;

Aggregate Functions

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Removing Duplicates

• By default, the relation produced by a SELECT command
may include duplicate tuples.

• example: find the IDs of all students enrolled in a course

SELECT student_id
FROM Enrolled;

Enrolled

student_id

12345678

25252525

45678900

33566891

45678900

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 70

Removing Duplicates (cont.)

• To eliminate duplicates, add the keyword DISTINCT:

SELECT DISTINCT student_id
FROM Enrolled;

• More generally:

SELECT DISTINCT column1, column2, …

student_id

12345678

25252525

45678900

33566891

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Aggregate Functions

• The SELECT clause can include an aggregate function.

• performs a computation on a set of values

• Example: find the average capacity of rooms in CAS:
SELECT AVG(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

AVG(capacity)

154.0

AVG

WHERE

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

CS 105, Boston University Fall 2021 71

Aggregate Functions (cont.)

• Other aggregate functions include:

• SUM, MAX, MIN, and COUNT

SELECT SUM(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

SUM

Aggregate Functions (cont.)

• Other aggregate functions include:

• SUM, MAX, MIN, and COUNT

SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

MAX

CS 105, Boston University Fall 2021 72

Aggregate Functions (cont.)

• Other aggregate functions include:

• SUM, MAX, MIN, and COUNT

SELECT MIN(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

MIN

Aggregate Functions (cont.)

• Other aggregate functions include:

• SUM, MAX, MIN, and COUNT

SELECT COUNT(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

COUNT

CS 105, Boston University Fall 2021 73

Aggregates and DISTINCT

• example: find the number of students enrolled for courses:
SELECT COUNT(student_id)
FROM Enrolled;

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Aggregates and DISTINCT

• example: find the number of students enrolled for courses:
SELECT COUNT(student_id)
FROM Enrolled;

COUNT(student)

5

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 74

Aggregates and DISTINCT

• example: find the number of students enrolled for courses:
SELECT COUNT(student_id)
FROM Enrolled;

COUNT(student)

5

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Aggregates and DISTINCT

• example: find the number of students enrolled for courses:
SELECT COUNT(DISTINCT student_id)
FROM Enrolled;

Enrolled

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 75

COUNT(*) vs. COUNT(attribute)

• SELECT COUNT(*) counts the number of tuples in a result.

• example: find the total number of courses
SELECT COUNT(*)
FROM Course;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

CS 999 19:30:00 21:30:00 NULL

Course

COUNT(*)

5

COUNT(*) vs. COUNT(attribute)

• SELECT COUNT(*) counts the number of tuples in a result.

• example: find the total number of courses
SELECT COUNT(*)
FROM Course;

• SELECT COUNT(attribute) counts the number of non-NULL values
of that attribute in a result.

• example: find the number of courses that meet in a room
SELECT COUNT(room_id)
FROM Course;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

CS 999 19:30:00 21:30:00 NULL

Course

COUNT(*)

5

COUNT(room_id)

4

CS 105, Boston University Fall 2021 76

SQL: Other Aspects of
Simple SELECT Commands

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

How could we use pattern matching to
get info. about movies rated PG or PG-13?

A. D.

B. E.

C.

SELECT *
FROM Movie
WHERE rating LIKE 'PG%';

SELECT *
FROM Movie
WHERE rating LIKE 'PG_';

SELECT *
FROM Movie
WHERE rating LIKE '_G%';

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

two of the queries
at left would work

all three of the queries
at left would work

Assume
the ratings
shown here
are the only

ratings in
the table.

CS 105, Boston University Fall 2021 77

How could we use pattern matching to
get info. about movies rated PG or PG-13?

A.

B.

C.

SELECT *
FROM Movie
WHERE rating LIKE 'PG%'; starts with PG, followed by

0 or more arbitrary characters
SELECT *
FROM Movie
WHERE rating LIKE 'PG_'; ?

SELECT *
FROM Movie
WHERE rating LIKE '_G%'; ?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

Assume
the ratings
shown here
are the only

ratings in
the table.

Would these patterns work for finding PG and PG-13?

SELECT *
FROM Movie
WHERE rating LIKE '%G%';

SELECT *
FROM Movie
WHERE rating LIKE 'PG';

SELECT *
FROM Movie
WHERE rating = 'PG-%';

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0120338 Titanic 1997 PG-13 194

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0240772 Ocean's Eleven 2001 PG-13 116

...

Movie

Assume
the ratings
shown here
are the only

ratings in
the table.

CS 105, Boston University Fall 2021 78

Pattern Matching (cont.)

• DBMSs typically have an operator that performs
case-insensitive pattern matching.

• not part of the SQL standard

• different implementations use different names for it

• In SQLite:

• the LIKE operator itself is case-insensitive

• there's no easy way to do case-sensitive pattern matching

• the = operator is case-sensitive

CS 105, Boston University Fall 2021 79

How could we find the names of
all courses without a room?

Course

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

A. D.

B. E.

C.

SELECT name
FROM Course
WHERE room_id = 'NULL';

SELECT name
FROM Course
WHERE room_id = NULL;

SELECT name
FROM Course
WHERE room_id IS NULL;

two or more of the queries
at left would work

none of the queries
at left would work

How could we find the names of
all courses without a room?

Course

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

A.

B.

C.

SELECT name
FROM Course
WHERE room_id = 'NULL';

SELECT name
FROM Course
WHERE room_id = NULL;

SELECT name
FROM Course
WHERE room_id IS NULL;

CS 105, Boston University Fall 2021 80

How could we determine
how many people have won Best Actor?

A. D.

B. E.

C.

SELECT COUNT(person_id)
FROM Oscar
WHERE type = 'BEST-ACTOR';

SELECT TOTAL(person_id)
FROM Oscar
WHERE type = 'BEST-ACTOR';

SELECT COUNT(*)
FROM Oscar
WHERE type = 'BEST-ACTOR';

Oscar

two or more of the queries
at left would work

none of the queries
at left would work

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

How could we determine
how many people have won Best Actor?

A.

B.

C.

SELECT COUNT(person_id)
FROM Oscar
WHERE type = 'BEST-ACTOR';

SELECT TOTAL(person_id)
FROM Oscar
WHERE type = 'BEST-ACTOR';

SELECT COUNT(*)
FROM Oscar
WHERE type = 'BEST-ACTOR';

Oscar

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

CS 105, Boston University Fall 2021 81

Would this work?

SELECT COUNT(DISTINCT person_id)
FROM Oscar
WHERE type = 'BEST-ACTOR';

Oscar

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

What about this?

SELECT COUNT(DISTINCT *)
FROM Oscar
WHERE type = 'BEST-ACTOR';

Oscar

movie_id person_id type year

1663202 0000138 BEST-ACTOR 2016

3170832 0488953 BEST-ACTRESS 2016

3682448 0753314 BEST-SUPPORTING-ACTOR 2016

0810819 2539953 BEST-SUPPORTING-ACTRESS 2016

1663202 0327944 BEST-DIRECTOR 2016

1895587 NULL BEST-PICTURE 2016

...

CS 105, Boston University Fall 2021 82

Practice Writing Queries

1. How many CS courses are there?

2. How many rooms can hold at least 100 people?

3. What is the average capacity of the rooms from problem 2?

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name

12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

name office

comp sci MCS 140

mathematics MCS 140

the occult The Dungeon

english 235 Bay State Road

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student Room

Course

Department

Enrolled MajorsIn

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

CS 105, Boston University Fall 2021 83

Pre-Lecture
Subqueries in SQL

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Aggregate Functions

• What is the largest capacity of any room in the CAS building?

SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

MAX(capacity)

500

MAX

CS 105, Boston University Fall 2021 84

A Restriction on Aggregate Functions

• What if we also wanted the name of the max-capacity room?

SELECT name, MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

This does not work
in standard SQL!

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

WHERE

MAX(capacity)

500

MAX

name
CAS Tsai

CAS BigRoom

CAS 315

CAS 314

CAS 226

SELECT name

error!

A Restriction on Aggregate Functions (cont.)

• What if we also wanted the name of the max-capacity room?

SELECT name, MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

• In general, a SELECT clause cannot combine:

• an aggregate function

• a column name that is on its own
(and is not being operated on by an aggregate function)

• We'll see an important exception to this soon.

This does not work
in standard SQL!

CS 105, Boston University Fall 2021 85

Subqueries

• A subquery allows us to use the result of one query in the
evaluation of another query.

• We can use a subquery to solve the previous problem:
SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%'
AND capacity = (SELECT MAX(capacity)

FROM Room
WHERE name LIKE 'CAS%');

SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%'
AND capacity = 500;

the subquery

name capacity
CAS Tsai 500

Note Carefully!

SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%'
AND capacity = (SELECT MAX(capacity)

FROM Room
WHERE name LIKE 'CAS%');

• if we remove the condition from the subquery,
might not get the largest capacity in CAS

• if we remove the condition from the outer query,
might also get …

the subquery

CS 105, Boston University Fall 2021 86

Subqueries and Set Membership

• Subqueries can be used to test for set membership in
conjunction with the IN and NOT IN operators.

• example: find all students who are not enrolled in CS 105
SELECT name
FROM Student
WHERE id NOT IN (SELECT student_id

FROM Enrolled
WHERE course_name = 'CS 105');

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Studentstudent_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

EnrolledEnrolled

student_id
12345678

33566891

subquery

CS 105, Boston University Fall 2021 87

Pre-Lecture
Queries Involving Subgroups

(GROUP BY and HAVING)

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Applying an Aggregate Function to Subgroups

• A GROUP BY clause allows us to:

• group together tuples that have a common value

• apply an aggregate function to the tuples in each subgroup

• Example: find the enrollment of each course:
SELECT COUNT(*)
FROM Enrolled;

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

Enrolled

CS 105, Boston University Fall 2021 88

Applying an Aggregate Function to Subgroups

• A GROUP BY clause allows us to:

• group together tuples that have a common value

• apply an aggregate function to the tuples in each subgroup

• Example: find the enrollment of each course:
SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

Enrolled

course_name COUNT(*)
CS 105 3

CS 111 2

CS 460 1

Applying an Aggregate Function to Subgroups

• A GROUP BY clause allows us to:

• group together tuples that have a common value

• apply an aggregate function to the tuples in each subgroup

• Example: find the enrollment of each course:
SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

• When you group by an attribute, you can include it
in the SELECT clause with an aggregate function.

CS 105, Boston University Fall 2021 89

Evaluating a query with GROUP BY

SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

student_id course_name credit_status
12345678 CS 105 ugrad

33566891 CS 105 non-credit

25252525 CS 105 grad

45678900 CS 111 ugrad

66666666 CS 111 ugrad

45678900 CS 460 grad

course_name COUNT(*)
CS 105 3

CS 111 2

CS 460 1

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

Enrolled

GROUP BY + WHERE
SELECT course_name, COUNT(*)
FROM Enrolled
WHERE credit_status = 'ugrad'
GROUP BY course_name;

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

66666666 CS 111 ugrad

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

66666666 CS 111 ugrad

WHERE

GROUP BY

• The WHERE clause
is applied before
the GROUP BY clause.

CS 105, Boston University Fall 2021 90

Applying a Condition to Subgroups

• What if I only want courses with more than one student?

• This won't work:
SELECT course, COUNT(*)
FROM Enrolled
WHERE COUNT(*) > 1
GROUP BY course;

• This will:
SELECT course, COUNT(*)
FROM Enrolled
GROUP BY course
HAVING COUNT(*) > 1;

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

course_name COUNT(*)
CS 105 3

CS 111 2

CS 460 1

Enrolled

course_name COUNT(*)
CS 105 3

CS 111 2

HAVING

• WHERE is applied before
GROUP BY.

• HAVING is applied after
GROUP BY.
• used for all conditions

involving aggregates

CS 105, Boston University Fall 2021 91

SQL: Subqueries;
GROUP BY and HAVING

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

How could we find the shortest
PG-13 movie in the database?

A. D.

E.
B.

C.

SELECT name, MIN(runtime)
FROM Movie
WHERE rating = 'PG-13';

SELECT name, runtime
FROM Movie
WHERE runtime = (SELECT MIN(runtime) FROM Movie

WHERE rating = 'PG-13');

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0118998 Dr. Dolittle 1998 PG-13 85

...

Movie

two of these would work

all three would work

SELECT name, runtime
FROM Movie
WHERE rating = 'PG-13'

AND runtime = (SELECT MIN(runtime) FROM Movie
WHERE rating = 'PG-13');

CS 105, Boston University Fall 2021 92

A Restriction on Aggregate Functions

SELECT name, MIN(runtime)
FROM Movie
WHERE rating = 'PG-13';

• In general, a SELECT clause cannot combine:

• an aggregate function

• a column name that is on its own
(and is not being operated on by an aggregate function)

• We'll see an important exception to this soon.

• Warning: SQLite lets you violate this rule, but...

• doing so is not standard SQL

• you should not do this in your work for this class!

This does not work
in standard SQL!

How could we find the shortest
PG-13 movie in the database?

A.

B.

C.

SELECT name, MIN(runtime)
FROM Movie
WHERE rating = 'PG-13';

SELECT name, runtime
FROM Movie
WHERE runtime = (SELECT MIN(runtime) FROM Movie

WHERE rating = 'PG-13');

Movie

can't combine an aggregate
with a "plain" column unless
you are grouping by the column

SELECT name, runtime
FROM Movie
WHERE rating = 'PG-13'

AND runtime = (SELECT MIN(runtime) FROM Movie
WHERE rating = 'PG-13');

 why doesn't this work?

id name year rating runtime

2488496 Star Wars: The Force Awakens 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

0118998 Dr. Dolittle 1998 PG-13 85

...

CS 105, Boston University Fall 2021 93

How many names would this query produce?

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

EnrolledEnrolled

SELECT name
FROM Student
WHERE id NOT IN (SELECT student_id

FROM Enrolled
WHERE credit_status = 'ugrad');

What was the query
looking for?

What if we just wanted the IDs of those students?

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

StudentEnrolledEnrolled

SELECT id
FROM Student
WHERE id NOT IN (SELECT student_id

FROM Enrolled
WHERE credit_status = 'ugrad');

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

id

33566891

66666666

subquery

student_id
12345678

25252525

45678900

CS 105, Boston University Fall 2021 94

Is this the same thing?

EnrolledEnrolled

SELECT student_id
FROM Enrolled
WHERE student_id NOT IN(SELECT student_id

FROM Enrolled
WHERE credit_status = 'ugrad');

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

omit the Student table!

What about this?

EnrolledEnrolled

SELECT student_id
FROM Enrolled
WHERE credit_status != 'ugrad';

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

CS 105, Boston University Fall 2021 95

What about this?

EnrolledEnrolled

SELECT student_id
FROM Enrolled
WHERE credit_status != 'ugrad';

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

CS 105, Boston University Fall 2021 96

What about this?

EnrolledEnrolled

SELECT student_id
FROM Enrolled
WHERE credit_status != 'ugrad';

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

student_id
45678900

33566891

Need to use a subquery and
NOT IN for problems
like this one!

45678900 is included
even though he is enrolled in
a course for undergrad credit!

How many rows would this query produce?
SELECT dept_name, COUNT(*)
FROM MajorsIn
GROUP BY dept_name;

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

25252525 mathematics

MajorsIn

CS 105, Boston University Fall 2021 97

How could we limit this to departments with only 1 student?
SELECT dept_name, COUNT(*)
FROM MajorsIn
GROUP BY dept_name;

A. C.

B. D.

E.

SELECT dept_name, COUNT(*)
FROM MajorsIn
WHERE COUNT(*) = 1
GROUP BY dept_name;

SELECT dept_name, COUNT(*)
FROM MajorsIn
GROUP BY dept_name
WHERE COUNT(*) = 1;

more than one
of these works

SELECT dept_name, COUNT(*)
FROM MajorsIn
GROUP BY dept_name
HAVING COUNT(*) = 1;

SELECT dept_name, COUNT(*)
FROM MajorsIn
HAVING COUNT(*) = 1
GROUP BY dept_name;

GROUP BY + WHERE
SELECT course_name, COUNT(*)
FROM Enrolled
WHERE credit_status = 'ugrad'
GROUP BY course_name;

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

66666666 CS 111 ugrad

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

66666666 CS 111 ugrad

25252525 CS 105 grad

course_name COUNT(*)
CS 105 1

CS 111 2

student_id course_name credit_status
12345678 CS 105 ugrad

45678900 CS 111 ugrad

66666666 CS 111 ugrad

WHERE

GROUP BY

• The WHERE clause
is applied before
the GROUP BY clause.

CS 105, Boston University Fall 2021 98

Sorting the Results

• An ORDER BY clause sorts the tuples in the result of the query
by one or more attributes.
• ascending order by default, use DESC to get descending
• example:
SELECT name, capacity
FROM Room
WHERE capacity > 50
ORDER BY capacity DESC, name;

name capacity
CAS Tsai 500

CAS BigRoom 100

EDU Lecture Hall 100

… …

Summary: SELECT for a single table

SELECT column1, column2, …
FROM table
WHERE condition
GROUP BY column
HAVING condition
ORDER BY one or more columns;

• The clauses are effectively applied in this order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

CS 105, Boston University Fall 2021 99

Pre-Lecture
SQL: Data Types;

Creating Tables and Inserting Rows

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Data Types

• Recall: The values in a given column must be of the same type
(i.e., must come from the same domain).

• Numeric types include:

• INTEGER

• REAL: a real number (i.e., one with a decimal)

• Non-numeric types include:

• DATE (e.g., '2017-02-23')

• TIME (e.g., '15:30:30')

• two types for strings (i.e., arbitrary sequences of characters)

• CHAR for fixed-length strings

• VARCHAR for variable-length strings

CS 105, Boston University Fall 2021 100

CHAR vs. VARCHAR

• CHAR(n) is for fixed-length strings of exactly n characters.

• VARCHAR(n) is for variable-length strings of up to n characters.

• used for values that can have a wide range of possible lengths

• Example: types for a Person table:

• VARCHAR(64) for the person's name

• VARCHAR(128) for the street address

• VARCHAR(32) for the city

• CHAR(2) for the state abbreviation ('MA', 'NY', etc.)

• CHAR(5) for the zip code

• CHAR(8) for the id – since every id has the same # of digits

• example: '00123456'

• a numeric type would not keep the leading 0s

CHAR vs. VARCHAR (cont.)

• With both CHAR(n) and VARCHAR(n), if the user attempts
to specify value with more than n characters, it is truncated.

• examples:

type user-specified value value stored

CHAR(5) '123456' '12345'

VARCHAR(10) 'computer science'

• If the user attempts to specify a value of less than n characters:

• if the type is CHAR(n), the system pads with spaces

• if the type is VARCHAR(n), the system does not pad

• examples:

type user-specified value value stored

CHAR(5) '123' '123 '

VARCHAR(10) 'math'

CS 105, Boston University Fall 2021 101

Creating a New Table

• Basic syntax: CREATE TABLE table_name(
column1_name column1_type,
column2_name column2_type,
...

);

• Examples:

CREATE TABLE Student(
id CHAR(8),
name VARCHAR(30)

);

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

...

Room

After this command, the table is initially empty!

Specifying Primary Keys

• Specify a single-column primary key after the column's type:

CREATE TABLE Student(
id CHAR(8) PRIMARY KEY,
name VARCHAR(30)

);

• If the primary key is a combination of two or more columns,
specify it separately:

CREATE TABLE MajorsIn(
student_id CHAR(8), dept_name VARCHAR(30),
PRIMARY KEY (student_id, dept_name)

);

student_id dept_name

12345678 computer science

12345678 english

...

MajorsIn

CS 105, Boston University Fall 2021 102

Specifying Foreign Keys

• Need to specify both:

• the foreign key itself

• the corresponding primary key in the form Table(column)

CREATE TABLE MajorsIn(
student_id CHAR(8), dept_name VARCHAR(30),
PRIMARY KEY (student, dept),
FOREIGN KEY (student_id) REFERENCES Student(id),
FOREIGN KEY (dept_name) REFERENCES Department(name));

id name
12345678 Jill Jones

25252525 Alan Turing

...

student_id dept_name
12345678 computer science

12345678 english

...

Student Department

MajorsIn

name …
computer science ...

english ...

...

Adding a Single Row to an Existing Table

• Syntax:
INSERT INTO table VALUES (val1, val2, ...);

• Example:
INSERT INTO Room VALUES ('1234', 'MCS 148', 45)

• Notes:

• need to specify the values in the appropriate order
(based on the order of the columns in CREATE TABLE)

• non-numeric values are surrounded by single quotes

• the DBMS won't allow you to insert a row if it
violates a uniqueness or referential-integrity constraint

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

Room

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

1234 MCS 148 45

Room

id is CHAR(4), so need quotes!

CS 105, Boston University Fall 2021 103

SQL: Data Types;
Creating Tables and Inserting Rows

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

SQL Data Types

• Numeric types include:

• INTEGER

• REAL: a real number (i.e., one that may have a fractional part)

• Non-numeric types include:

• DATE (e.g., '2017-02-23')

• TIME (e.g., '15:30:30')

• two types for strings (i.e., arbitrary sequences of characters)

• CHAR

• VARCHAR

CS 105, Boston University Fall 2021 104

Given the CREATE TABLE command shown below,
what tuple would be added by the INSERT command?

A. ('4567 ', 'Robert Brown ')

B. ('4567 ', 'Robert Brown')

C. ('4567', 'Robert Brown ')

D. ('4567', 'Robert Brown')

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

StudentCREATE TABLE Student(
id CHAR(8) PRIMARY KEY,
name VARCHAR(30)

);

INSERT INTO Student
VALUES ('4567', 'Robert Brown');

What if we swapped the two values in the INSERT?

(________________________, ____________________)
would be stored.

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

StudentCREATE TABLE Student(
id CHAR(8) PRIMARY KEY,
name VARCHAR(30)

);

INSERT INTO Student
VALUES ('Robert Brown', '4567');

CS 105, Boston University Fall 2021 105

Types in SQLite

• SQLite has its own types, including:

• INTEGER

• REAL

• TEXT

• It also allows you to use the typical SQL types, but it converts
them to one of its own types.

• As a result, the length restrictions indicated for CHAR
and VARCHAR are not observed.

• It is also more lax in type checking than typical DBMSs.

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

CREATE TABLE Enrolled(
student_id CHAR(8), course_name VARCHAR(10),
credit_status VARCHAR(10));

Creating the Enrolled table...

CS 105, Boston University Fall 2021 106

How can I specify that student_id is a foreign key?

A. FOREIGN KEY (student_id) REFERENCES Student(id)

B. FOREIGN KEY (student_id) TO id IN Student

C. student_id FOREIGN KEY FOR Student(id)

D. student_id FOREIGN KEY TO id IN Student

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

CREATE TABLE Enrolled(
student_id CHAR(8), course_name VARCHAR(10),
credit_status VARCHAR(10),
PRIMARY KEY (student_id, course_name),
___);

CS 105, Boston University Fall 2021 107

What about the other foreign key in Enrolled?

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

CREATE TABLE Enrolled(
student_id CHAR(8), course_name VARCHAR(10),
credit_status VARCHAR(10),
PRIMARY KEY (student_id, course_name),
FOREIGN KEY (student_id) REFERENCES Student(id),

__);

name start_time end_time room_id

CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

CS 999 19:30:00 21:30:00 NULL

Course

Does the order of these insertions matter?

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

INSERT INTO Enrolled VALUES('4567', 'CS 105', 'grad');

INSERT INTO Student VALUES ('4567', 'Robert Brown');

A. must come before

B. must come before

C. the order of the two INSERT commands doesn't matter

1

2

2

1

2 1

CS 105, Boston University Fall 2021 108

Writing Single-Table Queries: Rules of Thumb

• Start with the FROM clause. Which table do you need?

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

Practice Writing Queries

1) Find the start times of CS 105
and CS 111.

2) Find the course(s) that end latest in the day and
what its/their end time is. (Use a subquery!)

3) Find the ids of all rooms that have two or more courses in them.
The result should be tuples of the form (room id, # of courses).

Course
name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

CS 105, Boston University Fall 2021 109

Pre-Lecture
SQL: Cartesian Product; Joins

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Mathematical Foundation: Cartesian Product

• Let: A be the set of values { a1, a2, … }
B be the set of values { b1, b2, … }
C be the set of values { c1, c2, … }

• The Cartesian product of A and B (written A x B) is the set of
all possible ordered pairs (ai, bj), where ai A and bj B.

• Example:
A = { apple, pear, orange }
B = { cat, dog }

A x B = { (apple, cat), (apple, dog), (pear, cat), (pear, dog),
(orange, cat), (orange, dog) }

• Example:
C = { 5, 10 }
D = { 2, 4 }

C x D = ?

CS 105, Boston University Fall 2021 110

Mathematical Foundation: Cartesian Product (cont.)

• We can also take the Cartesian product of three of more sets.

• A x B x C is the set of all possible ordered triples
(ai, bj, ck), where ai A, bj B, and ck C.

• example:
C = { 5, 10 }
D = { 2, 4 }
E = {"hi", "there"}

C x D x E = { (5, 2, "hi"), (5, 2, "there"),
(5, 4, "hi"), (5, 4, "there"),
(10, 2, "hi"), (10, 2, "there"),
(10, 4, "hi"), (10, 4, "there") }

• A1 x A2 x … x An is the set of all possible ordered tuples
(a1i, a2j, …, ank), where ade Ad.

Cartesian Product of Relations

• The Cartesian product of two or more relations forms
all possible combinations of rows from the relations.

• The result is itself a relation.

• its rows contain all of the columns from the combined relations

• Example:
Enrolled MajorsIn

Enrolled x MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

...

student_id dept_name
12345678 comp sci

45678900 mathematics

...

Enrolled.
student_id

course_name credit_status MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

12345678 CS 105 ugrad 45678900 mathematics

...

CS 105, Boston University Fall 2021 111

The Cartesian Product of Two Relations (cont.)

• Example:
Enrolled MajorsIn

Enrolled x MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled.
student_id

course_name credit_status MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

12345678 CS 105 ugrad 45678900 mathematics

12345678 CS 105 ugrad 25252525 comp sci

12345678 CS 105 ugrad 45678900 english

12345678 CS 105 ugrad 66666666 the occult

The Cartesian Product of Two Relations (cont.)

• Example:
Enrolled MajorsIn

Enrolled x MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled.
student_id

course_name credit_status MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

12345678 CS 105 ugrad 45678900 mathematics

12345678 CS 105 ugrad 25252525 comp sci

12345678 CS 105 ugrad 45678900 english

12345678 CS 105 ugrad 66666666 the occult

25252525 CS 111 ugrad 12345678 comp sci

25252525 CS 111 ugrad 45678900 mathematics
...

CS 105, Boston University Fall 2021 112

Joining Multiple Tables

SELECT column1, column2, …
FROM table1, table2, ...
...

• When the FROM clause specifies multiple tables, the
resulting operation is known as a join.

• The result is equivalent to:

• forming the Cartesian product of the tables in the FROM clause

table1 x table2 x …

• applying the remaining clauses to the Cartesian product,
in the same order as for a single-table command:

WHERE
GROUP BY
HAVING
SELECT
ORDER BY

Joining Multiple Tables (cont.)

• Example: find Alan Turing's major.

• Here's a query that works:
SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing'
AND id = student_id;

• id = student_id is a join condition.

• used to match up "related" tuples from the two tables

• selects the tuples in the Cartesian product that "make sense"

• for N tables, you typically need N – 1 join conditions

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student MajorsIn

CS 105, Boston University Fall 2021 113

Student MajorsIn

Student x MajorsIn

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name student_id dept_name
12345678 Jill Jones 12345678 comp sci

12345678 Jill Jones 45678900 mathematics

12345678 Jill Jones 25252525 comp sci

12345678 Jill Jones 45678900 english

12345678 Jill Jones 66666666 the occult

25252525 Alan Turing 12345678 comp sci

25252525 Alan Turing 45678900 mathematics

25252525 Alan Turing 25252525 comp sci

25252525 Alan Turing 45678900 english

...

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

Student MajorsIn

Student x MajorsIn WHERE id = student_id

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name student_id dept_name
12345678 Jill Jones 12345678 comp sci

25252525 Alan Turing 25252525 comp sci

45678900 Jose Delgado 45678900 mathematics

45678900 Jose Delgado 45678900 english

66666666 Count Dracula 66666666 the occult

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

CS 105, Boston University Fall 2021 114

Student MajorsIn

After selecting only tuples that satisfy the WHERE clause:

After extracting the attribute specified in the SELECT clause:

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

id name student_id dept_name
25252525 Alan Turing 25252525 comp sci

dept_name
comp sci

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

CS 105, Boston University Fall 2021 115

Pre-Lecture
SQL: Joins Revisited

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Another Example of Joining Tables

• Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.

SELECT
FROM Student, Enrolled, MajorsIn
WHERE

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

3 tables, so we need

____ join conditions!

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 116

Dealing with Ambiguous Column Names

• Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.
SELECT name
FROM Student, Enrolled, MajorsIn
WHERE id = Enrolled.student_id

AND Enrolled.student_id = MajorsIn.student_id
AND course_name = 'CS 105'
AND dept_name = 'comp sci';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Dealing with Ambiguous Column Names

• Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.
SELECT Student.name
FROM Student, Enrolled, MajorsIn
WHERE Student.id = Enrolled.student_id

AND Enrolled.student_id = MajorsIn.student_id
AND Enrolled.course_name = 'CS 105'
AND MajorsIn.dept_name = 'comp sci';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 117

Aliases for Table Names

• Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.
SELECT S.name
FROM Student AS S, Enrolled AS E, MajorsIn AS M
WHERE S.id = E.student_id

AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

id name E.student_id course_name credit_status M.student_id dept_name
12345678 Jill Jones 12345678 CS 105 ugrad 12345678 comp sci

12345678 Jill Jones 12345678 CS 105 ugrad 45678900 mathematics

12345678 Jill Jones 12345678 CS 105 ugrad 25252525 comp sci

12345678 Jill Jones 12345678 CS 105 ugrad 45678900 english

12345678 Jill Jones 12345678 CS 105 ugrad 66666666 the occult

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student x Enrolled x MajorsIn

SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';

CS 105, Boston University Fall 2021 118

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

id name E.student_id course_name credit_status M.student_id dept_name
12345678 Jill Jones 12345678 CS 105 ugrad 12345678 comp sci

12345678 Jill Jones 12345678 CS 105 ugrad 45678900 mathematics

12345678 Jill Jones 12345678 CS 105 ugrad 25252525 comp sci

12345678 Jill Jones 12345678 CS 105 ugrad 45678900 english

12345678 Jill Jones 12345678 CS 105 ugrad 66666666 the occult

12345678 Jill Jones 25252525 CS 111 ugrad 12345678 comp sci

12345678 Jill Jones 25252525 CS 111 ugrad 45678900 mathematics

12345678 Jill Jones 25252525 CS 111 ugrad 25252525 comp sci

12345678 Jill Jones 25252525 CS 111 ugrad 45678900 english

12345678 Jill Jones 25252525 CS 111 ugrad 66666666 the occult

...

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student x Enrolled x MajorsIn 125 rows in all!

SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';

SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

id name E.student_id course_name credit_status M.student_id dept_name
12345678 Jill Jones 12345678 CS 105 ugrad 12345678 comp sci

25252525 Alan Turing 25252525 CS 111 ugrad 25252525 comp sci

45678900 Jose Delgado 45678900 CS 460 grad 45678900 mathematics

45678900 Jose Delgado 45678900 CS 460 grad 45678900 english

45678900 Jose Delgado 45678900 CS 510 grad 45678900 mathematics

45678900 Jose Delgado 45678900 CS 510 grad 45678900 english

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student x Enrolled x MajorsIn, followed by the join conditions...

CS 105, Boston University Fall 2021 119

id name E.student_id course_name credit_status M.student_id dept_name
12345678 Jill Jones 12345678 CS 105 ugrad 12345678 comp sci

SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';

Student x Enrolled x MajorsIn, followed by the join conditions and the rest of the WHERE clause

name
Jill Jones

after SELECT

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Student Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 120

SQL: Cartesian Product; Joins

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

How many rows would be in the result?

SELECT name
FROM Movie, Oscar;

Movie

id name year rating runtime

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

CS 105, Boston University Fall 2021 121

If we want the movies associated with
one or more Oscar, what condition do we need?

SELECT name
FROM Movie, Oscar
WHERE ________________________;

Movie

id name year rating runtime

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

• Find the names of all rooms that CS majors have courses in.

SELECT
FROM ???
WHERE

Which tables do I need?

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

CS 105, Boston University Fall 2021 122

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

...

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

...

Course Room

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

...

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

...

• Find the names of all rooms that CS majors have courses in.

SELECT
FROM Course, Room, Enrolled, MajorsIn
WHERE ???

How many join conditions do I need?

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

...

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

...

Course Room

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

...

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

...

• Find the names of all rooms that CS majors have courses in.

SELECT
FROM Course, Room, Enrolled, MajorsIn
WHERE ???

Which of these is a correctly formed
join condition for this problem?

A. room_id = id C. student_id = student_id

B. course_name = name D. two or more are correct

CS 105, Boston University Fall 2021 123

• Find the names of all rooms that CS majors have courses in.

SELECT
FROM Course, Room, Enrolled, MajorsIn
WHERE

Complete the query…

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

...

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

...

Course Room

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

...

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

...

CS 105, Boston University Fall 2021 124

Writing Queries: Rules of Thumb

• Start with the FROM clause. Which table(s) do you need?

• If you need more than one table, determine the necessary
join conditions.

• for N tables, you typically need N – 1 join conditions

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

Practice Writing Queries
Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

1) Find the names of all courses taken by comp sci majors.

2) Find the number of students majoring in each department.
(The result should be tuples of the form (dept name, # students).)

CS 105, Boston University Fall 2021 125

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

3) Find the names and ids of all students who have a course
in GCB 204.

4) Find the names of all rooms in which one or more
CS courses meet.

Practice Writing Queries (cont.)

CS 105, Boston University Fall 2021 126

From earlier in the lecture:
How many rows would be in this result?SELECT name

FROM Movie, Oscar
WHERE id = movie_id;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

id name Movie.
year

rating runtime

2488496 Star Wars... 2015 PG-13 138

2488496 Star Wars... 2015 PG-13 138

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

1228705 Iron Man 2 2010 PG-13 124

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

0435761 Toy Story 3 2010 G 103

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

1323594 Despicable Me 2010 PG 95

1323594 Despicable Me 2010 PG 95

movie_id person_id type Oscar.
year

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Movie x Oscar

From earlier in the lecture:
How many rows would be in this result?SELECT name

FROM Movie, Oscar
WHERE id = movie_id;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

Movie x Oscar, followed by join condition

id name Movie.
year

rating runtime

2488496 Star Wars... 2015 PG-13 138

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

movie_id person_id type Oscar.
year

2488496 1111111 BEST-ACTOR 2016

2488496 NULL BEST-PICTURE 2016

1228705 2222222 BEST-ACTRESS 2011

after
SELECT

name
Star Wars...

Star Wars...

Iron Man 2

CS 105, Boston University Fall 2021 127

Pre-Lecture
SQL: Outer Joins

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Finding the Room of Each Course

• Need a query that forms (course name, room name) pairs.

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

• Will this work?

SELECT Course.name, Room.name
FROM Course, Room
WHERE room_id = id;

Course.name Room.name
CS 105 GCB 204

CS 111 CAS 314

EN 101 CAS Tsai

CS 460 MCS 205

CS 510 MCS 205

PH 101 NULL

desired result of the query

CS 105, Boston University Fall 2021 128

Course x Room 42 rows in all!

SELECT Course.name, Room.name
FROM Course, Room
WHERE room_id = id;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

Course.name start_time end_time room_id id Room.name capacity
CS 105 13:00:00 14:00:00 4000 1000 CAS Tsai 500

CS 105 13:00:00 14:00:00 4000 2000 CAS BigRoom 100

CS 105 13:00:00 14:00:00 4000 3000 EDU Lecture Hall 100

CS 105 13:00:00 14:00:00 4000 4000 GCB 204 40

CS 105 13:00:00 14:00:00 4000 5000 CAS 314 80

CS 105 13:00:00 14:00:00 4000 6000 CAS 226 50

CS 105 13:00:00 14:00:00 4000 7000 MCS 205 30

CS 111 09:30:00 11:00:00 5000 1000 CAS Tsai 500

CS 111 09:30:00 11:00:00 5000 2000 CAS BigRoom 100

CS 111 09:30:00 11:00:00 5000 3000 EDU Lecture Hall 100

CS 111 09:30:00 11:00:00 5000 4000 GCB 204 40

CS 111 09:30:00 11:00:00 5000 5000 CAS 314 80

...

Course x Room, followed by the join condition

SELECT Course.name, Room.name
FROM Course, Room
WHERE room_id = id;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

Course.name Room.name
CS 105 GCB 204

CS 111 CAS 314

EN 101 CAS Tsai

CS 460 MCS 205

CS 510 MCS 205

• The last row of Course
doesn't have a match in Room.

• it is an "unmatched row"
• thus it's not in the result of the join
• to get it, we need an outer join

Course.name start_time end_time room_id id Room.name capacity
CS 105 13:00:00 14:00:00 4000 4000 GCB 204 40

CS 111 09:30:00 11:00:00 5000 5000 CAS 314 80

EN 101 11:00:00 12:30:00 1000 1000 CAS Tsai 500

CS 460 16:00:00 17:30:00 7000 7000 MCS 205 30

CS 510 12:00:00 13:30:00 7000 7000 MCS 205 30

CS 105, Boston University Fall 2021 129

SELECT Course.name, Room.name
FROM Course LEFT OUTER JOIN Room ON room_id = id;

• A left outer join includes unmatched
rows from the left table in the result.

the "left" table
(the one to the left of
LEFT OUTER JOIN)

the join condition goes
in a special ON clause

the "right"
table

SELECT Course.name, Room.name
FROM Course LEFT OUTER JOIN Room ON room_id = id;

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

Course.name start_time end_time room_id id Room.name capacity
CS 105 13:00:00 14:00:00 4000 4000 GCB 204 40

CS 111 09:30:00 11:00:00 5000 5000 CAS 314 80

EN 101 11:00:00 12:30:00 1000 1000 CAS Tsai 500

CS 460 16:00:00 17:30:00 7000 7000 MCS 205 30

CS 510 12:00:00 13:30:00 7000 7000 MCS 205 30

PH 101 14:30:00 16:00:00 NULL NULL NULL NULL

Course.name Room.name
CS 105 GCB 204

CS 111 CAS 314

EN 101 CAS Tsai

CS 460 MCS 205

CS 510 MCS 205

PH 101 NULL

• A left outer join adds an extra row to
its result for any row from the left table
that doesn't have a match in the right.

• uses NULLs for the right-table
attributes in the extra rows

result of the LEFT OUTER JOIN

CS 105, Boston University Fall 2021 130

SQL: Outer Joins

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: What does this give?
SELECT name
FROM Movie, Oscar;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

CS 105, Boston University Fall 2021 131

How can we get just the movies that won Oscars?
SELECT name
FROM Movie, Oscar;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

What does this give?
SELECT name, COUNT(*)
FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

CS 105, Boston University Fall 2021 132

What if we wanted a count for each movie
— including non-Oscar winners?SELECT name, COUNT(*)

FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;

Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

id name Movie.
year

rating runtime

2488496 Star Wars... 2015 PG-13 138

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

movie_id person_id type Oscar.
year

2488496 1111111 BEST-ACTOR 2016

2488496 NULL BEST-PICTURE 2016

1228705 2222222 BEST-ACTRESS 2011

name COUNT(*)
Star Wars... 2

Iron Man 2 1

Movie x Oscar, followed by join condition, followed by GROUP BY

after SELECT

name COUNT
Star Wars... 2

Iron Man 2 1

Toy Story 3 0

Despicable Me 0

Which of these would work?
Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

name COUNT
Star Wars... 2

Iron Man 2 1

Toy Story 3 0

Despicable Me 0

A.

B.

C.

D.

SELECT name, COUNT(type)
FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;

SELECT name, COUNT(type)
FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

SELECT name, COUNT(*)
FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

SELECT name, COUNT(*)
FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;

CS 105, Boston University Fall 2021 133

Finding the Majors of Enrolled Students

• We want the IDs and majors of every student who
is enrolled in a course – including those with no major.

• Desired result:

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

student_id dept_name
12345678 comp sci

25252525 comp sci

45678900 mathematics

45678900 english

33566891 null

Which of these would work?

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

A.

B.

C.

D.

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled, MajorsIn
WHERE Enrolled.student_id = MajorsIn.student_id;

SELECT DISTINCT Enrolled.student_id, dept_name
FROM MajorsIn LEFT OUTER JOIN Enrolled
WHERE Enrolled.student_id = MajorsIn.student_id;

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

We want the IDs and majors
of every student who is
enrolled in a course –
including those with no major.

SELECT DISTINCT Enrolled.student_id, dept_name
FROM MajorsIn LEFT OUTER JOIN Enrolled
ON Enrolled.student_id = MajorsIn.student_id;

CS 105, Boston University Fall 2021 134

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

Enrolled.
student_id

course_
name

credit_
status

MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

12345678 CS 105 ugrad 45678900 math...

12345678 CS 105 ugrad 25252525 comp sci

12345678 CS 105 ugrad 45678900 english

12345678 CS 105 ugrad 66666666 the occult

25252525 CS 111 ugrad 12345678 comp sci

25252525 CS 111 ugrad 45678900 math...

25252525 CS 111 ugrad 25252525 comp sci

25252525 CS 111 ugrad 45678900 english

25252525 CS 111 ugrad 66666666 the occult

45678900 CS 460 grad 12345678 comp sci

45678900 CS 460 grad 45678900 math...

45678900 CS 460 grad 25252525 comp sci

45678900 CS 460 grad 45678900 english

45678900 CS 460 grad 66666666 the occult

33566891 CS 105 non-cr 12345678 comp sci

33566891 CS 105 non-cr 45678900 math...

33566891 CS 105 non-cr 25252525 comp sci

33566891 CS 105 non-cr 45678900 english

33566891 CS 105 non cr 66666666 the occult

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

CS 105, Boston University Fall 2021 135

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

Enrolled.
student_id

course_
name

credit_
status

MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

25252525 CS 111 ugrad 25252525 comp sci

45678900 CS 460 grad 45678900 math...

45678900 CS 460 grad 45678900 english

45678900 CS 510 grad 45678900 math...

45678900 CS 510 grad 45678900 english

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Enrolled

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Enrolled.
student_id

course_
name

credit_
status

MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

25252525 CS 111 ugrad 25252525 comp sci

45678900 CS 460 grad 45678900 math...

45678900 CS 460 grad 45678900 english

45678900 CS 510 grad 45678900 math...

45678900 CS 510 grad 45678900 english

33566891 CS 105 non-cr

CS 105, Boston University Fall 2021 136

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Enrolled.
student_id

course_
name

credit_
status

MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

25252525 CS 111 ugrad 25252525 comp sci

45678900 CS 460 grad 45678900 math...

45678900 CS 460 grad 45678900 english

45678900 CS 510 grad 45678900 math...

45678900 CS 510 grad 45678900 english

33566891 CS 105 non-cr null null

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Enrolled.
student_id

dept_name

12345678 comp sci

25252525 comp sci

45678900 mathematics

45678900 english

33566891 null

Enrolled.
student_id

course_
name

credit_
status

MajorsIn.
student_id

dept_name

12345678 CS 105 ugrad 12345678 comp sci

25252525 CS 111 ugrad 25252525 comp sci

45678900 CS 460 grad 45678900 math...

45678900 CS 460 grad 45678900 english

45678900 CS 510 grad 45678900 math...

45678900 CS 510 grad 45678900 english

33566891 CS 105 non-cr null null

CS 105, Boston University Fall 2021 137

Outer Joins Can Have a WHERE Clause

• Example: find the IDs and majors of all students
enrolled in CS 105 (including those with no major):

SELECT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id
WHERE course_name = 'CS 105';

• to limit the results to students in CS 105,
we need a WHERE clause with the appropriate condition

• this new condition should not be in the ON clause
because it's not being used to match up rows
from the two tables

Outer Joins Can Have Extra Tables

• Example: find the names and majors of all students
enrolled in CS 105 (including those with no major):

SELECT Student.name, dept_name
FROM Student, Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id
WHERE Student.id = Enrolled.student_id
AND course_name = 'CS 105';

• we need Student in the FROM clause to get the
student's names

• the extra table requires an additional join condition,
which goes in the WHERE clause

CS 105, Boston University Fall 2021 138

Writing Queries: Rules of Thumb

• Start with the FROM clause. Which table(s) do you need?

• If you need more than one table, determine the necessary
join conditions.

• for N tables, you typically need N – 1 join conditions

• is an outer join needed? – i.e., do you want unmatched tuples?

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

CS 105, Boston University Fall 2021 139

C.

D.

From earlier in the lecture: Which of these would work?
Movie

id name year rating runtime
2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type year
2488496 1111111 BEST-ACTOR 2016

1228705 2222222 BEST-ACTRESS 2011

2488496 NULL BEST-PICTURE 2016

Oscar

id name Movie.
year

rating runtime

2488496 Star Wars... 2015 PG-13 138

2488496 Star Wars... 2015 PG-13 138

1228705 Iron Man 2 2010 PG-13 124

0435761 Toy Story 3 2010 G 103

1323594 Despicable Me 2010 PG 95

movie_id person_id type Oscar.
year

2488496 1111111 BEST-ACTOR 2016

2488496 NULL BEST-PICTURE 2016

1228705 2222222 BEST-ACTRESS 2011

NULL NULL NULL NULL

NULL NULL NULL NULL

name COUNT(*)
Star Wars... 2

Iron Man 2 1

Toy Story 3 1

Despicable Me 1

name COUNT(type)
Star Wars... 2

Iron Man 2 1

Toy Story 3 0

Despicable Me 0

Movie LEFT OUTER JOIN Oscar ON id = movie_id GROUP BY name

SELECT name, COUNT(type)
FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

SELECT name, COUNT(*)
FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

Enrolled MajorsIn

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled, MajorsIn
WHERE Enrolled.student_id = MajorsIn.student_id;

SELECT DISTINCT Enrolled.student_id, dept_name
FROM MajorsIn LEFT OUTER JOIN Enrolled
WHERE Enrolled.student_id = MajorsIn.student_id;

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

We want the IDs and majors
of every student who is
enrolled in a course –
including those with no major.

SELECT DISTINCT Enrolled.student_id, dept_name
FROM MajorsIn LEFT OUTER JOIN Enrolled
ON Enrolled.student_id = MajorsIn.student_id;

student_id dept_name
12345678 comp sci

25252525 comp sci

45678900 mathematics

45678900 english

student_id dept_name
12345678 comp sci

25252525 comp sci

45678900 mathematics

45678900 english

33566891 null

student_id dept_name
12345678 comp sci

25252525 comp sci

45678900 mathematics

45678900 english

null the occult

get unmatched rows from the "left" table -- Enrolled

get unmatched rows from the "left" table -- MajorsIn

CS 105, Boston University Fall 2021 140

Pre-Lecture
SQL: Other Commands

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

DELETE: Removing Existing Rows

• syntax: DELETE FROM table
WHERE selection condition;

DELETE FROM Student
WHERE id = '45678900';

DELETE FROM Enrolled
WHERE student_id = '45678900';

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

Enrolled
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

66666666 Count Dracula

Student

Enrolled
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

33566891 CS 105 non-credit

CS 105, Boston University Fall 2021 141

The order of deletions can matter!

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

Enrolled
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

66666666 Count Dracula

Student

Enrolled
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

DELETE FROM Student
WHERE id = '45678900';

The order of deletions can matter! (cont.)

• Before deleting a row, we must first
remove all references to that row
from foreign keys in other tables.

id name
12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Student

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

MajorsIn

Enrolled
student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

CS 105, Boston University Fall 2021 142

UPDATE: Changing Values in Existing Rows

• syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE MajorsIn
SET dept_name = 'physics'
WHERE student_id = '45678900';

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

MajorsIn
student_id dept_name
12345678 comp sci

45678900 physics

25252525 comp sci

45678900 physics

66666666 the occult

MajorsIn

UPDATE: Changing Values in Existing Rows

• syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE MajorsIn
SET dept_name = 'physics'
WHERE student_id = '45678900'

AND ________________________;

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

MajorsIn
student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 physics

66666666 the occult

MajorsIn

CS 105, Boston University Fall 2021 143

UPDATE: Changing Values in Existing Rows (cont.)

• syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE Course
SET start_time = '13:25:00', end_time = '14:15:00',

room_id = '6000'
WHERE name = 'CS 105';

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

Course
name start_time end_time room_id
CS 105 13:25:00 14:15:00 6000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

Course

DROP TABLE: Removing an Entire Table

• syntax: DROP TABLE table;

DROP TABLE MajorsIn;

• If a table is referred to by a foreign key in another table,
it cannot be dropped until either:

• the other table is dropped first
or

• the foreign-key constraint is removed from the other table
(we won't look at how to do this)

student_id dept_name
12345678 comp sci

45678900 mathematics

25252525 comp sci

45678900 english

66666666 the occult

MajorsIn

no table!

CS 105, Boston University Fall 2021 144

SQL: Other Commands;
Practice with Queries

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Does the order of these deletions matter?

DELETE FROM Course WHERE name = 'CS 111';

DELETE FROM Enrolled WHERE course_name = 'CS 111';

1

2

2

1

2 1

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

Course Enrolled

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

A. must come before

B. must come before

C. the order of the two DELETE commands doesn't matter

CS 105, Boston University Fall 2021 145

Is this deletion also needed?

DELETE FROM Enrolled WHERE course_name = 'CS 111';

DELETE FROM Room WHERE id = '5000';

DELETE FROM Course WHERE name = 'CS 111';

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

Course

no! when deleting a row
that includes a foreign key,
we don't need to delete
what the foreign key refers to.

Enrolled

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Room

How could I correctly remove MCS 205?

A.

B.

C.

D.

DELETE FROM Room WHERE id = '7000';

DELETE FROM Room WHERE id = '7000';
UPDATE Course SET room_id = NULL WHERE room_id = '7000';

UPDATE Course SET room_id = NULL WHERE room_id = '7000';
DELETE FROM Room WHERE id = '7000';

two or more of the above would work

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000

CS 111 09:30:00 11:00:00 5000

EN 101 11:00:00 12:30:00 1000

CS 460 16:00:00 17:30:00 7000

CS 510 12:00:00 13:30:00 7000

PH 101 14:30:00 16:00:00 NULL

id name capacity
1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 GCB 204 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Course Room

CS 105, Boston University Fall 2021 146

Writing Queries: Rules of Thumb

• Start with the FROM clause. Which table(s) do you need?

• If you need more than one table, determine the necessary
join conditions.

• for N tables, you typically need N – 1 join conditions

• is an outer join needed? – i.e., do you want unmatched tuples?

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

Extra Practice Writing Queries
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

1) Find the names of all people in the database
who acted in Avatar.

2) How many people in the database who were born in the state of
California have won an Oscar? (assume pob = city, state, country)

CS 105, Boston University Fall 2021 147

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

3) How many people in the database did not act in Avatar?

Why won't this work?
SELECT COUNT(*)
FROM Person P, Actor A, Movie M
WHERE P.id = A.actor_id AND M.id = A.movie_id
AND M.name != 'Avatar';

What will?

CS 105, Boston University Fall 2021 148

SQL: More Practice with Queries

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Writing Queries: Rules of Thumb

• Start with the FROM clause. Which table(s) do you need?

• If you need more than one table, determine the necessary
join conditions.

• for N tables, you typically need N – 1 join conditions

• is an outer join needed? – i.e., do you want unmatched tuples?

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

CS 105, Boston University Fall 2021 149

Which of these problems would
require a GROUP BY?

Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

A. finding the Best-Picture winner with the best/smallest
earnings rank

B. finding the number of Oscars won by each movie
that has won an Oscar

C. finding the number of Oscars won by each movie,
including movies that have not won any Oscars

D. both B and C, but not A

E. A, B, and C Which would require a subquery?

Which would require a LEFT OUTER JOIN?

CS 105, Boston University Fall 2021 150

Now Write the Queries!
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

1) Find the Best-Picture winner with the best/smallest earnings rank.
The result should have the form (name, earnings_rank).
Assume no two movies have the same earnings rank.

SELECT

FROM

WHERE earnings_rank = (SELECT

FROM

WHERE M.id = O.movie_id

);

Now Write the Queries!
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

2) Find the number of Oscars won by each movie that has won
an Oscar. Produce tuples of the form (name, num Oscars).

3) Find the number of Oscars won by each movie, including movies
that have not won an Oscar.

CS 105, Boston University Fall 2021 151

Even More Practice!
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

4) Which movie ratings have an avg runtime greater than 120 min?

Even More Practice! (cont.)

Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

5) For each person in the database born in Boston, find the
number of movies in the database (possibly 0) in which the
person has acted.

CS 105, Boston University Fall 2021 152

Pre-Lecture
Getting Started With Python

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Interacting with Python

• We're using Python 3 (not 2).

• see Lab 0 for how to install and configure Spyder

• Two windows in Spyder: the editor and the IPython console

The prompt shows that
the interpreter is waiting
for you to enter
something.

CS 105, Boston University Fall 2021 153

Arithmetic in Python

• Numeric operators include:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

% modulus: gives the remainder of a division

Arithmetic in Python (cont.)

• The operators follow the standard order of operations.

• example: multiplication before addition

• You can use parentheses to force a different order.

CS 105, Boston University Fall 2021 154

Data Types

• Different kinds of values are stored and manipulated differently.

• Python data types include:

• integers

• example: 451

• floating-point numbers
• numbers that include a decimal
• example: 3.1416

Data Types and Operators

• There are really two sets of numeric operators:

• one for integers (ints)

• one for floating-point numbers (floats)

• In most cases, the following rules apply:

• if at least one of the operands is a float, the result is a float

• if both of the operands are ints, the result is an int

• One exception: division!

CS 105, Boston University Fall 2021 155

Two Types of Division

• The / operator always produces a float result.

• examples:

>>> 5 / 3
1.6666666666666667

>>> 6 / 3

Two Types of Division (cont.)

• There is a separate // operator for integer division.

>>> 6 // 3
2

• Integer division discards any fractional part of the result:

>>> 11 // 5
2

>>> 5 // 3

• Note that it does not round!

CS 105, Boston University Fall 2021 156

Another Data Type

• A string is a sequence of characters/symbols

• surrounded by single or double quotes

• examples: "hello" 'Picobot'

CS 105, Boston University Fall 2021 157

Pre-Lecture
Program Building Blocks:

Variables, Expressions, Statements

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Variables

• Variables allow us to store a value for later use:

>>> temp = 77

>>> (temp - 32) * 5 / 9
25.0

CS 105, Boston University Fall 2021 158

Expressions

• Expressions produce a value.

• We evaluate them to obtain their value.

• They include:

• literals ("hard-coded" values):

3.1416

'Picobot'

• variables
temp

• combinations of literals, variables, and operators:

(temp - 32) * 5 / 9

Evaluating Expressions with Variables

• When an expression includes variables, they are first
replaced with their current value.

• Example:

(temp - 32) * 5 / 9
(77 - 32) * 5 / 9

45 * 5 / 9
225 / 9

25.0

CS 105, Boston University Fall 2021 159

Statements

• A statement is a command that carries out an action.

• A program is a sequence of statements.

quarters = 2
dimes = 3
nickels = 1
pennies = 4
cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

Assignment Statements

• Assignment statements store a value in a variable.
temp = 20

• General syntax:

variable = expression

• Steps:

1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

• Examples:

int quarters = 10

quarters_val = 25 * quarters

int

int

= is known as the
assignment operator

CS 105, Boston University Fall 2021 160

Assignment Statements (cont.)

• We can change the value of a variable by assigning it
a new value.

• Example:

num1 = 100
num2 = 120 num1 100 num2 120

num1 = 50 num1 num2 120

num1 = num2 * 2 num1 num2 120

num2 = 60 num1 num2

Assignment Statements (cont.)

• An assignment statement does not create a permanent
relationship between variables.

• You can only change the value of a variable
by assigning it a new value!

CS 105, Boston University Fall 2021 161

Assignment Statements (cont.)

• A variable can appear on both sides of the assignment
operator!

• Example:

sum = 13
val = 30 sum 13 val 30

sum = sum + val sum 43 val 30

13 + 30

43

val = val * 2 sum val

Creating a Reusable Program

• Put the statements in a text file.

a program to compute the value of some coins

quarters = 2 # number of quarters
dimes = 3
nickels = 1
pennies = 4

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

• Program file names should have the extension .py

• example: coins.py

CS 105, Boston University Fall 2021 162

Print Statements

• print statements display one or more values on the screen

• Basic syntax:

print(expr)
or

print(expr1, expr2, … exprn)

where each expr is an expression

• Steps taken when executed:

1) the individual expression(s) are evaluated

2) the resulting values are displayed on the same line,
separated by spaces

• To print a blank line, omit the expressions:

print()

Print Statements (cont.)

• Examples:

• first example:

print('the results are:', 15 + 5, 15 – 5)

'the results are:' 20 10

output: the results are: 20 10

(note that the quotes around the string literal are not printed)

• second example:

cents = 89
print('you have', cents, 'cents')

CS 105, Boston University Fall 2021 163

Variables and Data Types

• The type function gives us the type of an expression:

>>> type('hello')
<class 'str'>

>>> type(5 / 2)
<class 'float'>

• Variables in Python do not have a fixed type.

• examples:

>>> temp = 25.0
>>> type(temp)
<class 'float'>

>>> temp = 77
>>> type(temp)

CS 105, Boston University Fall 2021 164

Getting Started with Python

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Beyond Relational Databases

• While relational databases are extremely powerful,
they may be inadequate/insufficient for a given problem.

• Example 1: DNA sequence data
>gi|49175990|ref|NC_000913.2| Escherichia coli K12, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTA
AATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAA
ACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGA
CAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTC
TGCGTGTTGCCGATATTCTGGAAAGCAATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGAT
GATTGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTTGACGGGACTCGCCGCCGCCCAG
CCGGGGTTCCCGCTGGCGCAA

• common queries involve looking for similarities or patterns

• what genes in mice are similar to genes in humans?

• need special algorithms (problem-solving procedures) for
finding statistically significant similarities

• biologists store this data in text files and use
computer programs to process it

CS 105, Boston University Fall 2021 165

Beyond Relational Databases (cont.)

• Example 2: data mining – the process of finding patterns in data

• here again, special algorithms are needed

• typical process:
• extract data from a DBMS
• use a separate program to apply the necessary

algorithms

Other Reasons for Writing Programs

• To create a simple database application.

• example: a program known as a CGI script that:

• takes values entered into a form on a Web page

• creates a query based on those values and
submits it to a DBMS

• generates a Web page to present the results

(Figure 1-15 of Kroenke)

CS 105, Boston University Fall 2021 166

Other Reasons for Writing Programs (cont.)

• To transform data in some way.

• example: when an attribute has a large number of
possible values, it's often necessary to divide them
into subranges of values called bins.

• example bins for an age attribute:
child: 0-12
teen: 12-17
young: 18-35
middle: 36-59
senior: 60-

• use a simple program to replace the actual values
with the corresponding bin names/numbers

15 teen
6 child
40 middle

Summary: Python Building Blocks

• The building blocks of a Python program include:

• literals

• variables

• expressions

• statements

CS 105, Boston University Fall 2021 167

Which of these are expressions?

A. 105

B. x

C. x + y

D. both B and C, but not A

E. A, B, and C

CS 105, Boston University Fall 2021 168

with their current values and then
apply the operators

Which of these are expressions?

An expression is anything that produces a value!

Another definition: anything you can print is an expression.

A. 105

B. x

C. x + y

D. both B and C, but not A

E. A, B, and C

literals evaluate to themselves!

variables evaluate to their current values

in expressions with operators, we replace variables

How a Program Flows...

• Flow of control = order in which statements are executed

• By default, a program's statements are executed sequentially,
from top to bottom.

example program variables in memory

total = 0 total num1
num1 = 5
num2 = 10 num2
total = num1 + num2

5

10

CS 105, Boston University Fall 2021 169

What is the output of the following program?

x = 7
name = 'Olivia'
y = x / 2
x = 11
print('name', x, y)

note: we do not print:
• commas between expressions
• quotes around string literals

What about this program?

x = 7
name = 'Olivia'
y = x / 2
x = 11
print(name, 'x', y * 2)

CS 105, Boston University Fall 2021 170

What are the final values of the variables
after the following program runs?

x y z
x = 5 5
y = 6 5 6
x = y + 3
z = x // 2
x = x % 2

Algorithms

• In order to solve a problem using a computer, you
need to come up with one or more algorithms.

• An algorithm is a step-by-step description of how to
accomplish a task.

• An algorithm must be:

• precise: specified in a clear and unambiguous way

• effective: capable of being carried out

It has often been said that a person does not really
understand something until after teaching it to someone else.
Actually, a person does not really understand something
until after teaching it to a computer, i.e., expressing it as
an algorithm.

Don Knuth

CS 105, Boston University Fall 2021 171

Is This An Algorithm?

• Recipe for preparing a meat roast:

Sprinkle the roast with salt and pepper. Insert a meat
thermometer and place in oven preheated to 150 degrees C.
Cook until the thermometer registers 80-85 degrees C.
Serve roast with gravy prepared from either meat stock or from
pan drippings if there is sufficient amount.

(taken from a book on programming by Pohl and McDowell)

CS 105, Boston University Fall 2021 172

Here’s the Algorithm…

• Recipe for preparing a meat roast:

1. Sprinkle roast with 1/8 teaspoon salt and pepper.
2. Turn oven on to 150 degrees C.
3. Insert meat thermometer into center of roast.
4. Wait a few minutes.
5. If oven does not yet register 150 degrees, return to step 4.
6. Place roast in oven.
7. Wait a few minutes.
8. Check meat thermometer. If temperature is less than

80 degrees C, go back to step 7.
9. Remove roast from oven.
10. If there is at least ½ cup of pan drippings, go to step 12.
11. Prepare gravy from meat stock and go to step 13.
12. Prepare gravy from pan drippings.
13. Serve roast with gravy.

(also from Pohl and McDowell)

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

CS 105, Boston University Fall 2021 173

Step 1: Analysis and Specification

• Analyze the problem (making sure that you understand it),
and specify the problem requirements clearly and
unambiguously.

• Describe exactly what the program will do, without worrying
about how it will do it.

• Ask questions like the following:

• what are the inputs to the program?

• what are the desired outputs?

• what needs to be done to go from the inputs to the outputs?

Step 2: Design

• Determine the necessary algorithms (and possibly other
aspects of the program) and sketch out a design for them.

• This is where we figure out how the program will solve the
problem.

• Algorithms are often designed using pseudocode.

• more informal than an actual programming language

• allows us to avoid worrying about the syntax of the language

• example for our change-adder problem from the video:

get the number of quarters
get the number of dimes
get the number of nickels
get the number of pennies
compute the total value of the coins
output the total value

CS 105, Boston University Fall 2021 174

Step 3: Implementation

• Translate your design into the programming language.

pseudocode code

• We need to learn more Python before we can do this!

Step 4: Testing and Debugging

• A bug is an error in your program.

• Debugging involves finding and fixing the bugs.

• Testing – trying the programs on a variety of inputs –
helps us to find the bugs.

The first program bug! Found by Grace Murray Hopper at Harvard.
(http://www.hopper.navy.mil/grace/grace.htm)

CS 105, Boston University Fall 2021 175

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

CS 105, Boston University Fall 2021 176

Pre-Lecture
Python: Built-in Functions

and User Input

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Functions

• Python comes with a number of built-in functions that
we can use in our programs.

• print is one example.

• A function may take one or more parameters.

• for print, the parameters are the expressions
whose values you want to print

• Example of calling a function:

print('you have', cents, 'cents')

function name parameters

CS 105, Boston University Fall 2021 177

Functions (cont.)

• Some functions return (i.e., output) a value.

• Example: the abs function

• parameter: a number n

• return value (output): the absolute value of n

• Example: the int function

• parameter: a string representing a number

• return value (output): the number as a value of type int

• examples:
• int('15') returns 15
• int('3.75') returns _____________

The Input Function

• The input function allows us to get values from the user.

• parameter: a string that serves as a prompt

input('What is your name? ')

• return value: the string entered by the user

• When the input function is called, it:

• prints the prompt

• waits for the user to type 0 or more characters,
followed by the Enter key

• returns a string containing those characters

• Typically, we use the input function as part of an assignment:

name = input('What is your name? ')

CS 105, Boston University Fall 2021 178

Getting Numeric Input

• The input function always returns a string, regardless of
whether the user enters letters or numbers.

• example: if the user enters 17, input will return '17'

• To get an integer from the user, we can combine
the input function with the int function

quarters = int(input('number of quarters? '))

Getting Numeric Input

• We evaluate the functions from the inside out:

quarters = int(input('number of quarters? '))

int('17')

17

CS 105, Boston University Fall 2021 179

Pre-Lecture
Python: A First Look at Lists;

the range() Function

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Lists
• Recall: A string is a sequence of characters.

'hello'

• A list is a sequence of arbitrary values (the list's elements).
[2, 4, 6, 8]

['CS', 'math', 'english', 'psych']

• A list can include values of different types:
['Star Wars', 1977, 'PG', [35.9, 460.9]]

CS 105, Boston University Fall 2021 180

Generating a Range of Integers

• range(low, high): allows us to work with the range
of integers from low to high-1

• to see the result produced by range()
use the list() function

• if you omit low, the range will start at 0

CS 105, Boston University Fall 2021 181

Pre-Lecture
for Loops in Python

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

for Loops

• A for statement is one way to create a loop in Python.

• allows us to repeat one or more statements.

• Example:

for i in [1, 2, 3]:
print('Warning')
print(i)

will output:
Warning

1
Warning
2
Warning
3

the body of the loop

CS 105, Boston University Fall 2021 182

for Loops (cont.)

• General syntax:

for variable in sequence:
body of the loop

for i in [1, 2, 3]:
print('Warning')
print(i)

execute statement
after the loop

yes

no

does the

more values?

assign the next value in
the sequence to variable

execute the statements
in the body

sequence have

Executing Our Earlier Example
(with one extra statement)

for i in [1, 2, 3]:
print('Warning')
print(i)

print('That's all.')

print('That's all.')

yes

no

does

more values?

assign the next value in
the sequence to i

print('Warning')
print(i)

[1, 2, 3] have

more? i output/action

CS 105, Boston University Fall 2021 183

Simple Repetition Loops

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• Example:

for i in range(3): # [0, 1, 2]
print('I'm feeling loopy!')

outputs:

I'm feeling loopy!
I'm feeling loopy!
I'm feeling loopy!

Simple Repetition Loops

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• Example:

for i in range(5):
print('I'm feeling loopy!')

outputs:

CS 105, Boston University Fall 2021 184

More Python Basics

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What does this program print?

x = -10
y = x ** 2
abs(x)
print(x, y)

CS 105, Boston University Fall 2021 185

How could we make the program print
10 100

x = -10
y = x ** 2
abs(x)
print(x, y)

Note the Difference!

• In the Shell, entering a function call or other expression
displays the value/result of the expression:

>>> abs(-20)
20

>>> 2 ** 10
1024

• In a program, you will only see a value/result if your print it!

program output

abs(-20)
2 ** 10

program output

print(abs(-20)) 20
print(2 ** 10) 1024

CS 105, Boston University Fall 2021 186

Recall Our Earlier Example Program...

quarters = 2
dimes = 3
nickels = 1
pennies = 4

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

An Improved Version with User Input!

quarters = int(input('number of quarters? '))
dimes = int(input('number of dimes? '))
nickels = int(input('number of nickels? '))
pennies = int(input('number of pennies? '))

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

• Note the use of the int() function to convert the user's inputs
to integers.

CS 105, Boston University Fall 2021 187

Getting Numeric Input

• The input function always returns a string, regardless of
whether the user enters letters or numbers.

• example: if the user enters 17, input will return '17'

• To get an integer from the user, we can combine
the input function with the int function

quarters = int(input('number of quarters? '))

• To get a numeric value with a decimal from the user,
we combine input with the float function

price = float(input('enter the price: '))

Identifiers

quarters = int(input('number of quarters? '))
dimes = int(input('number of dimes? '))
nickels = int(input('number of nickels? '))
pennies = int(input('number of pennies? '))

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

• Identifiers are words that are used to name components of
a Python program.

• They include:

• variables, which give a name to a value
quarters dimes nickels pennies cents

• function names like int, input and print

CS 105, Boston University Fall 2021 188

Identifiers (cont.)

• Rules:

• must begin with a letter or _

• can be followed by any number of letters, numbers, or _

• spaces are not allowed

• cannot be the same as a keyword – a word that is
reserved by the language for its own use

• Which of these are not valid identifiers?

n1 num_values 2n

avgSalary course name

• Unlike SQL, Python is case-sensitive.

• for both identifiers and keywords

• example: quarters is not the same as Quarters

How Many Values Will Be Printed?

for val in [2, 4, 6, 8, 10]:
print(val * 10)

print(val)

CS 105, Boston University Fall 2021 189

Tracing a for Loop

• Let's trace the execution of this code:

for val in [2, 4, 6, 8, 10]:
print(val * 10)

print(val)

• Use a table to help you:

more? val output/action
yes 2 20

Simple Repetition Loops

• To repeat a loop's body N times:

for i in range(N): # [0, 1, 2, ..., N – 1]
body of the loop

• What would this loop do?

for i in range(8):
print('I'm feeling loopy!')

CS 105, Boston University Fall 2021 190

Simple Repetition Loops (cont.)

• Another example:

for i in range(7):
print(i * 5)

output?

To print the warning 10 times,
how could you fill in the blank?

for i in __________________:
print('Warning!')

A. range(10)

B. [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

C. range(1, 11)

D. either A or B would work, but not C

E. A, B or C would work

CS 105, Boston University Fall 2021 191

Printing Separate Values on the Same Line

• By default, the print function puts an invisible character
called a newline character at the end of whatever it prints.

• makes the output go to the beginning of the next line

• We can use a special end parameter to replace the newline
with a different character.

• Example:
for i in range(5): for i in range(5):

print(i, i*5) print(i, i*5, end=' ')

will output will output

0 0 0 0 1 5 2 10 3 15 4 20
1 5
2 10
3 15
4 20

CS 105, Boston University Fall 2021 192

Pre-Lecture
Writing Your Own Functions

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Defining a Function

def triple(x):

return 3*x

• Once we define a function, we can call it:
>>> triple(5)
15

>>> triple(1.5)

>>> triple('hello')

x is the input or parameterthe function's name

this line specifies what
the function outputs (or returns)
– in this case, 3 times the inputmust indent

CS 105, Boston University Fall 2021 193

Multiple Lines, Multiple Parameters
def circle_area(diam):

""" Computes the area of a circle
with a diameter diam.

"""
radius = diam / 2
area = 3.14159 * (radius**2)
return area

def rect_perim(l, w):

""" Computes the perimeter of a rectangle

with length l and width w.
"""
return 2*l + 2*w

• Examples:
>>> circle_area(20)
314.159

>>> rect_perim(5, 7)

What is the output of this code?

x y a b
def calculate(x, y): 3 2

a = y (see next slide)
b = x + 1
return a + b + 3

print(calculate(3, 2))

The values in the function call are
assigned to the parameters.

In this case, it's as if we had written:
x = 3
y = 2

CS 105, Boston University Fall 2021 194

What is the output of this code?

x y a b
def calculate(x, y): 3 2

a = y
b = x + 1
return a + b + 3

print(calculate(3, 2)) # print(__________)

The output/return value:
• is sent back to where the function call

was made
• replaces the function call

The program picks up where it left off
when the function call was made.

CS 105, Boston University Fall 2021 195

Pre-Lecture
Cumulative Computations

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Python Shortcuts

• Consider this code:

age = 13

age = age + 1

13 + 1
14

• Instead of writing

age = age + 1

we can just write

age += 1

CS 105, Boston University Fall 2021 196

Python Shortcuts (cont.)

shortcut equivalent to

var += expr var = var + (expr)

var -= expr var = var – (expr)

var *= expr var = var * (expr)

var /= expr var = var / (expr)

var //= expr var = var // (expr)

var %= expr var = var % (expr)

var **= expr var = var ** (expr)

where var is a variable
expr is an expression

• Important: the = must come after the other operator.

+= is correct

=+ is not!

Using a Loop to Sum a List of Numbers

def sum(vals):
result = 0 # the accumulator variable
for x in vals:

result += x # gradually accumulates the sum
return result

print(sum([10, 20, 30, 40, 50]))

x result

CS 105, Boston University Fall 2021 197

Writing Your Own Functions;
Cumulative Computations

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What is the output of this code?

x y a b
def calculate(x, y):

a = y
b = x + 1
return a * b - 3

print(calculate(3, 2))

CS 105, Boston University Fall 2021 198

Practice Writing a Function
• Write a function feet_to_cm(ft) that takes a length

in feet (ft) and returns the equivalent length in centimeters.

• 1 foot = 12 inches

• 1 inch = 2.54 centimeters

• examples:
>>> feet_to_cm(3)
91.44
>>> feet_to_cm(10)
304.8

• template:

def feet_to_cm(ft):
""" converts ft feet to centimeters """

inches = _____________

___________________________ # optional

return _______________

CS 105, Boston University Fall 2021 199

All of these work!
def feet_to_cm(ft):

""" converts ft feet to centimeters """

inches = ft * 12
cm = inches * 2.54
return cm

def feet_to_cm(ft):
""" converts ft feet to centimeters """

inches = ft * 12
return inches * 2.54

def feet_to_cm(ft):
""" converts ft feet to centimeters """
return ft * 12 * 2.54

These are not the same!
def feet_to_cm(ft):

""" converts ft feet to centimeters """

inches = ft * 12
cm = inches * 2.54
return cm

def feet_to_cm(ft):
""" converts ft feet to centimeters """

inches = ft * 12
cm = inches * 2.54
print(cm)

CS 105, Boston University Fall 2021 200

Recall: Using a Loop to Sum a List of Numbers

def sum(vals): # vals = [10,20,30, 40,50]
result = 0
for x in vals:

result += x
return result

print(sum([10, 20, 30, 40, 50]))

x result

Recall: Using a Loop to Sum a List of Numbers

def sum(vals): # vals = [10,20,30, 40,50]
result = 0
for x in vals:

result += x
return result # return 150

print(sum([10, 20, 30, 40, 50]))

x result

0

10 10

20 30

30 60

40 100

50 150

no more values in vals, so we're done

CS 105, Boston University Fall 2021 201

Cumulative Computations

def sum(vals):
result = 0 # the accumulator variable
for x in vals:

result += x # gradually accumulates the sum
return result

print(sum([10, 20, 30, 40, 50]))

x result

0

10 10

20 30

30 60

40 100

50 150

no more values in vals, so we're done
output: 150

Summing User Inputs

• Let's trace through the code below for the inputs 7, 9, 11, 8, 6:

total = 0
for i in range(5): # range(5) = 0, 1, 2, 3, 4

num = int(input('enter a number: '))
total = total + num

output the result
print('the total of the numbers is', total)

i num total

before the first iteration 0

first iteration 0 7

CS 105, Boston University Fall 2021 202

Making the Program More Flexible

• How could we change the program to allow the user to specify
the number of values to be summed?

total = 0
for i in range(5):

num = int(input('enter a number: '))
total = total + num

output the result
print('the total of the numbers is', total)

CS 105, Boston University Fall 2021 203

Pre-Lecture
Making Decisions:

Conditional Execution

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Conditional Execution

• Conditional execution allows your code to decide whether
to do something, based on some condition.

• example:

def abs_value(x):
""" returns the absolute value of input x """
if x < 0:

x = -1 * x
return x

• examples of calling this function from the Shell:
>>> abs_value(-5)
5

>>> abs_value(10)

CS 105, Boston University Fall 2021 204

Simple Decisions: if Statements

• Syntax:

if condition:
true block

where:

• condition is an expression
that is true or false

• true block is one or more
indented statements

• Example:

def abs_value(x):
if x < 0:

x = -1 * x # true block
return x

Two-Way Decisions: if-else Statements

• Syntax:

if condition:
true block

else:

false block

• Example:

def pass_fail(avg):
if avg >= 60:

grade = 'pass' # true block
else:

grade = 'fail' # false block
return grade

CS 105, Boston University Fall 2021 205

Tracing Conditional Execution: Example 1

def pass_fail(avg): avg
if avg >= 60:

grade = 'pass'
else: grade

grade = 'fail'
return grade

>>> pass_fail(80)

def pass_fail(avg): avg
if avg >= 60:

grade = 'pass'
else: grade

grade = 'fail'
return grade

>>> pass_fail(55)

Tracing Conditional Execution: Example 2

CS 105, Boston University Fall 2021 206

Expressing Simple Conditions

• Python provides a set of relational operators
for making comparisons:

operator name examples

< less than val < 10

price < 10.99

> greater than num > 60

state > 'Ohio'

<= less than or equal to average <= 85.8

>= greater than or equal to name >= 'Jones'

== equal to total == 10

letter == 'P'

!= not equal to age != my_age

(don't confuse with =)

Boolean Values and Expressions

• A condition has one of two values: True or False.

>>> 10 < 20
True
>>> "Jones" == "Baker"
False

• True and False are not strings.

• they are literals from the bool data type

>>> type(True)
<class 'bool'>

>>> type(30 > 6)
<class 'bool'>

• An expression that evaluates to True or False is known as
a boolean expression.

CS 105, Boston University Fall 2021 207

Forming More Complex Conditions

• Python provides logical operators for combining/modifying
boolean expressions:

name example and meaning
and age >= 18 and age <= 35

True if both conditions are True, and False otherwise

or age < 3 or age > 65

True if one or both of the conditions are True;
False if both conditions are False

not not (grade > 80)

True if the condition is False, and False if it is True

A Word About Blocks

• A block can contain multiple statements.

def welcome(class):
if class == 'frosh':

print('Welcome to BU!')
print('Have a great four years!')

else:
print('Welcome back!')
print('Have a great semester!')
print('Be nice to the frosh students.')

• A new block begins whenever we increase the amount
of indenting.

• A block ends when we either:

• reach a line with less indenting than the start of the block

• reach the end of the program

CS 105, Boston University Fall 2021 208

Nesting

• We can "nest" one conditional statement in the true block
or false block of another conditional statement.

def welcome(class):
if class == 'frosh':

print('Welcome to BU!')
print('Have a great four years!')

else:
print('Welcome back!')
if class == 'senior':

print('Have a great last year!')
else:

print('Have a great semester!')

print('Be nice to the frosh students.')

Multi-Way Decisions

• The following function doesn't work.

def letter_grade(avg):
if avg >= 90:

grade = 'A'
if avg >= 80:

grade = 'B'
if avg >= 70:

grade = 'C'
if avg >= 60:

grade = 'D'
else:

grade = 'F'
return grade

• example:
>>> letter_grade(95)

CS 105, Boston University Fall 2021 209

Multi-Way Decisions (cont.)

• Here's a fixed version:

def letter_grade(avg):
if avg >= 90:

grade = 'A'
elif avg >= 80:

grade = 'B'
elif avg >= 70:

grade = 'C'
elif avg >= 60:

grade = 'D'
else:

grade = 'F'
return grade

• example:
>>> letter_grade(95)

Multi-Way Decisions: if-elif-else Statements

• Syntax:

if condition1:
true block for condition1

elif condition2:
true block for condition2

elif condition3:
true block for condition3

…
else:

false block

• The conditions are evaluated in order. The true block of the
first true condition is executed.

• If none of the conditions are true, the false block is executed.

CS 105, Boston University Fall 2021 210

Flowchart for an if-elif-else Statement

false block

false

true
condition1 true block 1

false

true
condition2 true block 2

...

false

next statement

CS 105, Boston University Fall 2021 211

Python: Working with Numbers;
Making Decisions

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Numeric Operators

• Recall the operators for numbers:
+ addition

- subtraction

* multiplication

/ float division

// integer division

** exponentiation

% modulus: gives the remainder of a division

example: 11 % 3 evaluates to 2

CS 105, Boston University Fall 2021 212

Using the Operators

• Recall our change-adder program:

quarters = int(input('number of quarters? '))
dimes = int(input('number of dimes? '))
nickels = int(input('number of nickels? '))
pennies = int(input('number of pennies? '))

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

• Let's change it to print the result in dollars and cents.

• for example, 327 cents would print as 3 dollars, 27 cents

How Would Your Complete This Program?

quarters = int(input('number of quarters? '))
dimes = int(input('number of dimes? '))
nickels = int(input('number of nickels? '))
pennies = int(input('number of pennies? '))

cents = quarters*25 + dimes*10 + nickels*5 + pennies
dollars = ______________________
cents =

print('you have', dollars, 'dollars,', cents, 'cents')

first blank second blank

A. cents / 100 cents % 100

B. cents // 100 cents % 100

C. cents / 100 cents % dollars

D. cents // 100 cents % dollars

CS 105, Boston University Fall 2021 213

Recall: Two Types of Division

• The / operator always produces a float result.

• examples:

>>> 5 / 3
1.6666666666666667

>>> 6 / 3
2.0

• There is a separate // operator for integer division,
which discards (without rounding) anything after the decimal:

>>> 6 // 3
2

>>> 11 // 5

>>> 5 // 3

Integer Division and the Modulus Operator

• // and % are often used together, as we just did:

dollars = cents // 100
cents = cents % 100

• // gives the whole-number portion of a division result.

• % gives the whole-number remainder of that same result.

• another example: 11 divided by 4... is 2 with a remainder of 3

>>> 11 // 4
2

>>> 11 % 4
3

CS 105, Boston University Fall 2021 214

Other Uses of the Modulus Operator

• Determining if an integer n is even or odd:

• n % 2 == 0 if n is even

• n % 2 == 1 if n is odd

• Determining if an integer n is a multiple of another integer m:

• n % m == 0 if n is a multiple of m

• n % m != 0 if n is not a multiple of m

Recall: Getting Numeric Input
• The input function always returns a string, regardless of

whether the user enters letters or numbers.

• example: if the user enters 17, input will return '17'

• To get an integer from the user, we can combine
the input function with the int function

quarters = int(input('number of quarters? '))

• To get a numeric value with a decimal from the user,
we combine input with the float function

price = float(input('enter the price: '))

• Entering two or more numbers!
a, b = eval(input('enter value 1, value 2: '))

• a is assigned the first value entered

• b is assigned the second value

CS 105, Boston University Fall 2021 215

Type Conversions

• float() and int() can also convert from one numeric type
to another:
• float(n): converts n to a float
• int(n): converts n to an int, discarding any fractional part

• Examples:
>>> int(8.72532)
8

>>> float(8)
8.0

>>> 15 ** 30
191751059232884086668491363525390625

>>> float(15 ** 30)
1.9175105923288408e+35

scientific notation:
1.9175105923288408 x 1035

note also: floats have
less precision than integers

Type Conversions (cont.)

• Using a type-conversion function does not change the type
of the value stored in memory.

• examples:

>>> measurement = 3.7
>>> int(measurement)
3
>>> measurement
3.7

• How could we change the type of the value stored in memory?

>>>

CS 105, Boston University Fall 2021 216

Rounding a Number

• round(n) rounds the number n to an integer:
>>> round(7.5)
8
>>> round(7.49)
7
>>> round(2.8)
3

• round(n, d) rounds the number n to d places after the decimal.
>>> round(8.7583, 2)
8.76
>>> round(8.7583, 1)
8.8
>>> round(10.595, 2)
10.6

(note that non-essential 0s are not displayed)

What is the output of this program?

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

else:
if x > 2:

print('three')

CS 105, Boston University Fall 2021 217

What does this print? (note the changes!)

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

if x > 2:
print('three')

What does this print? (note the new changes!)

x = 5
if x < 15:

if x > 8:
print('one')

else:
print('two')

if x > 2:
print('three')

CS 105, Boston University Fall 2021 218

How many lines does this print?

x = 5
if x == 8:

print('how')
elif x > 1:

print('now')
elif x < 20:

print('wow')
print('cow')

How many lines does this print?

x = 5
if x == 8:

print('how')
if x > 1:

print('now')
if x < 20:

print('wow')
print('cow')

CS 105, Boston University Fall 2021 219

Pre-Lecture
Working with Strings and Lists

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Strings: Numbering the Characters

• The position of a character within a string is known as its index.

• There are two ways of numbering characters in Python:

• from left to right, starting from 0

0 1 2 3 4

'Perry'
• from right to left, starting from -1

-5 -4 -3 -2 -1

'Perry'
• 'P' has an index of 0 or -5

• 'y' has an index of …

CS 105, Boston University Fall 2021 220

String Operations

• Indexing: string [index]

>>> name = 'Picobot'
>>> name[1]
'i'
>>> name[-3]

• Slicing (extracting a substring): string [start :end]

>>> name[0:2]
'Pi'
>>> name[1:-1]

'icobo'
>>> name[1:]
'icobot'
>>> name[:4]
'Pico'

up to but
not including
this index

from
this index

String Operations (cont.)

• Concatenation: string1 + string2

>>> word = 'program'
>>> plural = word + 's'
>>> plural
'programs'

• Duplication: string * num_copies

>>> 'ho!' * 3
'ho!ho!ho!'

• Determining the length: len(string)

>>> name = 'Perry'
>>> len(name)

>>> len('') # an empty string – no characters!
0

CS 105, Boston University Fall 2021 221

List Ops == String Ops (more or less)
0 1 2 3

>>> majors = ['CS', 'math', 'english', 'psych']

>>> majors[2]

'english'

>>> majors[1:3]

>>> len(majors)

4

>>> majors + ['physics']

['CS', 'math', 'english', 'psych', 'physics']

>>>

Note the difference!
• For a string, both slicing and indexing produce a string:

>>> s = 'Terriers'

>>> s[1:2]
'e'

>>> s[1]
'e'

• For a list:

• slicing produces a list

• indexing produces a single element – may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2]
[1977]

>>> info[1]
1977

>>> info[-1]

CS 105, Boston University Fall 2021 222

Working with Strings and Lists

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Practice with Indexing and Slicing

• Given the following assignment:
>>> s = 'computer'

• What is the value of each of the following?
>>> s[1]

>>> s[-1]

>>> s[2:4]

>>> s[:3]

>>> s[5:]

>>> s[-4:-1]

CS 105, Boston University Fall 2021 223

What is the value of s after the following code runs?

s = 'def'

s = ('a' * 3) + s

s = s[2:-2]

What is the output of the following program?

mylist = [5, 4, [3, 2, 1]]
print(mylist[1], mylist[1:2])

• indexing a list produces
a single element – which
may or may not be a list

• slicing a list always
produces a list!

CS 105, Boston University Fall 2021 224

How could you fill in the blank
to produce [105, 111]?

intro_cs = [101, 103, 105, 108, 109, 111]

dgs_courses = _______________________

A. intro_cs[2:3] + intro_cs[-1:]

B. intro_cs[-4] + intro_cs[5]

C. intro_cs[-4:3] + intro_cs[5:6]

D. more than one of the above

E. none of the above

How could you fill in the blank
to produce [105, 111]?

intro_cs = [101, 103, 105, 108, 109, 111]

dgs_courses = _______________________

What about this?

intro_cs[-4] + intro_cs[-1:]

CS 105, Boston University Fall 2021 225

Mutable vs. Immutable
• A list is mutable, which means that it can be changed "in place":

>>> majors = ['CS', 'math', 'english', 'psych']
>>> majors
['CS', 'math', 'english', 'psych']
>>> majors[2] = 'literature'
>>> majors
['CS', 'math', 'literature', 'psych']

• A string is immutable, which means it can't be changed
"in place."

>>> sentence = 'a string a immutable.'
>>> sentence[0] = 'A'
TypeError: 'str' object does not support item
assignment

Practice Problem: Height Converter

• Let's design and write a program that reads a height in
centimeters and computes:

• the height in inches rounded to the nearest inch

• the height in feet, which any fraction of a foot expressed
in inches

• Example interaction:
Enter your height in cm: 172
You are 68 inches tall (5 feet, 8 inches).

• To convert from centimeter to inches, divide by 2.54.

• Optional extra: If the entered height is not positive, print an
error message and end the program.

CS 105, Boston University Fall 2021 226

One Possible Solution

cm = int(input('Enter your height in cm: '))
inches = cm / 2.54
inches = round(inches)

feet = inches // 12
remaining = inches % 12

print('You are', inches, 'inches tall (' + str(feet),
'feet,', remaining, 'inches).')

A Solution That Handles Inputs Less Than 0

cm = int(input('Enter your height in cm: '))
if cm < 0:

print('Heights must be positive')
else:

inches = cm / 2.54
inches = round(inches)

feet = inches // 12
remaining = inches % 12

print('You are', inches, 'inches tall (' + str(feet),
'feet,', remaining, 'inches).')

CS 105, Boston University Fall 2021 227

Extra Practice: Fill in the blank to
make the code print compute!

subject = 'computer science!'
verb = _______________
print(verb)

A. subject[:7] + subject[-1]

B. subject[:7] + subject[:-1]

C. subject[:8] + subject[-1]

D. subject[:8] + subject[:-1]

E. none of these

CS 105, Boston University Fall 2021 228

Pre-Lecture
Using Objects;

Splitting and Joining Strings

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What Is An Object?

• An object is a construct that groups together:

• one or more data values (the object's attributes)

• one or more functions that operate on those data values
(known as the object's methods)

CS 105, Boston University Fall 2021 229

Strings Are Objects

• In Python, a string is an object.

• attributes:

• the characters in the string

• the length of the string

• methods: functions inside the string that we can use
to operate on the string

upper() replace()
lower() split()
find() ...
count()

contents 'h''e''l''l''o'

length 5

upper() replace()
lower() split()
find() ...
count()

contents 'b''y''e'

length 3

string object for 'hello' string object for 'bye'

Calling a Method

• An object's methods are inside the object,
so we use dot notation to call them.

• Example:

name = 'Perry'

allcaps = name.upper()

• Because a method is inside the object,
it is able to access the object's attributes.

the object's
variable

the method
name

the dot

upper() replace()
lower() split()
find() ...
count()

contents 'P''e''r''r''y'

length 5

string object for 'Perry'

CS 105, Boston University Fall 2021 230

String Methods (partial list)
• s.upper(): return a copy of s with all uppercase characters

• s.lower(): return a copy of s with all lowercase characters

• s.find(sub): return the index of the first occurrence of the
substring sub in the string s (-1 if not found)

• s.count(sub): return the number of occurrences of the
substring sub in the string s (0 if not found)

• s.replace(target, repl): replace all occurrences of the
substring target in s with the substring repl

Splitting a String

• The split() method breaks a string into a list of substrings.

>>> name = ' Martin Luther King '
>>> name.split()
['Martin', 'Luther', 'King']
>>> components = name.split()
>>> components[0]
'Martin'

• By default, it uses whitespace characters (spaces, tabs,
and newlines) to determine where the splits should occur.

• You can specify a different separator:
>>> date = '10/21/2000'
>>> date.split('/')

CS 105, Boston University Fall 2021 231

Joining Together a List of Strings

• The join() method takes a list of strings and joins them
together.

• join() is a string method, not a list method.

• we call it using the string that we want to use as a separator

• Examples:
>>> components = ['Martin', 'Luther', 'King']
>>> ' '.join(components)
'Martin Luther King'
>>> '/'.join(['10', '21', '2000'])

CS 105, Boston University Fall 2021 232

Using Objects;
Splitting and Joining Strings

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Examples of Using String Methods

>>> chant = 'We are the Terriers!'

>>> chant.upper()

>>> chant.lower()

>>> chant.replace('e', 'o')

>>> chant.replace('e', 'o').upper()

>>> chant

CS 105, Boston University Fall 2021 233

What is the output of this program?

s = 'Programming'
s = s.lower()
s.upper()
print(s.split('r'))

A. ['P', 'og', 'amming']

B. ['p', 'og', 'amming']

C. ['P', 'OG', 'AMMING']

D. ['PR', 'OGR', 'AMMING']

E. ['pr', 'ogr', 'amming']

How could I print the string 'PROGRAMMING'?

components = ['p', 'og', 'amming']
print(___________________________)

A. components.join('r').upper()

B. join(components, 'r').upper()

C. 'r'.join(components).upper()

D. components.upper().join('r')

E. 'r'.upper().join(components)

CS 105, Boston University Fall 2021 234

Practice: Analyzing a Name

• Write a program that analyzes a person's name.

• Here's a sample run of the program:

Enter your full name: George Alexander Louis Wales
Your name has 28 characters (including spaces).

Your name has 4 components.
first name: George
last name: Wales

other names: Alexander Louis

Enter a letter: r
That letter occurs 2 times in your name.
The first occurrence is at position 3 in the name.

CS 105, Boston University Fall 2021 235

Pre-Lecture
Accessing a Database from Python

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Initial Steps

• Put the database file in the same folder as the Python
program that will access it.

• Import the necessary Python module:

import sqlite3

• Connect to the database as follows:

db = sqlite3.connect(name of database file)

• example:

db = sqlite3.connect('movie.sqlite')

• sqlite3.connect returns a database handle

• an object that provides a connection to the database

• we assign it to a variable

CS 105, Boston University Fall 2021 236

Performing a Query

• Given a database handle, we perform a query by:

• using a method inside the database handle to create
another object known as a cursor:

cursor = db.cursor()

• using a method inside the cursor object to execute
the query command:

cursor.execute(command)

• Example:

cursor = db.cursor()
cursor.execute('''SELECT name, rating

FROM Movie
WHERE year = 2012;''')

Obtaining the Results of a Query

• Executing a query does not automatically display the results.

• Rather, we use the cursor to access the results.

• One option: the fetchone method inside the cursor:

row = cursor.fetchone()

• gets one row at a time from the results

• if there are no rows left to get, this function returns None

CS 105, Boston University Fall 2021 237

Format of a Row

• Each row of the query results looks something like this:

('Iron Man 3', 'PG-13')

• This is known as a tuple in Python.

• another type of sequence

• similar to a list, but it's not mutable

• can access its components using indexing

row = ('Iron Man 3', 'PG-13')

row[0] row[1]

Using a for Loop to Display Query Results

• If we knew how many rows were in the result,
we could do something like this:

for i in range(4):
row = cursor.fetchone()
print(row[0], '(' + row[1] + ')')

• However, we typically don't know how many rows there are!

• To solve this problem, Python lets us do this!

for row in cursor:
print(row[0], '(' + row[1] + ')')

• the loop variable (row) takes on one row at a time
from the results of the query executed by the cursor

• we don't need to use the fetchone method

• the loop will perform as many repetitions
as there are rows in the result!

CS 105, Boston University Fall 2021 238

Using a for Loop to Display Query Results

• General template:

for row in cursor:
code to process one row goes here

• Another example:

preliminary steps are taken as before...

cursor = db.cursor()
cursor.execute('''SELECT name, rating, runtime

FROM Movie
WHERE year = 2013;''')

for row in cursor:
rating = '(' + row[1] + ')'
if row[2] > 120:

print(row[0], rating, '**over 2 hrs**')
else:

print(row[0], rating)

Executing a Query Based on User Input

• How can we execute a query that's based on user inputs?

• example interaction:
year to search for? 1976
Rocky (PG)
Network (R)
All the President's Men (PG)

• Have the user enter the year as a string:

target_year = input('year to search for? ')

CS 105, Boston University Fall 2021 239

Parameterized Queries

• To handle user input, we use a parameterized query.

• example:

command = '''SELECT name, rating
FROM Movie
WHERE year = ?;'''

• ? is a placeholder

• We execute the parameterized query as follows:
cursor.execute(command, [target_year])

• The execute function replaces the placeholders with the
specified values.

command string
with placeholders

a list containing the values
that should replace the
placeholders (the parameters)

CS 105, Boston University Fall 2021 240

Accessing a Database from Python

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Modules in Python

• A module in Python is a collection of functions.

• can also include other things like constants

• To use a function from a module, we:

• import the module

• prepend the name of the module before the function name

• Example: the math module, which includes:

• sqrt(n): computes the square root of a number

• trigonometric functions: sin(n), cos(n), tan(n)

• constants: pi, e

>>> math.sqrt(25)
…NameError: name 'math' is not defined
>>> import math
>>> math.sqrt(25)
5.0

CS 105, Boston University Fall 2021 241

Recall: Connecting to a Database

• After importing sqlite3:

db = sqlite3.connect(name of database file)

• example:

db = sqlite3.connect('movie.sqlite')

• sqlite3.connect returns a database handle

• an object that provides a connection to the database

• we assign it to a variable

Important!

• Double-check to ensure that the database file is in
the same folder as your Python program.

• If you forget to put the database file in the right place,
you'll get a misleading error message like this:

sqlite3.OperationalError: no such table: Movie

• after the error, there will be a database file in the folder!

• When you try to connect to a database file that isn't there,
SQLite creates an empty database file for you!

• assumes that you are using the program to create
a brand new database

• If you get this error:

• delete the version of the database file in the folder

• replace it with the actual database file

CS 105, Boston University Fall 2021 242

How many lines would this program output?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

CS 105, Boston University Fall 2021 243

How many lines would this program output?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

row = cursor.fetchone()
print(row[0], row[1])

CS 105, Boston University Fall 2021 244

How could we get all of the rows of results?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

row = cursor.fetchone()
print(row[0], row[1])

One option...

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

row = cursor.fetchone()
print(row[0], row[1])
row = cursor.fetchone()
print(row[0], row[1])
row = cursor.fetchone()
print(row[0], row[1])

CS 105, Boston University Fall 2021 245

A better option...how would you fill in the blank?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

for i in ___________:
row = cursor.fetchone()
print(row[0], row[1])

An even better way!

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3

db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = 'ugrad';''')

for row in cursor:
print(row[0], row[1])

CS 105, Boston University Fall 2021 246

Accessing the Movie Database

import sqlite3

connect to the database and create a cursor
db = sqlite3.connect('movie.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT name, rating

FROM Movie
WHERE year = 2013;''')

obtain and print all results!
for row in cursor:

print(row[0], '(' + row[1] + ')')

output:

Iron Man 3 (PG-13)
Frozen (PG)
Despicable Me 2 (PG)
Man of Steel (PG-13)
Gravity (PG-13)
Monsters University (G)

...plus all of the other
2013 movies!

Concluding a Database Session

• At the end of a program that accesses a database,
you should use the database handle (db) to:

• commit any changes that were made:

db.commit()

• close the connection to the database

db.close()

• This isn't crucial if you're only executing SELECT commands.

• If you execute commands that make changes and
don't take these steps, the changes may not take effect!

• We'll take these steps even when we're not making changes!

CS 105, Boston University Fall 2021 247

Revised Program

import sqlite3

connect to the database and create a cursor
db = sqlite3.connect('movie.sqlite')
cursor = db.cursor()

execute the query
cursor.execute('''SELECT name, rating

FROM Movie
WHERE year = 2013;''')

obtain and print all results!
for row in cursor:

print(row[0], '(' + row[1] + ')')

conclude the database session
db.commit()
db.close()

output:

Iron Man 3 (PG-13)
Frozen (PG)
Despicable Me 2 (PG)
Man of Steel (PG-13)
Gravity (PG-13)
Monsters University (G)

...plus all of the other
2013 movies!

Recall: Parameterized Queries

• To handle user input, we use a parameterized query.

• example:

command = '''SELECT name, rating
FROM Movie
WHERE year = ?;'''

• ? is a placeholder

• We execute the parameterized query as follows:
cursor.execute(command, [target_year])

• The execute function replaces the placeholders with the
specified values.

command string
with placeholders

a list containing strings
that should replace the
placeholders (the parameters)

CS 105, Boston University Fall 2021 248

Recall: Example Program: Final Version

import sqlite3

connect to the database and create a cursor
db = sqlite3.connect('movie.sqlite')
cursor = db.cursor()

get the year from the user as a string
target_year = input('year to search for? ')

execute the parameterized query
command = '''SELECT name, rating

FROM Movie
WHERE year = ?;'''

cursor.execute(command, [target_year])

obtain and print all results!
for row in cursor:

print(row[0], '(' + row[1] + ')')

conclude the database session
db.commit()
db.close()

The Wrong Way to Incorporate User Input

• In theory, we could construct the query command string
using string concatenation:

target_year = input('year to search for? ')

command = '''SELECT name, rating
FROM Movie
WHERE year = ''' + target_year + ';'

cursor.execute(command) # no parameters needed!

for row in cursor:
print(row[0], '(' + row[1] + ')')

• Problem: this approach can lead to serious security breaches!

• known as SQL injections

CS 105, Boston University Fall 2021 249

SQL Injection Vulnerability

• Example: let's say that in addition to the movie tables,
there's a table called Secret containing sensitive data.

• The user could do something like this:

year to search for? 1976; SELECT * FROM Secret

• The string concatenation will produce the following:

SELECT name, rating
FROM Movie
WHERE year = 1976; SELECT * FROM Secret;

• After showing the movie results, the program will then
display the entire first two columns of Secret!

SQL Injection Vulnerability (cont.)

• Here's another problematic input!

year to search for? 1976; DROP TABLE Secret

• Parameterized queries eliminate this vulnerability.
command = '''SELECT name, rating

FROM Movie
WHERE year = ?;'''

cursor.execute(command, [target_year])

• When replacing a placeholder with its specified value,
execute takes whatever steps are needed to ensure that
the value is treated as a single literal value.

• example: if the user enters 1976; SELECT * FROM Secret
the resulting command is:
SELECT name, rating
FROM Movie

WHERE year = '1976; SELECT * FROM Secret';

notice the
quotes!

CS 105, Boston University Fall 2021 250

Handling Queries with No Results

• What if the user enters a year with no movies in the database?

• We'd like our program to print a message when this happens.

• One way of doing this is to maintain a count of the number
of rows that the program processes:

cursor.execute(command, [target_year])

count = 0
for row in cursor:

print(row[0], '(' + row[1] + ')')
count = count + 1

if count == 0:
print('There are no movies from', target_year)

CS 105, Boston University Fall 2021 251

Review: Strings and Lists;
Accessing a Database

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What is the output of the following program?

s = 'hello world'
values = [2, 3, 4]
print(s[1:2], values[-2:-1])

A. el [3, 4]

B. el 3 4

C. e [3]

D. e 3

E. none of the above

CS 105, Boston University Fall 2021 252

What is the output of the following program?

s = 'hello world'
x = s.split()
print(x[1])

A. h

B. e

C. hello

D. world

E. none of the above

What about this program?

s = 'hello world'
x = s.split('o')
print(x[1])

CS 105, Boston University Fall 2021 253

How would you fill in the blank?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3
db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

get the credit status from the user
target_status = input('which credit status do you want? ')

execute the query
command = '''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = ?;'''

cursor.execute(________________)

A. command

B. command, target_status

C. command, [target_status]

D. none of the above

What about this blank?

student_id course_name credit_status
12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 ugrad

Enrolled

import sqlite3
db = sqlite3.connect('university.sqlite')
cursor = db.cursor()

get the credit status from the user
target_status = input('which credit status do you want? ')

execute the query
command = '''SELECT student_id, course_name

FROM Enrolled
WHERE credit_status = ?;'''

cursor.execute(...) # filled in from previous slide
for row in cursor:

print(_____________________)

A. row[0], row[1]

B. row.fetchone()

C. cursor[0], cursor[1]

D. none of the above

CS 105, Boston University Fall 2021 254

Parameterized Queries: Another Example

• Here's a query that takes three parameters:

command = '''SELECT M.name, M.year
FROM Movie M, Person P, Director D
WHERE M.id = D.movie_id
AND P.id = D.director_id
AND P.name = ?
AND M.year BETWEEN ? AND ?;'''

• Here's an example of using it:
dir_name = input("director's name: ")
start = input("start of year range: ")
end = input("end of year range: ")

cursor.execute(command, [dir_name, start, end])
['Joel Coen','2000','2012'])

The Full Program (getMoviesByDirector.py)

import sqlite3

filename = input("name of database file: ")
db = sqlite3.connect(filename)
cursor = db.cursor()

dir_name = input("director's name: ")
start = input("start of year range: ")
end = input("end of year range: ")

command = '''SELECT M.name, M.year
FROM Movie M, Person P, Director D
WHERE M.id = D.movie_id
AND P.id = D.director_id
AND P.name = ? AND M.year BETWEEN ? AND ?;'''

cursor.execute(command, [dir_name, start, end])

for row in cursor:
print(row[0], row[1])

db.commit()
db.close()

CS 105, Boston University Fall 2021 255

Handling Queries with No Results

• What if the user enters a director who isn't in the database,
or a range of years with no movies for the director?

• We'd like our program to print a message when this happens.

• One way of doing this is to maintain a count of the number
of tuples that the program processes:

...
cursor.execute(command, [dir_name, start, end])

count = 0
for row in cursor:

print(row[0], row[1])
count = count + 1

print a message if there were no results
what should go here?

CS 105, Boston University Fall 2021 256

Pre-Lecture
Working with Text Files;

File Writing

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Opening a Text File

• Before working with a file, we need to open a connection to it.

• Example:

outfile = open('example.txt', 'w')

where:

• 'example.txt' is the name of the file we want to write to

• 'w' indicates that we want to write to the file
(to read from the file, we would use 'r' instead)

• Doing so creates an object known as a file handle.

• we use the file handle to perform operations on the file

CS 105, Boston University Fall 2021 257

Closing a File

• Here's our previous example:
outfile = open('example.txt', 'w')

• When we're done working with the file, we close its handle:
outfile.close()

• Important: Text that you write to a file may not make it
to disk until you close the file handle!

Writing to a File

• When you open a file for writing:

• if the file doesn't already exist, it will be created

• if the file does exist, the current contents will be erased!

• To write values to a file, we can use the print()
method as usual, but with an extra parameter for the file:

print(…, file=file-handle)

• Example:

outfile = open('foo.txt', 'w')

print('I love Python!', file=outfile)

CS 105, Boston University Fall 2021 258

More Practice with Database Access;
Writing to a Text File

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

A Front-End for Our Movie Database

• Let's write a Python program that serves as a front-end to
our movie database.

• For now, it will do the following:

• get the name of a person from the user

• use a parameterized SELECT command to retrieve
the appropriate record from the Person table

• if the specified person is in the database, print his/her
information in the following format:

name was born on dob in pob.

• otherwise, print an appropriate error message

CS 105, Boston University Fall 2021 259

Sample Runs of the Program

name of database file: movie.sqlite
name of actor: Dave Sullivan
Dave Sullivan is not in the database.

name of database file: movie.sqlite
name of actor: Meryl Streep
Meryl Streep was born on 1949-06-22 in Summit, New
Jersey, USA.

A Front-End for Our Movie Database

import sqlite3
filename = input('name of database file: ')
db = sqlite3.connect(filename)
cursor = db.cursor()

Get the actor's name.
__

Execute the command, get the result, and print it.
command = '''SELECT dob, pob

FROM Person
WHERE name = ?;'''

cursor.execute(_____________________)

for ______________________________:
print(___)

CS 105, Boston University Fall 2021 260

Converting the Date Format

• Here's the current output:

name of database file: movie.sqlite
name of actor: Meryl Streep
Meryl Streep was born on 1949-06-22 in Summit, New
Jersey, USA.

• Let's say that we want to change the format of the date of birth:

name of database file: movie.sqlite
name of actor: Meryl Streep
Meryl Streep was born on 06/22/1949 in Summit, New
Jersey, USA.

• What string methods would be useful here?

How would you fill in the blanks?
...
command = '''SELECT dob, pob

FROM Person
WHERE name = ?;'''

cursor.execute(command, [name])

count = 0
for row in cursor:

comps = ________________
dob = ______________________
print(name, 'was born on', dob, 'in', row[1] + '.')
count = count + 1

...

first blank second blank

Example:
We want to go
from '1949-06-22'

to '06/22/1949'

A. row[0].split() '/'.join(comps)

B. row[0].split('-') '/'.join(comps)

C. row[0].split() '/'.join([comps[1], comps[2], comps[0]])

D. row[0].split('-') '/'.join([comps[1], comps[2], comps[0]])

CS 105, Boston University Fall 2021 261

Revised Front-End for Our Movie Database

import sqlite3
filename = input('name of database file: ')
db = sqlite3.connect(filename)
cursor = db.cursor()

Get the actor's name.
name = input('name of actor: ')

Execute the command, get the result, and print it.
command = 'SELECT dob, pob FROM Person WHERE name = ?;'
cursor.execute(command, [name])

count = 0
for row in cursor:

comps = row[0].split('-')
dob = '/'.join([comps[1], comps[2], comps[0]])
print(name, 'was born on', dob, 'in', row[1] + '.')
count = count + 1

if count == 0:
print(name, 'is not in the database.')

db.commit()
db.close()

Opening a Text File

• Before we can read from or write to a text file, we need to
open a connection to the file.

• Doing so creates an object known as a file handle.

• we use the file handle to perform operations on the file

• Syntax:

file-handle = open(filename, mode)

where file-handle is a variable for the file handle
filename is a string
mode is:

'w' if we want to write to the file

'r' if we want to read from the file

CS 105, Boston University Fall 2021 262

Specifying Filenames

• When specifying the name of a file, we'll just give the name
of the file itself.

• example: 'myData.txt'

• we won't specify the folder

• Python will open/create the file in the same directory
in which the program is stored.

Recall: Writing to a File

• When you open a file for writing:

• if the file doesn't already exist, it will be created

• if the file does exist, the current contents will be erased!

• To write values to a file, we can use the print()
method as usual, but with an extra parameter for the file:

print(…, file=file-handle)

• Example:

outfile = open('foo.txt', 'w')

print('I love Python!', file=outfile)

CS 105, Boston University Fall 2021 263

Example: Writing Database Results to a File

• Recall our program for getting all movies from a given year:

import sqlite3
filename = input('name of database file: ')
db = sqlite3.connect(filename)
cursor = db.cursor()

target_year = input('year to search for? ')
command = '''SELECT name, rating

FROM Movie
WHERE year = ?;'''

cursor.execute(command, [target_year])

count = 0
for row in cursor:

print(row[0], '(' + row[1] + ')')
count = count + 1

if count == 0:
print('there are no movies from', target_year)

db.commit()
db.close()

On the slide below,
modify this program
so that it writes
the results to
a file with a name
that is based on the
target year
(e.g., 2010.txt)

import sqlite3
filename = input('name of database file: ')
db = sqlite3.connect(filename)
cursor = db.cursor()

target_year = input('year to search for? ')

command = '''SELECT name, rating
FROM Movie
WHERE year = ?;'''

cursor.execute(command, [target_year])

count = 0
for row in cursor:

print(row[0], '(' + row[1] + ')')
count = count + 1

if count == 0:
print('there are no movies from', target_year)

db.commit()
db.close()

CS 105, Boston University Fall 2021 264

Pre-Lecture
Reading Text Files

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Text Files

• A text file can be thought of as one long string.

• The end of each line is stored as a newline character ('\n').

• Example: the following three-line text file

is equivalent to the following string:

'Don't forget!\n\nTest your code fully!\n'

Don't forget!

Test your code fully!

CS 105, Boston University Fall 2021 265

Opening a Text File

• Before we can read from a text file, we need to open
a connection to the file.

• Example:

f = open('reminder.txt', 'r')

where:

• 'reminder.txt' is the name of the file we want to read

• 'r' indicates that we want to read from the file

• Doing so creates an object known as a file handle.

• we use the file handle to perform operations on the file

Processing a File Using Methods

• A file handle is an object.

• We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')

>>> f.readline()
"Don't forget!\n"

>>> f.readline()

>>> f.readline()
'Test your code fully!\n'

>>> f.readline()
''

>>> f = open('reminder.txt', 'r') # start over at top

>>> f.read()
"Don't forget!\n\nTest your code fully!\n"

reminder.txt

Don't forget!

Test your code fully!

CS 105, Boston University Fall 2021 266

Processing a File Using a for Loop

• We often want to read and process a file one line at a time.

• We could use readline() inside a loop, but...
we don't know how many lines there are!

• Python makes it easy!

for line in file-handle:
code to process line goes here

• reads one line at a time and assigns it to line

• continues looping until there are no lines left

Processing a CSV File

• CSV = comma-separated values

• each line is one record

• the fields in a given record
are separated by commas

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS 105, Boston University Fall 2021 267

Processing a CSV File
file = open('courses.txt')

count = 0
for line in file:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

line fields output count
0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS','111','MWF 10-11'] CS 111 1

'MA,123,TR 3-5\n'
'MA,123,TR 3-5' ['MA','123','TR 3-5'] none _____

'CS,105,MWF 1-2\n'
'CS,105,MWF 1-2' ['CS','105','MWF 1-2'] CS 105 _____

...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS 105, Boston University Fall 2021 268

Reading Text Files

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Text Files

• A text file can be thought of as one long string.

• The end of each line is stored as a newline character ('\n').

• Example: the following three-line text file

is equivalent to the following string:

'Don't forget!\n\nTest your code fully!\n'

• Although '\n' has two characters when it we type it,
it is stored as only one character:

>>> len('\n')
1

Don't forget!

Test your code fully!

CS 105, Boston University Fall 2021 269

Recall: Opening a Text File

• Syntax:

file-handle = open(filename, mode)

where file-handle is a variable for the file handle
filename is a string
mode is:

'w' if we want to write to the file

'r' if we want to read from the file

Reading from a File

• We use the 'r' mode when opening the file:

infile = open('foo.txt', 'r')

• If there is a file with the specified name in the same folder
as your program, the file handle will be connected to it.

• if not, you will get an error

CS 105, Boston University Fall 2021 270

Recall: Processing a File Using Methods

• A file handle is an object.

• We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')

>>> f.readline()
"Don't forget!\n"

>>> f.readline()
'\n'

>>> f.readline()
'Test your code fully!\n'

>>> f.readline()
''

>>> f = open('reminder.txt', 'r') # start over at top

>>> f.read()
"Don't forget!\n\nTest your code fully!\n"

reminder.txt

Don't forget!

Test your code fully!

Processing a File Using a for Loop

• We often want to read and process a file one line at a time.

• We could use readline() inside a loop, but...

• what's the problem we would face?

• Python makes it easy!

for line in file-handle:
code to process line goes here

• reads one line at a time and assigns it to line

• continues looping until there are no lines left

CS 105, Boston University Fall 2021 271

Example of Processing a File

• Let's say that we want a program to print a text file to
the screen, omitting all blank lines.

• Here's one possible implementation:

filename = input('filename? ')
infile = open(filename, 'r')

for line in infile:
if line != '\n':

print(line[:-1])

infile.close()

• Why do we need to use slicing? (line[:-1])

Processing a Text File
filename = input('filename? ')
infile = open(filename, 'r')

for line in infile:
if line != '\n':

print(line[:-1])

infile.close()

line is the line printed?
'Reading from a file\n' yes
'* open the file\n' yes
'\n' no
'* use a loop\n' yes
'\n' no
'Closing the file\n' yes
'* use file.close()\n' yes

'\n'

'* don't forget\n'

Reading from a file
* open the file

* use a loop

Closing the file
* use file.close()

* don't forget!

info.txt

filename? info.txt
Reading from a file
* open the file
* use a loop
Closing the file
* use file.close()

output:

CS 105, Boston University Fall 2021 272

Processing a Text File
filename = input('filename? ')
infile = open(filename, 'r')

for line in infile:
if line != '\n':

print(line[:-1])

infile.close()

Reading from a file
* open the file

* use a loop

Closing the file
* use file.close()

* don't forget!

info.txt

filename? info.txt
Reading from a file
Closing the file

desired output:

What if we want the output
to omit both blank lines

and lines that begin with *

Fill in the blank to omit both blank lines
and ones that begin with a *

filename = input('filename? ')
infile = open(filename, 'r')

for line in infile:
if ___________________:

print(line[:-1])

infile.close()

A. line != '\n' or '*'

B. line != '\n' or line != '*'

C. line != '\n' or line[0] != '*'

D. line != '\n' and line[0] != '*'

E. none of the above

Reading from a file
* open the file

* use a loop

Closing the file
* use file.close()

* don't forget!

info.txt

filename? info.txt
Reading from a file
Closing the file

desired output:

CS 105, Boston University Fall 2021 273

How Should We Fill in the Blank?

infile = open(_____________________)

count = 0
for line in infile:

...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. 'courses.txt', 'r'

B. 'courses.txt', 'w'

C. 'r', 'courses.txt'

D. 'w', 'courses.txt'

How Should We Fill in the Blanks?

infile = open('courses.txt', 'r')

count = 0
for line in infile:

line = line[:-1]
fields = ___________________
if ___________ == 'CS':

print(fields[0],fields[1])
count += 1

...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. infile.split() fields

B. line.split() fields[0]

C. infile.split(',') fields

D. line.split(',') fields[0]

E. none of the above

first blank second blank

CS 105, Boston University Fall 2021 274

Processing a CSV File
infile = open('courses.txt', 'r')

count = 0
for line in infile:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

...

line fields output count
0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS','111','MWF 10-11'] CS 111 1

'MA,123,TR 3-5\n'
'MA,123,TR 3-5' ['MA','123','TR 3-5'] none 1

'CS,105,MWF 1-2\n'
'CS,105,MWF 1-2' ['CS','105','MWF 1-2'] CS 105 2

...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

After the loop completes…

infile = open('courses.txt', 'r')

count = 0
for line in infile:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1])
count += 1

if count == 0:
print('There are no CS courses in the file.')

infile.close()

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS 105, Boston University Fall 2021 275

How could we write the results to a file?

infile = open('courses.txt', 'r')

outfile =
count = 0
for line in infile:

line = line[:-1]
fields = line.split(',')
if fields[0] == 'CS':

print(fields[0],fields[1], ___________________)
count += 1

if count == 0:
print('There are no CS courses in the file.')

else:
print('There are', count, 'CS courses in the file.')
print('See cs_courses.txt for details.')

infile.close()

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS 105, Boston University Fall 2021 276

File-Reading Revisited

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Processing a CSV File

• CSV = comma-separated values

• each line is one record

• the fields in a given record
are separated by commas

• Let's say that we want to print the names of all CS courses:

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

CS 111
CS 105
...

screen/console:

CS 105, Boston University Fall 2021 277

How Should We Fill in the Blank?

file = open('courses.txt', 'r')

count = 0
for line in file:

line = ______________
...

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. line[-1]

B. line[:-1]

C. file[-1]

D. file[:-1]

E. none of the above

How Should We Fill in the Blanks?

file = open('courses.txt', 'r')

count = 0
for line in file:

line = line[:-1]
fields = ___________________
if ___________ == 'CS':

print(fields[0],fields[1])
count += 1

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3
...

courses.txt

A. file.split() fields

B. line.split() fields[0]

C. file.split(',') fields

D. line.split(',') fields[0]

E. none of the above

first blank second blank

CS 111
CS 105
...

screen/console:

CS 105, Boston University Fall 2021 278

Extracting Relevant Data from a File

• Assume that the results of a track meet are summarized in a
comma-delimited text file that looks like this:

Mike Mercury,Boston University,mile,4:50:00
Steve Slug,Boston College,mile,7:30:00
Len Lightning,Boston University,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• Let's write a program that reads in a results file and extracts
the results for a particular school, printing them to the screen.

• sample output for BU (note: spaces, not commas):

Mike Mercury mile 4:50:00
Len Lightning half-mile 2:15:00

• do not print the school name

• print an error message if the school is not found

Extracting Relevant Data from a File

infilename = input('name of input file: ')
school = input('extract records of which school? ')

infile = open(infilename, 'r')

count = 0
for line in infile:

line = line[:-1]
fields = line.split(',')
if fields[1] == school:

count = count + 1
print(fields[0], fields[2], fields[3])

if count == 0:
print('No results for', school, 'in', infilename)

infile.close()

CS 105, Boston University Fall 2021 279

Version 2: Write the Matching Results to a CSV File

• initial file:

Mike Mercury,Boston University,mile,4:50:00
Steve Slug,Boston College,mile,7:30:00
Len Lightning,Boston University,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• results file for Boston University (note the commas):

Mike Mercury,mile,4:50:00
Len Lightning,half-mile,2:15:00

What changes do we need to make?
infilename = input('name of input file: ')
outfilename = input('name of output file: ')
school = input('extract records of which school? ')
infile = open(infilename, 'r')

outfile = _________________________________

count = 0
for line in infile:

line = line[:-1]
fields = line.split(',')
if fields[1] == school:

count = count + 1
print(fields[0]+',' +fields[2]+','+fields[3],

______________________)
if count == 0:

print('No results for', school, 'in', infilename)
else:

print(count, 'results written to', outfilename)
infile.close()
outfile.close()

CS 105, Boston University Fall 2021 280

Version 3: Handle Input Files With a Header

• CSV files often include a header line at the top:

athlete,school,event,time
Mike Mercury,Boston University,mile,4:50:00
Steve Slug,Boston College,mile,7:30:00
Len Lightning,Boston University,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• We typically want to either:

• skip over the header

• treat it differently than the other lines

Recall: Processing a File Using Methods

• A file handle is an object.

• We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')

>>> f.readline() # reads one line from the file
"Don't forget!\n"

reminder.txt

Don't forget!

Test your code fully!

CS 105, Boston University Fall 2021 281

Handling Input Files With a Header (cont.)

athlete,school,event,time
Mike Mercury,Boston University,mile,4:50:00
Steve Slug,Boston College,mile,7:30:00
Len Lightning,Boston University,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

• To handle the header, we read it in using readline()
before we start the file-processing loop:

f = open(filename, 'r')
header = f.readline()
optional: do something with the header here

the loop still processes the remaining lines
for line in f:

line = line[:-1]
...

CS 105, Boston University Fall 2021 282

Pre-Lecture
Data Mining Fundamentals

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

What is Data Mining?

• Informally, it's the process of using a computer program
to find patterns or relationships in data.

• Examples:

• looking for combinations of symptoms that are reliable
indicators of a given disease

• looking for products that customers tend to
purchase together

CS 105, Boston University Fall 2021 283

Machine Learning

• In data mining, we apply an algorithm that "learns" something
about the data.

• These algorithms are machine-learning algorithms.

• We're ultimately going to consider three different types
of machine learning:

• classification learning

• association learning

• numeric estimation

Classification Learning

• Classification learning involves learning how to classify
objects/entities on the basis of their characteristics.

• example: learning to determine whether a customer
is likely to buy a computer in the next year (Yes/No).

• We give the algorithm a set of training examples that have
already been classified.

id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• The algorithm produces a model that can be used
to classify other examples.

CS 105, Boston University Fall 2021 284

Classification Learning

• Training examples:

id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• One possible model: a decision tree

< 35
35-65

yes

age

yes no

yes

student?

fair

nono

credit rating

> 65

good

no

excellent

yes

• start at the top and
work down until you
reach a box with
a classification

Classification Learning

• Once the algorithm learns the model,
we can use the model to classify new examples:

id gender age student? credit rating buy computer?
333 female 68 no fair

673 male 23 yes good

< 35
35-65

yes

age

yes no

yes

student?

fair

nono

credit rating

> 65

good

no

excellent

yes

CS 105, Boston University Fall 2021 285

Some Terminology
id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• Each row in the training data is known as an example or instance.

• Each column is referred to as an attribute.

• The attributes can be divided into two types:

• the output attribute – the one we want to determine/predict

• the input attributes – everything else

input attributes output attribute

Some Terminology
id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• Each row in the training data is known as an example or instance.

• Each column is referred to as an attribute.

• The attributes can be divided into two types:

• the output attribute – the one we want to determine/predict

• the input attributes – everything else

buy computer?

age
student?

credit rating
…

CS 105, Boston University Fall 2021 286

Nominal vs. Numeric
id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• Nominal attributes:

• have values that are "names" of categories

• Numeric attributes:

• have values that are numbers

• it makes sense to compare their values using < and >
example: we could base predictions on whether age < 35

• What about id?

Classification Learning
id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• We have a single output attribute whose value we want to
determine/predict.

• That output attribute is nominal.

• The input attributes can be either nominal or numeric.

CS 105, Boston University Fall 2021 287

Numeric Estimation
id gender age student? credit rating buy computer?
123 male 15 yes fair 0.75
456 female 38 no good 0.90
872 male 65 no fair 0.23
222 female 28 yes excellent 0.68
111 female 20 no good 0.37
…

• We have a single output attribute whose value we want to
determine/predict.

• That output attribute is numeric.

• The input attributes can be either nominal or numeric.

CS 105, Boston University Fall 2021 288

Data Mining Fundamentals, Part I

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

References for This Part of the Course

• Roiger & Geatz, Data Mining: A Tutorial-Based Primer
(Addison-Wesley, 2003)

• Witten & Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 2nd edition (Morgan Kaufmann, 2005)

CS 105, Boston University Fall 2021 289

What is Data Mining?

• Informally, it's the process of using a computer program
to find patterns or relationships in data.

• Examples:

• looking for combinations of symptoms that are reliable
indicators of a given disease

• mining a grocery store's customer-purchase data

• which two products below were found to be frequently
purchased together?

beer cereal diapers
milk soft drinks toilet paper

• how could the store make use of this result?

Finding Patterns

• Something that human beings have always done!

• example: how do we learn to identify a dog?

CS 105, Boston University Fall 2021 290

Finding Patterns (cont.)

• In data mining:

• the data is stored in electronic form

• the process is automated (at least in part)
using a computer program

• the program "mines" the data
• "sifting through" it to try find something useful/valuable

Data Mining vs. Data Query

• Database queries in SQL are not the same thing as data mining.

• Queries allow us to extract factual information.

• "shallow knowledge"

• In data mining, we attempt to extract patterns and relationships.

• "hidden knowledge"

CS 105, Boston University Fall 2021 291

Machine Learning

• In data mining, we apply an algorithm that "learns" something
about the data.

• a machine-learning algorithm

• We're ultimately going to consider three different types of
machine learning:

• classification learning

• association learning

• numeric estimation

Classification Learning

• Involves learning how to classify objects/entities
on the basis of their characteristics.

• ex: is a credit-card purchase fraudulent or non-fraudulent?

• Input to the algorithm = a set of data describing objects that
have already been classified.

• known as training data or training examples

• Output = a model that can be used to classify other objects.

• can take different forms: rules, a decision tree, etc.

CS 105, Boston University Fall 2021 292

Example: Medical Diagnosis

• Given a set of symptoms, we want to diagnose a patient.

• possible diagnoses: cold, allergy, strep throat

• Sample training data (table 1-1 of Roiger & Geatz):

• Can you see any patterns that would help you diagnose
patients with one or more of these symptoms?

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

CS 105, Boston University Fall 2021 293

Example: Medical Diagnosis (cont.)

• One possible model that could be used for classifying other
patients is a set of rules like the following:

if Swollen Glands == Yes
then Diagnosis = Strep Throat

if Swollen Glands == No and Fever == Yes
then Diagnosis = Cold

if Swollen Glands == No and Fever == No
then Diagnosis = Allergy

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

Example: Medical Diagnosis (cont.)

• Another possible type of model is known as a decision tree:

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

Swollen Glands

FeverStrep Throat

Yes No

Cold

Yes No

Allergy

• start at the top and work down
until you reach a box
containing a classification

CS 105, Boston University Fall 2021 294

What diagnosis would the tree give for patient 11?

• Another possible type of model is known as a decision tree:

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

• start at the top and work down
until you reach a box
containing a classification

11 No No No No Yes ???

Swollen Glands

FeverStrep Throat

Yes No

Cold

Yes No

Allergy

Some Terminology

• In a collection of training data:

• each row is known as an example or instance

• each column is referred to as an attribute

• The attributes can be divided into two types:

• the output attribute – the one we want to determine/predict

• the input attributes – everything else

• In our example:

modelinput attributes output attribute

rules
or

tree
or…

fever
swollen glands

headache
…

diagnosis

CS 105, Boston University Fall 2021 295

Types of Attributes

• Nominal attributes have values that are "names" of categories.

• there is a small set of possible values
attribute possible values
Fever {Yes, No}
Diagnosis {Allergy, Cold, Strep Throat}

• In classification learning, the output attribute is always nominal.

• Numeric attributes:

• have values that are single numbers

• it makes sense to compare their values using < and >

• example: Body Temp

• each value is a single number like 98.0 or 101.5

• it could make sense to base our predictions on
comparisons like Body Temp > 98.6

Types of Attributes (cont.)

• What about this one?
attribute possible values
Product Type {0, 1, 2, 3}

CS 105, Boston University Fall 2021 296

Types of Attributes (cont.)

• What about this one?
attribute possible values
Product Type {0, 1, 2, 3}

it is nominal!
• the numbers are serving as names of categories
• comparisons like product type > 2

don't provide useful info

Numeric Estimation

• Like classification learning, but for a numeric output attribute.

• example: a charity that needs to decide who should be
sent a fundraising appeal letter

• The model often takes the form of an equation.

probability_of_reply = 0.424attr1 – 0.072attr2 + …

where attr1, attr2, … are attributes

• Linear regression is a form of numeric estimation.

model

age
income

zip code
avg past donation

…

probability of response
(a number between 0 and 1)

CS 105, Boston University Fall 2021 297

Association Learning

• Involves looking for relationships between sets of attributes
in the training examples.

• produces a set of rules

• for example:

if Congestion = Yes
then Headache = Yes

if Sore Throat = Yes and Swollen Glands = No
then Congestion = Yes and Fever = No

• It does not focus on predicting a particular attribute.

• unlike classification learning and numeric estimation

• no distinction between input and output attributes

Association Learning (cont.)

• One form of association learning is market-basket analysis.

• finds associations between items that people buy

• classic example: beer and diapers on Thursdays!

• Association learning is often more difficult than classification
learning. Why do you think that is?

CS 105, Boston University Fall 2021 298

What approach is needed?

• Problem 1: We want to determine the average trades/month
for each transaction method.

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

What approach is needed? (cont.)

• Problem 2: If we don't know a customer's favorite recreation,
what other factors can we used to predict it?

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

CS 105, Boston University Fall 2021 299

What approach is needed? (cont.)

• Problem 2: If we don't know a customer's favorite recreation,
what other factors can we used to predict it?

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

output is nominal ,
so classification

predicting a single attribute,
so data mining using either
classification or estimation

CS 105, Boston University Fall 2021 300

Pre-Lecture
Evaluating a Model

Learned in Data Mining

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Classification Learning

• Training examples:

id gender age student? credit rating buy computer?
123 male 15 yes fair yes
456 female 38 no good yes
872 male 65 no fair no
222 female 28 yes excellent yes
111 female 20 no good no
…

• One possible model: a decision tree

< 35
35-65

yes

age

yes no

yes

student?

fair

nono

credit rating

> 65

good

no

excellent

yes

CS 105, Boston University Fall 2021 301

Evaluating the Model

• For most non-trivial, real-world data sets, no learned model
is likely to work perfectly on all possible examples.

• Our goal is not to create a model that perfectly matches the
training data.

• Instead, we want a model that performs well on previously
unseen examples.

• we say that we want the model to generalize

Test Examples

• To see how well a model generalizes, we typically withhold
some of the available data as test examples.

• these examples are not used to train the model

• Let's assume we have data for 100 customers.

• all of the data is already classified

• use 90 examples to learn the model (the training data)

• use 10 examples to test the model (the test data)

CS 105, Boston University Fall 2021 302

Using the
Test Examples

buy computer?
id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no

443 male 19 yes fair yes ______

747 female 47 no excellent no ______

< 35
35-65

yes

age

yes no

yes

student?

fair

nono

credit rating

> 65

good

no

excellent

yes

buy computer?
id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

• accuracy of the model = 6/10 = 60%

• error rate = 4/10 = 40%

• Problem: these metrics treat all misclassifications
as being equally bad.

Summarizing the Results

CS 105, Boston University Fall 2021 303

Using a Confusion Matrix
buy computer?

id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

predicted class

yes no

actual class: yes 3

no

Using a Confusion Matrix
buy computer?

id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

predicted class

yes no

actual class: yes 3 1

no

CS 105, Boston University Fall 2021 304

Using a Confusion Matrix
buy computer?

id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

predicted class

yes no

actual class: yes 3 1

no 3

Using a Confusion Matrix
buy computer?

id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

predicted class

yes no

actual class: yes 3 1

no 3 _____

CS 105, Boston University Fall 2021 305

Using a Confusion Matrix
buy computer?

id gender age student? credit rat. actual predicted
954 male 45 no good yes yes
888 female 22 yes good no yes
357 male 25 yes fair yes yes
245 female 28 no excellent no no
177 female 80 no good no no
523 male 68 no good yes no
999 male 37 no good no yes
126 female 70 yes fair no no
443 male 19 yes fair yes yes
747 female 47 no excellent no yes

predicted class

yes no

actual class: yes 3 1

no 3 3

• the diagonal shows the correctly classified examples

the diagonal
of the matrix

CS 105, Boston University Fall 2021 306

Data Mining Fundamentals, Part II

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Types of Attributes

• Nominal attributes have values that are "names" of categories.

• there is typically a small set of possible values
attribute possible values
Fever {Yes, No}
Diagnosis {Allergy, Cold, Strep Throat}
Body Temp {below 96, 96-99, 99-102, above 102}

• Numeric attributes have values that are single numbers.

• there is typically a wide range of possible values
attribute possible values
Body Temp any single real number in 96.0-106.0
Salary any single integer in $15,000-250,000

• it makes sense to order/compare their values
$210,000 > $125,000
98.6 < 101.3

CS 105, Boston University Fall 2021 307

Which of the attributes are numeric?
Customer Account Margin Transaction Trades/ Favorite Annual

ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. customer ID

B. trades/month

C. age

D. two of the above

E. all of the above

Summary of Machine-Learning Approaches

• classification learning: takes a set of already classified
training examples and learns a model that can be used
to classify previously unseen examples

if Swollen Glands = Yes
then Diagnosis = Strep Throat

if Swollen Glands = No and Fever = Yes
then Diagnosis = Cold
...

• numeric estimation: like classification learning, but the
output attribute is numeric
• the model is typically in the form of an equation

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
… … … … … … …

nominal
output attribute

CS 105, Boston University Fall 2021 308

Summary of Machine-Learning Approaches (cont.)

• association learning: takes a set of training examples and
discovers associations among attributes

• we don't specify a single class/output attribute

if Congestion = Yes
then Headache = Yes

if Sore Throat = Yes and Swollen Glands = No
then Congestion = Yes and Fever = No
...

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
… … … … … … …

What approach is needed? (cont.)

• Problem 3: We want to know which attributes tend to
affect the number of trades per month.

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

CS 105, Boston University Fall 2021 309

What approach is needed? (cont.)

• Problem 4: We want to discover relationships between
account type, transaction method, and age.

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

What approach is needed? (cont.)

• Problem 5: We want to know which attributes tend to
affect the annual income.

• The best approach is:

Customer Account Margin Transaction Trades/ Favorite Annual
ID Type Account Method Month Sex Age Recreation Income

1005 Joint No Online 12.5 F 30–39 Tennis 40–59K
1013 Custodial No Broker 0.5 F 50–59 Skiing 80–99K
1245 Joint No Online 3.6 M 20–29 Golf 20–39K
2110 Individual Yes Broker 22.3 M 30–39 Fishing 40–59K
1001 Individual Yes Online 5.0 M 40–49 Golf 60–79K

A. database queries

B. data mining using classification learning

C. data mining using numeric estimation

D. data mining using association learning

CS 105, Boston University Fall 2021 310

Another Example: Labor Negotiations

• Goal: to be able to predict whether a proposed labor contract
will be acceptable to members of the union.

• Source of this case study: Witten and Frank

• Training data = examples from actual labor negotiations

• 17 attributes

• how many of them are input attributes?

• what are the possible values of the output attribute?

• what type of machine learning is this?

Another Example: Labor Negotiations (cont.)

• Here's one possible decision tree based on the training data:

• simple model

• makes intuitive sense

• misclassifies some
of the training examples

CS 105, Boston University Fall 2021 311

Another Example: Labor Negotiations (cont.)

• Here's another possible decision tree from the same data:

• It does a better job classifying the training examples.

Which Model Is Better?

model A model B
simpler more accurate on

more intuitive the training examples

• We need more info.!

• even though Model B does well on the training data,
it may not generalize – it may not do well on
previously unseen examples.

CS 105, Boston University Fall 2021 312

Overfitting

• In general, working too hard to match the training examples
can lead to a model that:

• is overly complicated

• that doesn't generalize well

• This is known as overfitting the training data.

• Extreme overfitting: memorize the training examples!

• example: medical diagnosis
• store the training data

in a table
• to diagnose a new patient,

find a training example
with the same symptoms
and use that diagnosis

• why won't this work?

Using Test Examples

• Example: decision-tree model for medical diagnosis

• trained using the 10 earlier examples

• we can evaluate it using the test examples shown below

• What is its accuracy?

Swollen Glands

FeverStrep Throat

Yes No

Cold

Yes No

Allergy

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

12 Yes Yes Yes No No Strep throat
13 No No No Yes No Cold
14 No Yes No Yes Yes Cold
15 Yes No Yes No Yes Strep throat
16 No Yes No Yes No Allergy

Model's Diagnosis

17 Yes No No No Yes Allergy

CS 105, Boston University Fall 2021 313

Evaluating Classification Learning Models

• The error rate of a model is the percentage of test examples
that it misclassifies.

• in our example, the error rate = ___________

• error rate = 100 – accuracy

• Problem: these metrics treat all misclassifications as being equal.

• this isn't always the case

• example: more problematic to misclassify strep throat
than to misclassify a cold or allergy

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

12 Yes Yes Yes No No Strep throat
13 No No No Yes No Cold
14 No Yes No Yes Yes Cold
15 Yes No Yes No Yes Strep throat
16 No Yes No Yes No Allergy

Model's Diagnosis

Strep throat
Allergy

Cold
Strep throat

Cold
17 Yes No No No Yes Allergy Allergy

Evaluating Classification Learning Models

• To provide a more detailed picture of the model's accuracy,
we can use a confusion matrix:

predicted class

cold allergy strep throat

actual class: cold 1 1 0

allergy 1 1 0

strep throat 0 0 2

• the diagonal of the matrix shows cases that were
correctly classified

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

12 Yes Yes Yes No No Strep throat
13 No No No Yes No Cold
14 No Yes No Yes Yes Cold
15 Yes No Yes No Yes Strep throat
16 No Yes No Yes No Allergy

Model's Diagnosis

Strep throat
Allergy

Cold
Strep throat

Cold
17 Yes No No No Yes Allergy Allergy

the diagonal
of the matrix

CS 105, Boston University Fall 2021 314

Interpreting a Confusion Matrix

• Let's say that we had a larger number of test examples, and
that we obtained the following confusion matrix:

predicted class

cold allergy strep throat

actual class: cold 25 8 7
allergy 6 15 3
strep throat 5 4 33

• what is the accuracy of the model?

total # of test cases = 106

• what is its error rate?

Interpreting a Confusion Matrix (cont.)

predicted class

cold allergy strep throat

actual class: cold 25 8 7
allergy 6 15 3
strep throat 5 4 33

• how many test cases of strep throat are there?

• how many actual colds were misdiagnosed?

• what percentage of actual colds were correctly diagnosed?

CS 105, Boston University Fall 2021 315

predicted class

cold allergy strep throat

actual class: cold 5 3 2

allergy 2 6 5

strep throat 1 2 8

How many actual allergy cases
does the model misdiagnose?

CS 105, Boston University Fall 2021 316

Pre-Lecture
Classification Learning
Using the 1R Algorithm

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Classification Learning

• Classification-learning algorithms:

• take a set of already classified training examples

• learn a model that can classify previously unseen examples

output
attribute
(the class)

input
attributes model

CS 105, Boston University Fall 2021 317

Recall: Classification Learning

• Classification-learning algorithms:

• take a set of already classified training examples

• learn a model that can classify previously unseen examples

• Example:

output
buy computer?

inputs
age

student?
credit rating

…

Example Problem: Credit-Card Promotions

• A credit-card company wants to determine which customers
should be sent promotional materials for a life insurance offer.

model
age

gender
income range

…

Yes (will accept the offer)
or

No (will not accept the offer)

CS 105, Boston University Fall 2021 318

Example Problem: Credit-Card Promotions

• 15 training examples:

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

class/
output attribute

1R: Learning Simple Classification Rules

• Developed by R.C. Holte

• Why 1R?

• R because the algorithm learns a set of Rules

• 1 because the rules are based on only 1 input attribute

• Basic idea:

• Determine a separate set of rules for each input attribute.

• Pick the set of rules with the highest accuracy on the
training data.

CS 105, Boston University Fall 2021 319

• Let's start by determining the rules based on Gender.

Gender: Female Yes

Male

Applying 1R to the Credit-Card Promotion Data
Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

because Yes is the class
of the majority (6 out of 7)
of the examples in which
Gender is Female

• Let's start by determining the rules based on Gender.

Gender: Female Yes
Male No

Applying 1R to the Credit-Card Promotion Data
Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

because No is the class
of the majority (5 out of 8)
of the examples in which
Gender is Male

CS 105, Boston University Fall 2021 320

Applying 1R to the Credit-Card Promotion Data (cont.)

• Thus, we end up with the following rules based on Gender:

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

overall accuracy = 6 + 5 = 11 = 73%
15 15

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

• What rules would be produced for Credit Card Insurance?

Credit Card Insurance: Yes
No

overall accuracy =

Applying 1R to the Credit-Card Promotion Data (cont.)

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

CS 105, Boston University Fall 2021 321

• What rules would be produced for Income Range?

Income Range: 20-30K No/Yes (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Applying 1R to the Credit-Card Promotion Data (cont.)

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

• What rules would be produced for Income Range?

Income Range: 20-30K No (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

overall accuracy = 2 + 4 + 3 + 2 = 11 = 73%
15 15

Applying 1R to the Credit-Card Promotion Data (cont.)

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

CS 105, Boston University Fall 2021 322

Handing Numeric Attributes

• To handle numeric attributes, we need to discretize the range
of possible values into subranges called bins or buckets.

• One approach: (1) sort the training instances by age
(2) find the most accurate binary (2-way) split

Age: 19 27 29 35 38 39 40 41 42 43 43 43 45 55 55
Life Ins: Y N Y Y Y Y Y Y N Y Y N N N N

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

sort by
age

Handling Numeric Attributes (cont.)

• Here's one possible binary split for age:

Age: 19 27 29 35 38 39 40 41 42 43 43 43 45 55 55

Life Ins: Y N Y Y Y Y Y Y N Y Y N N N N

• the corresponding rules are:
Age: <= 39 Yes (5 out of 6)

> 39 No (5 out of 9)

• The following is one of the splits with the best overall accuracy:

Age: 19 27 29 35 38 39 40 41 42 43 43 43 45 55 55

Life Ins: Y N Y Y Y Y Y Y N Y Y N N N N

• the corresponding rules are:
Age: <= 43 Yes (9 out of 12)

> 43 No (3 out of 3)

overall accuracy:
10/15 = 67%

overall accuracy:
12/15 = 80%

CS 105, Boston University Fall 2021 323

Summary of 1R Results

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

Cred.Card Ins: Yes Yes (3 out of 3)
No No* (6 out of 12)

Income Range: 20-30K No* (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Age: <= 43 Yes (9 out of 12)
> 43 No (3 out of 3)

• Because the rules based on Age have the highest overall
accuracy on the training data, 1R selects them as the model.

overall accuracy:
12/15 = 80%

overall accuracy:
11/15 = 73%

overall accuracy:
9/15 = 60%

overall accuracy:
11/15 = 73%

CS 105, Boston University Fall 2021 324

Evaluating Models (cont.);
Classification Learning, Part I

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Evaluating Classification Learning Models

• To test how well a model generalizes, we typically withhold
some of the examples as test examples.

• these examples are not used to train the model

• Example: decision-tree model for medical diagnosis

• trained using the 10 earlier examples

• we can test it using the
examples shown below

Swollen Glands

FeverStrep Throat

Yes No

Cold

Yes No

Allergy

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

12 Yes Yes Yes No No Strep throat
13 No No No Yes No Cold
14 No Yes No Yes Yes Cold
15 Yes No Yes No Yes Strep throat
16 No Yes No Yes No Allergy

Model's Diagnosis

Strep throat
Allergy

Cold
Strep throat

Cold
17 Yes No No No Yes Allergy Allergy

CS 105, Boston University Fall 2021 325

Recall: Evaluating Classification Learning Models

• To provide a more detailed picture of the model's accuracy,
we can use a confusion matrix:

predicted class

cold allergy strep throat

actual class: cold 1 1 0

allergy 1 1 0

strep throat 0 0 2

• the diagonal of the matrix shows cases that were
correctly classified

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

12 Yes Yes Yes No No Strep throat
13 No No No Yes No Cold
14 No Yes No Yes Yes Cold
15 Yes No Yes No Yes Strep throat
16 No Yes No Yes No Allergy

Model's Diagnosis

Strep throat
Allergy

Cold
Strep throat

Cold
17 Yes No No No Yes Allergy Allergy

the diagonal
of the matrix

predicted class

cold allergy strep throat

actual class: cold 5 3 2

allergy 2 6 5

strep throat 1 2 8

How many of the predictions of allergy are incorrect?

CS 105, Boston University Fall 2021 326

predicted class

cold allergy strep throat

actual class: cold 5 3 2

allergy 2 6 5

strep throat 1 2 8

total # of test examples = 34

What is the overall accuracy of the model?

Two-Class Confusion Matrices

• When there are only two classes, the classification problem
is often framed as a yes / no judgement:

yes / no
fraudulent / not fraudulent
has cancer / doesn't have cancer

The terms positive / negative are often used in place of yes / no.

• In such cases, there are four possible types of classifications:

• true positive (TP): the model correctly predicts "yes"

• false positive (FP): the model incorrectly predicts "yes"

• true negative (TN): the model correctly predicts "no"

• false negative (FN): the model incorrectly predicts "no"

predicted

yes no

actual: yes TP FN
no FP TN

CS 105, Boston University Fall 2021 327

Comparing Models Using Confusion Matrices

• Let's say we're trying to detect credit-card fraud.

• We use two different classification-learning techniques and
get two different models.

• Performance on 400 test examples:

predicted by model A

fraud not fraud

actual: fraud 100 10
not fraud 40 250

predicted by model B

fraud not fraud

actual: fraud 80 30
not fraud 20 270

• which model is better?

overall accuracy =
(100+250)/400 = .875

better at
classifying actual fraud
(fewer false negatives)

overall accuracy =
(80+270)/400 = .875

better at
classifying non-fraud
(fewer false positives)

Overall Accuracy Isn't Enough

• Someone tells you that they have a fraud-detection classifier
with an overall accuracy of 99%. Should you use it?

• It depends on the test examples used to compute the accuracy!

• Example:

• assume 1% of actual credit-card purchases are fraudulent

• assume the test examples reflect this:
• 10 examples of fraud, 990 examples of not fraud

• on these examples, a model can be 99% accurate by
always predicting "not fraud"!

predicted

fraud not fraud

actual: fraud 0 10
not fraud 0 990

CS 105, Boston University Fall 2021 328

Overall Accuracy Isn't Enough (cont.)

• Test examples should include an adequate number of
all possible classifications.

• especially ones you're most concerned about getting right

• in our example, need to include enough examples of fraud

• It's also important that your training examples include all
possible classifications.

Recall: Classification Learning

• Classification-learning algorithms:

• take a set of already classified training examples

• learn a model that can classify previously unseen examples

• The resulting model works like this:

modelinput attributes
(everything

but the class)

nominal output attribute
(the class)

CS 105, Boston University Fall 2021 329

Recall: Credit-Card Promotions

• A credit-card company wants to determine which customers
should be sent promotional materials for a life insurance offer.

model

age
gender

income range
…

Yes (will accept the offer)
or

No (will not accept the offer)

Recall: Credit-Card Promotions

• 15 training examples:

* note: credit-card insurance is a Yes/No attribute
specifying whether the customer accepted a similar offer
for insurance on their credit card

Income Life InsuranceCredit Card
Range PromotionInsurance*GenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

class/
output attribute

CS 105, Boston University Fall 2021 330

Recall: Summary of 1R Results

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

Cred.Card Ins: Yes Yes (3 out of 3)
No No* (6 out of 12)

Income Range: 20-30K No* (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Age: <= 43 Yes (9 out of 12)
> 43 No (3 out of 3)

• 1R learned the above set of candidate models.

• Because the rules based on Age have the highest overall
accuracy on the training data, 1R selects them as the final model.

overall accuracy:
12/15 = 80%

overall accuracy:
11/15 = 73%

overall accuracy:
9/15 = 60%

overall accuracy:
11/15 = 73%

Returning to our medical-diagnosis dataset...

• We want to be able to diagnose new patients...

• What is the output attribute?

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

A. Patient ID#

B. Swollen Glands

C. Fever

D. Diagnosis

E. more than one of the above

CS 105, Boston University Fall 2021 331

Returning to our medical-diagnosis dataset...

• We want to be able to diagnose new patients...

• What is the output attribute?

• Because it is nominal:

• we need classification learning

• 1R is one possible algorithm we could use

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

What rules would 1R learn based on Congestion?
Patient Sore Swollen

ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

A. C.

B. D.

Congestion:
Yes Cold
No Strep throat

Congestion:
Yes Allergy
No Strep throat

Congestion:
Yes Cold
No Allergy

more than one of these
could be learned

CS 105, Boston University Fall 2021 332

What rules would 1R learn based on Swollen Glands?
Patient Sore Swollen

ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

A. C.

B. D.

Swollen Glands:
Yes Strep Throat
No Allergy

Swollen Glands:
Yes Strep Throat
No Cold

Swollen Glands:
Yes Cold
No Strep Throat

more than one of these
could be learned

What rules would 1R learn based on Headache?
Patient Sore Swollen

ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

A. C.

B. D.

Headache:
Yes Cold
No Strep throat

Headache:
Yes Allergy
No Strep throat

Headache:
Yes Allergy
No Cold

more than one of these
could be learned

CS 105, Boston University Fall 2021 333

1R Results for Medical-Diagnosis Data Set
Congestion: Yes Cold (4/8)

No Strep throat (2/2)

Swollen Glands: Yes Strep Throat (3/3)
No Cold (4/7)

Headache: Yes Allergy (2/5)
No Strep throat (2/5)

Sore Throat: Yes Strep Throat (2/5)
No Allergy (2/5)

Fever: Yes Cold (4/5)
No Allergy (3/5)

• 1R learns the above set of candidate models.

• Two models are tied for overall accuracy:
• the rules based on Swollen Glands
• the rules based on Fever

• 1R can select either of them as the final model.

overall accuracy:
7/10 = 70%

overall accuracy:
4/10 = 40%

overall accuracy:
7/10 = 70%

overall accuracy:
6/10 = 60%

overall accuracy:
4/10 = 40%

What About Patient ID?

• If we learned rules based on Patient ID, what accuracy
would they have?

Sore Swollen
Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

Patient
ID#

CS 105, Boston University Fall 2021 334

What About Patient ID?

• If we learned rules based on Patient ID, what accuracy
would they have? 100%!

Patient ID: 1 Strep throat (1/1)
2 Allergy (1/1)
3 Cold (1/1)
...

• these rules just memorize the training examples!

• they are an extreme example of overfitting!

Sore Swollen
Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

Patient
ID#

Special Case: Many-Valued Inputs

• In general, 1R doesn't tend to work well with a
nominal input attribute that has many possible values.

• 1R often ends up selecting its rules

• the rules overfit the training data

• Thus, we may need to remove such attributes before
we start data mining.

CS 105, Boston University Fall 2021 335

Another Limitation of 1R

• There are three possible classes: Strep Throat, Cold, Allergy

• Binary attributes like Fever produce rules that predict
at most two of these classes:

Fever: Yes Cold
No Allergy

• When this happens, a 1R model alone is not sufficient.

• We'll see next time how to build models with multiple inputs.

Patient Sore Swollen
ID# Throat Fever Glands Congestion Headache Diagnosis

1 Yes Yes Yes Yes Yes Strep throat
2 No No No Yes Yes Allergy
3 Yes Yes No Yes No Cold
4 Yes No Yes No No Strep throat
5 No Yes No Yes No Cold
6 No No No Yes No Allergy
7 No No Yes No No Strep throat
8 Yes No No Yes Yes Allergy
9 No Yes No Yes Yes Cold
10 Yes Yes No Yes Yes Cold

CS 105, Boston University Fall 2021 336

Pre-Lecture
Classification Learning:

Learning a Decision Tree

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Credit-Card Promotions Problem

• A credit-card company wants to determine which customers
should be sent promotional materials for a life insurance offer.

model

inputs
age

gender
income range

…

output
Yes (will accept the offer)

or
No (will not accept the offer)

CS 105, Boston University Fall 2021 337

Recall: Credit-Card Promotions Problem

• 15 training examples:

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

class/
output attribute

Recall: Candidate Rules for 1R

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

Cred.Card Ins: Yes Yes (3 out of 3)
No No (6 out of 12)

Income Range: 20-30K No (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Age: <= 43 Yes (9 out of 12)
> 43 No (3 out of 3)

• 1R learns the above set of candidate rules/models.

• 1R chooses the Age model, because its overall accuracy is best.

• When building a decision tree, we need to consider other factors.

overall accuracy:
12/15 = 80%

overall accuracy:
11/15 = 73%

overall accuracy:
9/15 = 60%

overall accuracy:
11/15 = 73%

CS 105, Boston University Fall 2021 338

• We can view a set of rules learned by 1R as a
simple decision tree with only one decision.

1R and Decision Trees

<= 43 > 43

Yes No

20-30K 50-60K

No Yes

30-40K

Yes

40-50K

No

Age

Income Range

Age: <= 43 Yes
> 43 No

Income Rng: 20-30K No
30-40K Yes
40-50K No
50-60K Yes

• Here's the basic algorithm:

1. apply 1R, but choose the candidate rules that "best divide"
the examples into subgroups

2. create a decision tree based on those rules

3. for each subgroup created by the new decision tree:
• if its classifications are "accurate enough," do nothing
• otherwise, build a tree for the examples in the subgroup

Building Decision Trees

CS 105, Boston University Fall 2021 339

• We compute a goodness score for each set of candidate rules:

goodness = overall accuracy / N

N = # of subgroups the rules
don't classify "accurately enough"

• larger trees tend to overfit the data

• by dividing by N, our goodness score favors smaller trees
• special case: if N == 0 for an attribute, choose that attribute!

Choosing the Rules that "Best Divide"

Gender: Female Yes (6 / 7)
Male No (5 / 8)

overall accuracy = 11/15 = 73%
N = 2
goodness = 73/2 = 36.5

Income Rng: 20-30K No (2 / 4)
30-40K Yes (4 / 5)
40-50K No (3 / 4)
50-60K Yes (2 / 2)

overall accuracy = 11/15 = 73%

N = _____

goodness = _____________

• Here are the rules we obtained for each attribute using 1R:

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

Cred.Card Ins: Yes Yes (3 out of 3)
No No* (6 out of 12)

Income Rng: 20-30K No* (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Age: <= 43 Yes (9 out of 12)
> 43 No (3 out of 3)

Building a Decision Tree for the Credit-Card Data

accuracy: 11/15 = 73%
goodness: 73/2 = 36.5

accuracy: 9/15 = 60%
goodness: 60/1 = 60

accuracy: 11/15 = 73%
goodness: 73/3 = 24.3

accuracy: 12/15 = 80%
goodness: 80/1 = 80

CS 105, Boston University Fall 2021 340

• Here's the basic algorithm:

1. apply 1R, but choose the candidate rules that "best divide"
the examples into subgroups

2. create a decision tree based on those rules

3. for each subgroup created by the new decision tree:
• if its classifications are "accurate enough," do nothing
• otherwise, build a tree for the examples in the subgroup

• start the algorithm over again on just those examples!

Building Decision Trees

initial tree for
all training examples

9 / 12 3 / 3

• Here are the 12 examples in the Age <= 43 subgroup:

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
20–30K YesYesFemale19

Repeating the Algorithm on a Subgroup

CS 105, Boston University Fall 2021 341

• Here are the rules obtained for these 12 examples:

Gender: Female Yes (6 out of 6)
Male No (3 out of 6)

Cred.Card Ins: Yes Yes (3 out of 3)
No Yes (6 out of 9)

Income Rng: 20-30K No (2 out of 3)
30-40K Yes (4 out of 5)
40-50K No (1 out of 2)
50-60K Yes (2 out of 2)

Age: <= 41 Yes (7 out of 8)
> 41 No (2 out of 4)

accuracy: 9/12 = 75%
goodness: 75/1 = 75

accuracy: 9/12 = 75%
goodness: 75/1 = 75

accuracy: 9/12 = 75%
goodness: 75/3 = 25

accuracy: 9/12 = 75%

goodness: ___________

Building a Decision Tree for the Credit-Card Data (cont.)

• Here's the basic algorithm:

1. apply 1R, but choose the candidate rules that "best divide"
the examples into subgroups

2. create a decision tree based on those rules

• if we already have an existing tree, put the new tree
in the appropriate place for its subgroup

3. for each subgroup created by the new decision tree:
• if its classifications are "accurate enough," do nothing
• otherwise, build a tree for the examples in the subgroup

Recall: Building Decision Trees

initial tree for
all training examples

9 / 12 3 / 3

+

tree for just the
Age <= 43 subgroup

CS 105, Boston University Fall 2021 342

Classification Learning, Part II

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Credit-Card Promotions

• A credit-card company wants to determine which customers
should be sent promotional materials for a life insurance offer.

model

age
gender

income range
…

Yes (will accept the offer)
or

No (will not accept the offer)

CS 105, Boston University Fall 2021 343

Recall: Credit-Card Promotions

• 15 training examples:

* note: credit-card insurance is a Yes/No attribute
specifying whether the customer accepted a similar offer
for insurance on their credit card

Income Life InsuranceCredit Card
Range PromotionInsurance*GenderAge

40–50K NoNoMale45
30–40K YesNoFemale40
40–50K NoNoMale42
30–40K YesYesMale43
50–60K YesNoFemale38
20–30K NoNoFemale55
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
30–40K YesNoFemale41
40–50K YesNoFemale43
20–30K YesNoMale29
50–60K YesNoFemale39
40–50K NoNoMale55
20–30K YesYesFemale19

class/
output attribute

• Here's the basic algorithm:

1. apply 1R, but choose the candidate rules that "best divide"
the examples into subgroups

2. create a decision tree based on those rules

3. for each subgroup created by the new decision tree:
• if its classifications are "accurate enough," do nothing
• otherwise, build a tree for the examples in the subgroup

Recall: Building Decision Trees

CS 105, Boston University Fall 2021 344

Choosing the Rules that "Best Divide"
Gender: Female Yes (6 / 7)

Male No (5 / 8)

overall accuracy = 11/15 = 73%

Income Rng: 20-30K No (2 / 4)
30-40K Yes (4 / 5)
40-50K No (3 / 4)
50-60K Yes (2 / 2)

overall accuracy = 11/15 = 73%

Recall: Overfitting

• In general, working too hard to match the training examples
can lead to a model that:

• is overly complicated

• that doesn't generalize well

• This is known as overfitting the training data.

• The larger a decision tree gets, the more likely it is to overfit.

• its rules/decisions are based on smaller and smaller
subgroups of training data

CS 105, Boston University Fall 2021 345

• If we choose Income Rng, the final tree is likely to be larger.

• it has more subgroups that we need to expand,
because they are not classified "accurately enough"

Choosing the Rules that "Best Divide"
Gender: Female Yes (6 / 7)

Male No (5 / 8)

overall accuracy = 11/15 = 73%

Income Rng: 20-30K No (2 / 4)
30-40K Yes (4 / 5)
40-50K No (3 / 4)
50-60K Yes (2 / 2)

overall accuracy = 11/15 = 73%

20-30K 50-60K

No Yes

30-40K

Yes

40-50K

No

Income Range

Female Male

Yes No

Gender

• We compute a goodness score for each set of candidate rules:

goodness = overall accuracy / N

N = # of subgroups the rules
don't classify "accurately enough" (perfectly)

• by dividing by N, we get a score that favors smaller trees
that are less likely to overfit

• special case: if N == 0 for an attribute,
choose that attribute!

Choosing the Rules that "Best Divide"
Gender: Female Yes (6 / 7)

Male No (5 / 8)

overall accuracy = 11/15 = 73%
N = 2
goodness = 73/2 = 36.5

Income Rng: 20-30K No (2 / 4)
30-40K Yes (4 / 5)
40-50K No (3 / 4)
50-60K Yes (2 / 2)

overall accuracy = 11/15 = 73%
N = 3
goodness = 73/3 = 24.3

CS 105, Boston University Fall 2021 346

Consider these rules based on different training data.
Which set of rules has the highest goodness score?

accuracy: 8/10 = 80%
goodness: 80/2 = 40

accuracy: 7/10 = 70%
goodness: ?

accuracy: 8/10 = 80%
goodness: ?

A.

B.

C.

D. more than one of the above

Gender: Female Yes (6 out of 7)
Male No (2 out of 3)

Cred.Card Ins: Yes Yes (3 out of 3)
No No (4 out of 7)

Income Rng: 20-30K No (3 out of 3)
30-40K Yes (2 out of 2)
40-50K No* (1 out of 2)
50-60K Yes (2 out of 3)

• Here are the rules we obtained for each attribute using 1R:

Gender: Female Yes (6 out of 7)
Male No (5 out of 8)

Cred.Card Ins: Yes Yes (3 out of 3)
No No* (6 out of 12)

Income Rng: 20-30K No* (2 out of 4)
30-40K Yes (4 out of 5)
40-50K No (3 out of 4)
50-60K Yes (2 out of 2)

Age: <= 43 Yes (9 out of 12)
> 43 No (3 out of 3)

Candidate rules based on our original training data…

accuracy: 11/15 = 73%
goodness: 73/2 = 36.5

accuracy: 9/15 = 60%
goodness: 60/1 = 60

accuracy: 11/15 = 73%
goodness: 73/3 = 24.3

accuracy: 12/15 = 80%
goodness: 80/1 = 80

CS 105, Boston University Fall 2021 347

• Here are the rules obtained for the 12 examples with Age <= 43:

Gender: Female Yes (6 out of 6)
Male No (3 out of 6)

Cred.Card Ins: Yes Yes (3 out of 3)
No Yes (6 out of 9)

Income Rng: 20-30K No (2 out of 3)
30-40K Yes (4 out of 5)
40-50K No (1 out of 2)
50-60K Yes (2 out of 2)

Age: <= 41 Yes (7 out of 8)
> 41 No (2 out of 4)

accuracy: 9/12 = 75%
goodness: 75/1 = 75

accuracy: 9/12 = 75%
goodness: 75/1 = 75

accuracy: 9/12 = 75%
goodness: 75/3 = 25

accuracy: 9/12 = 75%
goodness: 75/2 = 37.5

Repeating the Algorithm on a Subgroup

• Here's the basic algorithm:

1. apply 1R, but choose the candidate rules that "best divide"
the examples into subgroups

2. create a decision tree based on those rules

• if we already have an existing tree, put the new tree
in the appropriate place for its subgroup

3. for each subgroup created by the new decision tree:
• if its classifications are "accurate enough," do nothing
• otherwise, build a tree for the examples in the subgroup

Recall: Building Decision Trees

initial tree for
all training examples

9 / 12 3 / 3

+

tree for just the
Age <= 43 subgroup

6 / 6 3 / 6

CS 105, Boston University Fall 2021 348

• The subgroup (Age <= 43, Gender == Female) is already
perfectly classified.

• The subgroup (Age <= 43, Gender == Male) is not,
so we build a tree for that subgroup!

Repeating the Algorithm on a Subgroup (cont.)

<= 43 > 43

No

Age

3 out of 3Female Male

Yes No

Gender

6 out of 6 3 out of 6

• Here are the 6 examples in that subgroup:

Age: 27 29 35 42 43 43
Life Ins: N Y Y N Y N

• We no longer consider Gender. Why?

Income Life InsuranceCredit Card
Range PromotionInsuranceGenderAge
40–50K NoNoMale42
30–40K YesYesMale43
30–40K YesYesMale35
20–30K NoNoMale27
30–40K NoNoMale43
20–30K YesNoMale29

Repeating the Algorithm on a Subgroup (cont.)

sort by Age

CS 105, Boston University Fall 2021 349

• Here are the rules obtained for these 6 examples:

Cred.Card Ins: Yes Yes (2 out of 2)
No No (3 out of 4)

Income Rng: 20-30K No* (1 out of 2)
30-40K Yes (2 out of 3)
40-50K No (1 out of 1)
50-60K ? (none)

Age: <= 35 Yes (2 out of 3)
> 35 No (2 out of 3)

• Credit Card Insurance has
the highest goodness score,
so we pick it and create the
partial tree at right:

accuracy: 5/6 = 83.3%
goodness: 83.3/1 = 83.3

accuracy: 4/6 = 66.7%
goodness: 66.7/2 = 33.3

accuracy: 4/6 = 66.7%
goodness: 66.7/2 = 33.3

Repeating the Algorithm on a Subgroup (cont.)

Yes No

Yes No

Credit Card
Insurance

2 out of 2 3 out of 4

• This new tree replaces the classification for the
(Age <= 43, Gender = Male) subgroup in the previous tree:

Repeating the Algorithm on a Subgroup (cont.)

<= 43 > 43

No

Age

3 out of 3Female Male

Yes No

Gender

6 out of 6 3 out of 6

<= 43 > 43

No

Age

3 out of 3Female Male

Yes

Gender

6 out of 6 Yes No

Yes No

Credit Card
Insurance

2 out of 2 3 out of 4

CS 105, Boston University Fall 2021 350

• This new tree replaces the classification for the
(Age <= 43, Gender = Male) subgroup in the previous tree:

• It turns out that we can't improve this model any further.

Repeating the Algorithm on a Subgroup (cont.)

<= 43 > 43

No

Age

3 out of 3Female Male

Yes No

Gender

6 out of 6 3 out of 6

<= 43 > 43

No

Age

3 out of 3Female Male

Yes

Gender

6 out of 6 Yes No

Yes No

Credit Card
Insurance

2 out of 2 3 out of 4

Practice Building a Decision Tree

• Consider the following dataset:

• similar to one we saw previously, but Fever (Yes/No)
is replaced with Temp – the person's body temperature

• We again want to learn a model that allows us to diagnose
new patients.

Patient Sore Swollen
ID# Throat Temp Glands Congestion Headache Diagnosis
1 Yes 100.4 Yes Yes Yes Strep throat
2 No 97.8 No Yes Yes Allergy
3 Yes 101.2 No Yes No Cold
4 Yes 98.6 Yes No No Strep throat
5 No 102.0 No Yes No Cold
6 No 99.2 No Yes No Allergy
7 No 98.1 Yes No No Strep throat
8 Yes 98.0 No Yes Yes Allergy
9 No 102.5 No Yes Yes Cold
10 Yes 100.7 No Yes Yes Cold

CS 105, Boston University Fall 2021 351

Many-Valued Nominal Attributes

• Is Patient ID# numeric or nominal?

• What is the accuracy of rules based on Patient ID#?

• we get one rule for each ID, which correctly
classifies its example. This is overfitting!

• In general, we should:

• avoid nominal attributes with many possible values

• remove any attributes that are unique identifiers

Patient Sore Swollen
ID# Throat Temp Glands Congestion Headache Diagnosis
1 Yes 100.4 Yes Yes Yes Strep throat
2 No 97.8 No Yes Yes Allergy
3 Yes 101.2 No Yes No Cold
4 Yes 98.6 Yes No No Strep throat
5 No 102.0 No Yes No Cold
6 No 99.2 No Yes No Allergy
7 No 98.1 Yes No No Strep throat
8 Yes 98.0 No Yes Yes Allergy
9 No 102.5 No Yes Yes Cold
10 Yes 100.7 No Yes Yes Cold

• Here are some of the candidate rules for the initial tree:
Temp:

<= 100.4 Allergy (3/6)
> 100.4 Cold (4/4)

Swollen Glands:
Yes Strep throat (3/3)
No Cold (4/7)

Congestion:
Yes Cold (4/8)
No Strep throat (2/2)

• The other candidates are not as good as these three.

• The decision-tree algorithm could pick which of these?

accuracy = 7/10 = 70%
goodness = 70 / 1 = 70

accuracy = 7/10 = 70%
goodness = ?

accuracy = 6/10 = 60%
goodness = ?

Decision-Tree Algorithm: Candidate Rules

CS 105, Boston University Fall 2021 352

• Assume that it picks the first set:
Temp:

<= 100.4 Allergy (3/6)
> 100.4 Cold (4/4)

• Here's the corresponding initial tree:

• We don't need to go further with the right subgroup.

• We do need to go further with the left subgroup.

• the 6 training examples for which Temp <= 100.4

Decision-Tree Algorithm: Initial Tree

<= 100.4 > 100.4

Allergy Cold

Temp

3 out of 6 4 out of 4

Decision-Tree Algorithm: Processing a Subgroup

• Here are the 6 training examples in the left subgroup:

• The algorithm develops candidate rules for them, including:
Sore Throat:

Yes
No

Swollen Glands:
Yes
No

Sore Swollen
Throat Temp Glands Congestion Headache Diagnosis

Yes 100.4 Yes Yes Yes Strep throat
No 97.8 No Yes Yes Allergy

Yes 98.6 Yes No No Strep throat

No 99.2 No Yes No Allergy
No 98.1 Yes No No Strep throat
Yes 98.0 No Yes Yes Allergy

accuracy =
goodness =

accuracy =
goodness =

CS 105, Boston University Fall 2021 353

initial tree:

tree we just learned for final tree:
Temp <= 100.4 subgroup:

Decision-Tree Algorithm: Final Tree

Yes No

Strep Allergy

Swollen Glands

3 out of 3 3 out of 3

<= 100.4 > 100.4

Allergy Cold

Temp

3 out of 6 4 out of 4

CS 105, Boston University Fall 2021 354

Classification Learning, Part III

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Determining if a Mushroom is Poisonous

• 11 training examples:

• What is our output attribute?

• Why is this classification learning?

Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Red Short Yes Hairy No

Purple Short No Smooth No

Blue Short Yes Hairy Yes

Red Tall No Rough No

Blue Tall Yes Smooth Yes

Blue Short Yes Rough Yes

Red Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

CS 105, Boston University Fall 2021 355

What rules would 1R learn based on Color?

A. C.

B. D.

Color:
Purple Yes
Red Yes
Blue No

Color:
Purple Yes
Red No
Blue No

Color:
Purple Yes
Red No
Blue Yes

more than one of these
could be learned

Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Red Short Yes Hairy No

Purple Short No Smooth No

Blue Short Yes Hairy Yes

Red Tall No Rough No

Blue Tall Yes Smooth Yes

Blue Short Yes Rough Yes

Red Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

What would the final 1R model be?

A. C.

B. D.

E. two or more of the models are tied

Height:
Tall ?
Short ?

Stripes:
Yes ?
No ?

Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Red Short Yes Hairy No

Purple Short No Smooth No

Blue Short Yes Hairy Yes

Red Tall No Rough No

Blue Tall Yes Smooth Yes

Blue Short Yes Rough Yes

Red Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

Texture:
Rough ?
Smooth ?
Hairy ?

Color:
Purple Yes (3/5)
Red No (3/3)
Blue Yes (3/3)

(9/11)

CS 105, Boston University Fall 2021 356

Which set of rules would be chosen by
our decision-tree algorithm?

accuracy: 9/11 = 82%
goodness:

accuracy: 6/11 = 55%
goodness:

accuracy: 7/11 = 64%
goodness:

A.

B.

C.

D.

E. more than one of the above could be chosen

Color:
Purple Yes (3/5)
Red No (3/3)
Blue Yes (3/3)

Height:
Tall Yes (3/5)
Short No* (3/6)

Texture:
Rough Yes (2/3)
Smooth No (3/5)
Hairy Yes (2/3)

accuracy: 9/11 = 82%
goodness:

Stripes:
Yes Yes (5/6)
No No (4/5)

What is the corresponding initial tree?

CS 105, Boston University Fall 2021 357

What (if anything) will our algorithm do next?

A. learn subtrees for all three subgroups

B. learn a subtree for just one subgroup (which one?)

C. learn subtrees for two of the subgroups

D. nothing – this is the final model

Applying the Algorithm to a Subgroup

• all 11 training examples:
Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Red Short Yes Hairy No

Purple Short No Smooth No

Blue Short Yes Hairy Yes

Red Tall No Rough No

Blue Tall Yes Smooth Yes

Blue Short Yes Rough Yes

Red Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

CS 105, Boston University Fall 2021 358

Applying the Algorithm to a Subgroup

• just the Purple subgroup:
Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Purple Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

How many candidate models will be considered?

• just the Purple subgroup:
Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Purple Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

CS 105, Boston University Fall 2021 359

What rules will be selected for this subgroup?

• just the Purple subgroup:
Color Height Stripes Texture Poisonous
Purple Tall Yes Rough Yes

Purple Tall Yes Smooth Yes

Purple Short No Smooth No

Purple Short No Hairy Yes

Purple Tall No Smooth No

A.

B.

C.

Height:
Tall
Short

Texture:
Rough
Smooth
Hairy

Stripes:
Yes
No

accuracy:
goodness:

accuracy:
goodness:

accuracy:
goodness:

Generate all
three sets of
candidate rules,
and then
determine which
will be selected!

D. more than
one could
be selected

How should we incorporate the new rules?

Purple Blue

Yes YesNo

Color

Red

CS 105, Boston University Fall 2021 360

Let's assume the algorithm stops here…

• This model correctly classifies 10/11 of the training examples.

• Do we know if it is a good model?

Color Height Stripes Texture Poisonous
Blue Short Yes Smooth

Blue Tall No Hairy

Red Tall Yes Hairy

Purple Tall Yes Hairy

Purple Tall No Rough

Evaluating the Model on Test Examples

5 test examples (not used to train the model):

confusion matrix:

accuracy =

error rate =

Color Height Stripes Texture Poisonous
Blue Short Yes Smooth Yes

Blue Tall No Hairy No

Red Tall Yes Hairy No

Purple Tall Yes Hairy Yes

Purple Tall No Rough No

Yes No
Yes

No

actual predicted

CS 105, Boston University Fall 2021 361

• What if we wanted to use this model
in the context of a program?

• Any decision tree can be
turned into a set of rules
of the following form:

if condition1 [and condition2 and ...]:
class = value1

elif ...
class = value2

...

• For each classification node in the tree (each blue square node),
we include a rule based on the conditions on the path
from the top of the tree to that node.

From Decision Trees to Classification Rules

• What are the rules for this tree? (finish the rest!)
if Color == Purple and Stripes == Yes:

Poisonous = Yes
elif

elif

elif

From Decision Trees to Classification Rules (cont.)

Purple Blue

YesNo

Color

Yes No

Yes No

Stripes

Red

CS 105, Boston University Fall 2021 362

• ID3 – uses a different goodness score based on
a field of study known as information theory

• can't handle numeric attributes

• C4.5 – makes a series of improvements to ID3:

• can handle numeric input attributes

• can handle missing values

• prunes the tree after it is built –
making it smaller to improve its ability to generalize

• Both ID3 and C4.5 were developed by Ross Quinlan of
the University of Sydney.

Other Algorithms for Learning Decision Trees

CS 105, Boston University Fall 2021 363

Numeric Estimation;
Using Weka

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Review: Numeric Estimation

• Numeric estimation is like classification learning.

• it involves learning a model that works like this:

• the model is learned from a set of training examples
that include the output attribute

• In numeric estimation, the output attribute is numeric.

• we want to be able to estimate its value

modelinput attributes output attribute

CS 105, Boston University Fall 2021 364

Example Problem: CPU Performance

• We want to predict how well a CPU will perform on some task.

• The inputs include:

• 2 attributes that describe the CPU:
• CTIME: the processor's cycle time (in nanosec)
• CACHE: cache size (in KB)

• 4 attributes that describe the task:
• MMIN: minimum amount of main memory used (in KB)
• MMAX: maximum amount of main memory used (in KB)
• plus two others

• We need a model that works like this:

model

CTIME
MMIN, MMAX

CACHE
CHMIN, CHMAX

performance
(PERF)

Example Problem: CPU Performance (cont.)

• There are 209 training examples. Here are five of them:

CTIME MMIN MMAX CACHE CHMIN CHMAX PERF
125 256 6000 256 16 128 198
29 8000 32000 32 8 32 269
29 8000 32000 32 8 32 172

125 2000 8000 0 2 14 52
480 512 8000 32 0 0 67

class/
output attributeinput attributes:

CS 105, Boston University Fall 2021 365

Linear Regression

• The classic approach to numeric estimation is linear regression.

• It produces a model that is a linear function
(i.e., a weighted sum) of the input attributes.

• example for the CPU data:

PERF = 0.066CTIME + 0.0143MMIN + 0.0066MMAX +
0.4945CACHE – 0.1723CHMIN + 1.2012CHMAX – 66.48

• this type of model is known as a regression equation

• The general format of a linear regression equation is:

y = w1x1 + w2x2 + … + wnxn + c

where
y is the output attribute
x1, … , xn are the input attributes
w1, … , wn are numeric weights
c is an additional numeric constant

linear regression
learns these values

Linear Regression (cont.)

• Once the regression equation is learned, it can estimate
the output attribute for previously unseen instances.

• example: to estimate CPU performance for the instance

we plug the attribute values into the regression equation:

PERF = 0.066CTIME + 0.0143MMIN + 0.0066MMAX +

0.4945CACHE – 0.1723CHMIN + 1.2012CHMAX – 66.48

= 0.066 * 480 + 0.0143 * 1000 + 0.0066 * 4000 +
0.4945 * 0 – 0.1723 * 0 + 1.2012 * 0 – 66.48

= 5.9

CTIME MMIN MMAX CACHE CHMIN CHMAX PERF
480 1000 4000 0 0 0 5.9

CS 105, Boston University Fall 2021 366

Linear Regression with One Input Attribute

• Linear regression is easier
to understand when there's
only one input attribute, x1.

• In that case:

• the training examples are ordered pairs of the form (x1, y)

• shown as points in the graph above

• the regression equation has the form y = w1x1 + c

• shown as the line in the graph above

• w1 is the slope of the line; c is the y-intercept

• Linear regression finds the line that "best fits"
the training examples.

y

x1

c

• The dotted vertical bars show the differences between:

• the actual y values (the ones from the training examples)

• the estimated y values (the ones given by the equation)

Why do these differences exist?

• Linear regression finds the parameter values (w1 and c) that
minimize the sum of the squares of these differences.

Linear Regression with One Input Attribute (cont.)

y

x1

c

y = w1x1 + c

CS 105, Boston University Fall 2021 367

Linear Regression with Multiple Input Attributes

• When there are n input attributes, linear regression finds
the equation of a line in (n+1) dimensions.

• here again, it is the line that "best fits" the training examples

• The equation has the form we mentioned earlier:

y = w1x1 + w2x2 + … + wnxn + c

Using Weka

• http://www.cs.waikato.ac.nz/~ml/weka/index.html

• Choose the Explorer tool.

• Click Open file...

• Tell Weka to look for
CSV files.

• Find/open your data file.

• Perform the necessary
pre-processing steps.

• more on this soon!

CS 105, Boston University Fall 2021 368

Using Weka (cont.)

• After pre-processing, go to the Classify tab.

• used for both classification learning and numeric estimation

• Click the Choose button
to change the algorithm.

• you will see many
folders of algorithms

• Examples:

• rules folder: 1R

• trees folder: J48

• functions folder: Linear Regression

• Feel free to try algorithms that we haven't discussed in lecture!

Linear Regression in Weka

• By default, Weka employs attribute selection.

• it may not include all of the input attributes in the equation

• On the CPU dataset, Weka learns the following equation:

PERF = 0.0661CTIME + 0.0142MMIN + 0.0066MMAX +

0.4871CACHE + 1.1868CHMAX – 66.60

• it does not include the CHMIN attribute

• To force Linear Regression to use all attributes:

• click on the name of the algorithm

• change the attributeSelectionMethod parameter
to No attribute selection

• doing so produces our earlier equation:

PERF = 0.066CTIME + 0.0143MMIN + 0.0066MMAX +
0.4945CACHE – 0.1723CHMIN + 1.2012CHMAX – 66.48

CS 105, Boston University Fall 2021 369

The Coefficients in Linear Regression
PERF = 0.066CTIME + 0.0143MMIN + 0.0066MMAX +

0.4945CACHE – 0.1723CHMIN + 1.2012CHMAX – 66.48

• Notes about the coefficients:

• what do the signs of the coefficients mean?

• what about their magnitudes?

Evaluating a Regression Equation

• To evaluate the goodness of a regression equation,
we again set aside some of the examples for testing.

• do not use these test examples when learning the equation

• use the equation on the test examples and
see how well it does

• The correlation coefficient measures the degree of correlation
between the input attributes and the output attribute.

• its absolute value is between 0.0 and 1.0

• we want to maximize its absolute value

CS 105, Boston University Fall 2021 370

Simple Linear Regression

• This algorithm in Weka creates a regression equation that
uses only one of the input attributes.

• even when there are multiple inputs

• like 1R, but for numeric estimation

• We can use it as a baseline.

• determine the correlation coefficient of its model

• if a more complex model has a lower correlation coefficient,
don't use it!

• (we can use 1R in a similar way when doing
classification learning)

• It also gives insight into which of the input attributes has the
largest impact on the output.

Which of these statements is NOT true?

A. Numeric estimation produces a model that predicts
the value of a single output attribute.

B. The model produced by numeric estimation
does not need to use all of the input attributes.

C. In order to perform numeric estimation,
the input attributes must be numeric.

D. A numeric-estimation model is learned from
a set of training examples that include
values for the output attribute.

CS 105, Boston University Fall 2021 371

Handling Non-Numeric Input Attributes

• We employ numeric estimation when the output attribute
is numeric.

• Some algorithms for numeric estimation also require that
the input attributes be numeric.

• If we have a non-numeric input attribute, it may be possible
to convert it to a numeric one.

• ex: Gender with possible values {Female, Male}
 Female? with possible values {1, 0}

where 1 means Yes, 0 means No

• In Weka, many algorithms – including linear regression – will
automatically adapt to non-numeric inputs.

Handling Non-Numeric Input Attributes (cont.)

• There are algorithms for numeric estimation that are
designed to handle both numeric and nominal attributes.

• Example problem: predict a customer's salary based on
Age, Gender, and whether they purchased Credit Card Insurance

• One option: a regression tree

• build a decision tree

• each classification is a single number
• the average output value

for the training examples
in that subgroup

<= 43 > 43

75000

Age

Female Male

45000

Gender

Yes No

55000 38000

Credit Card
Insurance

CS 105, Boston University Fall 2021 372

Handling Non-Numeric Input Attributes (cont.)

• Another option: a model tree

• each classification is a regression equation
• based on just the training examples

in that subgroup

<= 43 > 43

2500*Age + …

Age

Female Male

1000*Age + …

Gender

Yes No

1200*Age + … 1500*Age + …

Credit Card
Insurance

Regression and Model Trees in Weka

• Select the M5P algorithm in the trees folder.

• by default, it builds model trees

• you can click on the name of the algorithm and tell it
to build regression trees

CS 105, Boston University Fall 2021 373

Association Learning

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Recall: Association Learning

• Algorithms for association learning:

• take a set of training examples

• discover associations/relationships among attributes
• example: products that people tend to purchase together

• It does not single out a single attribute for special treatment.

• there is no distinction between input and output attributes

CS 105, Boston University Fall 2021 374

Association Rules

• The learned associations are usually expressed as rules
known as association rules. Examples:

if PurchaseDiapers = Yes
then PurchaseBeer = Yes

if PurchaseMilk = Yes and PurchaseJuice = Yes
then PurchaseEggs = Yes and PurchaseCheese = Yes

• The test or tests in the if clause of a rule is known as the
precondition of the rule.

• The assignment in the then clause of a rule is known as the
conclusion of the rule.

• General format:

if precondition
then conclusion

The Converse of a Rule

• The converse of a rule is obtained by swapping the
precondition and conclusion.

• example: here's one rule:
if PurchaseDiapers = Yes
then PurchaseBeer = Yes

its converse is:
if PurchaseBeer = Yes
then PurchaseDiapers = Yes

• The converse of a rule is not necessarily true.

• example: this rule is true:
if name = 'Perry Sullivan'
then yearBorn = 2000

its converse is not!
if yearBorn = 2000
then name = 'Perry Sullivan'

CS 105, Boston University Fall 2021 375

Example Problem: Credit-Card Promotions

• We'll use these training examples, which omit the Age attribute:

• Possible association rules include:
if Gender = Male and IncomeRange = 40-50K
then CreditCardIns = No and LifeIns = No

if CreditCardIns = Yes and LifeIns = Yes
then Gender = Male

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

Metric #1: Support

• The support of a rule is the number of training examples
with the values in both the rule's precondition and conclusion.

• the number of examples that the rule gets right

• This metric can also be expressed as a percentage of the
total number of training examples.

CS 105, Boston University Fall 2021 376

Metric #1: Support

if Gender = Male and IncomeRange = 40-50K
then CreditCardIns = No and LifeIns = No

• support = 3 instances (or 20% of the total training set)

if CreditCardIns = Yes and LifeIns = Yes
then Gender = Male

• support = 2 instances (or 13.3% of the total training set)

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

Metric #2: Confidence

• The confidence of a rule provides a measure of a rule's accuracy
– of how well it predicts the values in the conclusion.

• It answers the question: if the precondition of the rule holds,
how likely is it that the conclusion also holds?

• Here's the formula:

examples with the values in
the precondition and the conclusion

examples with the values in
just the precondition

the support

confidence =

CS 105, Boston University Fall 2021 377

Metric #2: Confidence

if Gender = Male and IncomeRange = 40-50K
then CreditCardIns = No and LifeIns = No

• confidence = # examples with all four values
examples with Gender=Male and IncRange=40-50K

= 3
3

= 1 or 100% (perfect accuracy on training examples)

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

Metric #2: Confidence

if CreditCardIns = Yes and LifeIns = Yes
then Gender = Male

• confidence = # examples with all three values
examples with CreditCardIns=Yes, LifeIns=Yes

= 2
3

= 0.667 or 66.7%

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

CS 105, Boston University Fall 2021 378

Practice: Support and Confidence

if LifeIns = Yes
then Gender = Female and CreditCardIns = No

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

support = __________

confidence = _________

Learning Association Rules

• For a given dataset, there are a large number of association
rules that could be learned.

• example:
if CreditCardIns = Yes and LifeIns = Yes

and IncomeRange = 20-30K
then Gender = Female

has a confidence of 100%, but it is only based on
a single example (i.e., its support = 1)

• To cut down the number of rules that we consider, we limit
ourselves to ones with sufficient support.

• Of these rules, we keep the most accurate ones – the ones
with a confidence value that is above some minimum value.

CS 105, Boston University Fall 2021 379

Item Sets

• An item set is a collection of attribute values that appears in
one or more training examples.

• example: the item set CreditCardIns=Yes, LifeIns=Yes
appears in 3 training examples

• it could be used to form two different rules with support = 3:
• if CreditCardIns = Yes then LifeIns = Yes

• if LifeIns = Yes then CreditCardIns = Yes

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

Apriori Algorithm

• The standard algorithm for learning association rules
is called the apriori algorithm.

• It has two stages:

1) gradually build up larger and larger item sets
• keeping only the ones that appear in a sufficient number

of training examples
• allows us to ensure that the rules formed from

those item sets will have sufficient support

2) form rules from the item sets
• keeping the ones with a high enough confidence value

CS 105, Boston University Fall 2021 380

First Stage: Building Item Sets

• Assume we want item sets that appear in >= 3 examples.

• We get 9 one-item sets that meet this criterion:
Gender=Male CreditCardIns=Yes
Gender=Female CreditCardIns=No
IncomeRange=20-30K LifeIns=Yes
IncomeRange=30-40K LifeIns=No
IncomeRange=40-50K

• everything but IncomeRange=50-60K, which is in only 2 examples

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

From One-Item Sets to Two-Item Sets

• When considering two-item sets, we limit ourselves to ones that
can be formed by combining one-item sets with enough support.

• recall: here are the one-item sets with enough support:
Gender=Male CreditCardIns=Yes
Gender=Female CreditCardIns=No
IncomeRange=20-30K LifeIns=Yes
IncomeRange=30-40K LifeIns=No
IncomeRange=40-50K

• we would combine them to get the possible two-item sets:
Gender=Male, IncomeRange=20-30K
Gender=Male, IncomeRange=30-40K
Gender=Male, IncomeRange=40-50K
Gender=Male,CreditCardIns=Yes
Gender=Male,CreditCardIns=No
Gender=Male,LifeIns=Yes
Gender=Male,LifeIns=No
Gender=Female,LifeIns=20-30K
Gender=Female,LifeIns=30-40K
... (30 possible 2-item sets in all!)

CS 105, Boston University Fall 2021 381

From One-Item Sets to Two-Item Sets (cont.)

• We don't consider two-item sets that include a one-item set
that doesn't have enough support on its own.

• Example:

• IncomeRange=50-60K doesn't have enough support

• it only appears in 2 training examples

• thus, we don't need to consider two-item sets like
Gender=Male, IncomeRange=50-60K

that include it.

• these two-item sets can't possibly appear more often
than the one-item set does!

From One-Item Sets to Two-Item Sets (cont.)

• We test each possible two-item set and only keep the ones
with enough support.

• example: we don't keep Gender=Male, IncomeRange=20-30K
because it only appears in 2 examples

• example: we do keep Gender=Male, IncomeRange=30-40K

because it appears in at least 3 examples

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

CS 105, Boston University Fall 2021 382

From One-Item Sets to Two-Item Sets (cont.)

• We end up with 15 two-item sets with enough support:
Gender=Male, IncomeRange=30-40K
Gender=Male, IncomeRange=40-50K
Gender=Male, CreditCardIns=No
Gender=Male, LifeIns=Yes
Gender=Male, LifeIns=No
Gender=Female, CreditCardIns=No
Gender=Female, LifeIns=Yes
IncomeRange=20-30K, CreditCardIns=No
IncomeRange=30-40K, CreditCardIns=No
IncomeRange=30-40K, LifeIns=Yes
IncomeRange=40-50K, CreditCardIns=No
IncomeRange=40-50K, LifeIns=No
CreditCardIns=Yes, LifeIns=Yes
CreditCardIns=No, LifeIns=Yes
CreditCardIns=No, LifeIns=No

• Within an item set, we write the items in the order given
by the columns in the dataset file.

• we'll see why later!

From Two-Item Sets to Three-Item Sets

• To form candidate three-item sets, we take the union of pairs
of two-item sets that have one item in common:
Gender=Male, IncomeRange=30-40K U Gender=Male, LifeIns=Yes

= Gender=Male, IncomeRange=30-40K, LifeIns=Yes

• Once again, we limit ourselves to combinations of
two-item sets with enough support.

• We don't need to consider combinations of two-item sets
that don't have enough support on their own.

• example:
• Gender=Male, CreditCardIns=Yes

only appears in 2 training examples

• thus, we don't need to consider three-item sets like
Gender=Male, CreditCardIns=Yes, LifeIns=Yes

that include it.

CS 105, Boston University Fall 2021 383

From Two-Item Sets to Three-Item Sets (cont.)

• In addition, we can limit the possible three-item sets even
further by only combining two-item sets with the same first item.
Gender=Male, IncomeRange=30-40K U Gender=Male, LifeIns=Yes

= Gender=Male, IncomeRange=30-40K, LifeIns=Yes

• It isn't necessary to consider other pairs of two-item sets.

• example: although we could do
Gender=Male, LifeIns=Yes U CreditCardIns=No, LifeIns=Yes

= Gender=Male, CreditCardIns=No, LifeIns=Yes

we don't need to, because either:

1) the resulting item set will already be generated by two
other item sets, S1 and S2, with the same first item:

Gender=Male, CreditCardIns=No U Gender=Male, LifeIns=Yes

2) one or both of S1 and S2 didn't have enough
support, and thus the resulting item set won't either!

Practice: Taking the Union of Item Sets

• What possible three-item sets could we form from the
following two-item sets?
Gender=Male, IncomeRange=30-40K
Gender=Male, IncomeRange=40-50K
Gender=Male, CreditCardIns=No
IncomeRange=30-40K, CreditCardIns=No
IncomeRange=30-40K, LifeIns=Yes

Gender=Male, IncomeRange=30-40K, CreditCardIns=No

Gender=Male, IncomeRange=30-40K, LifeIns=Yes

IncomeRange=30-40K, CreditCardIns=No, LifeIns=Yes

A.

B.

C.

D. two of the above

E. all three of the above

CS 105, Boston University Fall 2021 384

Note The Savings!

• For our dataset, there are 56 three-item sets in all:

• By limiting ourselves to ones that can be formed by combining
two-item sets with enough support and the same first item,
we only need to test 11 of the 56!

Gender=Female, Income=20-30K, CredCardIns=Yes
Gender=Female, Income=20-30K, CredCardIns=No
Gender=Female, Income=20-30K, LifeIns=Yes
Gender=Female, Income=20-30K, LifeIns=No
Gender=Female, Income=30-40K, CredCardIns=Yes
Gender=Female, Income=30-40K, CredCardIns=No
Gender=Female, Income=30-40K, LifeIns=Yes
Gender=Female, Income=30-40K, LifeIns=No
Gender=Female, Income=40-50K, CredCardIns=Yes
Gender=Female, Income=40-50K, CredCardIns=No
Gender=Female, Income=40-50K, LifeIns=Yes
Gender=Female, Income=40-50K, LifeIns=No
Gender=Female, Income=50-60K, CredCardIns=Yes
Gender=Female, Income=50-60K, CredCardIns=No
Gender=Female, Income=50-60K, LifeIns=Yes
Gender=Female, Income=50-60K, LifeIns=No
Gender=Female, CredCardIns=Yes, LifeIns=Yes
Gender=Female, CredCardIns=Yes, LifeIns=No
Gender=Female, CredCardIns=No, LifeIns=Yes
Gender=Female, CredCardIns=No, LifeIns=No
Income=20-30K, CredCardIns=Yes, LifeIns=Yes
Income=20-30K, CredCardIns=Yes, LifeIns=No
Income=20-30K, CredCardIns=No, LifeIns=Yes
Income=20-30K, CredCardIns=No, LifeIns=No
Income=30-40K, CredCardIns=Yes, LifeIns=Yes
Income=30-40K, CredCardIns=Yes, LifeIns=No
Income=30-40K, CredCardIns=No, LifeIns=Yes
Income=30-40K, CredCardIns=No, LifeIns=No

Gender=Male, Income=20-30K, CredCardIns=Yes
Gender=Male, Income=20-30K, CredCardIns=No
Gender=Male, Income=20-30K, LifeIns=Yes
Gender=Male, Income=20-30K, LifeIns=No
Gender=Male, Income=30-40K, CredCardIns=Yes
Gender=Male, Income=30-40K, CredCardIns=No
Gender=Male, Income=30-40K, LifeIns=Yes
Gender=Male, Income=30-40K, LifeIns=No
Gender=Male, Income=40-50K, CredCardIns=Yes
Gender=Male, Income=40-50K, CredCardIns=No
Gender=Male, Income=40-50K, LifeIns=Yes
Gender=Male, Income=40-50K, LifeIns=No
Gender=Male, Income=50-60K, CredCardIns=Yes
Gender=Male, Income=50-60K, CredCardIns=No
Gender=Male, Income=50-60K, LifeIns=Yes
Gender=Male, Income=50-60K, LifeIns=No
Gender=Male, CredCardIns=Yes, LifeIns=Yes
Gender=Male, CredCardIns=Yes, LifeIns=No
Gender=Male, CredCardIns=No, LifeIns=Yes
Gender=Male, CredCardIns=No, LifeIns=No
Income=40-50K, CredCardIns=Yes, LifeIns=Yes
Income=40-50K, CredCardIns=Yes, LifeIns=No
Income=40-50K, CredCardIns=No, LifeIns=Yes
Income=40-50K, CredCardIns=No, LifeIns=No
Income=50-60K, CredCardIns=Yes, LifeIns=Yes
Income=50-60K, CredCardIns=Yes, LifeIns=No
Income=50-60K, CredCardIns=No, LifeIns=Yes
Income=50-60K, CredCardIns=No, LifeIns=No

From Two-Item Sets to Three-Item Sets (cont.)

• Out of the 11 potential three-items sets, only 5 have sufficient
support – appearing in at least 3 examples:

Gender=Male, IncomeRange=40-50K, CreditCardIns=No
Gender=Male, IncomeRange=40-50K, LifeIns=No

Gender=Male, CreditCardIns=No, LifeIns=No
Gender=Female, CreditCardIns=No, LifeIns=Yes
IncomeRange=40-50K, CreditCardIns=No, LifeIns=No

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

CS 105, Boston University Fall 2021 385

From Three-Item Sets to Four-Item Sets
Gender=Male, IncomeRange=40-50K, CreditCardIns=No
Gender=Male, IncomeRange=40-50K, LifeIns=No
Gender=Male, CreditCardIns=No, LifeIns=No
Gender=Female, CreditCardIns=No, LifeIns=Yes
IncomeRange=40-50K, CreditCardIns=No, LifeIns=No

• To form potential four-item sets, we take the union of pairs of
surviving three-item sets with the same first two items.

• more generally, to form n-item sets, we take the union of
pairs of (n – 1)-item sets with the same first n – 2 items

• We get only one potential four-item set:
Gender=Male, IncomeRange=40-50K, CreditCardIns=No, LifeIns=No

and it has enough support.

• There can't be any five-item sets (because there are only four
attributes), so we're done building item sets!

Results of the First Stage

• Here are all item sets with two or more items and support >= 3:

Gender=Male, IncRange=30-40K Gender=Female, CreditCardIns=No
Gender=Male, IncRange=40-50K Gender=Female, LifeIns=Yes
Gender=Male, CredCardIns=No CredCardIns=Yes, LifeIns=Yes
Gender=Male, LifeIns=Yes CredCardIns=No, LifeIns=Yes
Gender=Male, LifeIns=No CredCardIns=No, LifeIns=No
IncRange=20-30K, CredCardIns=No
IncRange=30-40K, CredCardIns=No
IncRange=30-40K, LifeIns=Yes
IncRange=40-50K, CredCardIns=No
IncRange=40-50K, LifeIns=No

Gender=Male, IncRange=40-50K, CredCardIns=No

Gender=Male, IncRange=40-50K, LifeIns=No

Gender=Male, CredCardIns=No, LifeIns=No
Gender=Female, CredCardIns=No, LifeIns=Yes
IncRange=40-50K, CredCardIns=No, LifeIns=No

Gender=Male, IncRange=40-50K, CredCardIns=No, LifeIns=No

CS 105, Boston University Fall 2021 386

Second Stage: Forming the Rules

• A given item set can produce a number of potential rules.

• example: the item set
Gender=Male, IncomeRange=40-50K, CreditCardIns=No

produces the following potential rules:
a) if Gender=Male and IncomeRange=40-50K

then CreditCardIns=No

b) if Gender=Male and CreditCardIns=No
then IncomeRange=40-50K

c) if IncomeRange=40-50K and CreditCardIns=No
then Gender=Male

d) if Gender=Male
then IncomeRange=40-50K and CreditCardIns=No

e) if IncomeRange=40-50K
then Gender=Male and CreditCardIns=No

f) if CreditCardIns=No
then Gender=Male and IncomeRange=40-50K

• We keep only the ones with confidence >= some min value.

Practice: Taking the Union of Item Sets

• What possible three-item sets could we form from the
following two-item sets?
Gender=Female, IncomeRange=20-30K
Gender=Male, IncomeRange=40-50K
Gender=Male, LifeIns=No
IncomeRange=40-50K, CreditCardIns=Yes
IncomeRange=20-30K, LifeIns=No
IncomeRange=20-30K, LifeIns=Yes

Gender=Female, IncomeRange=20-30K, LifeIns=No

Gender=Male, IncomeRange=40-50K, CreditCardIns=Yes

Gender=Male, IncomeRange=40-50K, LifeIns=No

IncomeRange=20-30K, LifeIns=No, LifeIns=Yes

A.

B.

C.

D.

E. two or more of the above

CS 105, Boston University Fall 2021 387

Which of these rules would be kept?

A. if Gender=Male and IncRange=40-50K support = ?
then CreditCardIns=No confidence = ?

B. if Gender=Male and CreditCardIns=No support = ?
then IncomeRange=40-50K confidence = ?

C. both rules would be kept

D. neither rule would be kept

Income Life InsuranceCredit Card
Range PromotionInsuranceGender

40–50K NoNoMale
30–40K YesNoFemale
40–50K NoNoMale
30–40K YesYesMale
50–60K YesNoFemale
20–30K NoNoFemale
30–40K YesYesMale
20–30K NoNoMale
30–40K NoNoMale
30–40K YesNoFemale
40–50K YesNoFemale
20–30K YesNoMale
50–60K YesNoFemale
40–50K NoNoMale
20–30K YesYesFemale

Assume that we
require a minimum
confidence of 1.0

Second Stage: Forming the Rules (cont.)

• In our example, there are 13 rules with conf = 1.0:
1) if LifeIns=No

then CredCardIns=No

2) if Gender=Male and LifeIns=No
then CredCardIns

3) if IncomeRange=40-50K
then CredCardIns=No

4) if Gender=Male and IncRange=40-50K
then CredCardIns=No and LifeIns=No

5) if IncRange=40-50K and LifeIns=No
then Gender=Male and CredCardIns=No

6) if Gender=Male and IncRange=40-50K and CredCardIns=No
then LifeIns=No

7) if Gender=Male and IncRange=40-50K and LifeIns=No
then CredCardIns=No

8) if IncRange=40-50K and CredCardIns=No and LifeIns=No
then Gender=Male

(continued)

CS 105, Boston University Fall 2021 388

Second Stage: Forming the Rules (cont.)

• 13 rules (cont.)
9. if Income Range=40-50K and LifeIns=No

then CreditCardIns=No

10. if Gender=Male and IncomeRange=40-50K
then LifeInsPromo=No

11. if IncomeRange=40-50K and LifeInsPromo=No
then Gender=Male

12. if Gender=Male and IncomeRange=40-50K
then CreditCardIns=No

13. if CreditCardIns=Yes
then LifeIns=Yes

Managing the Efficiency of the Algorithm

• The apriori algorithm tries to generate the rules efficiently –
i.e., taking as few steps as possible.

• We've already seem some ways that it does this:

• by only considering item sets with sufficient support

• by building larger item sets from smaller ones that have
enough support

• It also builds rules with larger conclusions (i.e., with more
attributes in the then clause) from rules with smaller conclusions.

• Even with these steps, the algorithm may take too long
for very large datasets!

CS 105, Boston University Fall 2021 389

Managing the Efficiency of the Algorithm (cont.)

• To improve the efficiency even further, we can:

• specify a large initial support value
• the larger the support value, the sooner the first phase

will finish

• have the algorithm gradually decrease this support value
and rerun the algorithm until it has generated enough rules
• the delta parameter in Weka specifies how much the

support should be decreased each time

CS 105, Boston University Fall 2021 390

Simple Discretization Methods

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Discretizing Numeric Attributes

• We can turn a numeric attribute into a nominal/categorical one
by using some sort of discretization.

• This involves dividing the range of possible values into
subranges called buckets or bins.

• example: an age attribute could be divided into these bins:
child: 0-12
teen: 12-17
young: 18-35
middle: 36-59
senior: 60-

CS 105, Boston University Fall 2021 391

Simple Discretization Methods

• What if we don't know which subranges make sense?

• Equal-width binning divides the range of possible values
into N subranges of the same size.

• bin width = (max value – min value) / N

• example: if the observed values are all between 0-100,
we could create 5 bins as follows:

width = (100 – 0)/5 = 20
bins: [0, 20], (20, 40], (40, 60], (60, 80], (80, 100]

[or] means the endpoint is included
(or) means the endpoint is not included

• typically, the first and last bins are extended to allow
for values outside the range of observed values

(-infinity, 20], (20, 40], (40, 60], (60, 80], (80, infinity)

• problems with this equal-width approach?

Simple Discretization Methods (cont.)

• Equal-frequency or equal-height binning divides the range
of possible values into N bins, each of which holds the same
number of training instances.

• example: let's say we have 10 training examples with the
following values for the attribute that we're discretizing:

5, 7, 12, 35, 65, 82, 84, 88, 90, 95

to create 5 bins, we would divide up the range of values
so that each bin holds 2 of the training examples:

5, 7, 12, 35, 65, 82, 84, 88, 90, 95

• To select the boundary values for the bins, this method
typically chooses a value halfway between the training
examples on either side of the boundary.

• examples: (7 + 12)/2 = 9.5 (35 + 65)/2 = 50
final bins: (-inf, 9.5], (9.5, 50], (50, 83], (83, 89], (89, inf)

• Problems?

CS 105, Boston University Fall 2021 392

Discretization Example

• Let's say we have 8 training examples with the
following values for Age:

17, 23, 35, 41, 51, 58, 70, 89

We want to discretize Age into 4 bins.

Which bins would be given by equal-height disc.?

• Let's say we have 8 training examples with the
following values for Age:

17, 23, 35, 41, 51, 58, 70, 89

We want to discretize Age into 4 bins.

A. (-infinity, 29], (29, 46], (46, 64], (64, infinity)

B. [17, 29], (29, 46], (46, 64], (64, 89]

C. (-infinity, 35], (35, 53], (53, 71], (71, infinity)

D. [17, 35], (35, 53], (53, 71], (71, 89]

CS 105, Boston University Fall 2021 393

1

Preparing Your Data

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

The Data Mining Process

• Key steps:

• assemble the data in the format needed for data mining

• typically a text file

• perform the data mining

• interpret/evaluate the results

• apply the results

CS 105, Boston University Fall 2021 394

2

Denormalization

• The data for a given entity (e.g., a customer) may be:

• spread over multiple tables

• spread over multiple rows within a given table

• To prepare for data mining, we need to denormalize the data.

• multiple rows for a given entity a single row

Denormalization

• Example: finding associations between courses students take.

id name

12345678 Jill Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

student_id course_name credit_status

12345678 CS 105 ugrad

25252525 CS 111 ugrad

45678900 CS 460 grad

33566891 CS 105 non-credit

45678900 CS 510 grad

Student Course Enrolled
name start_time end_time …
CS 105 13:00:00 14:00:00 …

CS 111 09:30:00 11:00:00 …

EN 101 11:00:00 12:30:00 …

CS 460 16:00:00 17:30:00 …

CS 510 12:00:00 13:30:00 …

PH 101 14:30:00 16:00:00 …

CS 105, Boston University Fall 2021 395

3

Transforming the Data

• We may also need to reformat or transform the data.

• we can use a Python program to do the reformatting!

• One reason for transforming the data: many machine-learning
algorithms can only handle certain types of data.

• some algorithms only work with nominal attributes –
attributes with a specified set of possible values
• examples: {yes, no}

{strep throat, cold, allergy}

• other algorithms only work with numeric attributes

Recall: Simple Discretization Methods

• We've discussed two methods for discretization.

• Equal-width binning divides the range of possible values
into N subranges of the same size.

• Equal-frequency or equal-height binning divides the range
of possible values into N bins, each of which holds the same
number of training instances.

CS 105, Boston University Fall 2021 396

4

Discretization Example

• Let's say we have 8 training examples with the
following values for Age:

17, 23, 35, 41, 51, 58, 70, 89

We want to discretize Age into 4 bins.

Discretization in Weka

• In Weka, you can discretize an attribute by applying the
appropriate filter to it.

• After loading in the dataset in the Preprocess tab, click the
Choose button in the Filter portion of the tab.

• For equal-width or equal-height, you choose the Discretize
option in the filters/unsupervised/attribute folder.

• by default, it uses equal-width binning

• to use equal-frequency binning instead, click on the
name of the filter and set useEqualFrequency to True

• Another option: Discretize in filters/supervised/attribute folder

• attempts to learn meaningful cutoffs, based on your output

CS 105, Boston University Fall 2021 397

5

Nominal Attributes with Numeric Values

• Some attributes that use numeric values may actually be
nominal attributes.

• the attribute has a small number of possible values

• there is no ordering to the values, and you would never
perform mathematical operations on them

• example: using numeric codes for Diagnosis
• 1 = Strep Throat, 2 = Cold, 3 = Allergy

• If you load into Weka a comma-separated-value file containing
such an attribute, Weka will assume that it is numeric.

• To force Weka to treat an attribute with numeric values
as nominal, use the NumericToNominal option in the
filters/unsupervised/attribute folder.

• click on the name of the filter, and enter the number(s)
of the attributes you want to convert

Removing Problematic Attributes

• Problematic attributes include:

• irrelevant attributes: ones that don't help to predict the class
• despite their irrelevance, the algorithm may erroneously

include them in the model

• attributes that cause overfitting
• example: a unique identifier like Patient ID

• redundant attributes: ones that offer basically the same
information as another attribute
• example: in many problems, date-of-birth and age

provide the same information
• some algorithms may end up giving the information from

these attributes too much weight

• We can remove an attribute manually in Weka by clicking
the checkbox next to the attribute in the Preprocess tab
and then clicking the Remove button.

CS 105, Boston University Fall 2021 398

6

Undoing Preprocess Actions

• In the Preprocess tab, the Undo button allows you to undo
actions that you perform, including:

• applying a filter to a dataset

• manually removing one or more attributes

• If you apply two filters without using Undo in between the two,
the second filter will be applied to the results of the first filter.

• Undo can be pressed multiple times to undo a sequence of
actions.

Dividing Up the Data File

• To allow us to validate the model(s) learned in data mining,
we'll divide the examples into two files:

• n% for training

• 100 – n% for testing: these should not be touched until you
have finalized your model or models

• possible splits:
• 67/33
• 80/20
• 90/10

• You can use Weka to split the dataset for you after you perform
whatever reformatting/editing is needed.

• If you discretize one or more attributes, you need to do so
before you divide up the data file.

• otherwise, the training and test sets will be incompatible

CS 105, Boston University Fall 2021 399

7

Dividing Up the Data File (cont.)

• Here's one way to do it in Weka:

1) shuffle the examples by choosing the Randomize filter from
the filters/unsupervised/instance folder

2) save the entire file of shuffled examples in Arff format.

3) use the RemovePercentage filter from the same folder
to remove some percentage of the examples
• whatever percentage you're using for the training set
• click on the name of the filter to set the percentage

4) save the remaining examples in a new file
• this will be our test data

5) load the full file of shuffled examples back into Weka

6) use RemovePercentage again with the same percentage
as before, but set invertSelection to True

7) save the remaining examples in a new file
• this will be our training data

Solutions to earlier discretization exercise

• Let's say we have 8 training examples with the
following values for Age:

17, 23, 35, 41, 51, 58, 70, 89

We want to discretize Age into 4 bins.

• To select a boundary cutoff for equal-height, choose the value
halfway between the training examples on either side.

• examples: (23 + 35)/2 = 29 (41 + 51)/2 = 46

A. (-infinity, 29], (29, 46], (46, 64], (64, infinity)

B. [17, 29], (29, 46], (46, 64], (64, 89]

C. (-infinity, 35], (35, 53], (53, 71], (71, infinity)

D. [17, 35], (35, 53], (53, 71], (71, 89]

equal-width bins
max – min
= 89 – 17 = 72
72 / 4 = 18
17 + 18 = 35
35 + 18 = 53
53 + 18 = 71

CS 105, Boston University Fall 2021 400

Case Study:
Predicting Patient Outcomes

Computer Science 105
Boston University

David G. Sullivan, Ph.D.

Dataset Description

• The "spine clinic dataset" from Roiger & Geatz.

• Data consists of records for 171 patients who had back surgery
at a spine clinic.

• 31 attributes per record describing:

• the patient's condition before and during surgery

• the patient's condition 3 months after surgery
• including whether he/she has been able to return to work

CS 105, Boston University Fall 2021 401

Overview of the Data-Mining Task

• Goal: to develop insights into factors that influence
patient outcomes.

• in particular, whether someone can return to work (yes/no)

• in other words, to determine factors will allow us
to predict whether or not the patient will return to work

• What type of data mining is most appropriate?

• What will the data mining produce?

Preparing the Data: Using a Spreadsheet

• Excel/Google Sheets/etc. can be used for several purposes:

• removing unnecessary/problematic columns

• making sure the output column is the last column

• giving each column a simple, descriptive name
Gross Domestic Product GDP

Code ReturnToWork

• removing problematic characters
• do a search-and-replace for:

single quotes (')
double quotes (")
commas (,)

and replace each type of character with nothing

• Use File -> Save As to save the file as CSV.

CS 105, Boston University Fall 2021 402

Review: Preparing the Data

• Other possible steps include:

• denormalization

several rows for a given entity single training example

• discretization

numeric nominal

• nominal numeric

• force Weka to realize that a seemingly numeric attribute
is really nominal

Preparing the Data (cont.)

• We begin by loading the dataset (a CSV file) into Weka Explorer.

• It's helpful to examine each attribute by highlighting
its name in the Attribute portion of the Preprocess tab.

• helps us to identify
missing/anomalous
values

• can also help to find
formatting issues
that must be addressed

CS 105, Boston University Fall 2021 403

How many attributes should be removed/transformed?

Patient
Sex

of Patient Return to
ID Levels

Smoker
Type Age Work (y/n)

1005 M 1 0 3100 30–39 1
1013 F 2 1 1400 50–59 0
1245 1 1 3100 20–29 1
2110 3 0 2500 30–39 0
1001 2 1 1400 40–49 1

M
F
F

...

(y/n)

Review: Dividing Up the Data

• To allow us to validate the model(s) we learn,
we'll divide the examples into two files:

• n% for training

• 100 – n% for testing
• don't touch these until you've finalized your model(s)

• You can use Weka to split the dataset:

1) filters/unsupervised/instance/Randomize
2) save the shuffled examples in Arff format
3) filters/unsupervised/instance/RemovePercentage

• specify the percentage parameter to remove n%
4) save the remaining examples as your test set
5) load the full file of shuffled examples back into Weka
6) use RemovePercentage with invertSelection set to True

to remove the other 100 – n%
7) save the remaining examples as your training set

CS 105, Boston University Fall 2021 404

Experimenting with Different Techniques

• Use Weka to try different techniques on the training data.

• For each technique, examine:

• the resulting model

• the validation results
• for classification models: overall accuracy, confusion matrix
• for numeric estimation models: correlation coefficient

• If the model is something you can interpret,
make sure it seems reasonable.

• Try to improve the validation results by:

• changing the algorithm used

• changing the algorithm's parameters

Remember to Start with a Baseline

• For classification learning: 1R

• you can also use 0R to determine what
% of your training data has the most common class value

• For numeric estimation: simple linear regression

• Include the results of these baselines to put your other results
in context.

• example: 80% accuracy isn't that impressive
if 0R has 78% accuracy

• being honest about your results is better than making
exaggerated claims!

CS 105, Boston University Fall 2021 405

Cross Validation

• When validating classification/estimation models,
Weka performs 10-fold cross validation by default:

1) divides the training data into 10 subsets

2) repeatedly does the following:

a) holds out one of the 10 subsets

b) builds a model using the other 9 subsets

c) tests the model using the held-out subset

3) reports results that average the 10 models together

• We use cross validation when exploring possible models,
because it gives a sense of how well the model will generalize.

• Note: the model reported in the output window is learned from
all of the training examples.

• the cross-validation results do not actually evaluate it

Reporting the Results

• You should not report the cross-validation results.

• Once you find the models with the best cross-validation results,
you should evaluate them two ways.

• On the full set of training data:

• select Using training set in the Test box of the Classify tab

• rerun the algorithm

• On the reserved test data:

• select Supplied test set in the Test box of the Classify tab.

• click the Set button to specify the file

• rerun the algorithm

• Include appropriate metrics from both training and test results:

• classification learning: accuracy, confusion matrix

• numeric estimation: correlation coefficient

CS 105, Boston University Fall 2021 406

Discussing the Results

• Your report should include more than just the numeric results.

• You should include an intelligent discussion of the results.

• compare training vs. test results

• how well do the models appear to generalize?

• which attributes are included in the models?

• for classification learning:
• what do the confusion matrices tell you?

• for numeric estimation:
• which attributes have positive coefficients?
• which have negative?
• remember: the magnitude of the coefficients

may not be significant

• are the models intuitive? why or why not?

CS 105, Boston University Fall 2021 407

	lecture_00_intro
	lecture01_a_data_fundamentals
	lecture01_in_class
	lecture02_a_relational
	lecture02_b_keys
	lecture02_c_foreign_keys
	lecture02_in_class
	lecture03_a_constraints_nulls
	lecture03_in_class
	lecture04_a_sql_simple_select
	lecture04_in_class
	lecture05_a_pattern_matching_nulls
	lecture05_b_distinct_aggregates
	lecture05_in_class
	lecture06_a_subqueries
	lecture06_b_group_by_having
	lecture06_in_class
	lecture07_a_types_create_insert
	lecture07_in_class
	lecture08_a_joins
	lecture08_b_joins2
	lecture08_in_class
	lecture09_a_outer_joins
	lecture09_in_class
	lecture10_a_other_sql
	lecture10_in_class
	lecture10b_sql_practice
	lecture11_a_python_getting_started
	lecture11_b_python_building_blocks
	lecture11_in_class
	lecture12_a_builtin_functions_user_input
	lecture12_b_lists_range
	lecture12_c_for_loops
	lecture12_in_class
	lecture13_a_writing_functions
	lecture13_b_cumulative_computations
	lecture13_in_class
	lecture14_a_making_decisions
	lecture14_in_class
	lecture15_a_strings_lists
	lecture15_in_class
	lecture16_a_objects_splitting_joining
	lecture16_in_class
	lecture17_a_accessing_db
	lecture17_in_class
	lecture18_review_strings_objects_db
	lecture19_a_file_writing
	lecture19_in_class
	lecture20_a_file_reading
	lecture20_in_class
	lecture23_file_reading_revisited
	lecture24_a_data_mining_fundamentals
	lecture24_in_class
	lecture25_a_evaluating_model
	lecture25_in_class
	lecture26_a_oneR
	lecture26_in_class
	lecture27_a_learning_dec_trees
	lecture27_in_class
	lecture28_classification3
	lecture29_num_estimation_weka
	lecture30_31_assoc_learning
	lecture31_discretize
	lecture32_data_preparation
	lecture33_patient_outcomes

