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Starting WEKA
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Open Weka : Start > All Programs > Weka 3.x.x > Weka 3.x
From the "Weka GUI Chooser", pick "Explorer". This is the
main WEKA tool that we are going to use.



Opening a dataset
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To open a dataset (a .csv file in our case), we click "Open file ..." in the
Preprocess tab and open the file that contains our data. Remember that in
the open menu you have to choose csv if your file was saved as such. Let’s
open SPECT.csv



Transforming values to nominal (if needed)
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Weka classified every attribute in our dataset as numeric, so we have to manljally transform
them to nominal. To do so, we will use a filter. We navigate to NumericToNominal, which is in
Unsupervised > attribute. If we click on that, we will get to the options of that filter. Mainly, the
most interesting one here is the attributelndices, which enumerates all the attributes that you
want the filter to be applied on. To finish, we click Apply.



Splitting the dataset
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We have to split the dataset into two, 30% testing and 70% training. To do that, we first
Randomize the dataset ( Unsupervised > Instance), so that we create a random permutation.




Splitting the dataset
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Then we apply RemovePercentage (Unsupervised > Instance) with percentage 30 and save the
resulting dataset as training.



Splitting the dataset
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After that, we undo and apply the same filter choosing invertSelection this time. This will pick
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the rest of the data (30%) so we save them as the testing.




Training models
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From now on we will be using the training dataset. We switch to the tab "Classify" and we
pick a classifier. Let's start with OneR, which is the same with the one we saw in the class.



&3 Weka Explorer

Training models
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We have to specify the attribute that we want to predict and the testing proc

edure. We first

want to see how good OneR is as a model, so we use cross-validation. , and only after that

will we go and check what it predicts on the unseen data.



Training models
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In the output, we get information about the average accuracy and the confusion matrix of
our model.




Training models
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In order to check how well we do on the unseen data, we select "supplied test set" ,we open
the testing dataset that we have created and we specify which attribute is the class. We run
the algorithm again and we notice the differences in the confusion matrix and the accuracy.




Association learning
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If all of our attributes are nominal (in case they are not, we can discretize them in the
Preprocess tab) we can also do association learning. In order to do that, we switch to the
Association tab and we choose the Apriori algorithm. You can play around with its
parameters if you want.




Association learning
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We could set car to True (so that it produces rules that predict the class attribute) and
specify the index of the attribute that will be considered as class. minMetric sets the
threshold of confidence and numRules limits the number of rules that will be created. The
result will be a set of rules that predict the class, together with their confidence.




