Computer Science 460
Introduction to Database Systems

Boston University, Spring 2026
David G. Sullivan, Ph.D.

COUMSE OVEIVIEW ..ttt ettt ettt ettt ettt a e ettt e bt e e s a bt e e ebe e e sa b e e e ab et e aab e e eabe e e beeesabeeeabneennneas 2
Database Desigh and ER MOAEIS........ooeeiiiiiii e e 8
The Relational MOAEIcooiiiiii e e 23
Relational AlgeDra.........ccooo oo ————— 34
SQL: A First LOOK.....cctiieeiiieee et pre-lecture: 49 / in-lecture: 54
SQL: Pattern Matching, Aggregates and Subqueries......................... pre-lecture: 59 / in-lecture: 74
SQL: Subgroups, Joins and Outer JOiNScccceeviieeieiiiiee e pre-lecture: 81 / in-lecture: 93
SQL: Data Types; Other Commands.........ccccceeviiieiiiiine i pre-lecture: 104 / in-lecture: 112
SQL: Practice Writing QUETIEScoi ittt e e sbeee e e 116
Storage Fundamentals; Record FOrmats ... 125
INAEX STUCTUIES ...ttt e e a bt e e a bt e e bt e e e bt e e e s e nb e e e e e abe e e e anneeas 133
Implementing a Logical-to-Physical Mappingccuueiiiiiiiiii e 149
Semistructured Data and XML.........cooiiiiiiie e 160
Transactions and SCREAUIES.cooiii i e 184
Concurrency Control I: LOCKINGeeeiiiiiieiiiiie e seee ettt e e st e e s nnee e e e s nneeeaesnneeeaeens 201
Concurrency Control II: TIMESTAMPScooiiuiiiiiiiiiie et e e e e nneeee e 214
Distributed Databases and Replication............cooovio oo 229
Processing Distributed Data Using MapRedUCEccooeeiiieiiiiiieeee e 247
NOSQL DAtAD@SES ...ttt b e b e sabe e b enee e 264
Y=ol V7= V=T oo [oo To 1 oo [USRS 293

Two-Phase Commit; COUrSE WIap-Upcoeiiuuiiieiiiiiee et ee et e e s e e s e s ee e s nnneeeas 317

Introduction to Database Systems

Course Overview

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Databases and DBMSs

» A database is a collection of related data.
+ refers to the data itself, not the program

* Managed by some type of database management system
(DBMS)

CAS CS 460 Boston University, Spring 2026

The Conventional Approach

» Use a DBMS that employs the relational model
» use the SQL query language

+ Examples: IBM DB2, Oracle, Microsoft SQL Server, MySQL

» Typically follow a client-server model
+ the database server manages the data
» applications act as clients

» Extremely powerful
» SQL allows for a wide range of queries
» support tfransactions and the associated guarantees

Limitations of the Conventional Approach

» Can be overkill for applications that don’t need all the features
* Can be hard / expensive to setup / maintain / tune
* May not provide the necessary functionality

» Footprint may be too large
+ example: can’t put a conventional RDBMS on a small
embedded system

* May be unnecessarily slow for some tasks
» overhead of IPC, query processing, etc.

* Does not scale well to large clusters

CAS CS 460 Boston University, Spring 2026

CAS CS 460

What Other Options Are There?

» View a DBMS as being composed of two layers.

* At the bottom is the storage layer or e
storage engine. logical layer |
» stores and manages the data storage engine+
+ Above that is the logical layer. | F
» provides an abstract representation ﬁ 8
of the data disks

» based on some data model

* includes some query language, tool, or API
for accessing and modifying the data

» To get other approaches, choose different options for the layers.

Course Overview

« data models/representations (logical layer), including:
+ entity-relationship (ER): used in database design
* relational (including SQL)
» semistructured: XML, JSON
* noSQL variants

» implementation issues (storage layer), including:
» storage and index structures
 transactions
+ concurrency control
* logging and recovery
+ distributed databases and replication

Boston University, Spring 2026

Prerequisite

+ CS112
 data structures
 proficiency in Java
+ see me if you're not sure

Labs

» Will help you prepare for and get started on the assignments
» Will also reinforce the key concepts

+ ASAP: Complete Lab 0
+ short tasks to prepare you for the semester

» on the course website:
https://cs-people.bu.edu/dgs/courses/cs460

CS 460 Introduction to Database Systems
Boston University
Home Welcome!
Uochiroe The first lecture of the semester will be held on September 7 in PHO 206. There are no labs
on September 6.
Labs
Problem Sets For more information, contact Dr. Sullivan.
Syllabus Course information
Schedule
Course description
Staff This course covers the fundamental concepts of database systems. Topics include data models
Office Hours (ER. relational, and others); query languages (relational algebra, SQL, and others);
c techniques of database management systems (index structures, concurrency

control, recovery, and query processing); management of semistructured and complex data;
distributed and noSQL databases.

Prerequisite
CAS CS 112

Instructor
David G. Sullivan, Ph.D., Master Lecturer
(see the staff page for contact information and office hours)

CAS CS 460 Boston University, Spring 2026

CAS CS 460

Course Materials

* Required: The CS 460 Coursepack
 use it during pre-lecture and lecture — need to fill in the blanks!
» PDF version is available on Blackboard
* recommended: get it printed
» FedEx Office (Cummington & Comm Ave.)
« to order, follow the instructions in Lab 0

* Required in-class software: Top Hat Pro platform
» used for pre-lecture quizzes, in-lecture exercises, attendance
+ create your account and purchase a subscription ASAP

» Optional textbooks:

 Database Systems: The Complete Book (2" edition)
by Garcia-Molina et al.

» Database Management Systems by Ramakrishnan & Gehrke

Grading

1. Five problem sets (25%)
* most have 2 parts = 8 due dates
+ can submit up to 24 hours late with a 10% penalty
* no submissions after 24 hours

2. Exams
+ two midterms (30%) — during lecture; no makeups!
+ final exam (35%)
» can replace lowest assignment and lowest midterm
+ see syllabus for date and time

3. Participation (10%)

To pass the course, you must have a passing PS average
and a passing average across the three exams

Boston University, Spring 2026

CAS CS 460

Participation
Full credit if you:

» earn 85% of the points for pre-lecture and in-lecture questions
» make 85% of the lecture-attendance votes
« attend 85% of the labs

If you end up with x% for a given component where x < 85,
you will get x/85 of the possible points.

This policy is designed to allow for occasional absences
for special circumstances.

If you need to miss a lecture:
» watch its recording ASAP (available on Blackboard)

» keep up with the pre-lecture tasks and the assignments
* do not email me!

Course Staff
Instructor: David Sullivan (dgs@bu.edu)

Teaching fellow, teaching assistants, and course assistants:
see staff page of course website

Office hours:
https://cs-people.bu.edu/dgs/courses/cs460/office_hours.shtml

For questions: post on Piazza or cs460-staff@cs.bu.edu

Boston University, Spring 2026

CAS CS 460

Database Design and ER Models

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Database Design

In database design, we determine:
» which pieces of data to include
* how they are related
* how they should be grouped/decomposed

End result: a logical schema for the database
« describes the contents and structure of the database

Boston University, Spring 2026

ER Models
An entity-relationship (ER) model is a tool for database design.
* graphical
* implementation-neutral

« ER models specify:
+ the relevant entities ("things") in a given domain
+ the relationships between them

Sample Domain: A University

Want to store data about:
* employees

» students

* courses

* departments

* How many tables do you think we’ll need?
* can be hard to tell before doing the design!

* in particular, hard to determine which tables are needed
to encode relationships between data items

CAS CS 460 Boston University, Spring 2026

Entities: the "Things"

» Represented using rectangles.

+ Examples:

Course Student Employee

 Strictly speaking, each rectangle represents an entity set,
which is a collection of individual entities.

Course Student Employee
CS 460 Jill Jones Robert Brown
English 101 Alan Turing Dave Sullivan
CS 105 Jose Delgado Margo Seltzer

Attributes

» Associated with entities are attributes that describe them.
* represented as ovals connected to the entity by a line
» double oval = attribute that can have multiple values

Course

CAS CS 460 Boston University, Spring 2026

Keys

* A key is an attribute or collection of attributes that can be used
to uniquely identify each entity in an entity set.

* An entity set may have more than one possible key.
* example:

Person

» possible keys include:

Candidate Key

» A candidate key is a minimal collection of attributes that is a key.
* minimal = no unnecessary attributes are included
* not the same as minimum

+ Example: assume (name, address, age) is a key for Person

* itis a minimal key because we lose uniqueness
if we remove any of the three attributes:

» (name, address) may not be unique

— e.g., a father and son with the same name and address
» (name, age) may not be unique
+ (address, age) may not be unique

« Example: (id, email) is a key for Person

* itis not minimal, because just one of these attributes
is sufficient for uniqueness

+ therefore, it is not a candidate key

Boston University, Spring 2026

CAS CS 460

Key vs. Candidate Key

» Consider an entity set for books:

Book

assume that: each book has a unique isbn
an author doesn't write two books
with the same title

key? candidate key?
isbn
author_id, title
author_id, isbn
Primary Key

+ We typically choose one of the candidate keys as the primary key.

+ In an ER diagram, we underline the primary key attribute(s).

Course

Boston University, Spring 2026

CAS CS 460

Relationships Between Entities

» Relationships between entities are represented using diamonds
that are connected to the relevant entity sets.

» For example: students are enrolled in courses

Person Course

* Another example: courses meet in rooms

Course Room

Relationships Between Entities (cont.)

+ Strictly speaking, each diamond represents a relationship set,
which is a collection of relationships between individual entities.

Course Room

CS 105] CAS 315

CS 111] CAS 314
]

CS 460 MCS 205
CS 510

» In a given set of relationships:
» an individual entity may appear 0, 1, or multiple times
* agiven combination of entities may appear at most once

» example: the combination (CS 105, CAS 315) may appear
at most once

Boston University, Spring 2026

13

Attributes of Relationships

» A relationship set can also have attributes.
+ they specify info. associated with the relationships in the set

+ Example:

Person Course

credit status

Key of a Relationship Set

» A key of a relationship set can be formed by taking the
union of the primary keys of its participating entities.

» example: (person.id, course.name) is a key of enrolled

person enrolled course

» The resulting key may or may not be a primary key.
Why?

credit status

Boston University, Spring 2026

14

CAS CS 460

Degree of a Relationship Set

Enrolled is a binary relationship set: it connects two entity sets.

» degree =2

Person

Course

It's also possible to have higher-degree relationship sets.

A ternary relationship set connects three entity sets.

* degree =3

Study
Group

Person % Course

Relationships with Role Indicators

It's possible for a relationship set to involve more than one
entity from the same entity set.

For example: every student has a faculty advisor, where
students and faculty members are both members of the

Person entity set.

advisor

Person

<{ Advises

advisee

In such cases, we use role indicators (labels on the lines)
to distinguish the roles of the entities in the relationship.

Boston University, Spring 2026

15

CAS CS 460

Cardinality (or Key) Constraints

A cardinality constraint (or key constraint) limits the number
of times that a given entity can appear in a relationship set.

Example: each course meets in at most one room

Course Room

A key constraint specifies a functional mapping from one
entity set to another.
» each course is mapped to at most one room (course - room)

* as aresult, each course appears in at most one relationship
in the meets in relationship set

The arrow in the ER diagram has same direction as the mapping.
* note: the R&G book uses a different convention for the arrows

Cardinality Constraints (cont.)

The presence or absence of cardinality constraints divides
relationships into three types:

* many-to-one
* one-to-one
* many-to-many

We'll limit ourselves to cardinality constraints on
binary relationship sets.

We'll now look at each type of relationship.

Boston University, Spring 2026

Many-to-One Relationships

Room

Course

Meets In is an example of a many-to-one relationship.

+ We need to specify a direction for this type of relationship.
+ example: Meets In is many-to-one from Course to Room

+ could be 0 (if the course doesn't have a room)

« could be 1
* cannot be more than 1

Each room can participate in an arbitrary number (0, 1, 2, ...)
of Meets In relationships.

Each course participates in at most one Meets In relationship.

Many-to-One Relationships (cont.)

In general, in a many-to-one relationship from A to B:

A

+ an entity in A can be related to at most one entity in B
* an entity in B can be related to an arbitrary number of
entities in A (0O or more)

Boston University, Spring 2026

17

CAS CS 460

Another Example of a Many-to-One Relationship

Person

Borrows Book

The diagram above says that:

* agiven book can be borrowed by at most one person
* agiven person can borrow an arbitrary number of books

Borrows is a many-to-one relationship from Book to Person.

One-to-One Relationships

» In a one-to-one relationship involving A and B: [not from A to B]
» an entity in A can be related to at most one entity in B
+ an entity in B can be related to at most one entity in A

+ We indicate a one-to-one relationship by putting an arrow
on both sides of the relationship:

A

+ Example: each department has at most one chairperson, and
each person chairs at most one department.

Person

Department

Boston University, Spring 2026

18

CAS CS 460

Many-to-Many Relationships

* In a many-to-many relationship involving A and B:
+ an entity in A can be related to an arbitrary number
of entities in B (0 or more)

* an entity in B can be related to an arbitrary number
of entities in A (0O or more)

 If a relationship has no cardinality constraints specified
(i.e., if there are no arrows on the connecting lines),
it is assumed to be many-to-many.

%5

How can we indicate that each student
has at most one major?

A. Person * Department
B. Person * Department
C. Person * Department
D. Person * Department

Boston University, Spring 2026

19

What type of relationship is Majors In?

Person Department

many-to-many
many-to-one from Person to Department

many-to-one from Department to Person

OO w>

one-to-one

What if each student can have
more than one major?

Person Department

» Majors In is what type of relationship in this case?

CAS CS 460 Boston University, Spring 2026

20

CAS CS 460

Participation Constraints

Cardinality constraints allow us to specify that each entity
will appear at most once in a given relationship set.

will appear at least once (i.e., 1 or more time).
* indicate using a thick line (or double line)

Participation constraints allow us to specify that each entity

+ Example: each department must have at least one chairperson.

Person Department

» We say Department has total participation in Chairs.
* by contrast, Person has partial participation

omitting

the cardinality
constraints
for now

Participation Constraints (cont.)

+ We can combine cardinality and participation constraints:

Flight Destination

» each flight lands at exactly one destination

« thick line from Flight to Lands At specifies at least one

« arrow into Destination specifies at most one
+ at least one + at most one = exactly one

Boston University, Spring 2026

CAS CS 460

Participation Constraints (cont.)

» Here's another example of cardinality + participation:

Person Department

* a person chairs at most one department
« specified by which arrow?

* adepartment has person as a chair
« arrow into Person specifies at most one
« thick line from Dept to Chairs specifies at least one
» at most one + at least one = exactly one

advisor ‘
Person Borrows Book
advisee

g:‘éﬂ% group-id
NG
(o) S
Caame)
Coffice)
Course Room

Boston University, Spring 2026

22

The Relational Model

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

The Relational Model: A Brief History

» Defined in a landmark 1970 paper !
by Edgar 'Ted' Codd.

» Earlier data models were closely tied
to the physical representation of the data.

» The relational model was revolutionary
because it provided data independence —
separating the logical model of the data
from its underlying physical representation.

» Allows users to access the data without understanding
how it is stored on disk.

CAS CS 460 Boston University, Spring 2026

23

CAS CS 460

The Relational Model: Basic Concepts

A database consists of a collection of tables.

Example of a table:
id name address class |dob
12345678 |3i11 Jones Canaday C-54 2011 |3/10/85
25252525 |ATan Turing Lowell House F-51 2008 [2/7/88
33566891 |Audrey Chu Pfoho, Moors 212 2009 |10/2/86
45678900 [Jose Delgado |Eliot E-21 2009 |7/13/88
66666666 [Count Dracula|The Dungeon 2007 |11/1431

Each row in a table holds data that describes either:

* an entity

* a relationship between two or more entities

Each column in a table represents one attribute of an entity.
* each column has a domain of possible values

Relational Model: Terminology

Two sets of
table
row
column

terminology:
= relation
tuple

attribute

We'll use both sets of terms.

Boston University, Spring 2026

24

CAS CS 460

Requirements of a Relation

Each column must have a unique name.

» The values in a column must be of the same type
(i.e., must come from the same domain).

* integers, real numbers, dates, strings, etc.

Each cell must contain a single value.
+ example: we can't do something like this:

id name ... |phones
12345678 |Ji11 Jones |...|123-456-5678, 234-666-7890
25252525 |Alan Turing|...|777-777-7777, 111-111-1111

No two rows can be identical.
* identical rows are known as duplicates

Null Values

» By default, the domains of most columns include a special value
called null.

* Null values can be used to indicate that:
+ the value of an attribute is unknown for a particular tuple
+ the attribute doesn't apply to a particular tuple. example:

Student

id name major

12345678 |Ji11 Jones |... |computer science
25252525 |Alan Turing|... |mathematics
33333333 |Dan Dabbler|... |null

Boston University, Spring 2026

25

CAS CS 460

Relational Schema

The schema of a relation consists of:
» the name of the relation
» the names of its attributes
+ the attributes’ domains (although we’ll ignore them for now)

Example:
Student(id, name, address, email, phone)

The schema of a relational database consists of the schema
of all of the relations in the database.

ER Diagram to Relational Database Schema

Basic process:
+ entity set > a relation with the same attributes

+ relationship set = a relation whose attributes are:
+ the primary keys of the connected entity sets

« the attributes of the relationship set

Course

Example of converting a relationship set:

Student

credit status

) @ @

Enrolled(id, name, credit_status)

* in addition, we would create a relation for each entity set

Boston University, Spring 2026

26

CAS CS 460

Renaming Attributes

* When converting a relationship set to a relation, there may be
multiple attributes with the same name.

* need to rename them

+ Example:

Course Room

Meetsin(name, name)

i

Meetsin(course_name, room_name)

+ We may also choose to rename attributes for the sake of clarity.

Recall: ER Diagram to Relational Database Schema

» Ordinarily, a binary relationship set will produce three relations:
» one for the relationship set
+ one for each of the connected entity sets

+ Example:

-

Meetsin(course_name, room_name)
Course(name, start_time, end_time)
Room(name, capacity)

Boston University, Spring 2026

27

CAS CS 460

Special Case: Many-to-One Relationship Sets

» However, if a relationship set is many-to-one, we often:
+ eliminate the relation for the relationship set

» capture the relationship set in the relation used for the
entity set on the many side of the relationship

Course Room

b

Course(name, start_time, end_time, room_name)
Room(name, capacity)

Special Case: Many-to-One Relationship Sets (cont.)

» Advantages of this approach:
* makes some types of queries more efficient to execute
* uses less space

Course Meetsin
name course_name | room_name
cscie50b cscie50b Sci Ctr B
csciell9 csciell9 Sever 213
csciel60 csciel60 Sci Ctr A
cscie268 cscie268 Sci Ctr A
/

Course

name room_name

cscie50b Sci Ctr B

csciell9 Sever 213

csciel60 Sci Ctr A

cscie268 Sci Ctr A

Boston University, Spring 2026

28

CAS CS 460

Special Case: Many-to-One Relationship Sets (cont.)

» If one or more entities don't participate in the relationship,
there will be null attributes for the fields that capture the
relationship:

Course

name ... | room_name
cscie50b Sci Ctr B
csciell9 Sever 213
csciel60 Sci Cctr A
cscie268 Sci Ctr A
csciel60 NULL

+ If a large number of entities don't participate in the relationship,
it may be better to use a separate relation.

Special Case: One-to-One Relationship Sets

» Here again, we're able to have only two relations —
one for each of the entity sets.

+ In this case, we can capture the relationship set in the relation
used for either of the entity sets.

+ Example:

Person Department

.

Person(id, name, chaired_dept) OR
Department(name, office)

Person(name, id)
Department(name, office, chair_id)

» which of these would probably make more sense?

Boston University, Spring 2026

CAS CS 460

Many-to-Many Relationship Sets

» For many-to-many relationship sets, we need to use
a separate relation for the relationship set.

» example:

» can't capture the relationships in the Student table
 a given student can be enrolled in multiple courses

 can't capture the relationships in the Course table
 a given course can have multiple students enrolled in it

* need to use a separate table:
Enrolled(student_id, course_name, credit_status)

Recall: Primary Key

+ We typically choose one of the candidate keys as the primary key.

+ In an ER diagram, we underline the primary key attribute(s).

Person

+ In the relational model, we also designate a primary key
by underlying it.
Person(id, name, address, ...)

» Arelational DBMS will ensure that no two rows have
the same value / combination of values for the primary key.

* known as a uniqueness constraint

Boston University, Spring 2026

30

CAS CS 460

Primary Keys of Relations for Entity Sets

« When translating an entity set to a relation,
the relation gets the same primary key as the entity set.

CidD > Student(id, ...

(oame) > Course(name, ...)

Primary Keys of Relations for Relationship Sets

» When translating a relationship set to a relation,
the primary key depends on the cardinality constraints.

» For a many-to-many relationship set, we take the union
of the primary keys of the connected entity sets.

credit status

- Enrolled(student id, course name, credit_status)

+ doing so prevents a given combination of entities
from appearing more than once in the relation

« it still allows a single entity (e.g., a single student or course)
to appear multiple times, as part of different combinations

Boston University, Spring 2026

31

CAS CS 460

Primary Keys of Relations for Relationship Sets (cont.)

» For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

G| person Jo<Borous>—{_eook_ |-Gt

> Borrows(person_id, isbn)

* limiting the primary key enforces the cardinality constraint

* in this example, the DBMS will ensure that a given book
is borrowed by at most once person

* how else could we capture this relationship set?

Primary Keys of Relations for Relationship Sets (cont.)

» For a one-to-one relationship set, what should the primary key
of the resulting relation be?

- Chairs(person_id, department_name)

Boston University, Spring 2026

32

CAS CS 460

Foreign Keys

» A foreign key is attribute(s) in one relation that take on values
from the primary-key attribute(s) of another relation.
» example: Majorsin has two foreign keys
Majorsin(student id, dept name)

student_id |dept_name
12345678 |computer seience

12345678 |english
Student Department

id” name name
12345678 [3i11 3Jones |... computer science|...
25252525 |Alan Turing|... english

» We use foreign keys to capture relationships between entities.

All values of a foreign key must match the referenced
attribute(s) of some tuple in the other relation.

* known as a referential integrity constraint

Enforcing Constraints

Majorsin(student id, dept name)

Example: assume that the tables below show all of their tuples.

student_id |dept_name
12345678 |computer\science
12345678 |english
Student Department
id ¥ name name
12345678 |3i11 Jones |... computer science
25252525 |Alan Turing|... english

Which of the following operations would the DBMS allow?
* adding (12345678, 'John Smith', ...) to Student
» adding (33333333, 'Howdy Doody', ...) to Student
+ adding (12345678, 'physics') to Majorsin
+ adding (25252525, 'english’) to Majorsin

Boston University, Spring 2026

33

Relational Algebra

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Example Domain: a University

» Four relations that store info. about a type of entity:
Student(id, name)
Department(name, office)
Room(id, name, capacity)
Course(name, start_time, end_time, room_id)

» Two relations that capture relationships between entities:
Majorsin(student _id, dept_name)
Enrolled(student _id, course_name, credit_status)

* What do student id, dept_name, and course _name have in
common?

CAS CS 460 Boston University, Spring 2026

34

CAS CS 460

Relational Algebra
» The query language proposed by Codd.

* a collection of operations on relations

» Each operation:
+ takes one or more relations
» produces a relation

one or more

i ' a relation
relations operation | ==)

* Relations are treated as sets.
+ all duplicate tuples are removed from an operation's result

Selection

+ What it does: selects tuples from a relation that match a predicate
» predicate = condition

+ Syntax: Opegicate(r€lation)

+ Example: Enrolled

student_id |course_name |credit_status
12345678 |cscie50b undergrad
25252525 |csciel60 undergrad
45678900 |cscie268 graduate

33566891 |csciell9 non-credit
45678900 |csciell9 graduate

cScredit_status = 'graduate'(EnrOHEd) =

student_id |course_name |credit_status
45678900 |cscie268 graduate
45678900 |[csciell9 graduate
» Predicates may include: >, <, =, =, etc., as well as and, or, not

Boston University, Spring 2026

Projection

« \What it does: extracts attributes from a relation

« Syntax: T,uiputes(relation)

» Example: Enrolled
student_id |course_name |credit_status
12345678 |[cscie50b undergrad
25252525 |[csciel60 undergrad
45678900 |cscie268 graduate
33566891 |csciell9 non-credit
45678900 |csciell9 graduate

mstudent_id, créqijéstatué(Enroueq),f
student_id |credit_status

12345678 |undergrad student_id |credit_status

25252525 |undergrad 12345678 |undergrad

25678900 |graduate ==) 25252525 |undergrad

duplicates, so we

33566891 |non-credit 45678900 |graduate

keep only one 33566891 |non-credit

45678900 |graduate

Combining Operations

» Since each operation produces a relation, we can combine them.

+ Example: Enrolled
student_id |course_name |credit_status

12345678 |cscie50b undergrad
25252525 |csciel60 undergrad
45678900 |cscie268 graduate
33566891 |csciell9 non-credit
45678900 |csciell9 graduate

nstudent_id, credit_status(Gcredit_status = 'graduate'(Enm”ed)) =

student_id |course_name |credit_status
45678900 |cscie268 graduate
45678900 |csciell9 graduate

!

student_id |credit_status
45678900 |graduate =)
45678900 |graduate

student_id |credit_status
45678900 |graduate

CAS CS 460 Boston University, Spring 2026

How many rows are in the result of this query?

Majorsin

student_id |dept_name
12345678 comp sci
45678900 mathematics
25252525 comp sci
45678900 english
66666666 the occult

Tstudent_id (Odept_name 1= ‘comp sci(Majorsin))

Assignment

What it does: assigns the result of an operation to a temporary
variable, or to an existing relation

Syntax: relation < rel. alg. expression

Our use: to break a long query into steps
» example:
Tlstudent_id, credit_status(Ocredit_status = 'graduate’(ENrolled))
* alternative, two-step version using assignment:
Grads € Ocregit_status = 'graduate'(ENrolled)

nstudent_id, credit_status(GradS)

Boston University, Spring 2026

37

CAS CS 460

Mathematical Foundations: Cartesian Product

» Let: A be the set of values { a,, a,, ... }
B be the set of values { b,, b,, ... }

» The Cartesian product of A and B (written A x B) is the set of
all possible ordered pairs (a;, b)), where a; € A and b; € B.

+ Example:
A = { apple, pear, orange }
B ={cat, dog }

A x B ={ (apple, cat), (apple, dog), (pear, cat), (pear, dog),
(orange, cat), (orange, dog) }

+ Example:
C={5,10}
D={2,4}

CxD=7?

Mathematical Foundations: Cartesian Product (cont.)

» We can also take the Cartesian product of three of more sets.

» AxBxC isthe set of all possible ordered triples
(ai, b;, c), where a, € A, b; € B, and ¢, e C.

+ example:
C={5,10}
D={2,4}

E = {'hi", 'there"}

CxDxE={(5,2,'ni"), (5

5, 2, 'there"),
(5, 4, 'hi"), (5

(

(

2

, 4, 'there'),
10, 2, 'there'),
10, 4, 'there") }

(10, 2, 'ni'),
(10, 4, 'ni"),

« A;xA,x...xA,is the set of all possible ordered tuples
(@4 @gjy --+» Bp), Where agy, € Ay.

Boston University, Spring 2026

38

tuples from R, with tuples from R,
+ Syntax: Ry xR,
+ Example: see following slides

* Rules:
* R, and R, must have different names

« if there are two attributes with the same name,
we prepend the name of the original relation

Cartesian Product in Relational Algebra

+ What it does: takes two relations, R, and R,, and forms
a new relation containing all possible combinations of

+ the resulting relation has a schema that consists of
the attributes of R, followed by the attributes of R,

(@115 @10y wvs A41y) X (8045 weny 85) 2 (@445 oeny Aqm, 21 -

« example: S(g, h,i) x T(i,j,g) 2 (S.g,h, S.i, T.i,j, T.9)

ery Aop)

Cartesian Product in Relational Algebra (cont.)
+ Example: SxT

s T S.g |h S.i |Ti |j T.g
- - foo |10 |4 |4 |100 |foo
g h i Iy |9 foo |10 |4 |4 [300 |bop
foo |10 |4 4 100 |foo foo 110 12 5 200 |baz
bar |20 |5 4 [300 |bop foo |10 |4 |5 |600 |bar
baz |30 |6 5 400 |baz bar 120 |5 2 100 |foo
> __[600 [bar bar [20 |5 |4 |300 |bop
bar |20 |5 5 400 |baz
bar |20 |5 5 600 |bar
baz |30 |6 4 100 |foo
baz (30 |6 4 300 |bop
baz |30 |6 5 400 |baz
baz (30 |6 5 600 |bar

CAS CS 460 Boston University, Spring 2026

39

Natural Join

+ Syntax: R{XR,

» What it does: performs a "filtered" Cartesian product
« filters out / removes the tuples in which attributes with
the same name have different values

+ Example:
S T ST
] h i i |9 g |h J
foo |10 |4 --14 100 |foo |-~ foo |10 100
bar |20 |5 4 300 |bop |bar |20 600
baz (30 |6 ~|5 400 |baz ’
5 600 |bar
Performing the Natural Join
» Step 1: take the full Cartesian product
+ Example: SxT
S T S.g |h S.i |Ti |j T.g
- . foo |10 |4 |4 |100 |foo
g h Ui Py |9 foo |10 |4 |4 [300 |bop
foo (10 |4 4 100 (foo foo 110 |2 5 400 |baz
bar |20 |5 4 300 |bop | FE07[10 |4 |5 |600 |bar
baz (30 |6 5 400 |baz bar 120 |5 2 100 [foo
5 600 [bar bar |20 |5 |4 |300 |bop
bar (20 |5 5 400 |baz
bar (20 |5 5 600 |bar
baz (30 |6 4 100 |foo
baz {30 |6 4 300 |bop
baz {30 |6 5 400 |baz
baz {30 |6 5 600 |bar

CAS CS 460

Boston University, Spring 2026

40

Performing the Natural Join

» Step 2: perform a selection in which we filter out tuples in which
attributes with the same name have different values

« if there are no attributes with the same name, skip this step

+ Example: SxT
s - Sg |h [Si |Ti |j |Tg
- - - foo (10 [4 |4 |100 |foo
g |h i Iy g foo |10 |4 |4 [300 |bop
foo |10 |4 4 100 |foo foo 110 14 5 200 |baz
bar |20 |5 4 [300|bop | fF5o (10 |4 |5 |600 |bar
baz (30 |6 5 400 |baz bar 120 |5 2 100 |foo
> __[600 [bar bar (20 |5 |4 |300 |bop
bar (20 |5 5 400 |baz
bar (20 |5 5 600 (bar
baz |30 |6 4 100 |foo
baz [30 |6 4 300 |bop
baz |30 |6 5 400 |baz
baz |30 |6 5 600 |bar

Performing the Natural Join

» Step 2: perform a selection in which we filter out tuples in which
attributes with the same name have different values

« if there are no attributes with the same name, skip this step

+ Example:
S T
g h i i Jj g S.g |h S.i |Ti |j T.g
foo |10 |4 4 100 |foo foo (10 |4 |4 |100 |foo
bar (20 |5 4 300 |bop bar (20 |5 5 600 |bar
baz (30 |6 5 400 |baz
5 600 |bar

CAS CS 460

Boston University, Spring 2026

41

Performing the Natural Join

» Step 3: perform a projection that keeps only one copy of each
duplicated column.

+ Example:
S T
g h i i Jj g S.g |h S.i |Ti |j T.g
foo |10 |4 4 100 |foo foo |10 |4 4 100 |foo
bar |20 |5 4 300 |bop bar (20 |5 5 600 |bar
baz (30 |6 5 400 |baz
5 600 |bar 1

foo |10 |4 100
bar |20 |5 600

Performing the Natural Join

+ Final result: a table with all combinations of "matching" rows
from the original tables.

» Example:
S T ST
9 h i i |9 g |h i |j
foo |10 |4 --14 100 |foo [~ foo |10 |4 100
bar (20 |5 4 300 |bop _bar' 20 |5 600
baz [30 |6 ~|5 400 |baz
5 600 |bar

CAS CS 460 Boston University, Spring 2026

are in Enrolled > MajorsIn?

How many rows and how many columns

Enrolled Majorsin

student_id |course_name |credit_status student_id |dept_name
12345678 |cscie50b undergrad 12345678 |comp sci
45678900 |csciel60 undergrad 45678900 |mathematics
45678900 |cscie268 graduate 33566891 |comp sci
33566891 |csciell9 non-credit 98765432 |english
25252525 |csciell9 graduate 66666666 |the occult

Natural Join: Summing Up

» The natural join is equivalent to the following:
» Cartesian product, then selection, then projection

» The resulting relation’s schema consists of the attributes of
R; X R,, but with common attributes included only once

(a,b,c) x (a,d,c,f) 2 (a,b,c,d,f)

+ If there are no common attributes, R, I</R, = R; x R,

CAS CS 460

Boston University, Spring 2026

43

Condition Joins (aka Theta Joins)
» What it does: performs a "filtered" Cartesian product according
to a specified predicate
« Syntax: R, Xy R, , where 0 is a predicate
» Fundamental-operation equivalent: crosga selec’z:lusirl)vg 0
d>c = f
+ Example: 2 (b) c 1d e
M N foo |10 |4 |3 100
a b c d |e foo |10 (4 |4 |300
foo |10 |4 3 100 foo (10 |4 5 (400
bar |20 |5 4 300 foo [10 |4 6 |600
baz |30 |6 5 400 bar {20 |5 3 100
6 600 bar (20 |5 4 300
bar (20 |5 5 400
bar (20 |5 6 600
baz (30 |6 3 100
baz (30 |6 4 300
baz (30 |6 5 400
baz (30 |6 6 600

Condition Joins (aka Theta Joins)

to a specified predicate
« Syntax: Ry ™My R, , where 6 is a predicate

» Fundamental-operation equivalent: cross, select using 6

+ What it does: performs a "filtered" Cartesian product according

+ Example:
M N M D<g>c) N
a b c d |e a b c d |e
foo |10 |4 3 100 foo |10 |4 5 [400
bar |20 |5 4 300 foo |10 |4 6 [600
baz |30 |6 5 400 bar [20 |5 6 [600
6 600

CAS CS 460 Boston University, Spring 2026

44

Which of these queries finds the names
of all courses taken by comp sci majors?

Enrolled Majorsin

student_id |course_name |credit_status student_id |dept_name
12345678 |cscie50b undergrad 12345678 |comp sci
45678900 |csciel60 undergrad 45678900 |mathematics
45678900 |cscie268 graduate 33566891 |comp sci
33566891 |csciell9 non-credit 98765432 |english
25252525 |csciell9 graduate 66666666 |the occult

If there is more than one correct answer, select all answers that apply.

T

o o0 ®m »

course_name(Gdept_name ='comp sci'(

ncourse_name(Gdept_name='comp sci(Enrolled x Majorsin))
Enrolled D<I Majorsin))
Tlcourse_name(ENrolled D>gept name = ‘comp scit Majorsin))

Tl eourse_name(ENrolled DI (G yept name = ‘comp sci(Majorsiny))

Joins and Unmatched Tuples

Let’'s say we want to know the majors of all enrolled students —
including those with no major. \We begin by trying natural join:

Enrolled Majorsin

student_id |course_name |credit_status student_id |dept_name
12345678 |cscie50b undergrad 12345678 |comp sci
45678900 |csciel60 undergrad 45678900 |mathematics
45678900 |cscie268 graduate 33566891 |comp sci
33566891 |csciell9 non-credit 98765432 |english
25252525 |csciell9 graduate 66666666 |the occult
Enrolled D<I Majorsin

student_id |course_name|credit_status |dept_name

12345678 |cscie50b undergrad |comp sci

45678900 |csciel60 undergrad |mathematics

45678900 |cscie268 graduate mathematics

33566891 |csciell9 non-credit |comp sci

Why isn’t this sufficient?

Boston University, Spring 2026

45

Outer Joins

» OQuter joins allow us to include unmatched tuples in the result.
+ Left outer join (R; <IRy): in addition to the natural-join tuples,

include an extra tuple for each tuple from R; with no match in R,

* in the extra tuples, give the R, attributes values of null

Enrolled Majorsin

student_id |course_name |credit_status student_id |dept_name
12345678 |cscie50b undergrad 12345678 |comp sci
45678900 |csciel60 undergrad 45678900 |mathematics
45678900 |cscie268 graduate 33566891 |comp sci
33566891 |csciell9 non-credit 98765432 |english
25252525 |csciell9 graduate 66666666 |the occult
Enrolled D<| MajorsIn

student_id |course_name |credit_status |dept_name

12345678 |cscie50b undergrad comp sci

45678900 |csciel60 undergrad mathematics

45678900 |cscie268 graduate mathematics

33566891 |[csciell9 non-credit |comp sci

25252525 |csciell9 graduate null

Outer Joins (cont.)

from R, with no match in R,

Right outer join (R4 XU R,): include an extra tuple for each tuple

Enrolled Majorsin

student_id |course_name |credit_status student_id |dept_name
12345678 |cscie50b undergrad 12345678 |comp sci
45678900 |csciel60 undergrad 45678900 |mathematics
45678900 |cscie268 graduate 33566891 |[comp sci
33566891 |csciell9 non-credit 98765432 |english
25252525 |csciell9 graduate 66666666 |the occult
Enrolled D< Majorsin

student_id |course_name |credit_status |dept name

12345678 |cscie50b undergrad comp sci

45678900 |csciel60 undergrad mathematics

45678900 |cscie268 graduate mathematics

33566891 |[csciell9 non-credit |comp sci

98765432 |null null english

66666666 |null null the occult

Boston University, Spring 2026

46

CAS CS 460

Outer Joins (cont.)

Enrolled <U Majorsin

Full outer join (R; ><C R,): include an extra tuple for each tuple
from either relation with no match in the other relation

student_id |course_name |credit_status |dept_name
12345678 |cscie50b undergrad comp sci
45678900 |csciel60 undergrad mathematics
45678900 |cscie268 graduate mathematics
33566891 |[csciell9 non-credit |comp sci
25252525 |csciell9 graduate null
98765432 |null null english
66666666 |null null the occult

Outer joins can include a subscript if the join condition

isn't based on columns with the same name.

» example: left outer join of Course and Room tables

Course P 5om ig=ig ROOM

+ What it does: selects tuples that are in one relation

Set Difference

but not in another.

+ Syntax: Ry -R,

* Rules:

 the relations must have the same number of attributes,
and corresponding attributes must have the same domain

+ the resulting relation inherits its attribute names from the

first relation

» duplicates are eliminated, since relational algebra treats

relations as sets

Boston University, Spring 2026

47

CAS CS 460

Set Difference (cont.)

Example:
Majorsin Enrolled
student_id |dept_name student_id |course_name |credit_status
12345678 |comp sci 12345678 |cscie50b undergrad
45678900 |mathematics 45678900 |csciel60 undergrad
33566891 |comp sci 45678900 |cscie268 graduate
98765432 |english 33566891 |csciell9 non-credit
66666666 |the occult 25252525 |csciell9 graduate
nstudent_id(MajorSIn) - nstudent_id(Enm”ed)

student_id student_id

12345678 12345678 -

45678900 25678900 | _ [Studentid

33566891 | [4s678000 | — [28762432

98765432 33566891 06666666

66666666 25252525

Set Difference (cont.)

Example of where set difference is required:

Of the students enrolled in courses, which ones are

not enrolled in any courses for graduate credit?

student_id |course_name |credit_status
12345678 |cscie50b undergrad
45678900 |csciel60 undergrad
45678900 |cscie268 graduate
33566891 |csciell9 non-credit
25252525 |csciell9 graduate

* The following query does not work. Why?

nstudent_id (Gcredit_status I= 'graduate'(Enm”ed))

* This query does work:

7.l:student_id (Enrolled) — 7.l:student_id (Gcredit_status = ‘graduate'(Enroued))

Boston University, Spring 2026

48

Pre-Lecture
The SQL Query Language:
Simple SELECT Commands

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Student Room

id name id name capacity

12345678 |3111 Jones 1000 |CAS Tsai 500
¥ 2000 CAS BigRoom 100

25252525 Alan Turing 3000 EDU Lecture Hall 100

33566891 Audrey chu 4000 CAS 315 40

45678900 Jose Delgado 5000 CAS 314 80

66666666 Count Dracula 6000 CAS 226 50

7000 mMCS 205 30

Course

name start_time |end_time room_id Department

Ccs 105 13:00:00 (14:00:00 [4000 name office

cs 111 |09:30:00 [11:00:00 [5000 - wes 140

EN 101 [11:00:00 |12:30:00 1000 comp set

Cs 460 [16:00:00 [17:30:00 |7000 mathematics |MCS 140

Cs 510 [12:00:00 [13:30:00 [7000 the occult The Dungeon

PH 101 14:30:00 [16:00:00 [NULL english 235 Bay State Road

Enrolled Majorsin

student_id course_name credit_ student_id dept_name

12345678 Ccs 105 ugrad 12345678 comp sci

25252525 cs 111 ugrad 45678900 mathematics

45678900 Cs 460 grad 25252525 comp_sci

33566891 Cs 105 non-credit 45678900 english

66666666 the occult
45678900 Ccs 510 grad

Boston University, Spring 2026

49

SELECT (from a single table)

» Sample query: Important notes:
SELECT student_id * Non-numeric column
FROM Enrolled values are surrounded
WHERE credit_status = 'grad'; by single quotes.

* Table/column names

» Basic syntax:

SELECT columni, column2, .. and SQL keywords
FROM table are not surrounded by
quotes.

WHERE selection condition;

» the FROM clause specifies which table you are using

» the WHERE clause specifies which rows should be
included in the result

» the SELECT clause specifies which columns should be
included

SELECT (from a single table) (cont)

+ Example:

SELECT student_id
FROM Enrolled

WHERE credit_status = 'grad';
Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |[CS 105 non-credit
45678900 (cS 510 grad

1 WHERE credit_status = 'grad';

student_id |course_name |credit_status s tSuEdLeEnctT id student_id
45678900 |CS 460 grad ‘— 45678900
45678900 |CS 510 grad 45678900

Boston University, Spring 2026

50

Selecting Entire Columns

Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |CS 105 non-credit
45678900 |CS 510 grad

SELECT
student_id

=)

» If there's no WHERE clause, the result will consist of one or
more entire columns. No rows will be excluded.

SELECT student_id
FROM Enrolled;

student_id

12345678

25252525

45678900

33566891

45678900

SELECT *

Selecting Entire Rows

FROM Enrolled

WHERE credit_status = 'grad';
Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |[CS 105 non-credit
45678900 |CS 510 grad

1 WHERE credit_status = 'grad';
student_id |course_name |credit_status
45678900 |CS 460 grad
45678900 |[cSs 510 grad

+ If we want the result to include entire rows (i.e., all of the
columns), we use a * in the SELECT clause:

CAS CS 460

Boston University, Spring 2026

51

The WHERE Clause

SELECT columnt, column2, ..
FROM table
| WHERE_selection condition; |

The selection condition must be an expression
that evaluates to either true or false.

* example: credit_status = 'grad'
 can include any column from the table(s) in the FROM clause

The results of the SELECT command will include only those
tuples for which the selection condition evaluates to true.

Simple Comparisons

The simplest selection condition is a comparison that uses
one of the following comparison operators:

operator name

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal to

I= not equal to

Boston University, Spring 2026

52

CAS CS 460

Practice

» Write a query that finds the names and capacities of all
rooms that hold at least 70 people.

SELECT

FROM

WHERE

id name capacity
1000 CAS Tsai 500
2000 CAS BigRoom 100
3000 EDU Lecture Hall 100
4000 CAS 315 40
5000 CAS 314 80
6000 CAS 226 50
7000 MCS 205 30

id name capacity
1000 CAS Tsai 500
2000 CAS BigRoom 100
3000 EDU Lecture Hall 100
5000 CAS 314 80

name capacity
CAS Tsai 500
CAS BigRoom 100

q EDU Lecture Hall 100
CAS 314 80

Extra Practice: How could we get all attributes
of the movies whose year is 20107

Movie

id name

year rating |runtime

2488496 |Star wars: The Force Awakens |2015 PG-13 [138

1228705 [Iron Man 2

2010 |PG-13 (124

0120338 |Titanic

1997 |pPG-13 |194

0435761 [Toy Story 3

2010 |G 103

1323594 |Despicable Me

2010 |PG 95

0240772 [0ocean's Eleven

2001 |PG-13 |[116

A_ SELECT all
FROM Movie
WHERE year = 2010;

B. SELECT year = 2010
FROM Movie;

FROM Movie
SELECT year = 2010;

SELECT *
FROM Movie
WHERE year = 2010;

Boston University, Spring 2026

53

CAS CS 460

SQL: A First Look

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

+ Sample query:

Recall: SELECT (from a single table)

Important notes:

SELECT student_id * Non-numeric column

FROM Enrolled

values are surrounded

WHERE credit_status = 'grad'; by single quotes.

Basic syntax:

» Table/column names

SELECT column1, column2, ... and SQL keywords
FROM table are not surrounded by
quotes.

WHERE selection condition;

the FROM clause specifies which table you are using

the WHERE clause specifies which rows should be
included in the result

the SELECT clause specifies which columns should be
included

Boston University, Spring 2026

54

CAS CS 460

How could we get all info about movies

Movie

released in 20107

id name

year rating |runtime

2488496 |Star wars: The Force Awakens |2015 PG-13 [138

1228705 [Iron Man 2

2010 |[PG-13 (124

0120338 |Titanic

1997 |pPG-13 |194

0435761 [Toy Story 3

2010 |G 103

1323594 |Despicable Me

2010 |PG 95

0240772 [0ocean's Eleven

2001 |PG-13 |[116

A_ SELECT all
FROM Movie
WHERE year = 2010;

B. SELECT year = 2010
FROM Movie;

FROM Movie
SELECT year = 2010;

SELECT *
FROM Movie

WHERE year = 2010;

SELECT and Relational Algebra
SELECT commands implement most rel-alg operations

Basic syntax:

SELECT a;, a,, ..

FROM Ry, R,, ..

WHERE selection predicate;

Relational-algebra equivalent: cross, select, project
1) take the cartesian product R, x R, x ...
2) perform a selection that selects tuples from the cross
product that satisfy the predicate in the WHERE clause
3) perform a projection of attributes a,, a,, ... from the
tuples selected in step 2, leaving duplicates alone by default

(These steps tell us what tuples will appear in the resulting relation, but
the command may be executed differently for the sake of efficiency.)

Note: the SELECT clause by itself specifies a projection!
The WHERE clause specifies a selection.

Boston University, Spring 2026

55

CAS CS 460

Example Query

Given these relations:
Student(id, name)
Enrolled(student_id, course_name, credit_status)
Majorsin(student_id, dept_name)

we want find the major of the student Alan Turing.

Here's a query that will give us the answer:

SELECT dept_name

FROM Student, MajorsIn

WHERE name = 'Alan Turing'
AND id = student_id;

SELECT dept_name
FROM Student, Majorsin . .
WHERE name = 'Alan Turing' AND id = student_id;

Student Majorsin

id name student_id |dept_name
12345678 (3111 3Jones 12345678 |comp sci
25252525 |Alan Turing 45678900 |mathematics
33566891 [Audrey chu 25252525 |comp sci
45678900 |Jose Delgado 45678900 |english
66666666 [Count Dracula 66666666 |the occult

Student x Majorsin
id name student_id |dept_name

12345678 (3111 3Jones 12345678 |comp sci

12345678 (3111 3Jones 45678900 |mathematics

12345678 (3111 3Jones 25252525 |comp sci

123456783111 3Jones 45678900 |english

12345678 (3111 3Jones 66666666 |the occult

25252525 [ATan Turing 12345678 |comp sci

25252525 [Alan Turing 45678900 |[mathematics

25252525 [Alan Turing 25252525 |comp sci

25252525 [Alan Turing 45678900 |english

Boston University, Spring 2026

56

SELECT dept_name
FROM Student, MajorsIn . .
WHERE name = 'Alan Turing' AND id = student_id;

Student Majorsin

id name student_id |dept_name
12345678 (3111 3Jones 12345678 |comp sci
25252525 |Alan Turing 45678900 |mathematics
33566891 |Audrey Chu 25252525 |comp sci
45678900 [Jose Delgado 45678900 |english
66666666 |Count Dracula 66666666 |[the occult

Student x Majorsin

id name student_id |dept_name
123456783111 3Jones 12345678 |comp sci
12345678 (3111 3Jones 45678900 |mathematics
123456783111 3Jones 25252525 |comp sci
12345678 (3111 3Jones 45678900 |english
123456783111 3Jones 66666666 |the occult
25252525 [Alan Turing 12345678 |comp sci
25252525 [Alan Turing 45678900 |[mathematics
25252525 [Alan Turing 25252525 |comp sci
25252525 |Alan Turing 45678900 |english

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

Student Majorsin

id name student_id |dept_name
12345678 (3111 3Jones 12345678 |comp sci
25252525 |Alan Turing 45678900 |mathematics
33566891 [Audrey chu 25252525 |comp sci
45678900 |Jose Delgado 45678900 |english
66666666 [Count Dracula 66666666 |the occult

After selecting only combinations that satisfy the WHERE clause:

Id name student_id |dept_name
25252525 (ATan Turing 25252525 |comp sci

dept_name
comp sci

CAS CS 460 Boston University, Spring 2026

CAS CS 460

Join Conditions

» Here's the query from the previous problem:

SELECT dept_name

FROM Student, MajorsIn

WHERE name = 'Alan Turing'
AND 1id = student_id;

e id = student_id is ajoin condition — a condition that
is used to match up "related" tuples from the two tables.

* it selects the tuples in the Cartesian product that "make sense"
+ for N tables, you typically need N - 1 join conditions

Student Majorsin

id name student_id |dept_name
12345678 |3i11 3Jones 12345678 |comp sci
25252525 |Alan Turing 45678900 |mathematics
33566891 |Audrey Chu 25252525 |comp sci
45678900 [Jose Delgado 45678900 |english
66666666 |Count Dracula 66666666 |the occult

Boston University, Spring 2026

58

Pre-Lecture

SQL.: Pattern Matching,

Comparisons Involving NULL

Computer Science 460

Boston University
David G. Sullivan, Ph.D.

Our simple university database...

Student

id name

12345678 Ji11 Jones

25252525 Alan Turing

33566891 Audrey Chu

45678900 Jose Delgado

66666666 Count Dracula

Course

name start_time end_time room_id
cs 105 13:00:00 14:00:00 4000
cs 111 09:30:00 11:00:00 5000
CS 460 16:00:00 17:30:00 7000
cs 510 12:00:00 13:30:00 7000
CS 999 19:30:00 21:30:00 NULL
Enrolled

student_id course_name credit_
12345678 cs 105 ugrad
25252525 cs 111 ugrad
45678900 CS 460 grad
33566891 cs 105 non-credit
45678900 cs 510 grad

Room

id name capacity

1000 CAS Tsai 500

2000 CAS BigRoom 100

3000 EDU Lecture Hall 100

4000 CAS 315 40

5000 CAS 314 80

6000 CAS 226 50

7000 MCS 205 30

Department

name office

comp sci MCS 140

mathematics McS 140

the occult The Dungeon

english 235 Bay State Road
Majorsin
student_id dept_name
12345678 comp sci
45678900 mathematics
25252525 comp sci
45678900 english
66666666 the occult

Boston University, Spring 2026

59

CAS CS 460

Pattern Matching

Room

id name capacity
1000 |CAS Tsai 500
2000 |CAS BigRoom 100
3000 |[EDU Lecture Hall|100
4000 |cAs 315 40

5000 |cAs 314 80

6000 |CAS 226 50

7000 |MmCS 205 30

* This won't work:

SELECT name, capacity

FROM Room
WHERE name = 'CAS';
* This will:
SELECT name, capacity
FROM Room

WHERE name LIKE 'CAS%';

=

Let's say we want the names

and capacities of all rooms

in CAS.
» the names begin with 'CAS'

* need to find courses with
names matching this pattern

Room

id name capacity
1000 |CAS Tsai 500
2000 |CAS BigRoom 100
4000 |cAs 315 40
5000 |[CAS 314 80
6000 |CAS 226 50

» Form the pattern using one of more wildcard characters:
% stands for 0 or more arbitrary characters
stands for a single arbitrary character

The LIKE Operator and Wildcards

» Use LIKE whenever we need to match a pattern.

Boston University, Spring 2026

60

More Examples of Pattern Matching

Student

id name
12345678 Ji11 Jones
25252525 Alan Turing
33566891 Audrey Chu
45678900 Jose Delgado
66666666 Count Dracula

name

SELECT name At
FROM Student = 9

WHERE name LIKE '%u%'; Audrey Chu
Count Dracula

SELECT name

FROM Student

WHERE name LIKE '__u%'; ‘
2 underscores

SELECT name

FROM Student ‘

WHERE name LIKE '%u';

Comparisons Involving NULL

Course

name start_time |end_time (room_id
CS 105 |13:00:00{14:00:00(|4000
CS 111 |09:30:00{11:00:00|5000
CS 460 |16:00:00{17:30:00|7000
CS 510 |12:00:00{13:30:00|7000
CS 999 |19:30:00{21:30:00|NULL

+ aroom_id of NULL indicates the course is only offered online
» How could we find all of the online-only courses?

» This query produces no results!
SELECT name
FROM Course
WHERE room_id = NULL;

CAS CS 460 Boston University, Spring 2026

61

CAS CS 460

Comparisons Involving NULL

Because NULL is a special value, any comparison involving
NULL that uses the standard operators is always false.

The following will always be false:
room_id = NULL
room_id != NULL
NULL = NULL

SQL provides special operators:
e IS NULL
« IS NOT NULL

This query will find the online-only courses:

SELECT name
FROM Course
WHERE room_id IS NULL;

Boston University, Spring 2026

62

CAS CS 460

SQL: Removing Duplicates;
Aggregate Functions

Pre-Lecture

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Removing Duplicates

By default, the relation produced by a SELECT command
may include duplicate tuples.
» example: find the IDs of all students enrolled in a course

SELECT student_id
FROM Enrolled;

Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |cs 105 non-credit
45678900 |CS 510 grad

student_id

12345678

25252525

45678900

33566891

45678900

Boston University, Spring 2026

63

Removing Duplicates (cont.)

To eliminate duplicates, add the keyword DISTINCT:

SELECT DISTINCT student_id
FROM Enrolled;

Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |CS 105 non-credit
45678900 |CS 510 grad

More generally:
SELECT DISTINCT columni, column2, ..

student_id

12345678

25252525

45678900

33566891

Aggregate Functions

» performs a computation on a set of values

+ The SELECT clause can include an aggregate function.

Example: find the average capacity of rooms in CAS:
SELECT AVG(capacity)
FROM Room
WHERE name LIKE 'CAS%';

Room

id name capacity

1000 |CAS Tsai 500 id name capacity

2000 |CAS BigRoom 100 WHERE 1000 |CAs T%ai 500

3000 |EDU Lecture Hall |100 ‘ 2000 |CAS BigRoom 100

4000 |cAs 315 40 4000 |cAs 315 40

5000 ([CAS 314 80 5000 |[CAS 314 80

6000 |CAS 226 50 6000 |CAS 226 50

7000 [MCS 205 30 AVG 1
AVG(capacity)
154.0

CAS CS 460

Boston University, Spring 2026

64

Aggregate Functions (cont.)

e SUM, MAX, MIN, and COUNT

SELECT SuUM(capacity)

» Other aggregate functions include:

FROM Room

WHERE name LIKE 'CAS%';
ROOM
id name capacity
1000 |CAS Tsai 500 id name capacity
2000 |CAS BigRoom 100 1000 |CAS Tsai 500

WHERE -

3000 |[EDU Lecture Hall |100 q 2000 |CAS BigRoom 100
4000 CAS 315 40 4000 CAS 315 40
5000 CAS 314 80 5000 CAS 314 80
6000 CAS 226 50 6000 CAS 226 50
7000 _[MCS 205 30 SUM 1

Aggregate Functions (cont.)

e SUM, MAX, MIN, and COUNT

SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

» Other aggregate functions include:

Room

id name capacity

1000 |CAS Tsai 500 id name capacity
2000 |CAS BigRoom 100 WHERE 1000 |CAs T%ai 500
3000 |EDU Lecture Hall |100 ‘ 2000 |CAS BigRoom 100
4000 |cAs 315 40 4000 |CAs 315 40
5000 |[cAs 314 80 5000 |[cAs 314 80
6000 |CAS 226 50 6000 |CAS 226 50
7000 |MCS 205 30 MAX 1

CAS CS 460

Boston University, Spring 2026

65

Aggregate Functions (cont.)

e SUM, MAX, MIN, and COUNT

SELECT MIN(capacity)

» Other aggregate functions include:

FROM Room

WHERE name LIKE 'CAS%';
ROOM
id name capacity
1000 |CAS Tsai 500 id name capacity
2000 |CAS BigRoom 100 1000 |CAS Tsai 500

WHERE -

3000 |[EDU Lecture Hall |100 q 2000 |CAS BigRoom 100
4000 CAS 315 40 4000 CAS 315 40
5000 CAS 314 80 5000 CAS 314 80
6000 CAS 226 50 6000 CAS 226 50
7000 [Mcs 205 30 MIN 1

Aggregate Functions (cont.)

e SUM, MAX, MIN, and COUNT

SELECT COUNT(capacity)
FROM Room
WHERE name LIKE 'CAS%';

» Other aggregate functions include:

Room

id name capacity

1000 |CAS Tsai 500 id name capacity
2000 |CAS BigRoom 100 WHERE 1000 |CAs T%ai 500
3000 |EDU Lecture Hall |100 ‘ 2000 |CAS BigRoom 100
4000 |cAs 315 40 4000 |cAs 315 40
5000 |cAs 314 80 5000 |[cAs 314 80
6000 |CAS 226 50 6000 |CAS 226 50
7000 |MCS 205 30 COUNTl

CAS CS 460

Boston University, Spring 2026

66

CAS CS 460

Aggregates and DISTINCT

» example: find the number of students enrolled for courses:

SELECT COUNT(student_id)
FROM Enrolled;

Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |[CS 105 non-credit
45678900 |CS 510 grad

Aggregates and DISTINCT

» example: find the number of students enrolled for courses:

SELECT COUNT(student_id)
FROM Enrolled;

Enrolled
student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |[CS 105 non-credit
45678900 |CS 510 grad

]
COUNT(student)

5

Boston University, Spring 2026

67

CAS CS 460

Aggregates and DISTINCT

» example: find the number of students enrolled for courses:

SELECT COUNT(student_id)
FROM Enrolled;

Enrolled
student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |cs 460 grad
33566891 |[CS 105 non-credit
45678900 |cs 510 grad

]
COUNT(student)

5

Aggregates and DISTINCT

» example: find the number of students enrolled for courses:

SELECT COUNT(DISTINCT student_id)
FROM Enrolled;

Enrolled

student_id |course_name |credit_status
12345678 |CS 105 ugrad
25252525 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |[CS 105 non-credit
45678900 |CS 510 grad

!

Boston University, Spring 2026

68

COUNT(*) vs. COUNT (attribute)

e SELECT COUNT(*) counts the number of tuples in a result.
» example: find the total number of courses

SELECT COUNT(*)
FROM Course;

Course

name start_time |end_time [room_id
CS 105 |13:00:00{14:00:00|4000
CS 111 |09:30:00{11:00:00|5000
CS 460 |16:00:00{17:30:00|7000
CS 510 |12:00:00{13:30:00|7000
CS 999 |19:30:00{21:30:00|NULL

COUNT(*)
) :

COUNT(*) vs. COUNT (attribute)

e SELECT COUNT(*) counts the number of tuples in a result.
» example: find the total number of courses

SELECT COUNT(*)
FROM Course;

Course

name start_time |end_time [room_id
CS 105 |13:00:00({14:00:00{4000
CS 111 |09:30:00({11:00:00{5000
CS 460 |16:00:00({17:30:00{7000
CS 510 |12:00:00{13:30:00{7000
CS 999 |19:30:00{21:30:00|NULL

COUNT(*)
) :

e SELECT COUNT (attribute) counts the number of non-NULL values
of that attribute in a result.

+ example: find the number of courses that meet in a room

SELECT COUNT(room_id) =) COUNT(room_id)

FROM Course; 4

Boston University, Spring 2026

69

Pre-Lecture
Subqueries in SQL

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Recall: Aggregate Functions

» What is the largest capacity of any room in the CAS building?

SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%';

Room

id name capacity

1000 |CAS Tsai 500 id name capacity

2000 |CAS BigRoom 100 WHERE 1000 |CAS T§a1' 500

3000 |EDU Lecture Hall |100 ‘ 2000 |CAS BigRoom 100

4000 |cAs 315 40 4000 |cAs 315 40

5000 |[cAs 314 80 5000 [cAs 314 80

6000 |CAS 226 50 6000 |CAS 226 50

7000 |MCS 205 30 MAX 1
MAX(capacity)
500

CAS CS 460 Boston University, Spring 2026

A Restriction on Aggregate Functions
» What if we also wanted the name of the max-capacity room?
[S:EIC_);C';Og;me, MAX(capacity) This does not work
WHERE name LIKE 'CAS%'; in standard SQL!

Room

id name capacity

1000 |CAS Tsai 500 id name capacity

2000 |CAS BigRoom 100 1000 |CAS Tsai 500

WHERE -

3000 EDU Lecture Hall |100 q 2000 |CAS BigRoom 100

4000 |cas 315 40 4000 [cAs 315 40

5000 |cAs 314 80 5000 |CAS 314 80

6000 |cAs 226 50 6000 [cAS 226 50

7000 MCs 205 30 SELECT namel MAX
name MAX(capacity)
CAS Tsai 500
CAS BigRoom
cAS 315
CAS 314 error!
CAS 226

A Restriction on Aggregate Functions (cont.)

SELECT name, MAX(capacity)

FROM Room

WHERE name LIKE 'CAS%';

This does not work

in standard SQL!

In general, a SELECT clause cannot combine:
* an aggregate function

* a column name that is on its own
(and is not being operated on by an aggregate function)

+ Wel'll see an important exception to this soon.

+ What if we also wanted the name of the max-capacity room?

CAS CS 460

Boston University, Spring 2026

71

CAS CS 460

Subqueries

» A subquery allows us to use the result of one query in the
evaluation of another query.

» We can use a subquery to solve the previous problem:

SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%'
AND capacity = (SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'CAS%');

the subquery

|

SELECT name, capacity

FROM Room _
WHERE name LIKE 'CAS%') GEETD capacity
AND capacity =500; CAS Tsai 500

Note Carefully!

SELECT name, capacity
FROM Room
WHERE name LIKE 'CAS%'
AND capacity = (SELECT MAX(capacity)
FROM Room
WHERE name LIKE '"CAS%');

the subquery
+ if we remove the condition from the subquery,
might not get the largest capacity in CAS

+ if we remove the condition from the outer query,
might also get ...

Boston University, Spring 2026

72

CAS CS 460

Subqueries and Set Membership

» Subqueries can be used to test for set membership in
conjunction with the IN and NOT 1IN operators.

+ example: find all students who are not enrolled in CS 105
SELECT name
FROM Student
WHERE id NOT IN (SELECT student_id
FROM Enrolled

WHERE course_name = 'CS 105');
Enrolled
student_id |course_name |credit_status stUdent
12345678 |cs 105 ugrad id name
25252525 cs 111 ugrad 12345678 |3i11 Jones
45678900 cS 460 grad 25252525 |[Alan Turing
33566891 cs 105 non-credit 33566891 |Audrey Chu
45678900 cs 510 grad 45678900 |Jose Delgado
subqueryl 66666666 |Count Dracula
student_id '
12345678)
33566891

Boston University, Spring 2026

73

SQL.: Pattern Matching,
Aggregates, and Subqueries

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Recall: The LIKE Operator and Wildcards

» Use LIKE whenever we need to match a pattern.

» Form the pattern using one of more wildcard characters:
» % stands for 0 or more arbitrary characters
. stands for a single arbitrary character

CAS CS 460 Boston University, Spring 2026

74

How could we use pattern matching to
get info. about movies rated PG or PG-137

Movie
id name year rating |runtime
2488496 |Star wars: The Force Awakens |2015 PG-13 |13 N
ssume
1228705 |Iron Man 2 2010 PG-13 |12 the ratings
0120338 |Titanic 1997 PG-13 |19 shown here
0435761 |Toy Story 3 2010 |G 10| are the only
1323594 |Despicable Me 2010 |pG 95 tf:t”lgsl'“
e table.
0240772 [0ocean's Eleven 2001 [pPG-13 (11

A_ SELECT *
FROM Movie
WHERE rating LIKE 'PG%';

B SELECT *
FROM Movie
WHERE rating LIKE 'PG_';

C. SELECT *
FROM Movie
WHERE rating LIKE '_G%';

What about these patterns for finding PG and PG-13?

Movie

id name year rating |runtime
2488496 |star wars: The Force Awakens (2015 |[PG-13 |13
1228705 |Iron Man 2 2010 |[pPG-13 (1 the ratings
0120338 |Titanic 1997 |PG-13 [19{ shown here
0435761 |Toy Story 3 2010 |G 10/ are the only
1323594 |pespicable Me 2010 |G 95 {ﬁgqulg‘
0240772 |ocean's Eleven 2001 [pG-13 (11

Assume

N

SELECT *
FROM Movie
WHERE rating LIKE '%G%';

SELECT *
FROM Movie
WHERE rating LIKE 'PG';

SELECT *
FROM Movie
WHERE rating = 'PG-%";

CAS CS 460 Boston University, Spring 2026

Recall: Comparisons Involving NULL

» Because NULL is a special value, any comparison involving
NULL that uses the standard operators is always false.

» For example, all of the following will always be false:
room = NULL NULL != 10
room != NULL NULL = NULL

» This is useful for cases like the following:

* assume that we add a id e country]
country column to Student 12345678 (3111 Jones USA
* use NULL for students 25252525 [Alan Turing UK

whose country is unknown 33566891 [Audrey Chu China

45678900 |Jose Delgado |USA

* to get all students 66666666 |Count Dracula|NULL

from a foreign country:
SELECT name
FROM Student
WHERE country != 'USA'; // won't include NULLs

Recall: Comparisons Involving NULL (cont.)

» To test for the presence or absence of a NULL value,
use special operators:
IS NULL
IS NOT NULL

+ Example: find students whose country is unknown
SELECT name
FROM Student
WHERE country IS NULL;

Boston University, Spring 2026

76

Recall: Removing Duplicates
» By default, a SELECT command may produce duplicates

» To eliminate them, add the DISTINCT keyword:
SELECT DISTINCT columnt, column2, ..

How could we determine
how many people have won Best Actor?

Oscar

movie_id |person_id |type year
1663202 |0000138 |BEST-ACTOR 2016
3170832 |0488953 |BEST-ACTRESS 2016
3682448 |0753314 |BEST-SUPPORTING-ACTOR 2016
0810819 (2539953 |BEST-SUPPORTING-ACTRESS 2016
1663202 (0327944 |BEST-DIRECTOR 2016
1895587 [NULL BEST-PICTURE 2016

A. SELECT COUNT(person_id) D.
FROM Oscar
WHERE type = 'BEST-ACTOR';

B. SELECT TOTAL(person_id) E
FROM Oscar
WHERE type = 'BEST-ACTOR';

C. SELECT COUNT(*)
FROM Oscar
WHERE type = 'BEST-ACTOR';

two or more of the queries
at left would work

none of the queries
at left would work

CAS CS 460

Boston University, Spring 2026

7

What about this?

Oscar

movie_id |person_id |type year
1663202 |0000138 |[BEST-ACTOR 2016
3170832 |0488953 |BEST-ACTRESS 2016
3682448 [0753314 BEST-SUPPORTING-ACTOR 2016
0810819 2539953 BEST-SUPPORTING-ACTRESS 2016
1663202 [0327944 |BEST-DIRECTOR 2016
1895587 |NULL BEST-PICTURE 2016

SELECT COUNT(DISTINCT *)
FROM Oscar
WHERE type

= "BEST-ACTOR';

Course

name

start_time |end_time [room_id

CS

105

13:00:00{14:00:00(4000

CS

111

09:30:00{11:00:00|5000

EN

101

11:00:00{12:30:00(1000

CS

460

16:00:00{17:30:00(7000

CS

510

12:00:00{13:30:00(7000

PH

101

14:30:00[{16:00:00|NULL

SELECT COUNT(room_id)
FROM Course;

=

COUNT(*) vs. COUNT (attribute)

e SELECT COUNT(*) counts the number of tuples in a result.
» example: find the total number of courses

SELECT COUNT(*)
FROM Course;

COUNT(*)
6

e SELECT COUNT (attribute) counts the number of non-NULL values
of that attribute in a result.

+ example: find the number of courses that meet in a room

COUNT(room_id)

5

CAS CS 460

Boston University, Spring 2026

78

CAS CS 460

A. SELECT name, MIN(Cruntime) D

B.

How could we find the shortest
Movie PG-13 movie in the database?

id name year rating |runtime
2488496 |star wars: The Force Awakens 2015 PG-13 |138
1228705 |Iron Man 2 2010 PG-13 |124
0435761 |Toy Story 3 2010 G 103
1323594 |Despicable Me 2010 PG 95
0118998 [Dr. Dolittle 1998 PG-13 |85

two of these would work

FROM Movie
WHERE rating = 'PG-13';
9 E. all three would work
SELECT name, runtime
FROM Movie
WHERE runtime = (SELECT MIN(runtime) FROM Movie
WHERE rating = 'PG-13');
SELECT name, runtime
FROM Movie
WHERE rating = 'PG-13'

AND runtime = (SELECT MIN(runtime) FROM Movie
WHERE rating = 'PG-13');

Boston University, Spring 2026

79

A Restriction on Aggregate Functions

SELECT name, MIN(runtime)

FROM Movie Th|s does notwor'k

WHERE rating = 'PG-13'; in standard SQL!
Movie
id name year |rating |runtime id name year |rating |runtime
2488496 |Star wars... [2015 |PG-13 (138 2488496(star wars...[2015|PG-13 (138

1228705 [Iron Man 2 2010 |PG-13 (124

‘ 1228705(Iron Man 2 |2010 [PG-13|124

0435761 |Toy Story 3 |2010 |G 103 0118998(Dr. Dolittle|1998 [PG-13|85

1323594 [Despicable Me[2010 |PG 95

0118998 |Dr. Dolittle [1998 |PG-13 |85

SELECT namel MIN 1

name MIN(runtime)

Star wars... 85

Iron Man 2
don't have same

number of rows;
error!

Dr. Dolittle

+ Wel'll see an important exception to this soon.

A Restriction on Aggregate Functions (cont.)

SELECT name, MIN(runtime ,
FROM Movie ’ () This does not work

WHERE rating = 'PG-13'; in standard SQL!

In general, a SELECT clause cannot combine:
* an aggregate function
* a column name that is on its own
(and is not being operated on by an aggregate function)

Warning: SQLite lets you violate this rule, but...
» doing so is not standard SQL
» you should not do this in your work for this class!

Boston University, Spring 2026

80

CAS CS 460

Pre-Lecture

Queries Involving Subgroups
(GROUP BY and HAVING)

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Applying an Aggregate Function to Subgroups

* A GROUP BY clause allows us to:
» group together tuples that have a common value
» apply an aggregate function to the tuples in each subgroup

+ Example: find the enrollment of each course:

SELECT COUNT(*)
FROM Enrolled;

Enrolled

student_id |course_name |credit_status
12345678 |cs 105 ugrad
45678900 |[cs 111 ugrad
45678900 |CS 460 grad
33566891 |cS 105 non-credit
66666666 |[CS 111 ugrad
25252525 |cs 105 grad

Boston University, Spring 2026

81

CAS CS 460

Applying an Aggregate Function to Subgroups

* A GROUP BY clause allows us to:
» group together tuples that have a common value
» apply an aggregate function to the tuples in each subgroup

» Example: find the enrollment of each course:

SELECT course_name, COUNT(*)
FROM EnrolTled
GROUP BY course_name;

Enrolled
student_id |course_name |credit_status
12345678 cs 105 ugrad course_name COUNT(*)
45678900 |[cs 111 ugrad cs 105 3
a9l Jee 105 Jromcereais | [l]2
non-credi

4 1
66666666 [CS 111 ugrad Cs 460
25252525 |cs 105 grad

Applying an Aggregate Function to Subgroups

* A GROUP BY clause allows us to:
» group together tuples that have a common value
» apply an aggregate function to the tuples in each subgroup

+ Example: find the enrollment of each course:

SELECT course_name, COUNT(*)
FROM EnrolTled
GROUP BY course_name;

* When you group by an attribute, you can include it
in the SELECT clause with an aggregate function.

Boston University, Spring 2026

82

CAS CS 460

SELECT course_name, COUNT(*)
FROM EnrolTled
GROUP BY course_name;

Evaluating a query with GROUP BY

Enrolled
student_id |course_name |credit_status
12345678 |CS 105 ugrad
45678900 |cs 111 ugrad
45678900 |CS 460 grad
33566891 |cs 105 non-credit
66666666 |CS 111 ugrad
25252525 |cs 105 grad
&
student_id |course_name |credit_status | = |course_name |COUNT(*
12345678 |cS 105 ugrad CS 105 3
33566891 |cS 105 non-credit les 111 2
25252525 |cs 105 grad ”'/*cs 460 1
45678900 |Cs 111 ugrad 4
66666666 |CS 111 ugrad
45678900 |CS 460 grad
GROUP BY + WHERE
SELECT course_name, COUNT(*)
FROM Enrolled
WHERE credit_status = 'ugrad'
GROUP BY course_name;
student_id |course_name |credit_status « The WHERE clause
12345678 Cs 105 ugraj is applied before
45678900 cs 111 ugra
25678900 Tcs 260 orad the GROUP BY clause.
33566891 Ccs 105 non-credit
66666666 cs 111 ugrad
25252525 Ccs 105 grad
WHERE J
student_id |course_name |credit_status
12345678 cs 105 ugrad
45678900 cs 111 ugrad
66666666 cs 111 ugrad
GROUP BY
student_id |course_name |credit_status =
12345678 CcS 105 ugrad
45678900 cs 111 ugrad
66666666 cs 111 ugrad

Boston University, Spring 2026

83

CAS CS 460

Applying a Condition to Subgroups

» What if | only want courses with more than one student?

SELECT course, COUNT(*)
FROM Enrolled

WHERE COUNT(*) > 1
GROUP BY course;

+ This will:

SELECT course, COUNT(*)
FROM Enrolled

GROUP BY course

HAVING COUNT(*) > 1;

Enrolled

student_id |course_name |credit_status course_name |COUNT(*)

12345678 |cs 105 ugrad Ccs 105 3

45678900 |cs 111 ugrad =) (cS 111 2

45678900 |CS 460 grad cS 460 1

33566891 |cS 105 non-credit HAVING‘l

66666666 |CS 111 ugrad

25252525 |cs 105 grad course_name |COUNT(*)
Ccs 105 3

» This won't work: Cs 111 2

+ WHERE is applied before
GROUP BY.

» HAVING is applied after

GROUP BY.

 used for all conditions
involving aggregates

Boston University, Spring 2026

84

Pre-Lecture

SQL: Joins Revisited

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Another Example of Joining Tables

Student Enrolled Majorsin

id name student_id |course_name |credit_status| |student_id|dept name
12345678 |3i11 Jones 12345678 |cs 105 ugrad 12345678 |comp sci
25252525 |Alan Turing 25252525 |cs 111 ugrad 45678900 [mathematics
33566891 |Audrey Chu 45678900 [CS 460 grad 25252525 [comp sci
45678900 [Jose Delgado 33566891 |CS 105 non-credit | 45678900 |english
66666666 |Count Dracula| [45678900 [CS 510 grad 66666666 |the occult

SELECT

FROM Student, Enrolled, MajorsIn
WHERE

» Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.

3 tables, so we need

______join conditions!

CAS CS 460

Boston University, Spring 2026

85

CAS CS 460

Dealing with Ambiguous Column Names

Student Enrolled Majorsin

id name student_id |course_name |credit_status| |student_id|dept_name
12345678 [3i11 Jones 12345678 |CS 105 ugrad 12345678 |comp sci
25252525 [Alan Turing 25252525 |cs 111 ugrad 45678900 [mathematics
33566891 |Audrey chu 45678900 |[CS 460 grad 25252525 |comp sci
45678900 [Jose Delgado 33566891 |[cs 105 non-credit | 45678900 |english
66666666 |Count Dracula| (45678900 [CS 510 grad 66666666 |the occult

Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.

SELECT name

FROM Student, Enrolled, MajorsIn

WHERE 1id = Enrolled.student_id
AND Enrolled.student_id = MajorsIn.student_id
AND course_name = 'CS 105'
AND dept_name = 'comp sci';

Dealing with Ambiguous Column Names

Student Enrolled Majorsin

id name student_id |course_name |credit_status| |student_id|dept name
12345678 |3i11 Jones 12345678 |cs 105 ugrad 12345678 |comp sci
25252525 |Alan Turing 25252525 |cs 111 ugrad 45678900 [mathematics
33566891 |Audrey Chu 45678900 [CS 460 grad 25252525 [comp sci
45678900 [Jose Delgado 33566891 |CS 105 non-credit | 45678900 |english
66666666 |Count Dracula| [45678900 [CS 510 grad 66666666 |the occult

Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.

SELECT Student.name

FROM Student, Enrolled, MajorsIn

WHERE Student.id = Enrolled.student_id
AND Enrolled.student_id = MajorsIn.student_id
AND Enrolled.course_name = 'CS 105'
AND MajorsIn.dept_name = 'comp sci';

Boston University, Spring 2026

86

CAS CS 460

Aliases for Table Names

Student Enrolled Majorsin

id name student_id |course_name |credit_status| |student_id|dept_name
12345678 [3i11 Jones 12345678 |CS 105 ugrad 12345678 |comp sci
25252525 [Alan Turing 25252525 |cs 111 ugrad 45678900 |mathematics
33566891 |Audrey chu 45678900 |CS 460 grad 25252525 |comp sci
45678900 [Jose Delgado 33566891 |[cs 105 non-credit | 45678900 |english
66666666 |Count Dracula| (45678900 [CS 510 grad 66666666 |the occult

» Example: find the names of all students enrolled in
CS 105 who are majoring in comp sci.

SELECT S.name
FROM Student AS S, Enrolled AS E, MajorsIn AS M
WHERE S.id = E.student_id

AND E.student_id = M.student_id

AND E.course_name = 'CS 105'

AND M.dept_name = 'comp sci';

SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id

AND E.student_id = M.student_id

AND E.course_name = 'CS 105"

AND M.dept_name = 'comp sci';
Student Enrolled Majorsin
id name student_id | course_name |credit_status| |student_id|dept_name
12345678 |3i11 Jones —12345678 |CS 105 ugrad 12345678 [comp sci
25252525 |Alan Turing 25252525 |cs 111 ugrad 45678900 [mathematics
33566891 |Audrey Chu 45678900 |[CS 460 grad 25252525 |comp sci
45678900 |Jose Delgado 33566891 [cSs 105 non-credit 45678900 |english
66666666 [Count Dracula 45678900 |cS 510 grad 166666666 |the occult
Student x Enrolled x Majorsin

id name E.student_id | course_name |credit_status | M.student_id | dept_name
12345678 |3i11 Jones |12345678 cs 105 ugrad 12345678 comp sci
12345678 (3711 Jones [12345678 CS 105 ugrad 45678900 mathematics
12345678 (3711 Jones [12345678 CS 105 ugrad 25252525 comp sci
12345678 (3711 Jones [12345678 CS 105 ugrad 45678900 english
12345678 (3711 Jones [12345678 CS 105 ugrad 66666666 the occult

Boston University, Spring 2026

87

SELECT S

.hame

FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'

AND M.dept_name = 'comp sci';
Student Enrolled Majorsin
id name student_id |course_name |credit_status student_id | dept_name
12345678 |3i11 Jones 12345678 |[CS 105 ugrad 12345678 [comp sci
25252525 [Alan Turing 25252525 |cs 111 ugrad 45678900 |mathematics
33566891 |Audrey Chu 45678900 |CS 460 grad 25252525 |comp sci
45678900 [Jose Delgado 33566891 |CS 105 non-credit 45678900 |english
66666666 |Count Dracula 45678900 |cs 510 grad 66666666 |the occult
Student x Enrolled x Majorsin 125 rows in all!
id name E.student_id |course_name |credit_status | M.student_id | dept_name
12345678 |3i11 Jones |12345678 CS 105 ugrad 12345678 comp sci
123456783111 Jones [12345678 CcS 105 ugrad 45678900 mathematics
12345678 |3i11 Jones |12345678 CS 105 ugrad 25252525 comp sci
12345678 (3111 Jones [12345678 CcS 105 ugrad 45678900 english
12345678 3111 Jones [12345678 CS 105 ugrad 66666666 the occult
12345678 (3111 Jones [25252525 cs 111 ugrad 12345678 comp sci
12345678 (3711 Jones [25252525 cs 111 ugrad 45678900 mathematics
12345678 (3111 Jones [25252525 cs 111 ugrad 25252525 comp sci
12345678 (3111 Jones [25252525 cs 111 ugrad 45678900 english
12345678 3111 Jones [25252525 cs 111 ugrad 66666666 the occult
SELECT S.name
FROM Student S, Enrolled E, MajorsIn M
WHERE S.id = E.student_id
AND E.student_id = M.student_id
AND E.course_name = 'CS 105'
AND M.dept_name = 'comp sci';
Student Enrolled Majorsin
id name student_id | course_name |credit_status| |student_id|dept_name
12345678 |3i11 Jones 12345678 |CS 105 ugrad 12345678 [comp sci
25252525 |Alan Turing 25252525 |cs 111 ugrad 45678900 [mathematics
33566891 |Audrey Chu 45678900 |[CS 460 grad 25252525 |comp sci
45678900 |Jose Delgado 33566891 [cSs 105 non-credit 45678900 |english
66666666 [Count Dracula 45678900 |cS 510 grad 66666666 |[the occult

Student x Enrolled x Majorsln, followed by the join conditions...

id name E.student_id | course_name |credit_status | M.student_id | dept_name
12345678 |3i11 Jones |12345678 cs 105 ugrad 12345678 comp sci
25252525 [Alan Turing [25252525 cs 111 ugrad 25252525 comp sci
45678900 |Jose Delgado|45678900 CS 460 grad 45678900 mathematics
45678900 |Jose Delgado|45678900 CS 460 grad 45678900 english
45678900 |Jose Delgado|45678900 CcS 510 grad 45678900 mathematics
45678900 |Jose Delgado|45678900 CcS 510 grad 45678900 english

CAS CS 460

Boston University, Spring 2026

88

CAS CS 460

SELECT S.name

FROM Student S, Enrolled E, Majorsin M

WHERE S.id = E.student_id

AND E.student_id = M.student_id

AND E.course_name = 'CS 105'

AND M.dept_name = 'comp sci';
Student Enrolled Majorsin
id name student_id |course_name |credit_status student_id | dept_name
12345678 |3i11 Jones 12345678 |[CS 105 ugrad 12345678 [comp sci
25252525 [Alan Turing 25252525 |cs 111 ugrad 45678900 |mathematics
33566891 |Audrey Chu 45678900 |CS 460 grad 25252525 |comp sci
45678900 [Jose Delgado 33566891 |CS 105 non-credit 45678900 |english
66666666 |Count Dracula 45678900 |cs 510 grad 66666666 |the occult

Student x Enrolled x Majorsin, followed by the join conditions and the rest of the WHERE clause

id name E.student_id |course_name |credit_status | M.student_id | dept_name
123456783111 Jones [12345678 cs 105 ugrad 12345678 comp sci
“after SELECT
name
Ji11 Jones

Boston University, Spring 2026

89

CAS CS 460

Pre-Lecture

SQL: Outer Joins

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Finding the Room of Each Course

Need a query that forms (course name, room name) pairs.

Course Room

name start_time |end_time room_id id name capacity

Ccs 105 13:00:00 (14:00:00 [4000 1000 |CAS Tsai 500

cs 111 09:30:00 [11:00:00 |5000 2000 |CAS BigRoom 100

EN 101 11:00:00 (12:30:00 (1000 3000 |[EDU Lecture Hall |100

CS 460 16:00:00 (17:30:00 |[7000 4000 |GCB 204 40

CcS 510 12:00:00 (13:30:00 |[7000 5000 |CAS 314 80

PH 101 |14:30:00 [16:00:00 [NULL 6000 |CAS 226 50
7000 [mMCS 205 30

desired result of the query

Course.name |Room.name « Will this work?

CS 105 GCB 204

cs 111 CAS 314 SELECT Course.name, Room.name

EN 101 CAS Tsai FROM Course, Room

CS 460 MCS 205 WHERE room_id = id;

CcS 510 MCS 205

PH 101 NULL

Boston University, Spring 2026

90

CAS CS 460

SELECT Course.name, Room.name
FROM Course, Room

WHERE room_id = 1id;

Course Room

name start_time |end_time room_id id name capacity
Ccs 105 13:00:00 |14:00:00 [4000 1000 |[CAS Tsai 500
cs 111 09:30:00 |11:00:00 |5000 2000 |[CAS BigRoom 100
EN 101 11:00:00 |12:30:00 [1000 3000 |EDU Lecture Hall |100
CS 460 16:00:00 |17:30:00 |7000 4000 |GCB 204 40
CcS 510 12:00:00 |13:30:00 [7000 5000 |CAS 314 80
PH 101 14:30:00 |16:00:00 [NULL 6000 |[CAS 226 50
Course x Room 42 rows in all! ALY |[.S5 20D 20
Course.name| start_time |end_time |[room_id |id Room.name capacity
Ccs 105 13:00:00 |14:00:00 [4000 1000 [CAS Tsai 500

Ccs 105 13:00:00 |{14:00:00 [4000 2000 [CAS BigRoom 100

Ccs 105 13:00:00 |14:00:00 [4000 3000 |EDU Lecture Hall [100

Ccs 105 13:00:00 |14:00:00 {4000 4000 |GCB 204 40

Ccs 105 13:00:00 |14:00:00 [4000 5000 |cAs 314 80

Ccs 105 13:00:00 |14:00:00 [4000 6000 [CAS 226 50

Ccs 105 13:00:00 |14:00:00 [4000 7000 |mMCS 205 30

cs 111 09:30:00 |11:00:00 |5000 1000 [CAS Tsai 500

cs 111 09:30:00 |11:00:00 |5000 2000 [CAS BigRoom 100

cs 111 09:30:00 |11:00:00 |5000 3000 |EDU Lecture Hall [100

cs 111 09:30:00 |11:00:00 |5000 4000 |GCB 204 40

cs 111 09:30:00 |11:00:00 |5000 5000 |cAs 314 80
SELECT Course.name, Room.name

FROM Course, Room

WHERE room_id = 1id;

Course Room

name start_time |end_time room_id id name capacity
CS 105 13:00:00 |14:00:00 [4000 1000 |[cAS Tsai 500
Ccs 111 09:30:00 (11:00:00 |5000 2000 [CAS BigRoom 100

EN 101 11:00:00

12:30:00 [1000

3000 |EDU Lecture Hall [100

CS 460 16:00:00 |17:30:00 |[7000 4000 |GCB 204 40
CS 510 12:00:00 |13:30:00 |[7000 5000 |cAs 314 80
PH 101 14:30:00 [16:00:00 [NULL 6000 |[CAS 226 50
Course x Room, followed by the join condition [y JIRES A 30
Course.name| start_time |end_time |room_id |id Room.name capacity
cs 105 13:00:00 |14:00:00 [4000 GCB 204 40
cs 111 09:30:00 |11:00:00 |5000 CAS 314 80
EN 101 11:00:00 |12:30:00 [1000 CAS Tsai 500
CS 460 16:00:00 |17:30:00 |7000 MCS 205 30
Ccs 510 12:00:00 |13:30:00 |7000 MCS 205 30

Course.name| Room.name

Ccs 105 GCB 204

cs 111 CAS 314

EN 101 CAS Tsai o
CS 460 MCS 205

Ccs 510 MCS 205

* The last row of Course
doesn't have a match in Room.

it is an "unmatched row"

+ thus it's not in the result of the join
» to getit, we need an outer join

Boston University, Spring 2026

91

CAS CS 460

SELECT Course.name, Room.name
FROM Course LEFT OUTER JOIN Room ON room_id = id;

! A !

the "left" table the "right" the join condition goes
(the one to the left of table in a special ON clause
LEFT OUTER JOIN)

+ Aleft outer join includes unmatched
rows from the left table in the result.

SELECT Course.name, Room.name
FROM Course LEFT OUTER JOIN Room ON room_id = id;

Course Room

name start_time |end_time room_id id name capacity
cs 105 |13:00:00 |14:00:00 |4000 1000 |CAS Tsai 500

cs 111 |09:30:00 |11:00:00 |5000 2000 |CAS BigRoom 100

EN 101 |11:00:00 |12:30:00 |1000 3000 |EDU Lecture Hall |100

CS 460 |16:00:00 |17:30:00 |7000 4000 |GCB 204 40

cs 510 |12:00:00 |13:30:00 |7000 5000 |cAs 314 80

PH 101 |14:30:00 |16:00:00 |NULL 6000 |CAS 226 50

result of the LEFT OUTER JOIN LY |ILES 208 =0
Course.name|start_time |end_time |room_id |id Room.name capacity

cs 105 13:00:00 |14:00:00 [4000 |4000 |GCB 204 40

cs 111 09:30:00 |11:00:00 [5000 |5000 |cAs 314 80

EN 101 11:00:00 |12:30:00 [1000 |1000 |CAS Tsai 500

Cs 460 16:00:00 |17:30:00 [7000 |[7000 |MCS 205 30

cs 510 12:00:00 |13:30:00 [7000 |[7000 |MCS 205 30

PH 101 14:30:00 |{16:00:00 |NULL NULL NULL __INULL
Eoe el e « A left outer join adds an extra row to
cs 105 GCB 204 .

Cs 111 CAs 314 its result for any row from the left table
EN 101 CAS Tsai that doesn't have a match in the right.
Ez ‘S‘ig mgz ggz « uses NULLs for the right-table

PR 101 RO attributes in the extra rows

Boston University, Spring 2026

92

SQL: Queries Involving Subgroups;
Joins Revisited; Outer Joins

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Recall: A Restriction on Aggregate Functions

SELECT name, MIN(runtime ,
FROM Movie ’ () This does not work

WHERE rating = 'PG-13'; in standard SQL!

* In general, a SELECT clause cannot combine:
* an aggregate function

* a column name that is on its own
(and is not being operated on by an aggregate function)

+ Wel'll see an important exception to this soon.

* Warning: SQLite lets you violate this rule, but...
» doing so is not standard SQL
» you should not do this in your work for this class!

Boston University, Spring 2026

93

CAS CS 460

Applying an Aggregate Function to Subgroups

* A GROUP BY clause allows us to:
» group together tuples that have a common value
» apply an aggregate function to the tuples in each subgroup

» Example: find the enrollment of each course:

SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

* When you group by an attribute, you can include it
in the SELECT clause with an aggregate function.

What does this query do?

SELECT dept_name, COUNT(*)
FROM MajorsIn
GROUP BY dept_name;

Maijorsin

student_id |dept_name

12345678 |comp sci

45678900 |mathematics

25252525 |comp sci

45678900 |english

66666666 |the occult

25252525 |[mathematics

Boston University, Spring 2026

94

CAS CS 460

How could we limit this to departments with only 1 student?

SELECT dept_name, COUNT(*)
FROM MajorsIn

GROUP BY dept_name;

Maijorsin

student_id |dept _name

12345678

comp sci

45678900

mathematics

25252525

comp sci

45678900

english

66666666

the occult

25252525

mathematics

&

student_id |dept_name

dept_name

COUNT(*)

12345678

comp sci

25252525

comp sci

45678900

mathematics

25252525

mathematics | .~

45678900

english

66666666

the occult

comp sci

2

“|Imathematics

“lengTish

f”;/'the occult

2
1
1

How could we limit this to departments with only 1 student?

SELECT dept_name, COUNT(*)
FROM MajorsIn

GROUP BY dept_name;

A SELECT dept_name, COUNT(*) C

FROM

MajorsIn

WHERE COUNT(*) =1
GROUP BY dept_name;

B. SELECT dept_name, COUNT(*) D.

FROM

MajorsIn

GROUP BY dept_name
WHERE COUNT(*) = 1;

. SELECT dept_name, COUNT(*)

FROM MajorsIn
HAVING COUNT(*) =1
GROUP BY dept_name;

SELECT dept_name, COUNT(*)
FROM MajorsIn

GROUP BY dept_name

HAVING COUNT(*) = 1;

more than one
of these works

Boston University, Spring 2026

95

CAS CS 460

Sorting the Results
» An ORDER BY clause sorts the tuples in the result of the query
by one or more attributes.
» ascending order by default (see below)

» example:

SELECT name, capacity
FROM Room

WHERE capacity >= 500
ORDER BY capacity;

name capacity
Sci Ctr B 500
Emerson 105 500
Sanders Theatre |1000

Sorting the Results (cont.)

 An ORDER BY clause sorts the tuples in the result of the query
by one or more attributes.

+ ascending order by default, use DESC to get descending
« attributes after the first one are used to break ties
+ example:

SELECT name, capacity

FROM Room

WHERE capacity >= 500
ORDER BY capacity DESC, name;
— N

order by capacity in descending order (DESC) if two tuples have the

-- i.e., from highest to lowest same capacity, list them

in ascending order (the default)
by name (i.e., in dictionary order)

name capacity
sanders Theatre (1000
Emerson 105 500
Sci Ctr B 500

Boston University, Spring 2026

96

CAS CS 460

Writing Queries: Rules of Thumb
+ Start with the FROM clause. Which table(s) do you need?

+ If you need more than one table, determine the necessary
join conditions.

+ for N tables, you typically need N — 1 join conditions

» Determine if a GROUP BY clause is needed.
* are you performing computations involving subgroups?

» Determine any other conditions that are needed.
« if they rely on aggregate functions, put in a HAVING clause
» otherwise, add to the WHERE clause
* is a subquery needed?

+ Fill'in the rest of the query: SELECT, ORDER BY?
* is DISTINCT needed?

Which tables do | need? How many join conditions?
» Find the names of all rooms that CS majors have courses in.

SELECT
FROM
WHERE
Course Room
name start_time |end_time room_id id name capacity
CS 105 13:00:00 [14:00:00 [4000 1000 |[CAS Tsai 500
cs 111 09:30:00 [11:00:00 [5000 2000 [CAS BigRoom 100
EN 101 11:00:00 |12:30:00 [1000 3000 |EDU Lecture Hall |100
CS 460 16:00:00 [17:30:00 |[7000 4000 |GCB 204 40
CS 510 12:00:00 [13:30:00 |[7000 5000 |CAS 314 80
PH 101 14:30:00 |16:00:00 [NULL 6000 |[CAS 226 50
7000 [mMCS 205 30
Student Enrolled Majorsin
id name student_id |course_name |credit_status| |student_id|dept_name
12345678 [3i11 Jones 12345678 |CS 105 ugrad 12345678 |comp sci
25252525 |Alan Turing 25252525 |cs 111 ugrad 45678900 |mathematics
33566891 |Audrey Chu 45678900 [CS 460 grad 25252525 [comp sci
45678900 |Jose Delgado 33566891 |CS 105 non-credit 45678900 |english
66666666 [Count Dracula] |45678900 [CS 510 grad 66666666 [the occult

Boston University, Spring 2026

97

Which of these is a correctly formed
join condition for this problem?

» Find the names of all rooms that CS majors have courses in.

SELECT

FROM Course, Room, Enrolled, MajorsIn

WHERE ?77?7?
Course Room
name start_time |end_time room_id id name capacity
Cs 105 |13:00:00 |14:00:00 |4000 1000 |CAS Tsai 500
Cs 111 |09:30:00 |11:00:00 |5000 2000 |CAS BigRoom 100
EN 101 |11:00:00 |12:30:00 |1000 3000 |EDU Lecture Hall |100
Enrolled Majorsin
student_id |course_name |credit_status| |student id|dept_name
12345678 |cs 105 ugrad 12345678 |comp sci
25252525 |cs 111 ugrad 45678900 |mathematics
45678900 |CS 460 grad 25252525 | comp sci
A. room_id = id C. student_id = student_id
B. course_name = name D. two or more are correct

Complete the query...

» Find the names of all rooms that CS majors have courses in.

SELECT

FROM Course, Room, Enrolled, MajorsIn

WHERE
Course Room
name start_time |end_time room_id id name capacity
cs 105 13:00:00 (14:00:00 (4000 1000 |[CAS Tsai 500
cs 111 |09:30:00 [11:00:00 |[5000 2000 [CAS BigRoom 100
EN 101 11:00:00 (12:30:00 (1000 3000 |EDU Lecture Hall |100
Enrolled Majorsin
student_id |course_name |credit_status| |student_id|dept_name
12345678 |CS 105 ugrad 12345678 |comp sci
25252525 |cs 111 ugrad 45678900 [mathematics
45678900 |CS 460 grad 25252525 [comp sci

CAS CS 460 Boston University, Spring 2026

CAS CS 460

What does this give?

How can we get just the movies that won Oscars?

SELECT name
FROM Movie, Oscar;

Movie Oscar
id name year |rating |runtime movie_id |person_id |type year
2488496 |Star wars... [2015 |PG-13 (138 2488496 [1111111 |BEST-ACTOR 2016
1228705 [Iron Man 2 2010 |PG-13 |124 1228705 (2222222 |BEST-ACTRESS |2011
0435761 |Toy Story 3 [2010 |G 103 2488496 |NULL BEST-PICTURE (2016
1323594 |Despicable Me|2010 |PG 95
Counting Oscars Won by Movies

SELECT name, COUNT (*)

FROM Movie, Oscar

WHERE id = movie_id

GROUP BY name;
Movie Oscar
id name year |rating |runtime movie_id |person_id |type year
2488496 |Star wars... [2015 |PG-13 (138 2488496 [1111111 |BEST-ACTOR 2016
1228705 [Iron Man 2 2010 |PG-13 |124 1228705 (2222222 |BEST-ACTRESS |2011
0435761 |Toy Story 3 [2010 |G 103 2488496 |NULL BEST-PICTURE (2016
1323594 |Despicable Me|2010 |PG 95

Movie x Oscar, followed by join condition, followed by GROUP BY

id name Movie. | rating |runtime| movie_id |person_id |type Oscar.

year year

2488496 |Star wars... (2015 |PG-13|138 2488496 (1111111 |BEST-ACTOR 2016

2488496 |Star wars... [2015 |PG-13|138 2488496 [NULL BEST-PICTURE (2016

1228705 |Iron Man 2 2010 |PG-13|124 1228705 (2222222 |BEST-ACTRESS |2011

after SELECT

name COUNT(*)
Star wars... |2
Iron Man 2 1

Boston University, Spring 2026

99

FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;

c: SELECT name, COUNT(type)

FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

[) SELECT name, COUNT(*)

FROM Movie LEFT OUTER JOIN Oscar
ON id = movie_id
GROUP BY name;

What if we wanted a count for each movie?
SELECT name, COUNT (%)
FROM Movie, Oscar
WHERE id = movie_id
GROUP BY name;
Movie Oscar
id name year |rating |runtime movie_id |person_id |type year
2488496 |Star wars... [2015 |PG-13 (138 2488496 (1111111 |BEST-ACTOR 2016
1228705 |Iron Man 2 2010 |PG-13 |124 1228705 (2222222 |BEST-ACTRESS |2011
0435761 |Toy Story 3 [2010 |G 103 2488496 |NULL BEST-PICTURE (2016
1323594 |Despicable Me|2010 |PG 95
Movie x Oscar, followed by join condition, followed by GROUP BY
id name Movie. |rating |runtime| movie_id | person_id |type Oscar.
year year
2488496 |Star wars... (2015 |PG-13|138 2488496 (1111111 |BEST-ACTOR 2016
2488496 |Star wars... [2015 |PG-13|138 2488496 [NULL BEST-PICTURE (2016
1228705 |Iron Man 2 2010 |PG-13(124 1228705 [2222222 |BEST-ACTRESS [2011
after SELECT
name COUNT(*) name COUNT
Star wars... |2 Star wars... |2
Iron Man 2 1 Iron Man 2 1
Toy Story 3 |0
Despicable Me|0
_ Which of these would work?
Movie Oscar
id name year |rating |runtime movie_id |person_id |type year
2488496 |Star wars... [2015 |PG-13 (138 2488496 (1111111 |BEST-ACTOR 2016
1228705 [Iron Man 2 2010 [PG-13 |124 1228705 (2222222 |BEST-ACTRESS |2011
0435761 |Toy Story 3 [2010 |G 103 2488496 |NULL BEST-PICTURE (2016
1323594 |Despicable Me|2010 |PG 95
A SELECT name, COUNT(*) \ ‘[
* FROM Movie, Oscar name COUNT
WHERE id = movie_id star wars... |2
GROUP BY name; Iron Man 2 1
Toy Story 3 |0
B. SELECT name, COUNT (type) Despicable Me|0

CAS CS 460

Boston University, Spring 2026

100

Finding the Majors of Enrolled Students

+ We want the IDs and majors of every student who
is enrolled in a course — including those with no major.

Enrolled Majorsin
student_id |course_name |credit_status student_id | dept_name
12345678 |cs 105 ugrad 12345678 |comp sci
25252525 |cs 111 ugrad 45678900 |mathematics
45678900 |CS 460 grad 25252525 [comp sci
33566891 |CS 105 non-credit 45678900 |english
45678900 |CS 510 grad 66666666 |the occult
e Desired result: student_id |dept_name

12345678 |comp sci

25252525 |comp sci

45678900 |mathematics

45678900 |english

33566891 |null

* Relational algebra: g, gent id. dept name(Enrolled 1] Majorsin)

e SQL: SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id;

SELECT ..

WHERE ...

T1xT2

Left Outer Joins

SELECT DISTINCT Enrolled.student_id, dept_name

FROM Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id;

* The result is equivalent to:

* including an extra row for
each unmatched row from
T1 (the "left table")

« filling the T2 attributes in the
extra rows with nulls

 applying the other clauses
as before

FROM T1 LEFT OUTER JOIN T2 ON join condition

 forming the Cartesian product 45678900 |cs 460 [grad

» selecting the rows in T1 x T2 [45678900 |cs 510 |grad

Enrolled. |course_ |credit_ |Majorsin. |dept_name

student_id |name status |student_id

12345678 |CS 105 |ugrad |12345678 |comp sci

25252525 |cs 111 |ugrad |25252525 |comp sci
45678900 |math...

45678900 [cs 460 |grad |45678900 [english

45678900 [cs 510 |grad (45678900 |math...
45678900 |english

that satisfy the join condition
in the ON clause

CAS CS 460

Boston University, Spring 2026

101

CAS CS 460

SELECT DISTINCT Enrolled.student_id, dept_name

Left Outer JOINS From Enrolled LEFT oUTER JOIN MajorsIn
ON Enrolled.student_id =

SELECT ..
FROM T1 LEFT OUTER JOIN T2
WHERE ..

MajorsIn.student_id;

ON join condition

* The result is equivalent to:

« forming the Cartesian product

T1xT2

* selecting the rows in T1 x T2

that satisfy the join condition

in the ON clause

* including an extra row for
each unmatched row from
T1 (the "left table")

« filling the T2 attributes in the
extra rows with nulls

+ applying the other clauses
as before

Enrolled. |course_ |credit_ | Majorsin. |dept_name
student_id |name tat tudent_id
12345678 |cs 105 |ugrad [12345678 |comp sci
25252525 |cs 111 |ugrad |25252525 |comp sci
45678900 |cs 460 |[grad |[45678900 |math...
45678900 [Cs 460 [grad |[45678900 [english
45678900 [cs 510 |grad |45678900 [math...
45678900 |cs 510 |[grad |[45678900 |english
33566891 [cs 105 |non-cr

Enrolled

student_id |course_name |credit_status

12345678 |cSs 105 ugrad

25252525 |cs 111 ugrad

45678900 [CS 460 grad

33566891 [CS

105

non-credit

45678900 |CS

510

grad

SELECT DISTINCT Enrolled.student_id, dept_name

Left Outer JOINS From Enrolled LEFT OUTER JOIN MajorsIn
student_id = MajorsIn.student_id;

ON Enrolled.
SELECT ..

FROM T1 LEFT OUTER JOIN T2

ON join condition

WHERE ...

* The result is equivalent to:

+ forming the Cartesian product

T1xT2

* selecting the rows in T1 x T2

that satisfy the join condition

in the ON clause

* including an extra row for
each unmatched row from
T1 (the "left table")

* filling the T2 attributes in the
extra rows with nulls

* applying the other clauses
as before

Enrolled. |course_ |credit_ |Majorsin. |dept_name
student_id |name status |student_id
12345678 |CS 105 |ugrad |12345678 |comp sci
25252525 |cs 111 |ugrad |25252525 |comp sci
45678900 [cs 460 |grad |45678900 [math...
45678900 [cs 460 |grad |45678900 [english
45678900 [cs 510 |grad (45678900 |math...
45678900 [cs 510 [(grad [45678900 [english
33566891 |CS 105 |non-cr|null null
Enrolled. dept_name
student_id
12345678 |comp sci
25252525 |comp sci
45678900 |[mathematics
45678900 [english
33566891 |[null

Boston University, Spring 2026

102

Outer Joins Can Have a WHERE Clause

+ Example: find the IDs and majors of all students
enrolled in CS 105 (including those with no major):

SELECT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id
WHERE course_name = 'CS 105';

* to limit the results to students in CS 105,
we need a WHERE clause with the appropriate condition
+ this new condition should not be in the ON clause
because it's not being used to match up rows
from the two tables

Outer Joins Can Have Extra Tables

» Example: find the names and majors of all students
enrolled in CS 105 (including those with no major):

SELECT Student.name, dept_name
FROM Student, Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id
WHERE Student.id = Enrolled.student_id
AND course_name = 'CS 105';

» we need Student in the FROM clause to get the
student's names

+ the extra table requires an additional join condition,
which goes in the WHERE clause

CAS CS 460 Boston University, Spring 2026 103

CAS CS 460

Pre-Lecture
SQL: Data Types;
Creating Tables and Inserting Rows

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Data Types

Recall: The values in a given column must be of the same type
(i.e., must come from the same domain).

Numeric types include:
* INTEGER
* REAL: a real number (i.e., one with a decimal)

Non-numeric types include:

* DATE (e.g., '2017-02-23")

« TIME (e.g., '15:30:30")

» two types for strings (i.e., arbitrary sequences of characters)
* CHAR for fixed-length strings
* VARCHAR for variable-length strings

Boston University, Spring 2026

104

CHAR vs. VARCHAR
« CHAR(n) is for fixed-length strings of exactly n characters.

¢ VARCHAR(n) is for variable-length strings of up to n characters.
+ used for values that can have a wide range of possible lengths

» Example: types for a Person table:
* VARCHAR(64) for the person's name
* VARCHAR(128) for the street address
* VARCHAR(32) for the city
e CHAR(2) for the state abbreviation ('MA', "NY', etc.)
* CHAR(5) for the zip code

* CHAR(8) for the id — since every id has the same # of digits
« example: '00123456"
» a numeric type would not keep the leading Os

CHAR vs. VARCHAR (cont.)

« With both CHAR(n) and VARCHAR(n), if the user attempts
to specify value with more than n characters, it is truncated.

* examples:
type user-specified value value stored
CHAR(5) '123456" '12345"
VARCHAR (10) 'computer science'

 If the user attempts to specify a value of less than n characters:
« if the type is CHAR(n), the system pads with spaces
« if the type is VARCHAR (n), the system does not pad

* examples:
type user-specified value value stored
CHAR(5) '123" '123 !
VARCHAR (10) 'math’

CAS CS 460 Boston University, Spring 2026 105

Creating a New Table

+ Basic syntax: CREATE TABLE table_name(
columni1_name columni_type,
column2_name column2_type,

); After this command, the table is initially empty!
+ Examples:

Student Room
id name id name capacity
12345678 [Ji11 3Jones 1000 |CAS Tsai 500
25252525 |(Alan Turing 2000 |CAS BigRoom 100
33566891 |Audrey Chu 3000 |EDU Lecture Hall {100
45678900 |Jose Delgado 4000 [CAS 315 40
66666666 |Count Dracula

CREATE TABLE Student(
id CHAR(8),
name VARCHAR(30)
);

Specifying Primary Keys

» Specify a single-column primary key after the column's type:

CREATE TABLE Student(
id CHAR(8) PRIMARY KEY,
name VARCHAR(30)

);

+ If the primary key is a combination of two or more columns,
specify it separately:

MajorsIn

student_id |dept_name

12345678 |computer science
12345678 |english

CREATE TABLE MajorsIn(

student_id CHAR(8), dept_name VARCHAR(30),
PRIMARY KEY (student_id, dept_name)
)

CAS CS 460 Boston University, Spring 2026 106

CAS CS 460

Specifying Foreign Keys

* Need to specify both:
* the foreign key itself
+ the corresponding primary key in the form Table(column)

Studerit

Majorsin

student_id |dept_name
12345678 |computer\science
12345678 |english

v, Department
id name Khame
12345678 |3i11 3Jones computer science
25252525 |Alan Turing english

CREATE TABLE MajorsIn(

student_id CHAR(8), dept_name VARCHAR(30),
PRIMARY KEY (student, dept),

FOREIGN KEY (student_id) REFERENCES Student(id),
FOREIGN KEY

Adding a Single Row to an Existing Table

+ Syntax:
INSERT INTO table VALUES (val1, val2, ...);
idis CHAR(4), so need quotes!
« Example: / 4 a
INSERT INTO Room VALUES ('1234', 'MCS 148', 45)
Room Room
id name capacity id name capacity
1000 |[CAS Tsai 500 1000 |CAS Tsai 500
2000 [CAS BigRoom 100 q 2000 [CAS BigRoom 100
3000 EDU Lecture Hall (100 3000 EDU Lecture Hall [100
4000 |cAs 315 40 4000 |cAs 315 40
1234 |[MCs 148 45
* Notes:

need to specify the values in the appropriate order
(based on the order of the columns in CREATE TABLE)

non-numeric values are surrounded by single quotes

the DBMS won't allow you to insert a row if it
violates a uniqueness or referential-integrity constraint

Boston University, Spring 2026

107

CAS CS 460

Pre-Lecture
SQL: Other Commands

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

DELETE: Removing Existing Rows

+ syntax: DELETE FROM table
WHERE selection condition;

DELETE FROM Student
WHERE id = '45678900';

Student Student
id name id name
12345678 [31i11 3Jones 12345678 [3i11 3Jones

25252525 |Alan Turing q 25252525 |Alan Turing
33566891 |Audrey Chu 33566891 [Audrey Chu

45678900 |Jose Delgado 66666666 |Count Dracula
66666666 [Count Dracula

DELETE FROM Enrolled
WHERE student_id = '45678900"';

Enrolled Enrolled

student_id | course_name | credit_status student_id | course_name | credit_status
12345678 |Ccs 105 ugrad 12345678 |Ccs 105 ugrad
25252525 |cs 111 ugrad ‘ 25252525 |cs 111 ugrad
45678900 [CS 460 grad 33566891 |CS 105 non-credit
33566891 |CcS 105 non-credit

45678900 |Ccs 510 grad

Boston University, Spring 2026

108

CAS CS 460

The order of deletions can matter!

DELETE FROM Student
WHERE id = '45678900';

Student Student
id name id name
12345678 |3i11 Jones q 12345678 |3i11 Jones
25252525 |Alan Turing 25252525 |Alan Turing
33566891 |Audrey Chu 33566891 |Audrey Chu
45678900 |Jose Delgado 66666666 |Count Dracula
66 p66 |[Count Dracula

A A
Enrpllgd EnjoHed
student_id | course_name | credit_status student_id | course_name |credit_status
12345678 |cs 105 ugrad 12345678 |cs 105 ugrad
25252525 |cs 111 ugrad 25252525 |cs 111 ugrad
45678900 |CS 460 grad 45678900 [CS 460 grad
33566891 |CS 105 non-credit 33566891 |CS 105 non-credit
45678900 |cs 510 grad 45678900 |cs 510 grad

» Before deleting a row, we must first
remove all references to that row
from foreign keys in other tables.

The order of deletions can matter! (cont.)

Enrolled

student_id

course_name |credit_status

12345678

Ccs 105

ugrad

25252525

cs 111

ugrad

45678900

CS 460

grad

33566891

CS 105

non-credit

45678900

CS 510

grad

Majorsin

student_id

dept_name

12345678

comp sci

45678900

mathematics

25252525

comp sci

45678900

english

64666666

the occult

tudirlt
{d

name

1134LL78

Ji11 Jones

25p52525

Alan Turing

3834R891

Audrey Chu

45678900

Jose Delgado

66666666

Count Dracula

Boston University, Spring 2026

109

CAS CS 460

UPDATE: Changing Values in Existing Rows

» syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE MajorsIn
SET dept_name = 'physics'
WHERE student_id = '45678900';

Majorsin Maijorsin

student_id | dept_name student_id | dept_name
12345678 [comp sci 12345678 [comp sci
45678900 |mathematics 45678900 |physics
25252525 [comp sci ‘ 25252525 [comp sci
45678900 |english 45678900 |physics
66666666 [the occult 66666666 [the occult

UPDATE: Changing Values in Existing Rows

+ syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE MajorsIn
SET dept_name = 'physics'
WHERE student_id = '45678900'

AND ;
Majorsin Majorsin
student_id | dept_name student_id | dept_name
12345678 |comp sci 12345678 |comp sci
45678900 |mathematics 45678900 |mathematics
25252525 |comp sci q 25252525 |comp sci
45678900 |english 45678900 |physics
66666666 |the occult 66666666 |the occult

Boston University, Spring 2026

110

UPDATE: Changing Values in Existing Rows (cont.)

» syntax: UPDATE table
SET list of changes
WHERE selection condition;

UPDATE Course

SET start_time = '13:25:00', end_time = '14:15:00"',
room_id = '6000'

WHERE name = 'CS 105';

Course Course

name start_time (end_time |room_id name start_time (end_time |room_id
CS 105 (13:00:00 [14:00:00 |[4000 CS 105 (13:25:00 [14:15:00 |6000
CS 111 |09:30:00 |11:00:00 [5000 CS 111 |09:30:00 |11:00:00 [5000
EN 101 {11:00:00 |12:30:00 |1000 ‘ EN 101 {11:00:00 [12:30:00 |[1000
CS 460 |16:00:00 |17:30:00 |7000 CS 460 |16:00:00 |17:30:00 |7000
CS 510 |12:00:00 |13:30:00 |7000 CS 510 |12:00:00 |13:30:00 |7000
PH 101 {14:30:00 |16:00:00 |NULL PH 101 {14:30:00 |16:00:00 |NULL

DROP TABLE: Removing an Entire Table

* syntax: DROP TABLE table;

DROP TABLE MajorsIn;

Majorsin

student_id | dept_name
12345678 |comp sci
45678900 |mathematics

25252525 |comp sci ‘
45678900 |english
66666666 |the occult

no table!

+ If atable is referred to by a foreign key in another table,
it cannot be dropped until either:
+ the other table is dropped first
or

+ the foreign-key constraint is removed from the other table
(we won't look at how to do this)

Boston University, Spring 2026

111

SQL: Data Types; Other Commands

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Recall: SQL Data Types

* Numeric types include:
* INTEGER
* REAL: a real number (i.e., one that may have a fractional part)

* Non-numeric types include:
* DATE (e.g., '2017-02-23")
* TIME (e.g., '15:30:30")
» two types for strings (i.e., arbitrary sequences of characters)
* CHAR
* VARCHAR

Boston University, Spring 2026

112

name

Ji11 3Jones

Alan Turing

Audrey Chu

Jose Delgado

Count Dracula

Given the CREATE TABLE command shown below,
what tuple would be added by the INSERT command?
CREATE TABLE Student(Student
id CHAR(8) PRIMARY KEY, L]
name VARCHAR(30) 12345678
); 25252525
33566891
45678900
INSERT INTO Student 66666666
VALUES ('4567', '"Robert Brown');
A. ('4567 ', 'Robert Brown
B. ('4567 ', 'Robert Brown')
C. ('4567', 'Robert Brown
D. ('4567', 'Robert Brown')

CREATE TABLE Student(

id CHAR(8) PRIMARY KEY,
name VARCHAR(30)

);

INSERT INTO Student
VALUES ('Robert Brown', '4567');

Student

What if we swapped the two values in the INSERT?

id

name

12345678

Ji11 3Jones

25252525

Alan Turing

33566891

Audrey Chu

45678900

Jose Delgado

66666666

Count Dracula

CAS CS 460 Boston University, Spring 2026

113

CAS CS 460

Types in SQLite

« SQLite has its own types, including:
* INTEGER
* REAL
« TEXT

« It also allows you to use the typical SQL types, but it converts
them to one of its own types.

» As aresult, the length restrictions indicated for CHAR
and VARCHAR are not observed.

 ltis also more lax in type checking than typical DBMSs.

What about the other foreign key in Enrolled?

Enrolled Student

student_id |course_name |credit_status id name
12345678 cs 105 ugrad 12345678 |3i11 Jones
25252525 cs 111 ugrad 25252525 |[Alan Turing
45678900 CS 460 grad 33566891 |Audrey Chu
33566891 cs 105 non-credit 45678900 |Jose Delgado
45678900 Cs 510 ugrad 66666666 |Count Dracula

CREATE TABLE Enrolled(
student_id CHAR(8), course_name VARCHAR(10),
credit_status VARCHAR(10),
PRIMARY KEY (student_id, course_name),
FOREIGN KEY (student_id) REFERENCES Student(id),

Course

name start_time end_time room_id
CS 105 13:00:00 14:00:00 4000
cs 111 09:30:00 11:00:00 5000
CS 460 16:00:00 17:30:00 7000
cs 510 12:00:00 13:30:00 7000
CS 999 19:30:00 21:30:00 NULL

Boston University, Spring 2026

Does the order of these insertions matter?

Enrolled Student

student_id |course_name |credit_status id name
12345678 Ccs 105 ugrad 12345678 (3111 Jones
25252525 cs 111 ugrad 25252525 |[Alan Turing
45678900 CS 460 grad 33566891 |Audrey Chu
33566891 Ccs 105 non-credit 45678900 |Jose Delgado
45678900 Cs 510 ugrad 66666666 |Count Dracula

(1) INSERT INTO Enrolled VALUES('4567', 'Cs 105', 'grad');

@ INSERT INTO Student VALUES ('4567', 'Robert Brown'):

A. @ must come before @
B. @ must come before @

C. the order of the two INSERT commands doesn't matter

CAS CS 460 Boston University, Spring 2026

SQL.: Practice Writing Queries

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Writing Queries: Rules of Thumb
Start with the FROM clause. Which table(s) do you need?

 If you need more than one table, determine the necessary
join conditions.

» for N tables, you typically need N — 1 join conditions
* is an outer join needed? —i.e., do you want unmatched tuples?

» Determine if a GROUP BY clause is needed.
* are you performing computations involving subgroups?

» Determine any other conditions that are needed.
« if they rely on aggregate functions, put in a HAVING clause
+ otherwise, add to the WHERE clause
* is a subquery needed?

Fill in the rest of the query: SELECT, ORDER BY?
* is DISTINCT needed?

CAS CS 460 Boston University, Spring 2026

116

CAS CS 460

Which of these problems would
require a GROUP BY?

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

A. finding the Best-Picture winner with the best/smallest
earnings rank

B. finding the number of Oscars won by each person
that has won an Oscar

C. finding the number of Oscars won by each person,
including people who have not won any Oscars

D. both B and C, but not A

A, B,and C Which would require a subquery?
Which would require a LEFT OUTER JOIN?

m

Now Write the Queries!

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

1) Find the Best-Picture winner with the best/smallest earnings rank.
The result should have the form (name, earnings_rank).
Assume no two movies have the same earnings rank.

Boston University, Spring 2026

117

Now Write the Queries!

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

2) Find the number of Oscars won by each person that

who have not won an Oscar.

has won

an Oscar. Produce tuples of the form (name, num Oscars).

3) Find the number of Oscars won by each person, including people

Student Room
id name id name capacity
12345678 7311 Jones 1000 Sanders Theatre 1000
¥ 2000 Sever 111 50
25252525 Alan Turing 3000 Sever 213 100
33566891 Audrey Chu 4000 Sci Ctr A 300
45678900 Jose Delgado 5000 Sci ctr B 500
66666666 Count Dracula 6000 Emerson 105 500
7000 Sci ctr 110 30
Course Department
name start_time end_time room_id name office
csciell9 |19:35:00 21:35:00 4000 comp sci MD 235
cscie268 |19:35:00 21:35:00 2000 mathematics Sci Cctr 520
cs165 16:00:00 17:30:00 7000 the occult The Dungeon
cscie275 (17:30:00 19:30:00 7000 english Sever 125
Enrolled Majorsin
student_id course_name credit_ student_id dept_name
12345678 cscie268 ugrad 12345678 comp sci
25252525 csl165 ugrad 45678900 mathematics
45678900 csciell9 grad 25252525 comp sci
33566891 cscie268 non-credit 45678900 english
. 66666666 the occult
45678900 cscie275 grad

CAS CS 460 Boston University, Spring 2026

118

Practice Writing Queries

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

1) Find all rooms that can seat at least 100 people.

2) Find the course or courses with the earliest start time.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

3) Find the number of majors in each department.

4) Find all courses taken by CS (‘comp sci') majors.

Boston University, Spring 2026

119

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

5) Create a list of all Students who are not enrolled in a course.

Why won't this work?

SELECT name
FROM Student, Enrolled
WHERE Student.id != Enrolled.student_id;

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

6) Find the number of CS majors enrolled in cscie268.

6b) Find the number of CS majors enrolled in any course.

CAS CS 460 Boston University, Spring 2026 120

CAS CS 460

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

7) Find the number of majors that each student has declared.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) = Room(id, name, capacity)
Course(name, start_time, end_time, room_id) Majorsin(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

8) For each department with more than one majoring student,
output the department's name and the number of majoring
students.

Boston University, Spring 2026

121

Extra Practice Writing Queries

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

1) Find the ids and names of everyone in the database
who acted in Avatar.

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

2) How many people in the database did not act in Avatar?
Will this work?

SELECT COUNT(*)

FROM Person P, Actor A, Movie M

WHERE P.id = A.actor_id AND M.id = A.movie_id
AND M.name != 'Avatar';

If not, what will?

CAS CS 460 Boston University, Spring 2026 122

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

3) How many people in the database who were born in California
have won an Oscar? (assume pob = city, state, country)

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

4) Find the ids and names of everyone in the database who
has acted in a movie directed by James Cameron.
(Hint: One table is needed twice!)

CAS CS 460 Boston University, Spring 2026 123

CAS CS 460

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

5) Which movie ratings have an average runtime that is greater
than 120 minutes, and what are their average runtimes?

Extra Practice Writing Queries (cont.)

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

6) For each person in the database born in Boston, find the
number of movies in the database (possibly 0) in which the
person has acted.

Boston University, Spring 2026

124

Storage Fundamentals;
Record Formats

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Review: DBMS Architecture

+ A DBMS can be viewed as a composition of two layers.

» At the bottom is the storage layer or
storage engine, which takes care of B
storing and retrieving the data. storage engine
+ Above that is the logical layer, which 05 / | FS
provides an abstract representation Ej ﬁ ﬁ Ej
of the data. disks

CAS CS 460 Boston University, Spring 2026 125

CAS CS 460

Logical-to-Physical Mapping

The logical layer implements a mapping

between: logical layer
the logical schema of a database storage engine
s |5
its physical representation @ @ 8
disks

In the relational model, the schema includes:
« attributes/columns, including their types

* tuples/rows

* relations/tables

To be model-neutral, we'll use these terms instead:
« field for an individual data value
* record for a group of fields
* collection for a group of records

Logical-to-Physical Mapping (cont.)

We'll consider:
* how to map logical records to their physical representation
* how to organize the records in a given collection
* including the use of index structures

Different approaches require different amounts of metadata —
data about the data.

» example: the types and lengths of the fields
» per-record metadata — stored within each record

» per-collection metadata — stored once for the entire collection

Assumptions about data in the rest of this set of slides:
+ each character is stored using 1 byte
* integer data values are stored using 4 bytes
* integer metadata (e.g., offsets) are stored using 2 bytes

Boston University, Spring 2026

126

CAS CS 460

Fixed- or Variable-Length Records?

» This choice depends on:
+ the types of fields that the records contain
» the number of fields per record, and whether it can vary

» Simple case: use fixed-length records when
+ all fields are fixed-length (e.g., CHAR or INTEGER),
+ there is a fixed number of fields per record

Fixed- or Variable-Length Records? (cont.)

» The choice is less straightforward when you have either:
+ variable-length fields (e.g., VARCHAR)
+ a variable number of fields per record (e.g., in XML)

Two options:
1. fixed-length records: always allocate .. |comp sci
the maximum possible length

. Imath

* plusses and minuses:

+ less metadata is needed, because:
* every record has the same length
* a given field is in a consistent position within all records

+ changing a field's value doesn't change the record's length
* thus, changes never necessitate moving the record

— we waste space when a record has fields shorter than
their max length, or is missing fields

Boston University, Spring 2026

127

Fixed- or Variable-Length Records? (cont.)

2. variable-length records: only allocate the

. |comp sci| _.|
space that each record actually needs

) math| _.|

* plusses and minuses:

— more metadata is needed in order to:
» determine the boundaries between records
+ determine the locations of the fields in a given record

— changing a field's value can change the record's length
+ thus, we may need to move the record

+ we don't waste space when a record has fields shorter
than their max length, or is missing fields

Format of Fixed-Length Records
» With fixed-length records, we store the fields one after the other.
+ If a fixed-length record contains a variable-length field:

+ allocate the max. length of the field
» use a delimiter (# below) if the value is shorter than the max.

+ Example:
Dept(id CHAR(7), name VARCHAR(20), num_majors INT)
id name num_majors
1234567 |comp sci# 200
9876543 |math# 125

4567890 |history & Titerature |175

* why doesn't "history & Titerature' need a delimiter?

CAS CS 460 Boston University, Spring 2026 128

CAS CS 460

Format of Fixed-Length Records (cont.)

» To find the position of a field, use per-collection metadata.

+ typically store the offset of each field (O, and O, below) —
how many bytes the field is from the start of the record

id name num_majors
1234567 |comp sci# 200
9876543 |math# 125

4567890 |history & literature |175

0, —

0,
* Notes:
+ the delimiters are the only per-record metadata
 the records are indeed fixed-length — 31 bytes each!
* 7 bytes for id, which is a CHAR(7)
» 20 bytes for name, which is a VARCHAR(20)
* 4 bytes for num_majors, which is an INT

Format of Variable-Length Records

» With variable-length records, we need per-record metadata
to determine the locations of the fields.

» For simplicity, we’ll assume all records in a given collection
have the same # of fields.

+ Wel'll look at how the following record would be stored:
CHAR(7) VARCHAR (20) INT

('1234567', 'comp sci', 200)

» Wel'll consider two types of operations:
1. finding/extracting the value of a single field
SELECT num_majors
FROM Dept
WHERE name = 'comp sci';
2. updating the value of a single field
* its length may become smaller or larger

Boston University, Spring 2026

129

CAS CS 460

Format of Variable-Length Records (cont.)
Option 1: Precede each field by its length.

CHAR(7) VARCHAR(20) INT
|7|1234567|8|comp sci |4|200|

1. finding/extracting the value of a single field
* to find the position of a field, may need to repeatedly:
* read a prior field’s length
+ use that length to jump over the field’s value

» example: to read the value of the third field above:
* read the 7, jump over the next 7 bytes
* read the 8, jump over the next 8 bytes
* read the 4, read in the next 4 bytes to get 200

2. updating the value of a single field
if it changes in size, we need to shift the values after it,
but we don't need to change their metadata

Format of Variable-Length Records (cont.)

Option 2: Put offsets and other metadata in a record header.

of bytes from the start of the record

0 2 4 6 38 15 23
| 815]23[27[1234567|comp sci|200]
record header

computing the offsets
+ 3fields in record = 4 offsets, each of which is a 2-byte int
thus, the offsets take up 4*2 = 8 bytes
offset, = 8, because field, comes right after the header
offset, = 8 + len('1234567') =8 + 7 =15
offset, = 15 + len('comp sci') = 15 + 8 = 23
offset; = offset of the end of the record
=23 + 4 (since 200 an int) = 27
We store this offset because it may be needed
to compute the length of a field's value!

Boston University, Spring 2026

130

Format of Variable-Length Records (cont.)

. 0 2 4 6 8 15 23
Option 2 (cont.) ['8]15[23]27[1234567|comp sci[200|

» More generally, a record with n fields needs n+1 offsets.
+ offset; = the offset of field, for 0 <=i<n
+ the last offset (offset,) is always the length of the record.

» Efficiency of the two key operations:

1. finding/extracting the value of a single field
more efficient than option 1, because we can jump
directly to the field we're interested in

2. updating the value of a single field
less efficient than options 1 and 2 if the length changes. why?

Representing Null Values

» One option: use per-record metadata.

» example: if using records that begin with a header of offsets,
use a special offset (e.g., -1) for NULL values.

 the record
('1234567"', 'comp sci’, NULL)

would be stored as follows:
0 2 4 6 8 15
| 8 15]-1[23]1234567|comp sci|

CAS CS 460 Boston University, Spring 2026 131

CAS CS 460

Which is the correct record header?

We're inserting the following row into a simplified Movie table:

CHAR(7) VARCHAR (64) INT VARCHAR(5) INT
('4975722', 'Moonlight', 111, 'R, NULL)

and we're using: -1 for NULL
1-byte chars, 2-byte offsets, 4-byte ints

112|19|28[32]-1]33|

11219]28[3233]-1|

11017 |26[29]-1]30]|

110(17]26]29(30]-1|

mo o W »

11017 |26[30]-1]33|

Boston University, Spring 2026

132

Index Structures

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Accessing the Disk
» Data is arranged on disk in units called blocks.

+ typically fairly large (e.g., 4K or 8K)

» Relatively speaking, disk I/O is very expensive.

* in the time it takes to read a single disk block,
the processor could be executing millions of instructions!

» The DBMS tries to minimize the number of disk accesses.

CAS CS 460 Boston University, Spring 2026 133

Index Structures

» An index structure stores (key, value) pairs.
 also known as a dictionary or map
» we will sometimes refer to the (key, value) pairs as items

» The index allows us to more efficiently access a given record.
+ quickly find it based on a particular field

* instead of scanning through the entire collection to find it,
which could require many disk reads!

» A given collection of records may have multiple index structures:
» one clustered or primary index
» some number of unclustered or secondary indices

» Each index structure has a corresponding file on disk.
» the DBMS divides these files into units called pages
+ typically, each page is one disk block

Clustered/Primary Index

» The clustered index is the one that stores the full records.

» also known as a primary index, because it is typically based
on the primary key

» |If the records are stored outside of an index structure,
the resulting file is sometimes called a heap file.

* managed somewhat like the heap memory region

CAS CS 460 Boston University, Spring 2026 134

Unclustered/Secondary Indices

 In addition to the clustered/primary index, there can be
one or more unclustered indices based on other fields.

 also known as secondary indices

» Example: Customer(id, name, street, city, state, zip)
* primary index:
(key, value) = (id, all of the remaining fields in the record)

+ a secondary index to enable quick searches by name
(key, value) = (name, id) does not include the other fields!

+ We need two lookups when we start with the secondary index.
» example: looking for Ted Codd's zip code
» search for 'Ted Codd' in the secondary index
= '123456"' (hisid)
» search for '123456" in the primary index
=» his full record, including his zip code

B-Trees

* A B-tree of order mis a tree in which each node has:
+ at most 2m items (and, for interior nodes, 2m + 1 children)
 at least mitems (and, for interior nodes, m + 1 children)
» exception: the root node may have as few as 1 item

» Example: a B-tree of order 2

20 40 68 90
.. (we're just showing the keys)

(28 34)(51 61 65)

* A B-tree has perfect balance: all paths from the root node
to a leaf node have the same length.

CAS CS 460 Boston University, Spring 2026 135

CAS CS 460

Search in B-Trees

each triangle is a subtree

+ A B-tree is a search tree.
+ like a binary search tree, but can have more keys per node

* When searching for an item whose key is k, we never need to
enter more than one of the subtrees of a node.

Search in B-Trees (cont.)

Example: search for the item whose key is 87

20 40 68 90
AR NS

(3 10 14])(28 34)(51 61)(77 80 87| 93 97)

Here's pseudocode for the algorithm:
search(key, node) {

if (node == null) return null;

i=0;

while (i < node.numkeys && node.key[i] < key)
i4+;

if (i == node.numkeys || node.key[i] != key)

return search(key, node.child[i]);
else /7 node.key[i] == key
return node.data[i];

Boston University, Spring 2026

136

CAS CS 460

Insertion in B-Trees

» Algorithm for inserting an item with a key k:
search for k until you reach a leaf node

if the leaf node has fewer than 2m items, add the new item
to the leaf node

else split the node, dividing up the 2m + 1 items:
the first/smallest m items remain in the original node
the last/largest m items go in a new node

send the middle item up and insert it (and a pointer to
the new node) in the parent

* Example: insert 13

m=2 20 40 68 20 40 68

o /1T S = /|

(3 10 14)(28 34)(51 61) (3 10 13 14)(28 34)(51 1)

Insertion in B-Trees (cont.)

+ Algorithm for inserting an item with a key k:
search for k until you reach a leaf node

if the leaf node has fewer than 2m items, add the new item
to the leaf node

else split the node, dividing up the 2m + 1 items:
the first/smallest m items remain in the original node
the last/largest m items go in a new node

send the middle item up and insert it (and a pointer to
the new node) in the parent

+ Example with a split: insert 5 into the previous result

m=2

20 40 68 10 20 40 68
/1T N =
(3540) 13 14)(28 34(51 61] (3 5)(1314)(28 34)(51 61]

Boston University, Spring 2026

137

CAS CS 460

Splits in B-Trees (cont.)

* Another example: Insert 93 into this tree:

mM=2 (10 20 40 68 =) 10 20 40 68
e / 1 /1

* (28 34)(51 61)(70 76 90 95 | (2834516 J)
* The is sent up to the root.
The root has no room, so it is also split, and a new root is formed:
40

\
10 20 40 68 =) [10 20/] (68 _

[/

:

NP G D e e G [

* When an interior node is split, the 2m + 2 pointers are split evenly
between the original node and the new node.

» Splitting the root increases the tree’s height by 1, but the tree
is still balanced. This is only way that the tree’s height increases!

Other Details of B-Trees

* Each node in the tree corresponds to one page
in the corresponding index file.

+ child pointers = page numbers

+ Efficiency: In the worst case, searching for an item involves
traversing a single path from the root to a leaf node.

» # of nodes accessed <= tree height + 1

* each interior node has at least m children
- tree height <= log,,n, where n = # of items
- search and insertion are O(log,,n)

» To minimize disk I/O, make m as large as possible.
 but not too large!

» if mis too large, can end up with items that don't fit on the page
and are thus stored in separate overflow pages

Boston University, Spring 2026

138

B+Trees

* A B+tree is a B-tree variant in which:
 data items are only found in the leaf nodes
* interior nodes contain only keys and child pointers
* an item’s key may appear in a leaf node and an interior node

* Example: a B+tree of order 2

(3 10 14] (20 28 34) (40 51) (67 68) (77 80 87) (90 93 97|

One Advantage of B+Trees

* Having all items in leaf nodes means we can:
* link the leaf nodes together
* more efficiently scan through the items in key order
« example: find all items with keys from 25-65 (range search)

(3 10 14]{20 28 34}{ 40 51}{ 61 68}{77 80 87}-{90 93 97

CAS CS 460 Boston University, Spring 2026 139

CAS CS 460

Differences in the Algorithms for B+Trees

* When searching, we keep going until we reach a leaf node,
even if we see the key in an interior node.

* When splitting a leaf node with 2m + 1 items:
« the first m items remain in the original node as before

+ all of the remaining m + 1 items are put in the new node,
including the middle item

» the key of the middle item is copied into the parent

* Example: insert 18

m=2 20 40 68 13 20 40 68
=

(31013141828 34](51 61 (3 10 (73 14 18](28 34](51 61]

+ Splitting an interior node is the same as before, but with keys only:
« first m keys stay in original node, last m keys go to new node
» middle key is sent up to parent (not copied)

Deletion in B-Trees and B+Trees

» Search for the item and remove it.

+ If a node N ends up with fewer than m items,
do one of the following:

« if a sibling node has more than m items,
take items from it and add them to N

« if the sibling node only has m items,
merge N with the sibling

+ If the key of the removed item is in an interior node,
don’t remove it from the interior node.

* we need the key to navigate to the node’s children

< can remove when the associated child node
is merged with a sibling

+ Some systems don’t worry about nodes with too few items.
» assume items will be added again eventually

Boston University, Spring 2026

140

Ideal Case: Searching = Indexing

The ideal index structure would be one in which:
key of data item = the page number where the item is stored

* In most real-world problems, we can't do this.
» the key values may not be integers
» we can't afford to give each key value its own page

» To get something close to the ideal, we perform hashing:
* use a hash function to convert the keys to page numbers
h('hello') => 5

The resulting index structure is known as a hash table.

Hash Tables: In-Memory vs. On-Disk
* In-memory:
» the hash value is used as an index into an array

» depending on the approach you're taking,
a given array element may only hold one item

* need to deal with collisions = two values hashed to same index

* On-disk:
+ the hash value tells you which page the item should be on

* because pages are large, each page serves as a bucket
that stores multiple items

* need to deal with full buckets

CAS CS 460 Boston University, Spring 2026 141

Static vs. Dynamic Hashing

In static hashing, the number of buckets never changes.

In dynamic hashing, the number of buckets can grow over time.

if a bucket becomes full, we use overflow buckets/pages

gﬂg}{i?; overflow buckets

= —
[

why is this problematic?

can be expensive if you're not careful!

A Simplistic Approach to Dynamic Hashing

Assume that:

we're using keys that are strings

h(key) = number of characters in key

we use mod (%) to ensure we get a valid bucket number:
bucket index = h(key) % number of buckets

» When the hash table gets to be too full:

double the number of buckets
rehash all existing items. why?

"if", "case", "continue"

"if", "case", "continue"

"class", "for", "extends"

=

"class", "for", "extends"

w N R O

CAS CS 460

Boston University, Spring 2026

142

CAS CS 460

Linear Hashing

It does not use the modulus to determine the bucket index.
Rather, it treats the hash value as a binary number,
and it uses the i rightmost bits of that number:
i = ceil(log,n) where n is the current number of buckets
« example: n=3 > i=ceil(log,3) =2

If there's a bucket with the index given by the i rightmost bits,
put the key there.

h("if") = 2 = 00000010 4o_ o Fonce
h("case") = 4 = 00000100 0121
h("class") =5 =7 —
h("continue") = 8 = ? 10=2)"if

If not, use the bucket specified by the rightmost i — 1 bits
h("for") = 3 = 00000011

h("extends™) - (11 = 3 is too big, so use 1)

Linear Hashing: Adding a Bucket

In linear hashing, we keep track of three values:
* n, the number of buckets
* i, the number of bits used to assign keys to buckets
« f, some measure of how full the buckets are

When f exceeds some threshold, we:
* add only one new bucket
* increment n and update i as needed
* rehash/move keys as needed

We only need to rehash the keys in one of the old buckets!

« if the new bucket's binary index is 1xyz (xyz = arbitrary bits),
rehash the bucket with binary index Oxyz

Linear hashing has to grow the table more often,
but each new addition takes very little work.

Boston University, Spring 2026

143

CAS CS 460

Example of Adding a Bucket

« Assume that:
« our measure of fullness, f = # of items in hash table
* we add a bucket when f > 2*n

» Continuing with our previous example:
e n=3; f=6=2*3, sowe're at the threshold
* adding "switch" exceeds the threshold, so we:
+ add a new bucket whose index = 3 = 11 in binary

« incrementnto4 - i=ceil(log,4) =2 (unchanged)
n=3,1=2 n=4,1=2
00=0]"case", "continue" 00=0]"case", "continue"
01=1|"class", "for", "extends" =) 01=1 "class", "for", "extends"
10=2|"if", "switch" 10=2|"if", "switch"
11=3

Example of Adding a Bucket (cont.)

* Which previous bucket do we need to rehash?

n=4,1=2
00=0] "case", "continue"
01=1]"class", "for", "extends"
10=2|"if", "switch"
11=3

Boston University, Spring 2026

144

Example of Adding a Bucket (cont.)

» Which previous bucket do we need to rehash?
* new bucket has a binary index of 11

* because this bucket wasn't there before,
items that should now be in 11 were originally put in 01
(using the rightmost i — 1 bits)
« thus, we rehash bucket 01:
* h("class") = 5 = 00000101 (leave where it is)
« h("for") =3 00000011 (move to new bucket)
« h("extends") ?

n=4,1=2 n=4,1=2
00=0| "case", "continue" 00=0|"case", "continue"
01=1|"class", "for", "extends" =) 01=1]"class"
10=2|"if", "switch" 10=2|"if", "switch"
11=3 11=3 | "for"

Additional Details

« If the number of buckets exceeds 2!, we increment i and begin
using one additional bit.

n=4,1=2, f=9, 9> 2%4 n=5,1=3
00=0]"case", "continue" 000=0|"case", "continue"
01=1|"class", "while” 001=1]|"class", "while"
10=2|"if", "switch", "string” = 010=2|"if", "switch", "string"
11=3]"for", "extends" 011=3]| "for", "extends"
100=4

which bucket should be rehashed?

A. bucket O
B. bucket 1
C. bucket 2
D. bucket 3

CAS CS 460 Boston University, Spring 2026 145

CAS CS 460

Additional Details

« If the number of buckets exceeds 2/, we increment i and begin
using one additional bit.

n=4,1i=2, f=9, 9> 2%4 n=5,1=3
00=0|"case", “"continue" 000=0| "continue"
01=1]"class", "while” 001=1]"class", "while"
10=2|"if", "switch", "String” = 010=2|"if", "switch", "string"
11=3|"for", "extends" 011=3] "for", "extends"
100=4| "case"

» The process of adding a bucket is sometimes referred to
as splitting a bucket.
+ example: adding bucket4 <==> splitting bucket 0
because some of 0’s items may get moved to bucket 4

» The split bucket:
* may retain all, some, or none of its items
* may not be as full as other buckets
+ thus, linear hashing still allows for overflow buckets as needed

More Examples

* Assume again that we add a bucket whenever the # of items
exceeds 2n.

* What will the table below look like after inserting the following
sequence of keys? (assume no overflow buckets are needed)

"tostring": h("tostring") = ?
"private": h("private") = ?
"interface": h("interface"™) = ?

n=5,1=3 n==6,1=3
000=0| "continue" 000=0
001=1]"class", "while" 001=1
010=2|"if", "switch", "string" =) 010=2
011=3]"for", "extends" 011=3
100=4| "case" 100=4
101=5

Boston University, Spring 2026

146

Hash Table Efficiency

* In the best case, search and insertion require
at most one disk access.

* In the worst case, search and insertion require k accesses,
where k is the length of the largest bucket chain.

» Dynamic hashing can keep the worst case from being too bad.

Hash Table Limitations

+ It can be hard to come up with a good hash function for a
particular data set.

» The items are not ordered by key. As a result, we can’t easily:
* access the records in sorted order
+ perform a range search
» perform a rank search — get the kth largest value of
some field
We can do all of these things with a B-tree / B+tree.

CAS CS 460 Boston University, Spring 2026 147

Which Index Structure Should You Choose?

Recently accessed pages are stored in a cache in memory.

Working set = collection of frequently accessed pages

If the working set fits in the cache, use a B-tree / B+tree.
« efficiently supports a wider range of queries (see last slide)

If the working set can't fit in memory:

» choose a B-tree/B+tree if the workload exhibits locality
* locality = a query for a key is often followed by
a query for a key that is nearby in the space of keys

» because the items are sorted by key,
the neighbor will be in the cache
» choose a hash table if the working set is very large
* uses less space for "bookkeeping" (pointers, etc.),
and can thus fit more of the working set in the cache
« fewer operations are needed before going to disk

CAS CS 460 Boston University, Spring 2026 148

Implementing a
Logical-to-Physical Mapping

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Recall: Logical-to-Physical Mapping

+ Recall our earlier diagram of a DBMS, _ ¥
which divides it into two layers: Egelierer |
+ the logical layer storage enginé
» the storage layer or storage engine ,—\7

808

disks

» The logical layer implements a mapping from the logical schema
of a collection of data to its physical representation.

* example: for the relational model, it maps:

attributes fields

tuples to records

relations files and index structures

selects, projects, etc. scans, searches, field extractions

CAS CS 460 Boston University, Spring 2026 149

Your Task

On the homework, you will implement portions of
the logical-to-physical mapping for a simple relational DBMS.

We’'re giving you:
* a SQL parser
» a storage engine: Berkeley DB

* portions of the code needed for the mapping, and a
framework for the code that you will write

* In a sense, we've divided the

logical layer into two layers: | SQL parser {
« a SQL parser ‘middle layer" 7
» everything else — the "middle layer" storage engine v
+ you'll implement parts of this |
FS

OS/
58080

disks

The Parser

+ Takes a string containing a SQL statement

+ Creates an instance of a subclass of the class sQLStatement:

SQLStatement

CreateStatement || DropStatement | | InsertStatement

» SQLStatement is an abstract class.
» contains fields and methods inherited by the subclasses
* includes an abstract execute () method
* just the method header, not the body

» Each subclass implements its own version of execute ()
+ you'll do this for some of the subclasses

CAS CS 460 Boston University, Spring 2026 150

SQLStatement Class

» Looks something like this:
public abstract class SQLStatement {

private ArrayList<Table> tables; Java's built-in

private ArrayList<Column> columns; ArrayList class.
private ArrayList<Object> columnvals; Use the JavaAPIto see
private ConditionalExpression where; the available methods!

private ArrayList<Column> whereColumns;
public abstract void execute();

The Storage Engine: Berkeley DB (BDB)

* An embedded database library for managing key/value pairs
« fast: runs in the application’s address space, no IPC
+ reliable: transactions, recovery, etc.

* One example of a type of noSQL database known as a
key-value store.

* We're using Berkeley DB Java Edition (JE)

* Note: We're not using the Berkeley DB SQL interface.
» we're writing our own!

CAS CS 460 Boston University, Spring 2026 151

CAS CS 460

Berkeley DB, B+Trees and Tables

» A database in BDB is a collection of key/value pairs that are
stored in the same index structure.

+ BDB Java Edition always uses a B+tree.
+ other versions of BDB provide other index-structure options

+ We'll use one BDB database (i.e., one B+tree) for each
table/relation.

 use the table's primary key for the keys in the key/value pairs
+ assume it's always a single column

« if no primary key was specified when the table was created,
we'll use the first column

Marshalling and Unmarshalling the Data

+ The on-disk keys and values are byte arrays —i.e., arbitrary
collections of bytes.

» Berkeley DB does not attempt to interpret them.

+ When inserting a row in a table, we need to turn its collection
of fields into a key/value pair.

» creating the necessary byte arrays
» This process is referred to as marshalling the data.

» The reverse process is known as unmarshalling:
+ obtain the key/value pair for a given row

 extract one or more field values from the underlying
byte arrays

Boston University, Spring 2026

152

Recall: Option 2 for Variable-Length Records

» Here's what option 2 did:
('1234567', 'comp sci', 200)

8 15 23
== | 8 [15]23[27|1234567 |comp sci[200|

offset of end of record (i.e., its length!)

« What if we change the value of the last field to null?
('1234567', 'comp sci', null)

15 23
) | 8| | | |1234567|comp sci

The Required Record Format

+ Here's what we did in PS 2:
(1234567", ‘comp sci', 200) — | 8 [15[23|27[1234567|comp sci|200]

+ We'll do something a bit different in PS 3:
key

[uzzaser

('1234567', 'comp sci', 200) value
\|-2| ? [2] 2 [comp sci]200]

« the primary-key value becomes the key in the key/value pair
« the value is the other fields with a header of offsets
* we use a special offset for the primary-key in the header
(note: it won't always be the first column!)
» what should the remaining offsets be in this case?
(assume 2-byte offsets and 4-byte integer values)

CAS CS 460 Boston University, Spring 2026 153

Classes for Manipulating Byte Arrays

« RowOutput: an output stream that writes into a byte array
* inherits from Java’s bataOutputStream:
- writeBytes(String val)
« writeShort(int val) // can use for offsets!
« writeInt(int val)
e writebDouble(double val)

» methods for obtaining the results of the writes:

- getBufferBytes()
« getBufferLength()

* includes a tostring() method that shows the
current contents of the byte array

Classes for Manipulating Byte Arrays (cont.)

« RowInput: an input stream that reads from a byte array

* methods that take an offset from the start of the byte array

« readBytesAtOoffset(int offset, int length)
« readIntAtoffset(int offset)
* efc.

* methods that read from the current offset
(i.e., from where the last read left off)
- readNextBytes(int Tength)
* readNextInt()
* etc.

« includes a tostring() method that shows the
contents of the byte array and the current offset

CAS CS 460 Boston University, Spring 2026 154

CAS CS 460

Example of Marshalling

key

[uzzaser

('1234567', 'comp sci', 200) value
\|_2| 8 |16[20|comp sci |200]

» Marshalling this row could be done as follows:

Rowoutput keyBuffer = new Rowoutput();
keyBuffer.writeBytes("1234567");

Rowoutput valuebuffer = new RowOutput();
valueBuffer.writeShort(-2);
valueBuffer.writeShort(8);
valueBuffer.writeShort(16);
valueBuffer.writeShort(20);
valueBuffer.writeBytes("comp sci");
valueBuffer.writeInt(200);

Database and DatabaseEntry objects

* Recall: we're using one BDB database (i.e., one B+tree)
for each table/relation.

+ To interact with one of these databases in our code, we use
objects from classes provided by Berkeley DB.

» Each B+tree is represented by an object of type Database

+ When working with a given key/value pair, we use two objects
of type DatabaseEntry:

* one for the key
« one for the value

Boston University, Spring 2026

155

Inserting Data into a BDB Database

» Create the DatabaseEntry objects for the key and value:

// see previous slide for marshalling code
byte[] bytes = keyBuffer.getBufferBytes();
int numBytes = keyBuffer.getBufferLength(Q);
DatabaseEntry key = new DatabaseEntry(bytes, 0, numBytes);

bytes = valueBuffer.getBufferBytes();
numBytes = valueBuffer.getBufferLength(Q;
DatabaseEntry value = new DatabaseEntry(bytes, 0, numBytes);

* Use the batabase putNooverwrite method:

Database db; // see PS 3 for how to obtain it!
OperationStatus ret = db.putNooverwrite(null, key, value);

« nulT because we are not using transactions

- if there is an existing key/value pair with the specified key:
* the insertion fails
» the method returns oOperationStatus.KEYEXIST

« if the insertion succeeds, returns OperationStatus.SUCCESS

Cursors in Berkeley DB

* In general, a cursor is a construct used to iterate over records
in a database file.

« similar to an iterator for a collection class

» In BDB, cursors iterate over key/value pairs in a BDB database.
» based on method calls using an instance of the Cursor class

» The key/value pairs are returned in "empty" DatabaseEntrys
that are passed as parameters to the cursor's getNext method:
DatabaseEntry key = new DatabaseEntry();

DatabaseEntry value = new DatabaseEntry();
OperationStatus ret = curs.getNext(key, value, null);

CAS CS 460 Boston University, Spring 2026 156

CAS CS 460

Table Iterators

* InPS 3, a cursor is used to implement a TableIterator class.

» It can be used to iterate over the tuples in either:
* an entire single table:
SELECT *
FROM Movie;

» or the relation that is produced by applying a
selection operator to the tuples of single table:

SELECT *
FROM Movie
WHERE rating = 'PG-13' and year > 2010;

+ ATableIterator has:
» fields for the current key/value pair accessed by the cursor
* methods for advancing/resetting the cursor
» a method you'll implement for getting a column's value

Unmarshalling a Single Field's Value

* You will write a TabTeIterator method that unmarshalls the
value of a single column from the current key/value pair.

public Object getColumnval(int colIndex)

First, you'll need to create the necessary RowInput objects:

RowInput keyIn = new RowInput(this.key.getData());
RowInput valueIn = new RowInput(this.value.getbata());

Then you'll use RowInput methods to access the necessary
offset(s) and value.

You should not unmarshall the entire record — only the portions
that are needed to get the value of the specified column.

» Thus, you should mostly use the "at offset" versions of the
RowInput methods.

» readBytesAtOffset, readIintAtoffset, etc.

Boston University, Spring 2026

157

Examples of Unmarshalling: Assumptions

» We have a simplified version of the Movie table from PS 1:

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

We didn't specify a primary key when we created the table.
+ thus, id is the primary key — and the key in the key/value pair
+ the rest of the row is in the value portion of the key/value pair

» We're using 2-byte offsets.
e -2 indicates the primary key
+ -1 indicates a NULL value

» The cursor/iterator is currently positioned on this key/value pair:
0 2 4 6 8 10 12 21 25

key vae [-2[12]21]25]-1]26|MoonTight|111[R]

Example 1

0 2 4 6 8 10 12 21 25
value |-2[12]21[25|-1]26 |voonTight|111|R]|

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

+ To retrieve the movie's name (field, — the second field):
+ determine that offset, is 1*2 = 2 bytes from the start
+ perform a read at an offset of 2 to obtain offset; > 12

* because name is a VARCHAR, read offset, > 21
and compute this name's length =21 -12=9

» read 9 bytes at an offset of 12 bytes - 'Moonlight'

CAS CS 460 Boston University, Spring 2026 158

Example 2

0 2 4 6 8 10 12 21 25
vale |-2[12[21[25[-1[26|moonTight|[111]R|

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

» To retrieve the earnings_rank (field,)
+ determine that offset, is 4*2 = 8 bytes from the start
+ perform a read at an offset of 8 to obtain offset, > -1
+ conclude that the value is NULL

Example 3

0 2 4 6 8 10 12 21 25
value |-2/12[21[25|-1|26 |MoonTight|111|R]|

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

+ To retrieve the rating (field,):
+ determine that offset, is 3*2 = 6 bytes from the start
+ perform a read at an offset of 6 to obtain offset; > 25
* because rating is a VARCHAR:
* read offset, = -1, so we need to keep going!
* read offset; > 26
» compute this rating's length = 26 — 25 = 1
* read 1 byte at an offset of 25 > 'R’

CAS CS 460 Boston University, Spring 2026 159

Semistructured Data and XML

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Structured Data

* We've covered two logical data models thus far:
* ER diagrams
* relational schemas

* Both use a schema to define the structure of the data.

* The schema in these models is:
» separate from the data itself

* rigid: all data items of a particular type must have the
same set of fields/attributes

CAS CS 460 Boston University, Spring 2026 160

CAS CS 460

Semistructured Data

* In semistructured data:
+ there may or may not be a separate schema
» the schema is not rigid
» example: capturing people's addresses
» some records may have 4 separate fields:
» street, city, state, zip
+ other records may use a single address field

» Semistructured data is self-documenting.
+ information describing the data is embedded with the data

<course>
<name>CS 460</name>
<begin>1:25</begin>

</course>

Semistructured Data (cont.)

 lIts features facilitate:
+ the integration of information from different sources
» the exchange of information between applications

» Example: company A receives data from company B
» A only cares about certain fields in certain types of records
* B's data includes:
« other types of records
« other fields within the records that company A cares about

» with semistructured data, A can easily recognize and ignore
unexpected elements

+ the exchange is more complicated with structured data

Boston University, Spring 2026

161

XML (Extensible Markup Language)

One way of representing semistructured data.

Like HTML, XML is a markup language.
* it annotates ("marks up") documents with tags
» tags generally come in pairs:
* begin tag: <tagname>
*» endtag: </tagname>
* example:
Like HTML, XML is a markup Tanguage.</1i>

HTML begin tag for a list item HTML end tag for a list item

Unlike HTML, XML is extensible.
+ the set of possible tags — and their meaning — is not fixed

XML Elements

An XML element is:
* a begin tag
* an end tag (in some cases, this is merged into the begin tag)
+ all info. between them.
* example:
<name>CS 460</name>

* An element can include other nested child elements.

<course>
<name>CS 460</name>
<begin>1:25</begin>

</course>

Related XML elements are grouped together into documents.
* may or may not be stored as an actual text document

CAS CS 460 Boston University, Spring 2026 162

XML Attributes

* An element may also include attributes that describe it.

» Specified within the element’s begin tag.
* syntax: name="value"

» Example:
<course catalog_number="12345" exam_group="16">

<name>CS 460</name>
<begin>1:25</begin>

</course>

Attributes vs. Child Elements

attribute child element
number of at mostonce in a an arbitrary number
occurrences | given element of times
value always a string can have its own
children

» The string values used for attributes can serve special purposes
(more on this later)

CAS CS 460 Boston University, Spring 2026 163

CAS CS 460

Well-Formed XML

* In a well-formed XML document:
+ there is a single root element that contains all other elements

* may optionally be preceded by an XML declaration
(more on this in a moment)

» each child element is completely nested within its parent
» this would not be allowed:

<course><name>CS 460</name>
<time>
<begin>1:25</begin>
<end>2:15</end>
</course>
</time>

* The elements need not correspond to any predefined standard.
* a separate schema is not required

Example of an XML Document

<?xml version="1.0" standalone="yes"?> <—— optional declaration
<university-data> «
<course>
<name>CS 111</name>
<start>10:10</start>
<end>11:00</end>
</course>
<room>
<b1dg>CAS</b1dg>
<nhum>B12</num>
</room>
<course>
<name>CS 460</name>
<time>
<begin>1:25</begin>
<end>2:15</end>
</time>
</course>

single root element

</university-data>

Boston University, Spring 2026

164

Specifying a Separate Schema

» XML doesn’t require a separate schema.

» However, we still need one if we want programs to:
* easily process XML documents
+ validate the contents of a given document

* The resulting schema can still be semistructured.
» for example, can include optional components
* more flexible than ER models and relational schema

Special Types of Attributes

+ ID an identifier that must be unique within the document
(among all 1p attributes — not just this attribute)

- IDREF a single value that is the value of an 1p attribute
elsewhere in the document

- IDREFS a list of 1D values from elsewhere in the document

CAS CS 460 Boston University, Spring 2026 165

CAS CS 460

Capturing Relationships in XML

Option 1: store references from one element to other elements
using 1D, IDREF and IDREFS attributes:

<course cid="C20119" teachers="P123456 P567890">
<chame>CS 111</cname>

</course>

<course cid="C20268" teachers="P123456" room="R64210">
<chame>CS 460</cname>

</course>

<person pid="P123456" teaches="C20119 C20268">
<pname>
<last>sullivan</last>
<first>David</first>

</pname>
</person>
<room rid="R64210"> * Where have we seen
<name>CAS 522</name> something similar?
</room>

Capturing Relationships in XML (cont.)

Option 2: use child elements:

<course cid="c20119">
<cname>CS 111</cname>
<teacher id="P123456">David Sullivan</teacher>
<teacher id="P567890">Tiago Januario</teacher>
<room>CAS 522</room>

</course>

<person pid="P123456">
<pnhame>
<last>sullivan</last>
<first>David</first>
</pname>
<course-taught>CS 111</course-taught>
<course-taught>CS 460</course-taught>
</person>

There are pluses and minuses to each approach.
» we'll revisit this design issue later in the course

Boston University, Spring 2026

166

Many-to-Many Relationships in XML

Consider this many-to-many I:Persm feaches Course
relationship set:

* a given person can teach more than one course

* agiven course can have more than one teacher

In the relational model, we need a separate table
for these relationships: Teaches(person_id, course_id)

* can't capture them in the Person or Course table. why?

* In XML, we can represent multi-valued attributes:
+ attributes can store a list of values (e.g., IDREFS)
* an element can have multiple child elements of the same type

» Therefore, we can capture many-to-many relationships within
the elements used for one or both of the entity sets.

Many-to-Many Relationships in XML (cont.)

» Option 1: capture Teaches relationships using an
IDREFS attribute in person and/or course elements:

<course cid="c20119" teachers="P123456 P567890">
<cname>CS 111</cname>

</course>

<course cid="c20268" teachers="P123456">
<cname>CS 460</cnhame>

</course>

<person pid="P123456" teaches="C20119 C20268">
<pname>
<last>Sullivan</Tast>
<first>bavid</first>
</pname>
</person>

CAS CS 460 Boston University, Spring 2026 167

CAS CS 460

Many-to-Many Relationships in XML (cont.)

» Option 2: capture Teaches relationships using multiple
child elements within person and/or course elements:

<course cid="c20119">
<chame>CS 111</cname>
<teacher id="P123456">David Sullivan</teacher>
<teacher 1id="P567890">Tiago Januario</teacher>
</course>

<person pid="pP123456">
<pname>
<last>Sullivan</Tast>
<first>bavid</first>
</pname>
<course-taught>CS 11l</course-taught>
<course-taught>CS 460</course-taught>
</person>

Summary: Features of an XML Document

<?xml version="1.0" standalone="yes"?> «—— optional declaration

<university-data> <— single root element
<course cid="cC20268" teacher="P123456">
<name>CS 460</name>
<start>1:25</start>
<end>2:15</end>
</course>
<course cid="c20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<person pid="P123456"

teaches="c20119 c20268"> | ° Elements can have other

<name>
<last>sulTlivan</last> « Attributes are found in the
<first>David</first> start tag of an element.
</name>) _
</person> » Simple elements have no children
<holiday date="04/15/2019" /> or attributes.

* Empty elements only have a
start tag (and possibly attributes)

« use a/ atend of start tag

</university-data>

child elements nested inside them.

Boston University, Spring 2026

168

XML Documents as Trees

university-data

<?xml version="1.0" standalone="yes"?>
<university-data>
<course><name>CS 460</name>
<start>1l:25</start>
<end>2:15</end>
</course>

<course><name>CS 1ll</name>
<start>10:10</start> CS 460
<end>11:00</end>
</course> 1:25 10:10

</university-data>
» Elements correspond to nodes in the tree.
* root element == root node of the entire tree
+ child element == child of a node
+ leaf nodes == empty elements or ones without child elements

Start tags are edge labels.

Attributes and text values are data stored in the node.

XPath Expressions

» Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

* like a pathname in a hierarchical filesystem

» Expressions that begin with / specify a path that begins
at the root of the document.
/university-data/course

« selects all course elements
that are children of the
university-data root element

university-data

2:15 CS 111

1:25 10:10

CAS CS 460 Boston University, Spring 2026 169

CAS CS 460

XPath Expressions (cont.)

» Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

* like a pathname in a hierarchical filesystem

» Expressions that begin with / specify a path that begins
at the root of the document.
/university-data/course

 selects all course elements
that are children of the
university-data root element

university-data

* Expressions that begin with //
select elements from anywhere
in the document.

//course

+ selects all course elements,
regardless of where they appear

XPath Expressions (cont.)
» What path expression could we use to get only
course elements that capture prerequisites?

* i.e., ones that are children of a preregs element
(like the pink node below)

» not including course elements from elsewhere

university-data

» assume that all preregs elements
have the same level of nesting
as the one shown here

//prereqs/course T2 \Prereds

/university-data/course/prereqs/course

either A or B would work

O o w >

neither A nor B would work

11:30

Boston University, Spring 2026

170

XPath Expressions (cont.)

» Attribute names are preceded by an @ symbol:
+ example: //person/@pid
» selects all pid attributes of all person elements

Predicates in XPath Expressions

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 1lll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="c20757" teacher="P778787" room="CcoMm 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

+ Example:
//course[@teacher="pP123456"]
» selects all course elements with a teacher attribute of "P123456"

* In general, predicates are:
» surrounded by square brackets
» applied to elements selected by the preceding path expression

CAS CS 460 Boston University, Spring 2026 171

Predicates in XPath Expressions (cont.)

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="c20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[name="Cs 460"]
« selects all course elements with a name child element
whose value is "CS 460"

= <course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

//course[start="1:25"]/name

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="pP123456" room="CAS 522'">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="c20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="c20757" teacher="P778787" room="comMm 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[name="CcS 112"]/@room

CAS CS 460 Boston University, Spring 2026 172

Predicates in XPath Expressions (cont.)

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="c20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

+ We can test for the presence of an element or attribute:

* example: //course[@room]
 selects all course elements that have a specified room attribute

* We can use the contains () function for substring matching:
* example: //course[contains(name, "CS")]

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>

<room>
<building>CAS</building><room_num>100</room_num>

</room>

<room>
<building>KCB</building><room_num>101</room_num>

</room>

<room>
<building>PSY</building><room_num>228D</room_num>

</room>

* Use . torepresent nodes selected by the preceding path.
//room/room_num[. < 200]

» selects all room_num elements with values < 200

//room[room_num < 200]
« selects all room elements with room_num child values < 200

CAS CS 460 Boston University, Spring 2026 173

CAS CS 460

Predicates in XPath Expressions (cont.)

<room>
<building>CASs</building><room_num>212</room_num>

</room>

<room>
<building>CAs</building><room_num>100</room_num>

</room>

<room>
<building>KCB</building><room_num>101</room_num>

</room>

<room>
<building>PSY</building><room_num>228D</room_num>

</room>

Use .. to represent the parents of the nodes selected by
the preceding path.

<room_num>212</room_num>
//room_num[../building="CAS"] 2 <room_num>100</room_num>

+ selects all room_num elements for parent elements that also
have a building child whose value is "CAS"

« this is similar: //room[buiTlding="CAS"]/room_num

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>

<office>
<building>CAS</building><room_num>100</room_num>

</office>

<room>
<building>KCB</building><room_num>101</room_num>

</room>

<office>
<building>PSY</building><room_num>228D</room_num>

</office>

If there are other elements that also have nested
room_num and building elements (like off1ice elements above)

e //room_num[../building="CAS"] will get room_num children
from all such elements with a bui1ding child = "CAS"

o //room[building="CAS"]/room_num will only get
room_num children from room elements with a
building child ="CAS"

Boston University, Spring 2026

174

CAS CS 460

What would this expression select?

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="c20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//end[../@teacher="P778787"]
A. <course cid="c20757" teacher="p778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>
B. <course teacher="p778787"><end>12:45</end></course>

C. <end>12:45</end>

D. none of these

Which of these would select the highlighted element?

<course id="C20119" teacher="P123456" room="011">
<name>CS 11l</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="pP123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

<course id="c20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[start = "10:10"]
//course/start[. = "10:10"]
/course/start[. = "10:10"]

/course[start = "10:10"]

//start[../end = "11:00"]

moow?>

Boston University, Spring 2026

175

CAS CS 460

XQuery and FLWOR Expressions

» XQuery is to XML documents what SQL is to relational tables.

» XPath is a subset of XQuery.
» every XPath expression is a valid XQuery query

* In addition, XQuery provides FLWOR expressions.
» similar to SQL SELECT commands

* syntax: for $fvarl in xpath_f1,
$fvar2 in Xxpath_r2,..
let $7varl := xpath_T1, ..
where condition
order by Xxpath_ol, ..
return result-format

FLWOR Expressions

for $r in //room[contains(name, "CAS")],

$c in //course
Tet $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

« The for clause is like the FROM clause in SQL.

 the query iterates over all combinations of values from its
XPath expressions (like Cartesian product!)

* query above looks at combos of CAS rooms and courses

» The let clause is applied to each combo. from the for clause.
» each variable gets the full set produced by its XPath expr.
* unlike a for clause, which assigns the results of the
XPath expression one value at a time
» can then use aggregate functions on the set:
count, sum, avg, min, max

Boston University, Spring 2026

176

FLWOR Expressions (cont.)

for $r in //room[contains(name, "CAS")],

$c in //course
Tet $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

» The where clause is applied to the results of for and Tet.

* note: predicates with aggregate functions can be in the
where clause (unlike SQL, which uses HAVING instead)

» Ifthe where clause is true, the return clause is applied.

« The order by clause can be used to sort the results.

Note: The Location of Predicates

for $r in //room[contains(name, "CAS")],

$c in //course
Tet $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

» It's sometimes possible to move components of the
where clause up into the for clause as predicates.

» In the above query, we could move the first condition up:

for $r in //room[contains(name, "CAS")],
$c in //course[@room = $r/@id]
Tet $e := //person[contains(@enrolled, $c/@id)]
where count($e) > 20
order by $r/name
return ($r/name, $c/name)

CAS CS 460 Boston University, Spring 2026 177

return Clause

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

<course cid="c20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

» Like the SELECT clause in SQL.

* Can be used to perform something like a projection.

for $c in //course
where $c/start > "11:00"
return $c/name

= <name>CS 460</name>
<name>CS 112</name>

return Clause (cont.)

* Another example:

for $c in //course
where $c/start > "11:00"
return ($c/name, $c/start)

* To return multiple elements/attributes for each item:
+ separate them using a comma

» surround them with parentheses, because the comma
operator has higher precedence and would end the FLWOR

CAS CS 460 Boston University, Spring 2026 178

Reshaping the Output

* We can reshape the output by constructing new elements:

for $c in //course

where $c/start > "11:00"

return <afterll-course>
{ string($c/name), " - ", string($c/start) }
</afterll-course>

+ the string() function gives just the value of a simple element
+ without its start and end tags
* when constructing a new element, need curly braces
around expressions that should be evaluated
+ otherwise, they'll be treated as literal text that is
the value of the new element
* here again, use commas to separate items

» because we're using string(), there are no newlines
after the name and start time

* we use a string literal to put something between them

Reshaping the Output (cont.)

<course id="C20119" teacher="P123456" room="011">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="pP123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

<course id="c20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

for $c in //course

where $c/start > "11:00"

return <afterll-course>
{ string($c/name), " - ", string($c/start) }
</afterll-course>

» The result will look something like this:

<afterll-course>CS 460 - 13:25</afterll-course>
<afterll-course>CS 112 - 11:30</afterll-course>

CAS CS 460 Boston University, Spring 2026 179

for vs. let

* Here's an example that illustrates how they differ:

for $d in document("depts.xm1")/depts/dept/deptno
Tet $e := document("emps.xml")/emps/emp[deptno = $d]
where count($e) >= 10

return <big-dept>

{
$d,
<headcount>{ count($e) }</headcount>,
<avgsal>{ avg($e/salary) }</avgsal>
3

</big-dept>

» the for clause assigns to $d one deptno element at a time

 for each value of $d, the et clause assigns to $e
the full set of emp elements from that department

» the where clause limits us to depts with >= 10 employees
» we create a new element for each such dept.
» we use functions on the set $e and on values derived from it

Nested Queries

* We can nest FLWOR expressions:
» example: group together each instructor's person info.
with the courses taught by him/her

for $p in //person[@teaches]
return <instructor-courses>
{ $p,
for $c in //course
where contains($p/@teaches, $c/@id)
return $c

}

</instructor-courses>

* result:
<instructor-courses>

<person id="P123456" teaches="C20119 C20268">
<name><last>Sullivan</Tast>..</name>

</person>

<course id="C20119" teacher="P123456">
<name>CS 1ll</name> ..

</course>

</instructor-courses>

CAS CS 460 Boston University, Spring 2026 180

Reformatting the Results of the Previous Query

for $p in //person[@teaches]
return
<instructor>
{ <name>
{ string($p/pname/first),
</name>,

, string($p/pname/last) }

for $c in //course
where contains($p/@teaches, $c/@id)
return <course>{ string($c/name) }</course>

}

</instructor>

* result:

<instructor>
<name>David Sullivan</name>
<course>CS 11ll</course>
<course>CS 460</course>

</instructor>

Extra Practice: Write a FLWOR Query

<course id="C20119"> <Cs_course>
<name>CS 1ll</name>... <name>CS 111</name>
</course> m) <student>Grace Hopper</student>

o <student>Ted Codd</student>
<person enrolled="C20119">

<name><last>Hopper</Tast> </cs_course>
<first>Grace</first>
</nhame>
</person>
<person
enrolled="C20119 C20268">
<name><first>Ted</first>
<last>Codd</Tast>
</name>
</person>

» For each CS course, output a cs_course
element with:

« a child element for the name of the course

+ child elements of type student with the
full name of a student enrolled in the course

CAS CS 460 Boston University, Spring 2026 181

CAS CS 460

Extra Practice: Write a FLWOR Query

<course 1id="C20119"> <Cs_courses
<name>CS 1ll</name>... <name>CS 111</name>
</course> m) <student>Grace Hopper</student>

s <student>Ted Codd</student>
<person enrolled="C20119">

<name><last>Hopper</Tast> </cs_course>
<first>Grace</first>
</name>
</person> .
<person for $c in //course
enrolled="C20119 C20268"> Tet
<name><first>Ted</first>
<last>Codd</Tast>
</name> order by
</person>

where contains($c/name, "CS")

return

Boston University, Spring 2026

182

CAS CS 460

An Incorrect Version

for $c in //course,
$p in //person
where contains($c/name, "CS")
and contains($p/@enrolled, $c/@id)
return <cs_course> {
$c/name,
<student> {
string($p/name/first),
string($p/name/last)
} </student>
} </cs_course>

» What does it produce?

What if we only wanted course names and # students?

<course id="C20119"> <Cs_course>
<name>CS 1ll</name>... <name>CS 111</name>
</course> m) <num_students>400</num_students>

v </cs_course>
<person enrolled="C20119">

<name><last>Hopper</last>
<first>Grace</first>

</nhame>
</person>

for $c in //course[contains(name, "CS")]
let $students := //person[contains(@enrolled, $c/@id)]

return <cs_course> {

} </cs_course>

« Would courses with no enrolled students be included?

Boston University, Spring 2026

183

Transactions and Schedules

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Transactions: An Overview

» A fransaction is a sequence of operations that is treated as
a single logical operation. (abbreviation = txn)

+ Example: a balance transfer
transaction T1

read balancel
write(balancel - 500)
read balance2
write(balance2 + 500)

» Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

CAS CS 460 Boston University, Spring 2026 184

CAS CS 460

Executing a Transaction

1. Issue a command indicating the start of the transaction.

2. Perform the operations in the transaction.
* in SQL: SELECT, UPDATE, etc.

3. End the transaction in one of two ways:
« commit it: make all of its results visible and persistent

« all of the changes happen

* roll it back / abort it: undo all of its changes,
returning to the state before the transaction began

* none of the changes happen

Why Do We Need Transactions?

» To prevent problems stemming from system failures.
+ example: a balance transfer

read balancel
write(balancel - 500)
CRASH

read balance2
write(balance2 + 500)

Boston University, Spring 2026

185

CAS CS 460

Why Do We Need Transactions? (cont.)

» To ensure that operations performed by different users don’t
overlap in problematic ways.

» example: this should not be allowed

user 1

read balancel

write(balancel - 500) | user2

read balancel

read balance2

if (balancel +balance2 < min)
write(balancel - fee)

read balance2
write(balance2 + 500)

ACID Properties

» A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

« consistent = satisfies the constraints from the schema,
and any other expectations about the values in the database

Isolation: it is not affected by and does not affect other
concurrent transactions
Durability: once it commits, its changes survive failures

» The user plays a role in consistency preservation.
* ex: add to balance2 the same amnt subtracted from balance1
» the DBMS helps by rejecting changes that violate constraints
» guaranteeing the other properties also preserves consistency

Boston University, Spring 2026

186

Atomicity and Durability

» These properties are guaranteed by the part of the system
that performs logging and recovery.

» After a crash, the recovery subsystem:
* redoes as needed all changes by committed txns
» undoes as needed all changes by uncommitted txns
« restoring the old values of the changed data items

+ We’'ll look more at logging and recovery later in the semester.

Isolation

» To guarantee isolation, the DBMS has to prevent problematic

interleavings like the one we saw earlier:
transaction T1

read balancel)

write(balancel - 500) | transaction T2

read balancel

read balance2

if (balancel +balance2 < min)
write(balancel - fee)

read balance2
write(balance2 + 500)

* One possibility: enforce a serial schedule (no interleaving).

read balancel read balancel
write(balancel - 500) read balance2
read balance2 if (balancel +balance2 < min)
write(balance2 + 500) or write(balancel - fee)
read balancel read balancel
read balance2 write(balancel - 500)
if (balancel +balance2 < min) read balance2
write(balancel - fee) write(balance2 + 500)

+ doesn’t make sense for performance reasons. why?

CAS CS 460 Boston University, Spring 2026 187

Serializability

» A serializable schedule is one whose effects are equivalent
to the effects of some serial schedule. For example:

schedule 1 schedule 2 (a serial schedule)
transaction T1 transaction T1
read X read X
X=X+5 . X=X+35
write X transaction T2 write X
read Y read Y
Y=Y+ 2 Y=Y+ 6
read v write Y write Y transaction T2
Y=Y+ 6 read Y
write Y Y=Y+2
read X write Y
X =X + 10 read X
write X X=X+ 10
write X
+ Xisincreased by 15 » Xisincreased by 15
* Yisincreased by 8 ¢ Yisincreased by 8

» Because the effects of schedule 1 are equivalent to the effects
of a serial schedule (schedule 2), schedule 1 is serializable.

Not All Schedules Are Serializable!

» Schedule 1 is a special case.

schedule 1 schedule 2 (a serial schedule)
transaction T1 transaction T1
read X read X
X=X+5 : X=X+5
write X transaction T2 write X
read Y read Y
Y=Y+ 2 Y=Y+ 6
read v write Y write ¥ transaction T2
Y=Y+ 6 read Y
write Y Y=Y+ 2
read X write Y
X =X + 10 read X
write X X=X+ 10
write X

* both T1 and T2 use addition to change the values of X and Y
» addition is commutative

* thus, the order in which T1 and T2 make their changes
doesn't matter!

CAS CS 460 Boston University, Spring 2026 188

Not All Schedules Are Serializable! (cont.)

» If we change T2 so that it uses multiplication,
the original interleaving is no longer serializable.

schedule 1B schedule 2B schedule 3
transaction T1 transaction T1 transaction T2B
read X read X : read Y
X=X+5 . X=X+ Y=Y * 2
write X transaction T2B write X write Y
read Y read Y read X
Y=Y%*2 Y=Y+6 X=X *10
read v write Y write Y transaction T2B | transaction T1| Write X
Y=Y+ 6 read Y read X
write Y Y=Y*%*2 X=X+ 5
read X write Y write X
X = X * 10 read X read v
write X X =X*10 Y=Y+ 6
write X write Y
* X2>10(X +5) « X2 10(X +5) e X2>10X+5
*c Y2>2Y+6 * Y>> 2(Y+6) e Y2>2Y+6

» Because the effects schedule 1B are not equivalent to the effects
of any serial schedule of T1+T2B, schedule 1B is not serializable.

Conventions for Schedules

» We abstract all transactions into sequences of reads and writes.

* example:
T2 T2
read balancel
read balance? = :g:ggg‘g
if (balancel +balance2 < min) write(A)
write(balancel - fee)

» we use a different variable for each data item
that is read or written

* we ignore:
+ the actual meaning and values of the data items
« the nature of the changes that are made to them

+ things like comparisons that a transaction does
in its own address space

CAS CS 460 Boston University, Spring 2026 189

Conventions for Schedules (cont.)

» We can represent a schedule using a table. T, T,
* one column for each transaction r(A)
+ operations are performed in the order w(A) "®)
given by reading from top to bottom v::((AA))

» We can also write a schedule on a single line using this notation:
ri(A) = transaction T, reads A
w;(A) = transaction T, writes A

» example for the table above:
ri(A); r(B); wy(A); ra(A); Wy(A)

Serializability of Abstract Schedules

» How can we determine if an abstract schedule is serializable?

+ given that we don't know the exact nature of the changes
made to the data

« Wel'll focus on the following:

» which transaction is the last one to write each data item
« that's the version that will be seen after the schedule

* which version of a data item is read by each transaction

» assume that if a transaction reads a different version,
its subsequent behavior might be different

CAS CS 460 Boston University, Spring 2026 190

CAS CS 460

Conflicts in Schedules

A conflict is a pair of actions that can't be swapped without
potentially changing the behavior of one or more transactions.

Examples in the schedule at right: T, T,
* w,(A) and ry(A) r(B)
» swapping them leads T2 to read a w(A))
different value of A r(A)
+ this may cause T2 to behave differently JVVEQ
+ W,(B) and w; (B) ")

* swapping them means later readers of B
will see a different value of B

+ this may cause them to behave differently

r,(B) and r,(B) do not conflict. why?

Which Actions Conflict?

Actions in different transactions conflict if:

1) they involve the same data item

and 2) at least one of them is a write

Pairs of actions that do conflict (assume i !=j):

W;(A); ri(A) the value read by T; may change if we swap them
ri(A); wj(A) the value read by T; may change if we swap them
W;(A); w(A) subsequent reads may change if we swap them

two actions from the same txn (their order is fixed by the client)

Pairs of actions that don’t conflict:

r(A); r,(A) — two reads of the same item by different txns
ri(A); ri(B)

r.(A); w,(B

v:/((A)\)' rJEB; operations on two different items
iV by different txns

wi(A); w(B)

Boston University, Spring 2026

191

Conflict Serializability

» Rather than ensuring serializability, it's easier to ensure
a stricter condition known as conflict serializability.

« A schedule is conflict serializable if we can turn it into a
serial schedule by swapping pairs of consecutive actions
that don’t conflict.

Example of a Conflict Serializable Schedule

r(A); 11(A); 12(B); Wy (A); Wy(BY; ry(B); w4(B) T, | T, T [T,
—))
r(A); T2(B); 14(A); Wy (A); Wo(BY; ry(B); 4(B) r(A) r(B)
N ®) | w(B)
W(A) r(A)
ra(A); 12(B); ri(A); wo(B); wy(A); 14(B); w4(B) w(B) W(A)
~ r(B) r(B)
r(A); 1(B); Wo(B); 14(A); wi(A); 14(B); wi (B) W) w(B)

» The final schedule is referred to as an equivalent serial schedule.
* serial — all of T2, followed by all of T1

* equivalent — it produces the same results as
the original schedule

CAS CS 460 Boston University, Spring 2026 192

CAS CS 460

Testing for Conflict Serializability

Because conflicting pairs of actions can't be swapped,
they impose constraints on the order of the txns
in an equivalent serial schedule.

+ example: if a schedule includes w,(A) ... r,(A),
T1 must come before T2 in any equivalent serial schedule

To test for conflict serializability:
» determine all such constraints
* make sure they aren’t contradictory

Example: ry(A); ry(A); ry(B); wy(A); wy(B); rq(B); wy(B)

ro(A) ... wy(A) means T2 must come before T1 radict
r,(B) ... wy(B) means T2 must come before T1 23 fh‘fg gihg;dlglr;si’s
W,(B) ... r{(B) means T2 must come before T1 equivalent to the

ial ordering T2;T1
W,(B) ... wy(B) means T2 must come before T1 senarordenng

Thus, this schedule is conflict serializable.

Testing for Conflict Serializability (cont.)
What about this schedule? r,(B); w,(B); ry(B); ro(A); w,(A); r4(A)

How many of the following pairs of actions
from this schedule conflict?

ri(B); ro(B)
ri(B); wy(A)
w4(B); ra(B)
ra(B); ra(A)
Wy(A); r1(A)

Boston University, Spring 2026

193

Using a Precedence Graph

» Tests for conflict serializability can use a precedence graph.
+ the vertices/nodes are the transactions
» add an edge for each precedence constraint: T1 > T2 means
T1 must come before T2 in an equivalent serial schedule

ry(A) ... wy(A) means T2 > T4 Q a
r3(A) ... w,(A) means T3 > T4
r{(B) ... wy(B) means T1 > T2
Wy(B) ... r3(B) means T2 > T3 @ @

* Example: ry(A); rs(A); ri(B); 4(A); wy(B); r3(B)

» After the graph is constructed, we test for cycles
(i.e., paths of the form A > ... > A).
« if the graph is acyclic, the schedule is conflict serializable
+ use the constraints to determine an equivalent serial schedule
(in this case: T1;T2;T3;T4)
+ if there's a cycle, the schedule is not conflict serializable

More Examples
» Determine if the following are conflict serializable:
* 11(A); 13(A); r1(B); Wo(A); 14(A); Wa(B); wa(C); wy(C); r4(C)
r(A) ... W,(A) means T1 > T2 @

);
)
ry(A) ... wy(A) means T3 > T2 v
£(B) ... w,(B) means T1 = T2 "
)

Wo(A) ... T(A) means T2 > T4 @‘@
w5(C).. w4(C) means T3 > T4

W5(C) ... 14(C) means T3 > T1 cycle: T1 >T2 T4 >T1
Wy(C) ... ry(C) means T4 > T1 not conflict serializable

o T(A); Wa(A); Wy(A); Wo(B); r2(B); 14(B); 14(B)

®

@
@

Boston University, Spring 2026

194

Conflict Serializability vs. Serializability

» Conflict serializability is a sufficient condition for serializability,
but it's not a necessary condition.

« all conflict serializable schedules are serializable
* not all serializable schedules are conflict serializable

+ Consider the following schedule involving three txns:

 ltis not conflict serializable, because: T | T | Ts
(A) ... w,(A) means T, > T, o |
W4(A) ... Wy(A) means T, > T, r(B)
W(A)
» |t /s serializable because its effects are w(A) "®)
equivalent to either w(A)

T T, T3 0r Ty Ty T3 why?

Recoverability

» While serializability is important,

it isn’t enough for full isolation. T ;"Az\)
;
- Consider the serializable schedule at right. B) w(B)
« includes "c" actions that indicate when WgA)
the transactions commit CRASH
| ¢

* Imagine that the system crashes:
» after T1’s commit
» before T2’s commit

» During recovery from the crash, the system:

* keeps all of T1’s changes,
because it committed before the crash

* undoes all of T2's changes,
because it didn't commit before the crash

CAS CS 460 Boston University, Spring 2026 195

CAS CS 460

Recoverability (cont.)

» This is problematic!
* T1 reads T2's write of B

* it then performs actions that may
be based on the new value of B
* during recovery from the crash,
T2 is rolled back
= B's old value is restored
* it's possible T1 would have behaved
differently if it had read B's old value
* jt's too late to roll back T1,
because it has already committed!

* We say that this schedule is unrecoverable.

+ if a crash occurs between the two comm

the process of recovering from the crash
could lead to problematic results

its,

w(A)

r(A)
w(B)
r(B)

CRASH

Recoverability (cont.)

unrecoverable

recoverable

* In a recoverable schedule, T
1

Ts

T

T

if T1 reads a value written by T2,

T1 must commit after T2 commits.
r(B)
w(A)

» This allows us to safely recover

r(A)
w(B)

=) | r(B)

w(A)

r(A)
w(B)

from a crash at any point:

T, T, T, T, T

1

T

r(A) r(A)
w(B) w(B)

c CRASH

r(B) r(B) r(B)
w(A) w(A) w(A)

r(A)
w(B)

C

c c CRASH
CRASH c c |

the reader of the writer of the
the changed value changed value
survives the crash, is rolled back,

the reader is rolled back and
the writer isn't, but that's okay
since the writer didn't base its

but so does the writer but so is the reader actions on what the reader did

Boston University, Spring 2026

196

CAS CS 460

Dirty Reads and Cascading Rollbacks

Dirty data is data written by an uncommitted txn.
* it remains dirty until the txn is either:

» committed: in which case the data is no longer dirty
and it is safe for other txns to read it

* rolled back: in which case the write of the dirty data
is undone

A dirty read is a read of dirty data.

Dirty reads can lead to cascading rollbacks.

+ if the writer of the dirty data is
rolled back, the reader must be, too

Dirty Reads and Cascading Rollbacks (cont.)

We made our earlier schedule recoverable by switching
the order of the commits:

T1 T2 T1 T2
r(A) r(A)
w(B) w(B)
r(B) mm) | r(B)
w(B) w(B)
Cc C
C C

Could the revised schedule lead to a cascading rollback?

To get a casecadeless schedule, don’t allow dirty reads.

Boston University, Spring 2026

197

Goals for Schedules

« We want to ensure that schedules of concurrent txns are:
* serializable: equivalent to some serial schedule

» recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

» cascadeless: ensure that rolling back one transaction
does not produce a series of cascading rollbacks

» To achieve these goals, we use some type of
concurrency control mechanism.

» controls the actions of concurrent transactions
» prevents problematic interleavings

Extra Practice

+ Is the schedule at right: T, | T,
» conflict serializable? r(B)
r(B)
w(B)
W(A)
r(A)
C
C

serializable?

recoverable?

cascadeless?

CAS CS 460 Boston University, Spring 2026 198

Extra Practice

» What scenarios involving the schedule W | T, | T
at right could produce cascading rollbacks? (©) w(C)
w(B)
r(B)
W(A)
r(A)

Is This Schedule Conflict Serializable?

» Draw the precedence graph to find out!
W;(A); ra(B); ra(A); 14(A); Wo(B); 14(B); wy(C); ra(D); wa(C)

O,
® ®

Yes. It is equivalent to the serial schedule T1;T2;T3;T4
Yes. It is equivalent to the serial schedule T1;T2;T4;T3
No. The graph includes the cycle T1 > T4 > T2 > T1
No. The graph includes the cycle T1 2> T2 > T4 > T1

oo w >

CAS CS 460 Boston University, Spring 2026 199

What If We Add This Write?

» Draw the precedence graph to find out!
W1(A); ro(B); ra(A); r4(A); Wa(B); r4(B); w,(C); r3(D); ws(C); w4(D)

@ @
® @

CAS CS 460 Boston University, Spring 2026 200

Concurrency Control I: Locking

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Goals for Schedules

+ We want to ensure that schedules of concurrent txns are:
» Serializable: equivalent to some serial schedule

» recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

» cascadeless: ensure that an abort of one transaction
does not produce a series of cascading rollbacks

» To achieve these goals, we use some type of
concurrency control mechanism.

« controls the actions of concurrent transactions
» prevents problematic interleavings

CAS CS 460 Boston University, Spring 2026 201

CAS CS 460

Locking

» Locking is one way to provide concurrency control.

* Involves associating one or more locks with each
database element.

* each page
» each record
» possibly even each collection

Locking Basics

» A transaction must T, T,
request and acquire 1(X)
a lock for a data element r(X)
before it can access it.) I(X) denied; wait for T1

Wi

* Inour initial scheme, uex) I(X) granted
every lock can be held r(X)
by only one txn at a time. u(X)

* As necessary, the DBMS:
» denies lock requests for elements that are currently locked
* makes the requesting transaction wait

» A transaction unlocks an element when it's done with it.

+ After the unlock, the DBMS can grant the lock to a waiting txn.
+ we'll show a second lock request when the lock is granted

Boston University, Spring 2026 202

CAS CS 460

Locking and Serializability

» Just having locks isn’t enough to guarantee serializability.

Example: our problematic schedule can still be carried out.

T1

read balancel
write(balancel - 500) | T2

read balancel

read balance2

if (balancel +balance2 < min)
write(balancel - fee)

read balance2
write(balance2 + 500)

i

T T,
I(bal1);r(bal1)
w(bal1); u(bal1)

I(bal1);r(bal1)
I(bal2);r(bal2)
w(bal1)
u(balt);u(bal2)
I(bal2);r(bal2)
w(bal2); u(bal2)

Two-Phase Locking (2PL)

One way to ensure serializability is two-phase locking (2PL).

2PL requires that all of a txn’s lock actions come before
all its unlock actions.

Two phases:
1. lock-acquisition phase:
a txn acquires locks, but it doesn't release any

2. lock-release phase:
once a txn releases a lock, it can't acquire any new ones

Reads and writes can occur in both phases.
» provided that a txn holds the necessary locks

2PL is per-transaction.

* one txn could be in its lock-release phase
while another txn is still in its lock-acquisition phase

Boston University, Spring 2026

203

Two-Phase Locking (2PL) (cont.)

* In our earlier example, T1 does not follow the 2PL rule.

T T,
I(bal1);r(bal1)
w(bal1); u(bal1)

I(bal1):r(bal1) 2PL would prevent
l(bal2);r(bal2) this interleaving.
w(bal1)

u(bal);u(bal2)
I(bal2);r(bal2)
w(bal2); u(bal2)

» More generally, 2PL produces conflict serializable schedules.

An Informal Argument for 2PL’s Correctness

» Consider schedules involving only two transactions.
To get one that is not conflict serializable, we need:
1) at least one conflict that requires T1 > T2
* T1 operates first on the data item in this conflict
» T1 must unlock it before T2 can lock it: u,(A) .. I,(A)

2) at least one conflict that requires T2 > T1
» T2 operates first on the data item in this conflict
* T2 must unlock it before T1 can lock it: u,(B) .. 1,(B)

» Consider all of the ways these pairs of actions could be ordered:
~ Uy (A) .. 1,(A) .. uy(B) .. I4(B) ..
l1(

Uy(B) .. 14(B) .. us(A) .. I(A) ..+ none of these are possible
Ug(A) .. Uy(B) .. I(A) .. I;(B) .. under 2PL, because they
Uy(B) .. uy(A) .. I(B) .. I(A) .. require at least one txn
Uy(A) .. uy(B) .. I4(B) .. I,(A) .. to lock after unlocking.
Uy(B) .. Us(A) .. L(A) .. [,(B) ..

CAS CS 460 Boston University, Spring 2026 204

The Need for Different Types of Locks

» With only one type of lock, overlapping transactions can't
read the same data item, even though two reads don't conflict.

» To get around this, use more than one mode of lock.

Exclusive vs. Shared Locks

* An exclusive lock allows a transaction to write or read an item.
* gives the txn exclusive access to that item
» only one txn can hold it at a given time
* xl,(A) = transaction T, requests an exclusive lock for A

« if another txn holds any lock for A,
T, must wait until that lock is released

* A shared lock only allows a transaction to read an item.
» multiple txns can hold a shared lock for the
same data item at the same time
* sl,(A) = transaction T, requests a shared lock for A

« if another txn holds an exclusive lock for A,
T, must wait until that lock is released

CAS CS 460 Boston University, Spring 2026 205

CAS CS 460

’ sl(B); r(B)

Examples of Using Shared and Exclusive Locks

sl(A) = transaction T, requests a shared lock for A
xli(A) = transaction T, requests an exclusive lock for A

Examples:
T T,
XI(A); w(A)

sI(B);r(B) } without shared locks, T2 would need to wait

xI(C); r(C)
u(A); u(B)
w(C)
u(B); u(C)
T1 TZ
xI(A); sl(B)
sl(A)
w(A); u(A)
sI(B)
xI(B)

until T1 unlocked B

Note: T1 acquires an exclusive lock
before reading C. why?

What About Recoverability / Cascadelessness?

» 2PL alone does not guarantee either of them.

Example:

T T,
xI(A); w(A)
sl(C)
u(A)
xI(A); r(A)
r(C); u(C)
w(A); u(A)
commit
commit

2PL? yes

not recoverable. why not?

not cascadeless. why not?

Boston University, Spring 2026

206

CAS CS 460

Strict Locking

Strict locking makes txns hold all exclusive locks until
they commit or abort.

» doing so prevents dirty reads, which means schedules
will be recoverable and cascadeless

T T, T T,
xI(A); w(A) xI(A); w(A)
sl(C) sl(C)
u(A)
xI(A); r(A) ‘ xI(A); wait
r(C); u(C) r(C); u(C)
w(A); u(A)
commit
commit
commit
u(A)
T1 can't acquire the lock for A | xI(A); r(A)
until after T2 commits. w(A)
Thus, its read of Ais not dirty! | commit
u(A)

strict + 2PL = strict 2PL

Rigorous Locking

Under strict locking, it's possible to get something like this:

T, T, T, * T3 reports A's new value.
SI(A): T(A) * T1 reports A's old value,
u(A) even though it commits
XI(A); w(A) after T3.
commit
u(A) (A) A * the ordering of commits
sl(A); .
éor)m;(it) (T2,T3,T1)_ is not same
u(A) as the equivalent serial
. print A ordering (T1,T2,T3)
commit
print A

Rigorous locking requires txns to hold all locks until commit/abort.

It guarantees that transactions commit in the same order
as they would in the equivalent serial schedule.

rigorous + 2PL = rigorous 2PL

Boston University, Spring 2026

207

CAS CS 460

Deadlock

Consider the following schedule:

T, T,

XI(A);w(A)

sl(B);r(B)
xI(B)
denied;

sl(A) wait for T1

denied;
wait for T2

This schedule produces deadlock.
* T1 is waiting for T2 to unlock A
* T2 is waiting for T1 to unlock B

* neither can make progress!

We'll see later how to deal with this.

Lock Upgrades

It can be problematic to acquire
an exclusive lock earlier than
necessary.

Instead:

* acquire a shared lock to read
the item

» upgrade to an exclusive lock
when you need to write

* may need to wait to upgrade
if others hold shared locks

Note: we're not releasing the
shared lock before acquiring the
exclusive one. why not?

T T,
xI(A)
r(A)
sI(A)
VERY LONG | Waits along
computation time for T1!
w(A)
u(A)
r(A) finally!
T T,
slI(A)
r(A)
sl(A)
VERY LONG |F(A) right away!
computation u(A)
xI(A)
W(A)
u(A)

Boston University, Spring 2026

208

CAS CS 460

A Problem with Lock Upgrades

» Upgrades can lead to deadlock:
» two txns each hold a shared lock for an item
» both txns attempt to upgrade their locks
» each txn is waiting for the other to release its shared lock
* deadlock!

+ Example:
T1 TZ
sl(A)
r(A)
sl(A)
r(A)
xI(A)
denied;
wait for T2
xI(A)
denied;
wait for T1

Update Locks

» To avoid deadlocks from lock upgrades, some systems
provide two different lock modes for reading:

» shared locks — used if you only want to read an item

* update locks — used if you want to read an item
and later update it

shared lock update lock

what does holding this | read the locked item |read the locked item
type of lock let you do? (in anticipation of
updating it later)

can it be upgraded to no (not in this yes

an exclusive lock? locking scheme)

how many txns can hold | an arbitrary number | only one (and thus
this type of lock for a there can't be a
given item? deadlock from two

txns trying to upgrade!)

Boston University, Spring 2026

209

CAS CS 460

Different Locks for Different Purposes

If you only need to read an item, acquire a shared lock.

If your first action on an item is a write, acquire an exclusive lock.

If you need to read and then write an item:

* acquire an update lock for the read

» upgrade it to an exclusive lock for the write

+ this sequence of operations is sometimes called
read-modify-write (RMW)

Should a lock request be granted?

mode of
existing lock
for that item
(held by a
different txn)

When there are one or more shared locks on an item,

Compatibility Matrix for Locks

mode of lock requested for item

shared | exclusive | update
shared yes no yes
exclusive no no no
update no no no

a txn can still acquire an update lock for that item.

+ allows for concurrency on the read portion of RMW txns

There can't be more than one update lock on an item.
» prevents deadlocks when upgrading from update to exclusive

If a txn holds an update lock on an item, other txns
can't acquire any new locks on that item.

» prevents the RMW txn from waiting indefinitely to upgrade

Boston University, Spring 2026

210

Which requests are granted? (select all that apply)

T, T, T; | ul(A) =T, requests an update lock for A

sI(A)
r(A)

sl(A)
r(A)
sl(B)
r(B)
ul(C)
r(C)
ul(B) & request A

ul(C) | € request B
r(C)
xI(A) € request C
W(A)
xI(C) < request D

Detecting and Handling Deadlocks

« When DBMS detects a deadlock, it roll backs one of the
deadlocked transactions.

» Can use a waits-for graph to detect the deadlock.
 the vertices are the transactions
* an edge from T1 > T2 means
T1 is waiting for T2 to release a lock
* a cycle indicates a deadlock

+ Example:
T T, Ts
xI(C)

xI(A) o(A) @ @
sl(B) denied;
sl(C)

wait for T1
denied;

wait for T3

xI(B)
denied;
wait for T2

cycle — deadlock!

CAS CS 460 Boston University, Spring 2026

211

Another Example

» Would the following schedule produce deadlock?
r1(B); wy(B); r3(A); rp(C); ra(B); r4(A); wq(A); w3(C); wi(A); 14(C); wa(A)

T1 T2 T3
sl(B); r(B)
xI(B); w(B)
sl(A); r(A)
sl(C); r(C)

assumptions:
* rigorous 2PL

* alock is requested
just before it's first needed
* update locks are not used
* upgrades of shared locks
are allowed
* a txn commits after its
final read or write

@ @
@

Extra Practice
» Would the following schedule produce deadlock?
W4(A); Wa(B); r3(C); rp(D); r4(D); w4(D); wy(C); r3(A); wo(A)

T

T,

Ts

XI(A); w(A)

* rigorous 2PL

* alock is requested
just before it's first needed
* update locks are not used
* upgrades of shared locks
are allowed
* a txn commits after its
final read or write

@ @
@

Boston University, Spring 2026

212

CAS CS 460

Extra Practice 2
Would the following schedule produce deadlock?
W(A); W3(C); r5(A); r1(B); w4(C); wa(A); wy(D); re(A)

T

T,

Ts

assumptions:
* rigorous 2PL

* a lock is requested
just before it's first needed
* update locks are not used
* upgrades of shared locks
are allowed
* a txn commits after its
final read or write

@ @
@

Boston University, Spring 2026

213

Concurrency Control II: Timestamps

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Timestamp-Based Concurrency Control

 In this alternative approach to concurrency control,
the DBMS assigns timestamps to txns.

» TS(T) = the timestamp of transaction T
 the timestamps must be unique
* TS(T1) < TS(T2) if and only if T1 started before T2

* The system ensures that all operations are consistent with
a serial ordering based on the timestamps.

« if TS(T1) < TS(T2), the DBMS only allows actions that
are consistent with the serial schedule T1; T2

=>» produces schedules that are serializable

+ Systems that use this approach do not need locks.

CAS CS 460 Boston University, Spring 2026 214

CAS CS 460

Timestamp-Based Concurrency Control (cont.)

* example 1:
actual schedule
T T,
TS =100
r(C)
TS =102
W(A)
r(A)
v

equivalent serial schedule

T, T,
TS = 100
r(C)
r(A)
TS =102
w(A)

Examples of actions that are not allowed:

not allowed

T2 starts before T1

thus, T2 comes before T1 in the
equivalent serial schedule (see left)

in the serial schedule,
T2 would not see see T1's write

thus, T2's read should have come before
T1's write, and we can't allow the read

we say that T2’s read is too late

Timestamp-Based Concurrency Control (cont.)

* example 2:
actual schedule
T T,
TS =205
r(A)
TS =209
r(B)
w(B)e—|

equivalent serial schedule

T1 T2
TS = 205
r(A)
w(B)
TS =209

r(B)

Examples of actions that are not allowed:

not allowed

T1 starts before T2

thus, T1 comes before T2 in the
equivalent serial schedule (see left)

in the serial schedule,
T2 would see T1's write

thus, T1's write should have come before
T2's read, and we can't allow the write

we say that T1’s write is too late

Boston University, Spring 2026

215

Timestamp-Based Concurrency Control (cont.)

* When a txn attempts to perform an action that is inconsistent
with a timestamp ordering:

+ the offending txn is rolled back
* it is restarted with a new, larger timestamp

+ With a larger timestamp, the txn comes later in the
equivalent serial ordering.

+ allows it to perform the offending operation

* Rolling back the txn ensures that all of its actions correspond
to the new timestamp.

Timestamps on Data Elements

* To determine if an action should be allowed, the DBMS
associates two timestamps with each data element:

* a read timestamp:
RTS(A) = the largest timestamp of any txn that has read A

+ the timestamp of the reader that comes latest
in the equivalent serial ordering

* a write timestamp:
WTS(A) = the largest timestamp of any txn that has written A

+ the timestamp of the writer that comes latest
in the equivalent serial ordering

* the timestamp of the txn that wrote A's current value

CAS CS 460 Boston University, Spring 2026 216

Timestamp Rules for Reads

* When T tries to read A:
« if TS(T) < WTS(A), roll back T and restart it

« T comes before the txn that wrote A,
so T shouldn't be able to see A’s current value

* T's read is too late (see our earlier example 1)

* else allow the read
* T comes after the txn that wrote A, so the read is OK
* the system also updates RTS(A):
RTS(A) = max(TS(T), RTS(A))
* why can't we just set RTS(A) to T's timestamp?

Timestamp Rules for Reads (cont.)

» Example: assume that T1 wants to read A,
and we have the following timestamps:

TS(T1) =30 WTS(A) = 10
TS(T2) = 50 RTS(A) = 50

T1 started before T2 (30 < 50)
+ thus T1 comes before T2 in the equivalent serial ordering

T2 has already read A. How do we know?

Despite that, it's okay for T1 to read A.
« reads don't conflict, so we don't care about the
equivalent serial ordering of two readers of an item
» what matters is that T1 comes after the writer
of A's current value (30 > 10)

CAS CS 460 Boston University, Spring 2026 217

Timestamp Rules for Writes

* When T tries to write A:

« if TS(T) < RTS(A), roll back T and restart it

* T comes before the txn that read A, so that other txn
should have read the value T wants to write

» T’s write is too late (see our earlier example 2)

* elseif TS(T) < WTS(A), ignore the write and let T continue
» T comes before the txn that wrote A's current value

+ thus, in the equivalent serial schedule,
T's write would have been overwritten by A's current value

* else allow the write
* how should the system update WTS(A)?

Thomas Write Rule

* The policy of ignoring out-of-date writes is known as the
Thomas Write Rule:

...else if TS(T) < WTS(A), ignore the write and let T continue

* What if there is a txn that should have read A between
the two writes? It's still okay to ignore T's write of A.
* example:
» TS(T) =80, WTS(A) = 100 =» we ignore T's write of A
what if txn U with TS(U) = 90 is supposed to read A?

« if U had already read A, Thomas write rule wouldn't apply:
* RTS(A) =90
» T would be rolled back because TS(T) < RTS(A)

« if U tries to read A after we ignore T's write:
» U will be rolled back because TS(U) < WTS(A)

CAS CS 460 Boston University, Spring 2026 218

Extra Practice Problem

» Consider the following scenario:
« TS(T1) =80, TS(T2) = 50
* T1is allowed to read item C,

and it gets a value from before
either transaction began.

+ T2 then wants to write C.
How should the system respond?

e Hint: You don't need to know the RTS and WTS values.
You can just use:

 the fact that T1 read an earlier value of C
» the equivalent serial schedule based on the timestamps

Example of Using Timestamps

» They prevent our problematic balance-transfer example.
T1

read balancel

write(balancel - 500) | T2

read balancel

read balance2

if (balancel +balance2 < min)
write(balancel - fee)

i

read balance2
write(balance2 + 500)

T1 T2 bal1 bal2
RTS=WTS=0|RTS=WTS=0
TS =350
r(bal1) RTS = 350
w(bal1) WTS = 350
TS =375
r(bal1); r(bal2) RTS = 375 RTS = 375
w(bal1) WTS = 375
r(bal2) RTS: no change
w(bal2)
denied:rollback

what's the problem here?

CAS CS 460 Boston University, Spring 2026

219

CAS CS 460

Preventing Dirty Reads Using a Commit Bit

* We associate a commit bit c(A) with each data element A.

« tells us whether the writer

of A's value has committed L 12 A
o . RTS=0
* initially, c(A) is true WTS =0
c = true
* When a txn is allowed to write A: |15 =200
» set c(A) to false r(A) RTS =200
» update WTS(A) as before W(A) c = false
WTS =200
+ If the timestamps would allow TS =210
a txn to read A but c(A) is false, r(A)
the txn is made to wait. denied:
. . wait
+ preventing a dirty read! commit c = true
+ When A's writer commits, we: r(A)?
» set c(A) to true

+ allow waiting txns try again

Example of Using Timestamps and Commit Bits

» The balance-transfer example would now proceed differently.

T1

read balancel
write(balancel - 500)

read balance2
write(balance2 + 500)

T2

read balancel
read balance2

if (balancel+balance2 < min)
write(balancel - fee)

T1 T2 bal1 bal2
RTS=WTS =0 RTS=WTS =0
c =true c = true
TS =350
r(bal1) RTS =350
w(bal1) WTS = 350; c = false
TS =375
r(bal1)
denied: wait

r(bal2) RTS =350
w(bal2) WTS = 350; c = false
commit ¢ = true c = true

r(bal1) RTS =375

and completes

Boston University, Spring 2026

220

CAS CS 460

Commit Bits: Other Details

» Ifatxnis allowed to write A T T2 A

and c(A) is already false: RTS=0

* c(A) remains false WISt =0

« update WTS(A) as before TS = 400 e
A = fal

+ If the timestamps would cause WA V\(,:TS : :80
a txn's write of A to be ignored TS = 450
but c(A) is false, the txn must wait. w(A) c stays false

+ we'll need its write if the WTS =450
writer of A's current value W(A)
is rolled back denjed:
wait
commit c = true
w(A)
ignored
Commit Bits: Other Details (cont.)

* Note: c(A) remains false until T1 T2 A
the writer of the current value RTS =0
commits. WTS=0

c = true

« Example: what if T2 had TS ?A4)00 ol

. ' TR W c = false

committed after T1's write” WTS = 400
TS =450
w(A) c stays false
WTS =450
commit

Boston University, Spring 2026

221

CAS CS 460

Timestamps and Transaction Rollbacks

* What happens whenatxn T T T2 A
is rolled back? RTS=0
« restore the prior state WTS=0
(value and timestamps) 1S = 400 ¢ = true
of all data elements of which W(A) c = false
T is the most recent writer WTS = 400
- set the commit bits of those TS =450
elements based on whether WA °v3§a§ifé3e
the writer of the prior value
has committed dw({\) _
enied:
* make waiting txns try again wait
roll back WTS =400
* in addition, if there were a ¢ = false
data element B for which WA)
RTS(B) == TS(T), we would allowed | "° changes

restore its old RTS value

Summary: Timestamp Rules for Reads and Writes
) when not using commit bits
* When T tries to read A:

o ifTS(T) < WTS(A), roll back T and restart it
* T’'sread is too late

» else allow the read
» set RTS(A) = max(TS(T), RTS(A))

* When T tries to write A:
« if TS(T) < RTS(A), roll back T and restart it
» T’s write is too late
* else if TS(T) < WTS(A), ignore the write and let T continue
* in the equiv serial sched, T's write would be overwritten

» else allow the write
* set WTS(A) = TS(T)

Boston University, Spring 2026

222

CAS CS 460

Summary: Timestamp Rules for Reads and Writes
. when using commit bits
* When T tries to read A:

« if TS(T) < WTS(A), roll back T and restart it
* T's read is too late
+ else if TS(T) == WTS(A), allow the read, regardless of c(A)

* else allow the read (but if c(A) == false, make it wait)
+ set RTS(A) = max(TS(T), RTS(A))

* When T tries to write A:
« if TS(T) < RTS(A), roll back T and restart it
» T’s write is too late
* elseif TS(T) < WTS(A), ignore the write and let T continue
(but if c(A) == false, make it wait)
* in the equiv serial sched, T's write would be overwritten

* else allow the write
» set WTS(A) =TS(T) (and set c(A) to false)

Summary: Other Details for Timestamps

» When the writer of the current value of data item A commits, we:

» setc(A) to true
+ allow waiting txns try again

 When a txn T is rolled back, we process:
+ all data elements A for which WTS(A) == TS(T)
« restore their prior state (value and timestamps)

» set their commit bits based on whether the writer of
the prior value has committed

* make waiting txns try again

+ all data elements A for which RTS(A) == TS(T)
» restore their prior RTS

Boston University, Spring 2026

223

CAS CS 460

Extra Practice Problem 1

» How will this schedule be executed with commit bits?
W4 (A); Wy(A); r3(B); wa(B); r3(A); ra(B); wy(B); ry(A)

T T2 T3 A B
RTS=WTS=0 RTS=WTS =0
c = true c = true
Extra Practice Problem 2
 How will this schedule be executed with commit bits?
r1(B); ra(B); wy(B); w3(A); Wy(A); w,(B); ra(A)
T T2 T3 A B
RTS=WTS=0 RTS=WTS=0
c = true c = true

Boston University, Spring 2026

224

Multiversion Timestamp Protocol

* To reduce the number of rollbacks, the DBMS can keep old
versions of data elements, along with the associated timestamps.

* When a txn T tries to read A, it's given the version of A that it
should read, based on the timestamps.

» the DBMS never needs to roll back a read-only transaction!

two different versions of A

T T2 T3 A(0) A(105)
TS =101 RTS=WTS =0
TS =105 ¢ = true; val = “foo”
r(A) RTS =105
w(A) created
RTS =0; WTS =105
c = false; val = “bar”
r(A): get A(0) no change
commit c = true
TS =112
r(A)
get A(105) RTS =112

» Iftxn T attempts to write A:

+ find the version of A that T should be overwriting
(the one with the largest WTS <= TS(T))

» compare TS(T) with the RTS of that version
+ example: txn T (TS = 50)
wants to write A
« it should be overwriting A(0)
» show we allow its write

and create A(50)7?

» Because each write creates a new version,
the WTS of a given version never changes.

Multiversion Timestamp Protocol (cont.)

» The DBMS maintains RTSs and commit bits for each version,
and it updates them using the same rules as before.

A(0)

A(105)

RTS =75

RTS =0

CAS CS 460

Boston University, Spring 2026

225

CAS CS 460

Multiversion Timestamp Protocol (cont.)

« If T's write of A is not too late:

 if T has already written A, update that version’s value
» otherwise, create a new version of A with WTS = TS(T)

» Writes are never ignored.

» there may be active txns that should read that version

transactions that could read them.
» can discard A(t1) if:

* there is another, later version, A(t2), with t2 > t1

and

 there is no active transaction with a TS < t2

Versions can be discarded as soon as there are no active

» example: we can discard A(0)

A(0)

A(105)

as soon as ...?

RTS =75

RTS =0

Extra Practice Problem 3

Execute using multiversion timestamps and no commit bits:

ro(A); W4(B); r3(A); 13(B); wa(B); ra(B); wa(A)

T T2 T3 A(0)

B(0)

WTS =0
RTS =0

WTS =0
RTS=0

Boston University, Spring 2026

226

CAS CS 460

Locking vs. Timestamps

» Advantages of timestamps:
+ txns spend less time waiting
* no deadlocks

Disadvantages of timestamps:
» can get more rollbacks, which are expensive
* may use somewhat more space to keep track of timestamps

Advantages of locks:
» only deadlocked txns are rolled back

» Disadvantages of locks:
* unnecessary waits may occur

Practice 4a: timestamps, no commit bits, one version/item

r1(X); wa(X); r3(X); wa(Y); wy(Y); ro(Y); ws(Y); €45 Co; Cg
T T2 T3 X Y

WTS=0 WTS =0
RTS=0 RTS=0

Boston University, Spring 2026

227

Practice 4b: timestamps, no commit bits, multiversion
r1(X); Wo(X); r3(X); Wa(Y); w1 (Y); oY) wa(Y); Cq5 €25 Cg

T T2 T3 X(0) Y(0)
WTS=0 | WTS=0
RTS=0 | RTS=0

T

T,

Ts

Practice 4c: rigorous two-phase locking, no update locks
F1(X); Wo(X); r3(X); wa(Y); w4 (Y); r5(Y); W5(Y); Cq; Co; Ca

@ @
@

CAS CS 460

Boston University, Spring 2026

228

CAS CS 460

Distributed Databases
and Replication

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

What Is a Distributed Database?

One in which data is:
* partitioned / fragmented among multiple machines
and/or

* replicated — copies of the same data are made available
on multiple machines

It is managed by a distributed DBMS (DDBMS) —
processes on two or more machines that jointly provide
access to a single logical database.

The machines in question may be:
+ at different locations (e.g., different branches of a bank)
+ at the same location (e.g., a cluster of machines)

In the remaining slides, we will use the term site
to mean one of the machines involved in a DDBMS.

* may or may not be at the same location

Boston University, Spring 2026

229

What Is a Distributed Database? (cont.)

site 1 site 2

+ A given site may have a local copy of all, part, or none of
a particular database.

* makes requests of other sites as needed

Fragmentation / Sharding

» Divides up a database's records among several sites
+ the resulting "pieces" are known as fragments/shards

Let R be a collection of records of the same type (e.g., a relation).

Horizontal fragmentation divides up the "rows" of R.
* R(a,b,c) > R1(a, b,c),R2(a, b, c), ... T 2lbte
* R=R1 UR2uU...

A
a4

Vertical fragmentation divides up the "columns" of R.
* R(a, b, c) 2 R1(a, b), R2(a, c), ... (ais the primary key)
« R=R1 X R2 X ... a|b|c a |b afc

CAS CS 460 Boston University, Spring 2026 230

CAS CS 460

» Another version of vertical fragmentation:

Fragmentation / Sharding (cont.)

divide up the tables (or other collections of records).
* e.g., site 1 gets tables A and B
site 2 gets tables C and D

Example of Fragmentation

» Here's a relation from a centralized bank database:

account |owner street city |branch |balance
111111 [E. Scrooge |1 Rich st|... |main $11111
123456 |R. Cratchit|5 Poor Ln|... |west $10
» Here's one way of fragmenting it:
main

account

owner

street

city

111111

E. Scrooge

1 Rich st|...

123456

R. Cratchit

5 Poor Ln|...

account |branch |balance

123456 |west

$10

456789 |west

$50000

west

account |branch |balance
111111 |main $11111
333333 [main $33333

south

account |branch |balance
222222 |south |$22222
444444 |south |$70000

Boston University, Spring 2026

231

Replication

» Replication involves putting copies of the same collection of
records at different sites.

account interest | monthly
type rate fee
standard |0% $10
bigsaver (2% $50

account interest | monthly account interest |monthly
type rate fee type rate fee
standard |0% $10 standard |0% $10
bigsaver |2% $50 bigsaver |2% $50

Reasons for Using a DDBMS

+ to improve performance
* how does distribution do this?

to provide high availability

+ replication allows a database to remain available
in the event of a failure at one site

to allow for modular growth
* add sites as demand increases
» adapt to changes in organizational structure

to integrate data from two or more existing systems
» without needing to combine them
allows for the continued use of legacy systems

* gives users a unified view of data maintained by different
organizations

CAS CS 460 Boston University, Spring 2026 232

CAS CS 460

Challenges of Using a DDBMS (partial list)

determining the best way to distribute the data
» when should we use vertical/horizontal fragmentation?
* what should be replicated, and how many copies do we need?

determining the best way to execute a query
* need to factor in communication costs

maintaining integrity constraints (primary key, foreign key, etc.)
ensuring that copies of replicated data remain consistent

managing distributed txns: ones that involve data at multiple sites
» atomicity and isolation can be harder to guarantee

Distributed Transactions

A distributed transaction involves data stored at multiple sites.

One of the sites serves as the coordinator of the transaction.
* one option: the site on which the txn originated

The coordinator divides a distributed transaction into
subtransactions, each of which executes on one of the sites.

subtxn 1
read balancel

read balancel : B
write(balancel - 500) /////’//' write(balancel 500)

read balance2 subtxn 2

write(balance2 + 500) \\\\\\\\‘
read balance2

write(balance2 + 500)

Boston University, Spring 2026

233

Types of Replication

* In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

» In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Synchronous Replication |: Read-Any, Write-All

» Read-Any: when reading an item, access any of the replicas.
» Write-All: when writing an item, must update all of the replicas.
» Works well when reads are much more frequent than writes.

» Drawback: writes are very expensive.

CAS CS 460 Boston University, Spring 2026 234

Synchronous Replication Il: Voting

» When writing, update some fraction of the replicas.

» each value has a version number that is
increased when the value is updated

* When reading, read enough copies to ensure you get
at least one copy of the most recent value (see next slide).

» the copies "vote" on the value of the item
» the copy with the highest version number is the most recent

» Drawback: reads are now more expensive

Synchronous Replication Il: Voting (cont.)

* How many copies must be read?
* let: n=the number of copies
w = the number of copies that are written
r = the number of copies that are read

* need:r>n-w (i.e, atleastn—w + 1)
* example: n =6 copies

update w = 3 copies

must read at least 4 copies

Example: 6 copies of data item A,
each with value = 4, version = 1.
» txn 2 updates A1, A2, and A4 to be 6
(and their version number becomes 2)
* txn 1 reads A2, A3, A5, and A6

* A2 has the highest version number (2),
so its value (6) is the most recent.

CAS CS 460 Boston University, Spring 2026 235

CAS CS 460

Which of these allow us to ensure that
clients always get the most up-to-date value?

* 10 replicas —i.e., 10 copies of each item

+ voting-based approach with the following requirements:

number of copies number of copies
accessed when reading accessed when writing
A. 7 3
B. 5 5
C. 9 2
D. 4 8

(select all that work)

Distributed Concurrency Control

« To ensure the isolation of distributed transactions,
need some form of distributed concurrency control.

» Extend the concurrency control schemes that we studied earlier.
» we'll focus on extending strict 2PL

» If we just used strict 2PL at each site, we would ensure
that the schedule of subtxns at each site is serializable.

+ why isn't this sufficient?

Boston University, Spring 2026

236

Distributed Concurrency Control (cont.)

» Example of why special steps are needed:
+ voting-based synchronous replication with 6 replicas

* let's say that we configure the voting as before:
» each write updates 3 copies
» each read accesses 4 copies

» can end up with schedules that are not conflict serializable

* example:

T, T, Xi = the copy of item X
xI(A1); xI(A2); xI(A3) at site i
w(A1); w(A2); w(A3)

xI(Ad); xI(A5); xI(A6)| T1 should come before
w(A4); w(A5); w(AB)| T2 _based on t_he orderin
xI(B4); XI(B5); xI(B6) which they write A.

w(B4); w(B5); w(B6)
XI(B1): xI(B2): xI(B3) T1 should come after T2

T e e based on e et

What Do We Need?

» We need shared and exclusive locks for a logical item,
not just for individual copies of that item.

+ referred to as global locks
» doesn't necessarily mean locking every copy

* Requirements for global locks:
* no two txns can hold a global exclusive lock for the same item
* any number of txns can hold a global shared lock for an item

* a txn cannot acquire a global exclusive lock on an item
if another txn holds a global shared lock on that item,
and vice versa

CAS CS 460 Boston University, Spring 2026 237

What Do We Need? (cont.)

» In addition, we need to ensure the correct ordering of operations
within each distributed transaction.

» don't want a subtxn to get ahead of where it should be
in the context of the txn as a whole

* relevant even in the absence of replication

» one option: have the coordinator of the txn acquire
the necessary locks before sending operations to a site

Option 1: Centralized Locking

» One site manages the lock requests for all items in the
distributed database.
* even items that don't have copies stored at that site
* since there's only one place to acquire locks,
these locks are obviously global locks!

» Problems with this approach:
 the lock site can become a bottleneck
« if the lock site crashes, operations at all sites are blocked

CAS CS 460 Boston University, Spring 2026 238

CAS CS 460

Option 2: Primary-Copy Locking

One copy of an item is designated the primary copy.

The site holding the primary copy handles all lock requests
for that item.
» acquiring a shared lock for the primary copy
gives you a global shared lock for the item
* acquiring an exclusive lock for the primary copy
gives you a global exclusive lock for the item

To prevent one site from becoming a bottleneck,
distribute the primary copies among the sites.

Problem: If a site goes down, operations are blocked
on all items for which it holds the primary copy.

Option 3: Fully Distributed Locking

No one site is responsible for managing lock requests
for a given item.

A transaction acquires a global lock for an item
by locking a sufficient number of the item's copies.

+ these local locks combine to form the global lock

To acquire a global shared lock, acquire local shared locks
for a sufficient number of copies (see next slide).

To acquire a global exclusive lock, acquire local exclusive locks
for a sufficient number of copies (see next slide).

Boston University, Spring 2026

239

CAS CS 460

Option 3: Fully Distributed Locking (cont.)

How many copies must be locked?
* let: n = the total number of copies

x = the number of copies that must be locked to
acquire a global exclusive lock

s = the number of copies that must be locked to
acquire a global shared lock

* we need x > n/2

 guarantees that no two txns can both acquire
a global exclusive lock at the same time

weneeds>n-x (i.e.,,s+x>n)

« if there's a global exclusive lock on an item,
there aren't enough unlocked copies for a global shared lock

« if there's a global shared lock on an item,
there aren't enough unlocked copies for a global excl. lock

Option 3: Fully Distributed Locking (cont.)

» Our earlier example would no longer be possible:

T1 TZ . n:6

xI(A1); xI(A2); xI(A3) e need x> 6/2
w(A1); w(A2); w(A3)

xI(A4); xI(A5); xI(A6)| * must acquire at least
W(A4); W(AS); W(AB) 4 local exclusive locks
xI(B4); xI(B5); xI(B6) before writing

w(B4); w(B5); w(B6)

xI(B1); xI(B2); xI(B3)
w(B1); w(B2); w(B3)

¢

T T,

xI(A1); xI(A2); xI(A3);
xXI(AB)
w(A1); w(A2); w(A3);
W(AB)

xI(A4); xI(A5);
xI(AG) — denied
must wait for T1

Boston University, Spring 2026

240

CAS CS 460

Synchronous Replication and Fully Distributed Locking

* Read-any write-all:
* when writing an item, a txn must update all of the replicas
« this gives it x = n exclusive locks, so x > n/2
* when reading an item, a txn can access any of the replicas
« this gives it s = 1 shared lock, and 1 >n—n

+ Voting:
» when writing, a txn updates a majority of the copies —
i.e., w copies, where w > n/2.
« this gives it x > n/2 exclusive locks as required

* when reading, a txn reads r > n — w copies
» this gives it s > n — x shared locks as required

Summary: Distributed Concurrency Control

» With replicated data, need to be able to acquire global locks.

+ Option 1: Centralized locking

» one site manages the lock requests for all items, even
ones that it doesn't have copies for

+ problem: becomes a bottleneck and a single point of failure

» Option 2: Primary-copy locking

» designate one copy of each item as its primary copy
* locking the primary copy gives you a global lock
» spread the primary copies across the sites

» For both of these options, voting just needs:

r>n-w n = total # of copies
w = # of copies written
r = # of copies read

Boston University, Spring 2026

241

Summary: Distributed Concurrency Control (cont.)

» Option 3: Fully distributed locking
» acquires a global lock by locking a sufficient number
of the item's copies
« for an exclusive lock, need to lock x > n/2 copies
« for a shared lock, need to lock s > n — x copies

« given the inequalities for distributed locking, we now have
an added requirement for voting:
w > n/2 n = total # of copies
r>n—-w w = # of copies written
r = # of copies read

Which of these would work?

» O replicas —i.e., 9 copies of each item
* fully distributed locking
 voting-based approach with the following requirements:

number of copies
read written

A. 5 5
B. 6 4
C. 7 3
D. 4 5

(select all that work)

CAS CS 460 Boston University, Spring 2026 242

Which of these would work?
» 9replicas —i.e., 9 copies of each item

» primary-copy locking
+ voting-based approach with the following requirements:

number of copies
read written

A. 5 5
B. 6 4
C. 7 3
D. 4 5

(select all that work)

Distributed Deadlock Handling

» Under centralized locking, we can just use the waits-for graphs
that we studied earlier in the semester.

» Under the other two locking schemes, deadlock detection
becomes more difficult.

* local waits-for graphs alone will not necessarily detect a
deadlock

+ example:
site 1: site 2:

e—®

* one option: periodically send local waits-for graphs
to one site that checks for deadlocks

 Instead of using deadlock detection, it's often easier to use
a timeout-based scheme.

« if a txn waits too long, presume deadlock and roll it back!

CAS CS 460 Boston University, Spring 2026 243

Recall: Types of Replication

* In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

» In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Asynchronous Replication |: Primary Site

* In primary-site replication, one replica is designated the
primary or master replica.

+ All writes go to the primary.

» propagated asynchronously to the other replicas
(the secondaries)

» The secondaries can only be read.
* no locks are acquired when accessing them
+ thus, we only use them when performing read-only txns

» Drawbacks of this approach?

CAS CS 460 Boston University, Spring 2026 244

Asynchronous Replication Il: Peer-to-Peer

* In peer-to-peer replication, more than one replica can be updated.

» Problem: need to somehow resolve conflicting updates!

fully distributed locking

Which of these would work? with n copies:
* write (and lock)
. 9replicas —i.e., 9 copies of each item W > n/2 copies
P g + read (and lock)
+ fully distributed locking r>n—w copies

 voting-based approach with the following requirements:

number of copies @ a copy locked @ a copy locked with
read written with a shared lock an exclusive lock
(X X X X JOIGIOXO®)
A. 5 5 yes > if one txn has a global shared lock,
no one can get a global exclusive lock
B. 6 4
(X X X X JOIOIOXO®)
C. 7 3 if one txn has a global exclusive lock,
no one can get a global shared lock
D 4 5 or a global exclusive lock

CAS CS 460 Boston University, Spring 2026 245

fully distributed locking
Which of these would work? with n copies:
+ write (and lock)
w > n/2 copies
* read (and lock)
« fully distributed locking r>n—w copies

» 9replicas —i.e., 9 copies of each item

+ voting-based approach with the following requirements:

number of copies @ a copy locked @ a copy locked with
read written with a shared lock an exclusive lock

0000000000

A. 5 S yes if one txn has a global shared lock,
no one else can get a global exclusive lock
B. 6 4 no=>
(X X X JOXOICIONO)
C. 7 3 no if one txn has a global exclusive lock,
no one else can get a global shared lock
D. 4 5 0000 0000

problem: two txns can both get a
global exclusive lock at the same time!

fully distributed locking
Which of these would work? with n copies:
+ write (and lock)
w > n/2 copies
* read (and lock)
« fully distributed locking r>n—w copies

» O replicas —i.e., 9 copies of each item

 voting-based approach with the following requirements:

number of copies @ a copy locked @ a copy locked with
read written with a shared lock an exclusive lock

A. 5 5 yes problem: if one txn has a global shared lock,
someone else can get a global excl. lock
B. 6 4 no
00000000
C. 7 3 no problem: if one txn has a global excl lock,
someone else can get a global shared lock
D. 4 5 no=> 000000000

if one txn has a global exclusive lock,
no one else can get a global exclusive lock

CAS CS 460 Boston University, Spring 2026 246

Processing Distributed Data
Using MapReduce

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

MapReduce
+ A framework for computation on large data sets that are
fragmented and replicated across a cluster of machines.

» spreads the computation across the machines,
letting them work in parallel

* tries to minimize the amount of data that is
transferred between machines

» The original version was Google's MapReduce system.

» An open-source version is part of the Hadoop project.
+ we'll use it as part of PS 4

CAS CS 460 Boston University, Spring 2026 247

CAS CS 460

Sample Problem: Totalling Customer Orders

» Acme Widgets is a company that sells only one type of product.

» Data set: a large collection of records about customer orders
» fragmented and replicated across a cluster of machines

» sample record:
('u1l23', 500, '03/22/17', 'active')

S N N

customerid amount ordered date ordered order status

» Desired computation: For each customer, compute
the total amount in that customer's active orders.

+ Inefficient approach: Ship all of the data to one machine
and compute the totals there.

Sample Problem: Totalling Customer Orders (cont.)

» MapReduce does better using "divide-and-conquer" approach.

+ splits the collection of records into subcollections
that are processed in parallel

» For each subcollection, a mapper task maps the records to
smaller key-value pairs — in this case, (cust_id, amount active).
('vl23', 500, '03/22/17', 'active') > ('ul23', 500)

('u456', 50, '02/10/17', 'done') > ('u456', 0)
('vl23', 150, '03/23/17', 'active') > ('ul23', 150)
('u4s6', 75, '03/28/17', 'active') > ('u456', 75)

* These smaller pairs are distributed by cust_id to other tasks
that again work in parallel.

* These reducer tasks combine the pairs for a given cust_id
to compute the per-customer totals:

('ul23', 500) . , ('U456', 0) ' '
('u123', 150))(123", 650) (rya567. 79) 3 ('u4s6’, 75)

Boston University, Spring 2026

248

Benefits of MapReduce

» Parallel processing reduces overall computation time.

» Less data is sent between machines.
» the mappers often operate on local data

* the key-value pairs sent to the reducers are
smaller than the original records

* an initial reduction can sometimes be done locally

» example: compute local subtotals for each customer,
then send those subtotals to the reducers

* It provides fault tolerance.
+ if a given task fails or is too slow, re-execute it

» The framework handles all of the hard/messy parts.

* The user can just focus on the problem being solved!

MapReduce In General: Mapping

» The system divides up the collection of input records,
and assigns each subcollection S; to a mapper task M;.

RO
5, (]
s ()]

» The mappers apply a map function to each record:

map(k, v): # treat record as a key-value pair
emit O or more new key-value pairs (k', v')

+ the resulting keys and values (the intermediate results)
can have different types than the original ones

+ the input and intermediate keys do not have to be unique

CAS CS 460 Boston University, Spring 2026 249

CAS CS 460

MapReduce In General: Reducing

The system partitions the intermediate results by key,
and assigns each range of keys to a reducer task R,.

Key-value pairs with the same key are grouped together:
(K, Vi), (K v'y), (K Vi) 2 (K, [V, Vi, Vi,)
 so that all values for a given key are processed together

The reducers apply a reduce function to each (key, value-list):

reduceCk', [Vv'y, Vi, V5, ...1):
emit 0 or more key-value pairs (k", v'")

« the types of the (k", v") can be different from the (k', v')

MapReduce In General: Combining (Optional)

In some cases, the intermediate results can be aggregated
locally using combiner tasks C,.

Often, the combiners use the same reduce function
as the reducers.

» produces partial results that can then be combined

This cuts down on the data transferred to the reducers.

Boston University, Spring 2026

250

Hadoop MapReduce Framework

* Implemented in Java

» It also includes other, non-Java options for writing
MapReduce applications.

* In PS 4, you'll write simple MapReduce applications in Java.

* To do so, you need to become familiar with some key
classes from the MapReduce API.

+ We'll also review some relevant Java concepts.

Classes and Interfaces for Keys and Values

Found in the org.apache.hadoop.io package

Types used for values must implement the writabTe interface.
* includes methods for efficiently serializing/writing the value

Types used for keys must implement writabTeComparable.

* in addition to the writeable methods, must also have
a compareTo () method that allows values to be compared

» needed to sort the keys and create key subranges

The following classes implement both interfaces:
o Intwritable — for 4-byte integers
» Longwritable — for long integers
o DoubTewritabTle — for floating-point numbers
» Text — for strings/text (encoded using UTF8)

CAS CS 460 Boston University, Spring 2026 251

Recall: Generic Classes

public class ArrayList<T> {
private T[] items;

public boolean add(T item) {
ks
b

» The header of a generic class includes one or more
type variables.

* in the above example: the variable T

» The type variables serve as placeholders for actual data types.

» They can be used as the types of:
* fields
* method parameters
» method return types

Recall: Generic Classes (cont.)

public class ArrayList<T> {
private T[] items;

public boolean add(T item) {
}
}

* When we create an instance of a generic class, we specify
types for the type variables:

ArrayList<Integer> vals = new ArrayList<Integer>(Q);
« vals will have an 1 tems field of type Integer[]
+ vals will have an add method that takes an Integer

» We can also do this when we create a subclass of a generic class:
public class IntList extends ArrayList<Integer> {

CAS CS 460 Boston University, Spring 2026 252

CAS CS 460

Mapper Class

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

. J . J
N N

type variables type variables

for the (key, value) for the (key, value)
pairs given to the pairs produced by
mapper the mapper

* the principal method:
void map(KEYIN key, VALUEIN value, Context context)

» To implement a mapper:
» extend this class with appropriate replacements
for the type variables; for example:
class MyMapper
extends Mapper<Object, Text, Text, Intwritable>
» override map(Q)

Reducer Class
pubHC class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

“ ~) - ~ J
type variables type variables

for the (key, value) for the (key, value)
pairs given to the pairs produced by
reducer the reducer

« the principal method:

void reduce(KEYIN key, Iterable<VALUEIN> values,
Context context)

* To implement a reducer:

+ extend this class with appropriate replacements
for the type variables

e override reduce()

Boston University, Spring 2026

253

CAS CS 460

Context Objects

« Both map() and reduce() are passed a Context object:
void map(KEYIN key, VALUEIN value, Context context)

void reduce(KEYIN key, Iterable<VALUEIN> values,
Context context)

» Allows Mappers and Reducers to communicate with the
MapReduce framework.

* Includes a write() method used to output (key, value) pairs:
void write(KEYOUT key, VALUEOUT value)

Example

class MyMapper extends Mapper<Object, Text,
Longwriteable, Intwritable>

Which of these is the correct header for the map method?

A. void map(Longwriteable key, Intwritable value,
Context context)

B. void map(Text key, Longwriteable value,
context context)

C. void map(object key, Intwriteable value,
Context context)

D. void map(Object key, Text value, Context context)

Boston University, Spring 2026

254

CAS CS 460

Example 1: Birth-Month Counter

» The data: text file(s) containing person records that look like this
id,name,dob,email

where dob is in the form yyyy-mm-dd

» The problem: Find the number of people born in each month.

Example 1: Birth-Month Counter (cont.)

« map should:
+ extract the month from the person's dob
+ emit a single key-value pair of the form (month string, 1)

111,Alan Turing,1912-06-23,al@aol.com > ("o6", D
234 ,Grace Hopper,1906-12-09,gmh@harvard.edu > ("12", 1)
444 ,Ada Lovelace,1815-12-10,ada@1800s.0org > ("12", 1)

567,Howard Aiken,1900-03-08,aiken@harvard.edu > ("03", 1)
777,3oan Clarke,1917-06-24,joan@bletchley.org > ("06", 1)
999,]. von Neumann,1903-12-28, jvn@princeton.edu~> ("12", 1)

» The intermediate results are distributed by key to the reducers.

- reduce should:
* add up the 1s for a given month
» emit a single key-value pair of the form (month string, total)

("06", [1, 11 > (106", 2)
("12", [1, 1, 11D > ("12", 3)
(03", [1) > ("03", 1)

Boston University, Spring 2026

255

CAS CS 460

Mapper for Example 1

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, Intwritable>

» For data obtained from text files, the Mapper's inputs
will be key-values pairs in which:

» value = a single line from one of the files (a Text value)
» key = the location of the line in the file (a Longwritable)
* however, we use the Object type for the key

because we ignore it, and thus we don't need any
Longwritable methods

» The map method will output pairs in which:
* key = a month string (use Text for it)
* value =1 (use Intwritable)

Mapper for Example 1 (cont.)

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, Intwritable>

{
public void map(Object key, Text value,
Context)
{
String record = value.toStringQ;
// code to extract month string goes here
.write(new Text(month),
new Intwritable(1));
h

Boston University, Spring 2026

256

CAS CS 460

Splitting a String

* The string class includes a method named sp1it().
* breaks a string into component strings

» takes a parameter indicating what delimiter should be
used when performing the split

» returns a String array containing the components

* Example:

String sentence = "How now brown cow?";
string[] words = sentence.split(" ");
System.out.printin(words[0]);
System.out.printin(words[3]);
System.out.println(words.Tength);

would output:

Processing an Input Record in map

void map(Object key, Text value, Context context)

* Recall: value is a Text object representing one record.
» for Example 1, it looks like:
111,Alan Turing,1912-06-23,al@aol.com

» To extract the month string:

« use the tostring() method to convert Text to String:

String Tine = value.toString(Q);

+ split Tine on the commas to get the fields:
string[] fields = line.split(",");

 similarly, split the date field on the hyphens to get its
components

» could we just split 1ine on the hyphens?

Boston University, Spring 2026

257

CAS CS 460

Reducer for Example 1

public static class MyMapper
extends Mapper<Object, Text, Text, Intwritable>
{

h
pubTic static class MyReducer
extends Reducer<Text, Intwritable,
Text, Longwritable>

pubTlic void reduce(Text key,
Iterable<Intwritable> values, Context context)
{

// code to add up the 1ist of 1ls goes here
context.write(key, new Longwritable(total));

* Use Longwritable to avoid overflow with large totals.

Processing the List of Values in reduce
void reduce(Text key, Iterable<Intwritable> values,
Context context)

» Use a for-each loop. In this case:
for (Intwritable val : values)

* More generally, if values is of type Iterable<T> :
for (T val : values)

» To extract the underlying value from most writable objects,
use the get () method:

int count = val.get(Q); // val 1is IntwWritable

* However, Text doesn't have a get() method.
* use tostring() instead (see earlier notes)

Boston University, Spring 2026

258

CAS CS 460

Reducer for Birth-Month Counter

pubTic class BirthMonthCounter {

pubTlic static class MyReducer
extends Reducer<Text, Intwritable,
Text, Longwritable>

pubTlic void reduce(Text key,
Iterable<Intwritable> values, Context context)

{
Tong total = O;
for (Intwritable val : values) {
total += val.get()
h
context.write(key, new Longwritable(total));

* Use Tong and Longwritable to avoid overflow.

Example 2: Month with the Most Birthdays

» The data: same as Example 1. Records of the form
id,name,dob,email

where dob is in the form yyyy-mm-dd

» The problem: Find the month with the most birthdays.

Boston University, Spring 2026

259

Example 2: Month with the Most Birthdays (cont.)

- map should behave as before:

111,ATan Turing,1912-06-23,al@aol.com > ("o06", D
234 ,Grace Hopper,1906-12-09,gmh@harvard.edu > ("12", 1
444 ,Ada Lovelace,1815-12-10,ada@1800s.0org > ("12", 1)

+ reduce needs to:
* add up the 1s for a given month

("o6", [1, 1D > (06", 2)
("12", [1, 1, 1) > ("12", 3)
(II03II, [1]) 9 (II03II, 1)
+ determine which month has the largest total
* but...

+ there can be multiple reducer tasks, each of which
handles one subset of the months
+ each reducer can only determine the largest month
in its subset
» the solution: a chain of two MapReduce jobs

Example 2: Chaining Jobs

+ First job = count birth months as we did in Example 1
* map: person record - (birth month, 1)
* reduce: (birth month, [1, 1, ...]) = (birth month, total)

» The outputs of the reducers from this first job are stored
in tab-delimited text files.
* in this case, each line of an output file has the form
"birth month\ ttotal"

CAS CS 460 Boston University, Spring 2026 260

CAS CS 460

Example 2: Chaining Jobs (cont.)

» The second job processes the results of the first job,
and sends them all to a single reducer.

* map: reads from text file(s) created by the first job
+ like all mappers that read from text files:
* input key = a line number that we ignore
* input value = one record from the file
¢ (line num, "birth month\ ttotal") = (c, "birth month\ ttotal")

» output key = an arbitrary constant c,
used for all of the k-v pairs that the mapper emits!

+ output value = an unchanged record from the 1st job!

(1inenuml, "06\t2") > ("c", "06\t2")
(Tinenum2, "12\t3") > ("c", "12\t3")
(1inenum3, "03\tl1") > (Mc", "03\tl")

+ with only one output key, there is only one reducer!

* reduce: called once, finds the month with the most birthdays
("c", ["06\t2", "12\t3", "03\t1"]) > ("12", 3)

Example 2: Chaining Jobs (cont.)
public class MostBirthdaysmonth {

public static class MyMapperl extends... {

}

public static class MyReducerl extends... {
}

public static class MyMapper2 extends... {

}

public static class MyReducer2 extends... {

) -

Boston University, Spring 2026

261

Job Objects

« We use a Job object to:
» provide information about our MapReduce job, such as:
» the name of the Mapper class
+ the name of the Reducer class
+ the types of values produced by the job
« the format of the input to the job
» execute the job

+ We'll give you a template for the necessary method calls.

Configuring and Running the Job

public class BirthMonthCounter {
pubTic static class MyMapper extends... {

public static class MyReducer extends... {
public static void main(String[] args)

throws Exception {
// code to configure and run the job

CAS CS 460 Boston University, Spring 2026 262

CAS CS 460

Configuring and Running the Job

public static void main(String[] args)
throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "birth month");
job.setJarByClass(BirthMonthCounter.class);
job.setMappercClass (MyMapper.class);
job.setReducerclass(MyReducer.class);

// types for mapper's output keys and values
job.setMapoutputKkeyClass(Text.class);
job.setMapoOutputvalueClass(Intwritable.class);

// types for reducer's output keys and values
job.setOutputkeyClass(Text.class);
job.setoutputvalueClass(LongwWritable.class);

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setoutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

Configuring and Running a Chain of Jobs

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job jobl = Job.getInstance(conf, "birth month");
jobl.setJarByClass(MostBirthdaysMonth.class);
jobl.setMappercClass(MyMapperl.class);
jobl.setReducerclass(MyReducerl.class);

// set types for outputs of first mapper/reducer here

FileInputFormat.addInputPath(jobl, new Path(args[0]));
FileOutputFormat.setOutputPath(jobl, new Path(args[1]));
jobl.waitForCompletion(true);

Job job2 = Job.getInstance(conf, "max month");
job2.setJarByClass(MostBirthdaysMonth.class);
job2.setMapperclass(MyMapper2.class);
job2.setReducerclass(MyReducer2.class);

// set types for outputs of second mapper/reducer here

FileInputFormat.addInputPath(job2, new Path(args[1]));
FileOutputFormat.setoutputPath(job2, new Path(args[2]));
job2.waitForCompletion(true);

Boston University, Spring 2026

263

NoSQL Databases

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

The Rise of NoSQL

» Beginning in the early 2000s, web-based applications
increasingly needed to deal with massive amounts of:

» data
* traffic / queries

» Scalability is crucial.
* load can increase rapidly and unpredictably

» Large servers are expensive and can only grow so large.

» Solution: use clusters of small commodity machines
* use both fragmentation/sharding and replication
» cheaper
» greater overall reliability

CAS CS 460 Boston University, Spring 2026 264

CAS CS 460

The Rise of NoSQL (cont.)

» Problem: Relational DBMSs do not scale well to large clusters.

* Google and Amazon each developed their own alternative
approaches to data management on clusters.

» Google: BigTable
* Amazon: DynamoDB

» The papers that Google and Amazon published about their
efforts got others interested in developing similar DBMSs.

= noSQL

What Does NoSQL Mean?

Not well defined.

Typical characteristics of NoSQL DBMSs:
» don't use SQL / the relational model
 designed for use on clusters
 support for sharding/fragmentation and replication
» schema-less or flexible schema

* One good overview:

Sadalage and Fowler, NoSQL Distilled
(Addison-Wesley, 2013).

Boston University, Spring 2026

265

Flavors of NoSQL

» Various taxonomies have been proposed

» The main classes of NoSQL databases are:
* key-value stores
* document databases
» column-family (aka big-table) stores
» graph databases

« We’'ll limit ourselves to the first two classes.

Key-Value Stores
+ We've already worked with one of these: Berkeley DB

+ Simple data model: key/value pairs

» The keys are opaque.
» the DBMS does not attempt to interpret them

* Queries are limited to query by key.
» get/put/update/delete a key/value pair
* iterate over key/value pairs

CAS CS 460 Boston University, Spring 2026 266

Document Databases

» Also store key/value pairs

» Unlike key-value stores, the value is not opaque.
* itis a document containing semistructured data
* it can be examined and used by the DBMS

e Queries:
» can be based on the key (as in key/value stores)
* more often, are based on the contents of the document

Example Document Database: MongoDB
* Mongo (from humongous)
+ Key features include:
* replication for high availability

+ auto-sharding for scalability
» documents are expressed using JSON/BSON

* Related documents are grouped together into collections.
+ what does this remind you of?

(’ mongoDB

CAS CS 460 Boston University, Spring 2026 267

CAS CS 460

JSON

JSON is an alternative data model for semistructured data.

» JavaScript Object Notation

Built on two key structures:

* an object, which is a sequence of fields (name:value pairs)

{ id: "1000",
name: "Sanders Theatre",
capacity: 1000 }

* an array of values

["123-456-7890", "222-222-2222", "333-333-3333"]

A value can be:
* an atomic value: string, number, true, false, null
* an object
* an array

Example: JSON Obiject for a Person

firstName: "John",
TastName: "smith",
age: 25,
address: {
streetAddress: "21 2nd Street",
city: "New York",
state: "NY",
postalCode: "10021"
1,
phoneNumbers: [
{ type: "home",
number: "212-555-1234"
1,
{ type: "mobile",
number: "646-555-4567"
}

Boston University, Spring 2026

268

BSON
MongoDB actually uses BSON.

* a binary representation of JSON
* BSON = marshalled JSON!

BSON includes some additional types that are not part of JSON.
* in particular, a type called ObjectID for unique id values.

» Each MongoDB document is a BSON obiject.

The _id Field

+ Every MongoDB document must have an _id field.
* its value must be unique within the collection
* acts as the primary key of the collection
+ itis the key in the key/value pair

* If you create a document without an _id field:
* MongoDB adds the field for you
+ assigns it a unique BSON ObjectID

CAS CS 460 Boston University, Spring 2026 269

CAS CS 460

MongoDB Terminology

relational term MongoDB equivalent

database database

table collection

row document

attributes fields (name:value pairs)

primary key the _id field, which is the key
associated with the document

Documents in a given collection typically have a similar purpose.

However, no schema is enforced.

 different documents in the same collection
can have different fields

Data Modeling in MongoDB

Need to determine how to map

entities and relationships - collections of documents

Typically give each type of entity its own collection.

* e.g., a collection of movie documents

Need to figure out how to capture the relationships.

Boston University, Spring 2026

270

Capturing Relationships in MongoDB

» Two options:
1. store references to other documents using their _id values

contact document

{
_id: <ObjectId2>,
Luser_id: <ObjectIdl>,
" phone: "123-456-7890",
user document - : " "
- email: "xyz@example.com

- 1

. . x
_id: <ObjectIdl>, _
username: ”123xyz“'“:_ access document

}

_id: <ObjectId3>,
user_id: <ObjectIdi1>,
level: 5,

group: "dev”

}

source: docs.mongodb.org/manual/core/ data-model-design

* where have we seen this before?

Capturing Relationships in MongoDB (cont.)

» Two options (cont.):
2. embed documents within other documents
{

_id: <ObjectIdil>,
username: "123xyz",

contact: { \
phone; ”'| 23—456—789@“ , > Embedded sub-
email: "xyz@example.com” document

’

access: {
level: 5, Embedded sub
group: "dev”

}

document

source: docs.mongodb.org/manual/core/ data-model-design

« where have we seen this before?

CAS CS 460 Boston University, Spring 2026 271

Factors Relevant to Data Modeling in MongoDB

» Typically, a single query only accesses a single collection
of documents.

* newer versions allow joins, but they are inefficient
- group together data that would otherwise need to be joined

+ Atomicity is only provided for operations on a single document
(and its embedded subdocuments).

- group together data that needs to be updated as part of
single logical operation (e.g., a balance transfer!)

- group together data items A and B if A's current value
affects whether/how you update B

Factors Relevant to Data Modeling (cont.)
+ If an update makes a document bigger than the space
allocated for it on disk, it may need to be relocated.
+ slows down the update, and can cause disk fragmentation

* MongoDB adds padding to documents to reduce the
need for relocation

- use references if embedded documents could lead to
significant growth in the size of the document over time

CAS CS 460 Boston University, Spring 2026 272

Data Model for the Movie Database

Recall our movie database from PS 1.

Person(id, name, dob, pob)

Movie(id, name, year, rating, runtime, genre, earnings_rank)
Oscar(movie_id, person_id, type, year)

Actor(actor_id, movie_id)

Director(director_id, movie_id)

Three types of entities: movies, people, oscars

Need to decide how we should capture the relationships
* between movies and actors
* between movies and directors
» between Oscars and the associated people and movies

Data Model for the Movie Database (cont.)

Assumptions about the relationships:
» there are only one or two directors per movie
+ there are approx. five actors associated with each movie
» the number of people associated with a given movie is fixed

» each Oscar has exactly one associated movie
and at most one associated person

Assumptions about the queries:

* Queries that involve both movies and people usually involve
only the names of the people, not their other info.

common: Who directed Avatar?
common: Which movies did Tom Hanks act in?
less common: Which movies have actors from Boston?

* Queries that involve both Oscars and other entities usually
involve only the name(s) of the person/movie.

CAS CS 460 Boston University, Spring 2026 273

CAS CS 460

Data Model for the Movie Database (cont.)

Given our assumptions, we can take a hybrid approach
that includes both references and embedding.

Use three collections: movies, people, oscars

Use references as follows:

* in movie documents, include ids of the actors and directors
* in oscar documents, include ids of the person and movie

Whenever we refer to a person or movie, we also
embed the associated entity's name.

+ allows us to satisfy common queries like Who acted in...?

Data Model for the Movie Database (cont.)

In addition, add two boolean fields to person documents:

* hasActed, hasDirected
» only include when true

 allows us to find all actors/directors that meet criteria
involving their pob/dob

Note that most per-entity state appears only once,
in the main document for that entity.

The only duplication is of people/movie names and ids.

* reducing duplication also reduces the possibility of
inconsistencies in the database

Our design also ensures that documents won’t grow
significantly over time.

Boston University, Spring 2026

274

Sample Movie Document

{ _id: "0499549",
name: "Avatar",
year: 2009,
rating: "PG-13",
runtime: 162,
genre: "AvYs",
earnings_rank: 1,
actors: [{ id: "0000244",
hame: "Sigourney Weaver" },
{ id: "0002332",
hame: "Stephen Lang" },
{ id: "0735442",
name: "Michelle Rodriguez" },
{ id: "0757855",
name: "Zoe Saldana" },
{ id: "0941777",
name: "Sam wWorthington" }],
directors: [{ id: "0000116",
name: "James Cameron" }] }

Sample Person and Oscar Documents

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

{ _id: object1d("528bf38ce6d3df97b49a0569"),
year: 2013,
type: "BEST-ACTOR",
person: { id: "0000358",
hame: "Daniel Day-Lewis" },
movie: { id: "0443272",
hame: "Lincoln" }

CAS CS 460 Boston University, Spring 2026 275

Queries in MongoDB

» Each query can only access a single collection of documents.

+ Use a method called db.colTlection.find()

db.co7lection.find(<selection>, <projection>)

« collection is the name of the collection

« <selection> is an optional document that specifies
one or more selection criteria
 omitting it (i.e., using an empty document {})
selects all documents in the collection

« <projection> is an optional document that specifies
which fields should be returned

+ omitting it gets all fields in the document

* Example: find the names of all R-rated movies:
db.movies.find({ rating: "R"™ }, { name: 1 })

Comparison with SQL

+ Example: find the names and runtimes of all R-rated movies
that were released in 2000.

« SQL:
SELECT name, runtime

FROM Movie
WHERE rating = 'R' and year = 2000;

» MongoDB:

db.movies.find({ rating: "R", year: 2000 },
{ name: 1, runtime: 1 })

CAS CS 460 Boston University, Spring 2026 276

Query Selection Criteria

db.co7lection.find(<selection>, <projection>)

» To find documents that match a set of field values,
use a selection document consisting of those name/value pairs
(see previous example).

» Operators for other types of comparisons:

MongoDB SQL equivalent
$gt, $gte >, >=

$1t, $1te <, <=

$ne =

+ Example: find all movies with an earnings rank <= 200
db.movies.find({ earnings_rank: { $1te: 200 }3})

» Note that the operator is the field name of a subdocument.

Query Selection Criteria (cont.)

* Logical operators: $and, $or, $not, $nor
+ take an array of selection subdocuments
» example: find all movies rated R or PG-13:
db.movies.find({ $or: [{ rating: "R" },
{ rating: "PG-13" }

]
i)

» example: find all movies except those rated R or PG-13 :

db.movies.find({ $nor: [{ rating: "R" },
{ rating: "PG-13" }
]
D)

CAS CS 460 Boston University, Spring 2026 277

Query Selection Criteria (cont.)

* To test for set-membership or lack thereof: $in, $nin
» example: find all movies rated R or PG-13:

db.movies.find({ rating: { $in: ["R", "PG-13"] }
b

» example: find all movies except those rated R or PG-13 :

db.movies.find({ rating: { $nin: ["R", "PG-13"] }
b

» To test for the presence/absence of a field: $exists
+ example: find all movies with an earnings rank:
db.movies.find({ earnings_rank: { $exists: true }})
+ example: find all movies without an earnings rank:

db.movies.find({ earnings_rank: { $exists: false }})

Logical AND
* You get an implicit logical AND by simply specifying a list
of fields.
* recall our previous example:
db.movies.find({ rating: "R", year: 2000 })

+ example: find all R-rated movies shorter than 90 minutes:

db.movies.find({ rating: "R",
runtime: { $1t: 90 }
19)

CAS CS 460 Boston University, Spring 2026 278

CAS CS 460

Logical AND (cont.)

+ $and is needed if the subconditions involve the same field
+ can't have duplicate field names in a given document

» Example: find all Oscars given in the 1990s.
+ the following would not work:

db.oscars.find({ year: { $gte: 1990 },
year: { $1te: 1999 }
D)

 do this instead:

db.oscars.find({ $and: [{ year: { $gte: 1990 } 1},
{ year: { $1te: 1999 } 1}]
19)

Pattern Matching

« Use a pattern surrounded with //
» example: find all people born in Boston
db.people.find({ pob: /Boston,/ })

+ Can use a * wildcard character to indicate 0 or more characters.
* equivalent to % in SQL

* You get a * wildcard by default on either end of the pattern.
* example: /Boston,/ isthesameas /*Boston,*/

* use: A to match the beginning of the value
$ to match the end of the value

» /Boston,/ would match "South Boston, Mass"

» /ABoston,/ would not, because the A indicates
"Boston" must be at the start of the value

Boston University, Spring 2026

279

Query Practice Problem

» Recall our sample person document:

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

» How could we find all directors born in the UK? (Select all that
apply.)

A. db.people.find({ pob: /UK$/, hasDirected: true })

B. db.people.find({ pob: /uk$/,
hasDirected: { $exists: true }})

C. db.people.find({ pob: /uk/,
hasDirected: { $exists: true }})

D. db.people.find({ $pob: /UK/, $hasDirected: true })

Queries on Arrays/Subdocuments
» If a field has an array type
db.collection.find({ arrayField: val })

finds all documents in which val is at least one of the elements
in the array associated with arrayField

» Example: suppose that we stored a movie's genres as an array:
{ _id: "0317219", name: "cars", year: 2006,
rating: "G", runtime: 124, earnings_rank: 80,
genre: [anl, llcll, llFll]’ .. '}
+ to find all animated movies — ones with a genre of "N":
db.movies.find({ genre: "N"})

+ Given that we actually store the genres as a single string
(e.g., "NCF"), how would we find animated movies?

CAS CS 460 Boston University, Spring 2026 280

CAS CS 460

Queries on Arrays/Subdocuments (cont.)

Use dot notation to access fields within a subdocument,
or within an array of subdocuments:

+ example: find all Oscars won by the movie Gladiator:
> db.oscars.find({ "movie.name": "Gladiator" })

{ _id: <ObjectiDl>, year: 2001,
type: "BEST-PICTURE",
movie: { id: "0172495",
name: "Gladiator" }}
{ _id: <ObjectiD2>, year: 2001,
type: "BEST-ACTOR",
movie: { id: "0172495",
name: "Gladiator" },
person: { id: "0000128",
name: "Russell Crowe" }}

* Note: When using dot notation, the field name must be

surrounded by quotes.

Queries on Arrays/Subdocuments (cont.)

» example: find all movies in which Tom Hanks has acted:
> db.movies.find({ "actors.name": "Tom Hanks"})

{ _id: "0107818", name: "Philadelphia", year: 1993,
rating: "PG-13", runtime: 125, genre: "D"
actors: [{ id: "0000158",
name: "Tom Hanks" },
{ id: "0000243",
name: "Denzel washington" },

]’...
directors: [{ id: "0001129",
name: "Jonathan Demme" }]

e o

_id: "0109830", name: "Forrest Gump", year: 1994,
rating: "PG-13", runtime: 142, genre: "CD"
actors: [{ id: "0000158",

name: "Tom Hanks" },

Boston University, Spring 2026

281

Projections

db.collection.find(<selection>, <projection>)

» The projection document is a list of f7eldname:value pairs:
» a value of 1 indicates the field should be included
» a value of 0 indicates the field should be excluded

* Recall our previous example:

db.movies.find({ rating: "R", year: 2000 },
{ name: 1, runtime: 1 })

» Example: find all info. about R-rated movies except their genres:
db.movies.find({ rating: "R" }, { genre: 0 })

Projections (cont.)

The _id field is returned unless you explicitly exclude it.

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1 })

{ _id: "1411697", name: "The Hangover Part II1" }

{ _id: "1478338", name: "Bridesmaids" }

{ _id: "1532503", name: "Beginners" }

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1, _id: 0 })

{ name: "The Hangover Part I1" }

{ name: "Bridesmaids" }

{ name: "Beginners" }

A given projection should either have:
+ all values of 1: specifying the fields to include
+ all values of 0: specifying the fields to exclude
* one exception: specify fields to include, and exclude _id

CAS CS 460 Boston University, Spring 2026 282

Iterating Over the Results of a Query

« db.col7ection.find() returns a cursor that can be used
to iterate over the results of a query

» In the MongoDB shell, if you don't assign the cursor to a variable,
it will automatically be used to print up to 20 results.

 if more than 20, use the command it
to continue the iteration

Aggregation

* Recall the aggregate operators in SQL: AVG(), sum(), etc.

» More generally, aggregation involves computing a result
from a collection of data.

* MongoDB supports two approaches to aggregation:
» single-purpose aggregation methods
* an aggregation pipeline

CAS CS 460 Boston University, Spring 2026 283

Single-Purpose Aggregation Methods
» db.col7ection.count(<selection>)

* returns the number of documents in the collection
that satisfy the specified selection document

+ ex: how may R-rated movies are shorter than 90 minutes?

db.movies.count({ rating: "R",
runtime: { $1t: 90 }})

« db.col7ection.distinct(<field>, <selection>)

 returns an array with the distinct values of the specified field
in documents that satisfy the specified selection document

+ if omit the selection, get all distinct values of that field

» ex: which actors have been in one or more of the
top 10 grossing movies?

db.movies.distinct("actors.name",
{ earnings_rank: { $1te: 10 }}
)

Aggregation Pipeline

* A more general-purpose and flexible approach to aggregation
is to use a pipeline of aggregation operations.

» Each stage of the pipeline:
« takes a set of documents as input

» applies a pipeline operator to those documents,
which transforms / filters / aggregates them in some way

» produces a new set of documents as output

* db.collection.aggregate(
{ <pipeline-opl>: <pipeline-expressionli> },
{ <pipeline-op2>: <pipeline-expressionZ> },

{ <pipeline-opN>: <pipeline-expressionN> })

full % op1 % op2 opN, final

collection results results results

CAS CS 460 Boston University, Spring 2026 284

CAS CS 460

Aggregation Pipeline Example

db.orders.aggregate(

{ $match: { status: "A" } },

{ $group: {_id: "$cust_id", total: { $sum: "$amount"} } }
)

note: use $ before a field name to obtain its value

{
cust_id: "A123",
amount: 500,
3 status A { ‘ i i
cu-st,l.d.: : A123", Results
amount: 509,
{ status: "A"
cust_id: "A123", 3} {
amount: 250, -id: "A123%,
status: "A" total: 75@
} ()
cust_id: "A123",
— = amount: 25@, — -
{ $match status: "A” $group
cust_id: "B212",) {
amount: 200, _id: "B212",
status: "A" total: 200
} cust_id: "B212", !
amount: 20@
{ status: "A"
cust_id: "A123", 3
amount: 300,
status: "D"
}
orders source: docs.mongodb.org/manual/core/aggregation-pipeline

Pipeline Operators

* $project —include, exclude, rename, or create fields
« Example of a single-stage pipeline using $project:
db.people.aggregate(
{ $project: {
name: 1,
whereBorn: "$pob",
yearBorn: { $substr: ["$dob", 0, 4] }
}
b

« for each document in the people collection, extracts:
- name (1 =include, as in earlier projection documents)
» pob, which is renamed whereBorn

» a new field called yearBorn, which is derived
from the existing pob values (yyyy-m-d - yyyy)

 the id field, because we didn't exclude it
» note: use $ before a field name to obtain its value

Boston University, Spring 2026

285

Pipeline Operators (cont.)

+ $group — like GROUP BY in SQL
$group: { _id: <field to group by>,
<computed-field-1>,
., <computed-field-nN> }
» example: compute the number of movies with each rating
db.movies.aggregate(
{ $group: { _id: "$rating",
numMovies: { $sum: 1 }

} 1O
{ $sum: 1 } isequivalentto COUNT(*) in SQL

» for each document in a given subgroup,
adds 1 to that subgroup's value of the computed field

* can also sum values of a specific field (see earlier slide)
» $sum is one example of an accumulator
* others include: $min, $max, $avg, $addToSet

Pipeline Operators (cont.)

« S$match — selects documents according to some criteria
$match: <selection>

where <se7ection>has identical syntax to the
selection documents used by db. co77ection.find()

* S$unwind — takes a document with an array of values and
creates a separate document for each value in the array.

* may be needed to allow for subsequent grouping
» see the next example

CAS CS 460 Boston University, Spring 2026 286

CAS CS 460

Example of a Three-Stage Pipeline

db.movies.aggregate(
{ $match: { year: 2013 }},
{ $project: { _id: 0,
movie: "$name",
actor: "$actors.name" } 1},
{ $unwind: "S$actor" }

* What does each stage do?
* $match: select movies released in 2013
» $project: for each such movie, create a document with:
* no _1id field
« the name field of the movie, but renamed movie
» the names of the actors (an array), as a field named actor

» $unwind: turn each movie's document into a set of
documents, one for each actor in the array of actors

Example of a Three-Stage Pipeline: Stage 1

db.movies.aggregate(
{ $match: { year: 2013 }}

_id: "1951264",
name: "The Hunger Games: Catching Fire",
year: 2013,
actors: [
{ id: "2225369", name: "Jennifer Lawrence" },
{ id: "2955013", name: "Liam Hemsworth" },
{ id: "4425051", name: "Jack Quaid" },
{ id: "1193262", name: "Taylor Sst. Clair" },
{ id: "0480808", name: "sandra Ellis Lafferty" } 1,
"directors": ...

_id: "1300854",
name: "Iron Man 3",
year: 2013,
actors: [
{ id: "0000375", name: "Robert Dowpey Jr." 1

Boston University, Spring 2026

287

CAS CS 460

Example of a Three-Stage Pipeline: Stage 2

db.movies.aggregate(
{ $match: { year: 2013 }},
{ $project: { _id: 0,
movie: "$name",
actor: "$actors.name" } }

{

}
{

movie: "The Hunger Games: Catching Fire",
actor: ["Jennifer Lawrence",

"Liam Hemsworth",

"Jack Quaid",

"Taylor St. Clair",

"sandra Ellis Lafferty"]

movie: "Iron mMan 3",

actor: ["Robert Downey Jir.",
"Gwyneth Paltrow",
"Don Cheadle",
"Guy Pearce",
"Rebecca Hall"]

}
Example of a Three-Stage Pipeline: Stage 3
db.movies.aggregate(
{ $match: { year: 2013 }},
{ $project: { _id: 0,
movie: "$name",
actor: "$actors.name" } 1},
{ $unwind: "S$actor" }

{ t -
movie: "The Hunger Games: Catching Fire", movie: :The Hunger Games:"Catchmg Fire",
actor: ["Jennifer Lawrence", actor: "Jennifer Lawrence

"Liam Hemsworth", ‘ 3

"Jack qQuaid", { .]]
"raylor st. clair", movie: "T}_le Hunger Games: Catching Fire",
"sandra E11is Lafferty"]) actor: "Liam Hemsworth"

3

{ {
movie: "Iron Man 3", movie: "The Hunger Games: Catching Fire",
actor: ["Robert Downey Jr.", actor: “"lack qQuaid”

"Gwyneth Paltrow", 3
"Don Cheadle", { X i X
"Guy Pearce", movie: "The Hunger Games: Catching Fire",
"Rebecca Hall"] actor: "Taylor st. clair"
} 3
e {
movie: "The Hunger Games: Catching Fire",

actor: "sandra E11is Lafferty"

Boston University, Spring 2026

288

CAS CS 460

Another Example: What does each stage do?

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } },
{ $group: { _id: "$year", count: { $sum: 1 } } },
{ $match: { count: { $gt: 6 } } },
{ $project: { _id: 0, year: "$_id",
num_awards: "$count" } })
+ first $match: select Oscars awarded in 1980 or later
» $group: take the Oscar docs selected by $match and:
 create subgroups based on year (as specified by _id field)

+ for each subgroup, create a new doc with year as _id and
a count field with the num. of Oscars from that year

» second $match: select docs for years with more than 6 Oscars
» $project: for each such year, create a document with:

* no _1id field

* the _1id field produced by $group, but renamed year

* the count field produced by $group, renamed num_awards

More on Computing Aggregates

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } 1},
{ $group: { _id: "$year",
count: { $sum: 1 } } 1},
{ $match: { count: { $gt: 6 } } 1},
{ $project: { _id: 0,
year: "$_id",
num_awards: "$count" } })

» The $group stage in the prior query computed a separate
count for each of several subgroups.

» This is comparable to using an aggregate function with
GROUP BY in SQL.

Boston University, Spring 2026

289

CAS CS 460

More on Computing Aggregates (cont.)

What if we just want to compute a single count, average, etc.?
» example: find the average runtime of all R-rated movies.

In SQL, we would do something like this (with no GROUP BY):

SELECT AVG(runtime)
FROM Movie
WHERE rating = 'R';

In MongoDB, we still need a $group stage, but we group on
null in order to create a single group:

db.movies.aggregate(
{ $match: { rating: "R" } },
{ $group: { _id: null,
avg_runtime: { $avg: "S$runtime" }} 1},
{ $project: { _id: 0, avg_runtime: 1 } }

Two Additional Pipeline Operators

$sort — sorts documents according to one of the fields
{ $sort: { fieldi_to_sort_on: sort_orderl,
field?_to_sort_on: sort_order?2, .} }
+ for sort_order, use 1 for ascending
-1 for descending

$714imit — include only the first n documents in a set of results
{ $1imit: n}

Example: Find the name and runtime of the movie with the
longest runtime:

db.movies.aggregate({ $sort: { runtime: -1 } 1},
{ $Timit: 1 },
{ $project: { _id: 0,
name: 1,
runtime: 1 } })

* note: if 2 or more movies are tied, will only get one of them

Boston University, Spring 2026

290

CAS CS 460

gV b

Sample documents from our three collections...

{ _id: "0499549", name: "Avatar", year: 2009, rating: "PG-13",
runtime: 162, genre: "AVYS", earnings_rank: 4,
actors: [{ id: "0000244", name: "Sigourney weaver" },
{ id: "0757855", name: "Zoe Saldana" }, ... 1,
directors: [{ id: "0000116", name: "James Cameron" }] }

_id: "0000059", name: "Laurence Olivier", dob: "1907-5-22",
eoﬁ\e pob: "Dorking, Surrey, England, UK",

\ hasActed: true, hasDirected: true }

{ _id: objectId("528bf38ce6d3df97b49a0569"),
year: 2013, type: "BEST-ACTOR",
czfs person: { id: "0000358", name: "Daniel Day-Lewis" },

S
& movie: { id: "0443272", name: "Lincoln" } }

Practice Query

{ _id: "0499549", name: "Avatar", year: 2009, rating: "PG-13",
runtime: 162, genre: "AVYS", earnings_rank: 4,
actors: [{ id: "0000244", name: "Sigourney Weaver" },
{ id: "0757855", name: "Zzoe Saldana" }, ... 1,
directors: [{ id: "0000116", name: "James Cameron" }] }

gV -

_id: "0000059", name: "Laurence Olivier", dob: "1907-5-22",
306\6 pob: "Dorking, Surrey, England, UK",
° hasActed: true, hasDirected: true }

{ _id: object1d("528bf38ce6d3df97b49a0569"),
year: 2013, type: "BEST-ACTOR",
Scafs person: { id: "0000358", name: "Daniel Day-Lewis" },
© movie: { id: "0443272", name: "Lincoln" } }

Query: Find the names of people who have won Best Director more than
once, and how many times they've won.

db. .aggregate({ $match: },
{ $group: { _id: ,
num_wins: 1,
{ $match: 1,

{ $project: { _id: 0, name: |
num_wins: 1 } })

Boston University, Spring 2026

291

Extra Practice Writing Queries

1) Find the names of all people in the database who acted in
Avatar.
« SQL:
SELECT P.name
FROM Person P, Actor A, Movie M
WHERE P.id = A.actor_id
AND M.id = A.movie_id
AND M.name = 'Avatar';

* MongoDB:

Extra Practice Writing Queries (cont.)

2) How many people in the database who were born in California
have won an Oscar?
+ SQL:
SELECT COUNT(DISTINCT P.1id)
FROM Person P, Oscar O
WHERE P.id = 0.person_id
AND P.pob LIKE '%,%California%';

» Can't easily answer this question using our MongoDB
version of the database. Why not?

CAS CS 460 Boston University, Spring 2026 292

Recovery and Logging

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Review: ACID Properties

» A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it completes, its changes survive failures

+ We’ll now look at how the DBMS guarantees atomicity
and durability.

* ensured by the subsystem responsible for recovery

CAS CS 460 Boston University, Spring 2026 293

CAS CS 460

Caching and Reads

* When a database page is read from disk, memory
it is stored in a region of memory known cache
(0123, $500)
as the cache. { (4567, $125)

If a transaction needs an item whose
page is already in the cache, it can
access it without any disk 1/0.

(0123, $500)
+ improving performance! (4567, $125)

A

Caching and Writes

When a page is updated, the changes are [memory

initially made to the in-memory / cached cache $750
) (0123, 5566)
version of the page. { (4567, $125)

» don’t go to disk right away —

improving performance!

An updated page goes to disk when it’s either: “| (0123, $500)
* evicted to make room for other pages (4567, §125)

* forced to disk by the DBMS

It's possible for the DBMS to pin a page in memory,
to ensure it isn’t evicted until an appropriate time.

If a crash occurs, updates to a cached page may not have
made it to disk before the crash.

Boston University, Spring 2026

294

What Is Recovery?

* Recovery is performed after:
» a crash of the DBMS
 other non-catastrophic failures (e.g., a reboot)
* (for catastrophic failures, need an archive or replication)

* It makes everything right again.

» allows the rest of the DBMS to be built as if failures
don’t occur

"the scariest code you'll ever write" (Margo Seltzer)
* it has to work
* it's rarely executed
* it can be difficult to test

What Is Recovery? (cont.)

* During recovery, the DBMS takes the steps needed to:
» redo changes made by any committed txn,
if there's a chance the changes didn’t make it to disk
=> durability: the txn’s changes are still there after the crash
=» atomicity: all of its changes take effect
* undo changes made by any txn that didn’t commit,
if there's a chance the changes made it to disk
=>» atomicity: none of its changes take effect
» also used when a transaction is rolled back

In order for recovery to work, need to maintain enough state
about txns to be able to redo or undo them.

CAS CS 460 Boston University, Spring 2026 295

CAS CS 460

Logging

* The log is afile that stores the info. needed for recovery.

¢ |t contains: LSN | record contents
100 |txn: 1; BEGIN
150 | txn: 1; item: D1; old: 3000; new: 2500
225 | txn: 1; item: D2; old: 1000; new: 1500
350 |txn: 2; BEGIN
400 | txn: 2; item: D3; old: 7200; new: 6780
470 | txn: 1; item: D1; old: 2500; new: 2750
1
2
2

* update records,
each of which
summarizes a write

 records for transaction
begin and commit

550 |txn: 1; COMMIT
It does not record reads. 585 | txn: 2; item: D2; old: 1500; new: 1300

+ don't affect the state 675 | txn: 2; item: D3; old: 6780; new: 6760
of the database

» aren’t relevant to recovery

* The log is append-only: records are added at the end,
and blocks of the log file are written to disk sequentially.

* more efficient than non-sequential writes to the database files

Write-Ahead Logging (WAL)

» Both updated database pages and log records are cached.
+ It's important that they go to disk in a specific order.

+ Example of what can go wrong:

read balancel
write(balancel - 500)
read balance2
write(balance2 + 500)
CRASH

+ assume that:

« write(balancel - 500) made it to disk

« write(balance2 + 500) didn't make it to disk

* neither of the corresponding log records made it to disk
+ the database is in an inconsistent state

» without the log records, the recovery system can't restore it

Boston University, Spring 2026 296

CAS CS 460

Write-Ahead Logging (WAL) (cont.)

» The write-ahead logging (WAL) policy:

before a modified database page is written to disk,
all update log records describing changes on that page
must be forced to disk

+ the log records are "written ahead" of the database page

» This ensures that the recovery system can restore the database

to a consistent state.

Undo-Redo Logging

Update log records must include both the old and new values
of the changed data element.

Example log after a crash: TSN | record contents
» the database could be in [100 |txn: 1; BEGIN
an inconsistent state 150 | txn: 1; item: D1; old: 3000; new: 2500
. Why? 225 | txn: 1; item: D2; old: 1000; new: 1500
some of T1’s changes 350 | txn: 2; BEGIN
may not have made it 400 | txn: 2; item: D3; old: 7200; new: 6780
to disk. 470 | txn: 1; item: D1; old: 2500; new: 2750
need to redo 500 | txn: 1; item: D2; old: 1500; new: 2100
» some of T2’s changes 550 |txn: 1; COMMIT
may have made it to 585 | txn: 2; item: D2; old: 2100; new: 1300
disk. 675 | txn: 2; item: D3; old: 6780; new: 6760

need to undo

Boston University, Spring 2026

297

CAS CS 460

Undo-Redo Logging (cont.)

To ensure that it can undo/redo txns as needed,
undo-redo logging follows the WAL policy.

In addition, it does the following when a transaction commits:

1. writes the commit log record to the in-memory log buffer

2. forces to disk all dirty log records
(dirty = not yet written todisk)

It does not force the dirty database pages to disk.

At recovery, it performs two passes:
« first, a backward pass to undo uncommitted transactions
 then, a forward pass to redo committed transactions

Recovery Using Undo-Redo Logging

Backward pass: begin at the last log record and scan backward

« for each commit record, add the txn to a commit list

» for each update by a txn not on the commit list,
undo the update (restoring the old value)

« for now, we skip:
» updates by txns that are on the commit list
+ all begin records

Forward pass:

+ for each update by a txn that is on the commit list,
redo the update (writing the new value)

 skip updates by txns that are not on the commit list,
because they were handled on the backward pass

* skip other records as well

Boston University, Spring 2026

298

CAS CS 460

Recovery Using Undo-Redo Logging (cont.)

* Here’s how it would work on our earlier example:

LSN | record contents backward pass

forward pass

100 | txn: 1; BEGIN ‘Skip

skip

150 | txn: 1; item: D1; old: 3000; new: 2500 skip

redo: D1 = 2500

225 | txn: 1; item: D2; old: 1000; new: 1500 skip

redo: D2 = 1500

350 |txn: 2; BEGIN skip

skip

400 | txn: 2; item: D3; old: 7200; new: 6780 undo: D3 =7200

skip

470 | txn: 1; item: D1; old: 2500; new: 2750 skip

redo: D1 = 2750

500 | txn: 1;item: D2; old: 1500; new: 2100 skip

redo: D2 = 2100

550 |txn: 1; COMMIT add to commit list || skip
585 | txn: 2; item: D2; old: 2100; new: 1300 undo: D2 = 2100 skip
675 | txn: 2; item: D3; old: 6780; new: 6760 undo: D3 = 6780 skip

* Recovery restores the database to a consistent state

that reflects:

+ all of the updates by txn 1 (which committed before the crash)

* none of the updates by txn 2 (which did not commit)

The Details Matter!

LSN | record contents backward pass

forward pass

100 |txn: 1; BEGIN skip

skip

150 | txn: 1; item: D1; old: 3000; new: 2500 skip

redo: D1 = 2500

225 | txn: 1; item: D2; old: 1000; new: 1500 skip

redo: D2 = 1500

350 |txn: 2; BEGIN skip

skip

400 | txn: 2; item: D3; old: 7200; new: 6780 undo: D3 =7200

skip

470 | txn: 1; item: D1; old: 2500; new: 2750 skip

redo: D1 = 2750

500 | txn: 1;item: D2; old: 1500; new: 2100 skip

redo: D2 = 2100

550 |txn:1; COMMIT add to commit list skip
585 | txn: 2; item: D2; old: 2100; new: 1300 undo: D2 = 2100 skip
675 | txn: 2; item: D3; old: 6780; new: 6760 undo: D3 = 6780 skip

1) Scanning backward at the start of recovery provides

the info needed for undo / redo decisions.

* when we see an update, we already know whether

the txn has committed!

Boston University, Spring 2026

299

CAS CS 460

The Details Matter!

LSN | record contents backward pass forward pass

100 |txn: 1; BEGIN skip skip

150 | txn: 1; item: D1; old: 3000; new: 2500 skip redo: D1 = 2500
225 | txn: 1; item: D2; old: 1000; new: 1500 skip redo: D2 = 1500
350 |txn: 2; BEGIN skip skip

400 | txn: 2; item: D3; old: 7200; new: 6780 undo: D3 = 7200 skip

470 | txn: 1; item: D1; old: 2500; new: 2750 skip redo: D1 = 2750
500 | txn: 1;item: D2; old: 1500; new: 2100 skip redo: D2 = 2100
550 | txn: 1; COMMIT add to commit list |1 skip

585 | txn: 2;item: D2; old: 2100; new: 1300 undo: D2 = 2100 skip

675 | txn: 2; item: D3; old: 6780; new: 6760 undo: D3 = 6780 skip

2) To ensure the correct values are on disk after recovery, we:
 put all redos after all undos (consider D2 above)
+ perform the undos in reverse order (consider D3 above)

» perform the redos in the same order as the original updates

(consider D1 above)

Extra practice: Perform recovery on this log

LSN | record contents

100 |txn: 1; BEGIN

210 | txn: 1; item: D1; old: 45; new: 75
300 |txn: 2; BEGIN

420 | txn: 2; item: D2; old: 80; new: 25
500 | txn: 2; item: D3; old: 30; new: 60
525 | txn: 2; COMMIT

570 | txn: 1; item: D3; old: 60; new: 90

Boston University, Spring 2026

300

CAS CS 460

Logical Logging

* We've assumed that update records store the old + new values

of the changed data element.

It's also possible to use logical logging, which stores
a logical description of the update operation.

+ example: increment D1 by 1

Logical logging is especially useful when we use pages or blocks
as data elements, rather than records.

+ storing the old and new contents of a page or block
would take up a lot of space

* instead, store a logical description
 for example: "add record r somewhere on D1"

Logical Logging (cont.)
When we store old and new data values, the associated
undo/redo operations are idempotent.
» can be performed multiple times without changing the result

Problem: logical update operations may not be idempotent.
» example: if "increment D1 by 1" has already been performed,
we don't want to redo it
» example: if "increment D1 by 1" has not been performed,
we don't want to undo it

» example: if "add record r to page D1" has already been
performed, we don't want to redo it

To ensure that only the necessary undo/redos are made,
the DBMS makes use of the log sequence numbers (LSNs)
associated with the update log records.

Boston University, Spring 2026

301

CAS CS 460

Storing LSNs with Data Elements

* When a data element is updated, the DBMS:
 stores the LSN of the update log record with the data element
* known as the datum LSN

+ stores the old LSN of the data element in the log record

log file data elements (value / datum LSN)
LSN | record contents D1 D2 D3
100 | txn: 1; BEGIN "foo" /0 |"oh"/0 "moo" / 0

150 | txn: 1; item: D1; new: "bar"; old: "foo"; olsn: 0 "bar"/ 150

225 | txn: 1; item: D2; new: "boy"; old: "oh"; olsn: 0 "boy" / 225

350 |txn: 2; BEGIN

400 | txn: 2; item: D3; new: "boo"; old: "moo"; olsn: 0 "b00"/400
470 | txn: 1; item: D1; new: "cat"; old: "bar"; olsn: 150 "cat" /470

550 | txn: 1; COMMIT

585 | txn: 2; item: D2; new: "pie"; old: "boy"; olsn: 225 "pie" / 585

675 | txn: 2;item: D3;new:"zip";old: "boo";olsn: 400 "zip" / 675

Storing LSNs with Data Elements (cont.)

* Recall: When a crash occurs, we're not guaranteed that the
most recent value of a given data element made it to disk.

+ similarly, the on-disk datum LSN may not be
the most recent one

log file data elements (value / datum LSN)
LSN | record contents D1 D2 D3
100 |txn: 1; BEGIN "foo" /0 "oh"/0 "moo" /0
150 | txn: 1; item: D1; new: "bar"; old: "foo"; olsn: 0 "bar" / 150

225 | txn: 1; item: D2; new: "boy"; old: "oh"; olsn: 0 "boy"/225

350 | txn: 2; BEGIN

400 | txn: 2; item: D3; new: "boo"; old: "moo"; olsn: 0 "boo" / 400
470 | txn: 1; item: D1; new: "cat"; old: "bar"; olsn: 150 "cat"/470

550 | txn: 1; COMMIT

585 | txn: 2; item: D2; new: "pie"; old: "boy"; olsn: 225 "pie" / 585

675 | txn: 2; item: D3; new: "zip"; old: "boo"; olsn: 400 "zip" / 675

Boston University, Spring 2026

302

CAS CS 460

Recovery Using LSNs

During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

2) the on-disk datum LSN
for the data item
« the one associated with it
in the database file
3) the olsn: the old datum LSN
for the data item

» the one associated with it
when the update was
originally requested

on-disk datum LSNs:

D4: 0, D5: 0, : 1100, D7: 930

LSN | record contents

700 | txn: 3; BEGIN

770 | txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

825 | txn: 4; BEGIN

850 | txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

900 | txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

930 | txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

980 | txn: 4; COMMIT

1000| txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1100| txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

Boston University, Spring 2026

303

CAS CS 460

During the backward pass,
we undo an update if:

When we undo, we also set:
datum LSN = olsn

The Backward Pass Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

the txn did not commit LSN

datum LSN

record contents

==record LSN |7

txn: 3; BEGIN

770

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

825

txn: 4; BEGIN

850

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

900

txn: 4; item: DG6; old: 5.7;
new: 8.9; olsn: 0

930

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

980

txn: 4; COMMIT

1000

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1100

txn: 3; item: D6; old: 8.9;

new: 4.1; olsn: 900

Which updates will be undone?

datum LSNs: D4: 0 D5:0 D6: 1100 D7: 930

LSN

record contents

backward pass forward pass

700

txn

: 3; BEGIN

770

txn

: 3; item: D5; old:

"foo"; new: "bar"; olsn: 0

825

txn:

4; BEGIN

850

txn:

4; item: D4; old:

9000; new: 8500; olsn: 0

900

txn:

4; item: D6; old:

5.7; new: 8.9; olsn: 0

930

txn:

3; item: D7; old:

"zoo"; new: "cat"; olsn: 0

980

txn:

4, COMMIT

1000

txn:

3; item: D4; old:

8500; new: 7300; olsn: 850

1100

txn:

3; item: D6; old:

8.9; new: 4.1; olsn: 900

Boston University, Spring 2026

304

CAS CS 460

Which updates will be undone?

e datum LSNs: D4: 0 D5:0 D6:1100,900 D7:930,0
LSN | record contents backward pass forward pass
700 | txn: 3; BEGIN skip
770 | txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0 0!=770

don't undo
825 | txn: 4; BEGIN skip
850 | txn: 4; item: D4; old: 9000; new: 8500; olsn: 0 skip
900 | txn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 skip
930 | txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: O 930 == 930
undo: D7 = "zoo"
datum LSN =0
980 | txn: 4; COMMIT add to
commit list
1000 | txn: 3; item: D4; old: 8500; new: 7300; olsn: 850 | 0 != 1000
don't undo
1100 | txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 900 1100 == 1100
undo: D6 = 8.9

datum LSN = 900

Boston University, Spring 2026

305

CAS CS 460

The Forward Pass Using LSNs

During the forward pass,
we redo an update if:

« the txn did commit
* datum LSN == olsn

When we redo, we also set:
datum LSN = record LSN

on-disk datum LSNs:
: 0, D5: 0, D6: 900, D7:

LSN

record contents

700

txn: 3; BEGIN

770

txn: 3; item: D5; old:
new: "bar"; olsn: 0

"foo";

825

txn: 4; BEGIN

850

txn: 4; item: D4; old:
new: 8500; olsn: 0

9000;

900

txn: 4; item: DG6; old:
new: 8.9; olsn: 0

5.7;

930

txn: 3; item: D7; old:
new: "cat"; olsn: 0

Z00

980

txn: 4; COMMIT

1000| txn: 3; item: D4; old: 8500;

new: 7300; olsn: 850

1100] txn: 3; item: D6; old: 8.9;

new: 4.1; olsn: 900

Which updates will be redone?

» datum LSNs: D4: 0 D5:0 D6: 1100, 900 D7: 930, 0
LSN | record contents backward pass forward pass
700 | txn: 3; BEGIN skip
770 | txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0 0!=770
don't undo

825 | txn: 4; BEGIN skip

850 | txn: 4; item: D4; old: 9000; new: 8500; olsn: 0 skip

900 | txn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 skip

930 | txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: O 930 == 930
undo: D7 = "zoo"
datum LSN =0

980 | txn: 4; COMMIT add to
commit list

1000 | txn: 3; item: D4; old: 8500; new: 7300; olsn: 850 | 0 != 1000
don't undo

1100 | txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 900 1100 == 1100
undo: D6 = 8.9
datum LSN = 900

Boston University, Spring 2026

306

Which updates will be redone?

+ datum LSNs: D4:0;850 D5:0 D6: 1100, 900 D7: 930, 0
LSN | record contents backward pass forward pass
700 | txn: 3; BEGIN skip skip
770 | txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0 0!=770 skip

don't undo
825 | txn: 4; BEGIN skip skip
850 | txn: 4; item: D4; old: 9000; new: 8500; olsn: 0 skip 0==
redo: D4 = 8500
datum LSN = 850
900 | txn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 skip 900!=0
don't redo
930 | txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: O 930 == 930 skip
undo: D7 = "zoo"
datum LSN =0
980 | txn: 4; COMMIT add to skip
commit list
1000 | txn: 3; item: D4; old: 8500; new: 7300; olsn: 850 | 0 != 1000 skip
don't undo
1100 | txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 900 1100 == 1100 skip
undo: D6 = 8.9
datum LSN = 900

Recall: Undo-Redo Logging

To ensure that it can undo/redo txns as needed,

undo-redo logging follows the WAL policy.

In addition, it does the following when a transaction commits:
1. writes the commit log record to the in-memory log buffer

2. forces to disk all dirty log records

(dirty = not yet written todisk)

It does not force the dirty database pages to disk.

At recovery, it performs two passes:

« first, a backward pass to undo uncommitted transactions
+ then, a forward pass to redo committed transactions

CAS CS 460

Boston University, Spring 2026

307

Undo-Only Logging

* Only store the info. needed to undo txns.
» update records include only the old value

* Like undo-redo logging, undo-only logging follows WAL.

» In addition, all database pages changed by a transaction must be
forced to disk before allowing the transaction to commit. Why?

» At transaction commit:
1. force all dirty log records to disk
2. force database pages changed by the txn to disk
3. write the commit log record
4. force the commit log record to disk

» During recovery, the system only performs the backward pass.

Redo-Only Logging

* Only store the info. needed to redo txns.
* update records include only the new value

» Like the other two schemes, redo-only logging follows WAL.

* In addition, all database pages changed by a txn are held in
memory until it commits and its commit record is forced to disk.

» At transaction commit:
1. write the commit log record
2. force all dirty log records to disk
(changed database pages are allowed to go to disk anytime after this

+ If a transaction aborts, none of its changes can be on disk.

» During recovery, perform the backward pass to build the commit
list (no undos). Then perform the forward pass as in undo-redo.

CAS CS 460 Boston University, Spring 2026 308

Practice Problem

. : . txn 1
Recall the three logging schemes: writes 75 for bl

* undo-redo, undo-only, redo-only writes 90 for D3
txn 2
writes 25 for D2
writes 60 for D3

» What type of logging is being
used to create the log at right?

LSN | record contents

100 |txn: 1; BEGIN

210 | txn: 1; item: D1; old: 45
300 |txn:2; BEGIN

420 | txn: 2; item: D2; old: 80
500 | txn: 2; item: D3; old: 30
525 | txn: 2; COMMIT

570 | txn: 1;item: D3; old: 60

CAS CS 460 Boston University, Spring 2026 309

Practice Problem

. : . txn 1
Recall the three logging schemes: writes 75 for D1
* undo-redo, undo-only, redo-only writes 90 for D3
txn 2

writes 25 for D2

» What type of logging is being writes 60 for D3

used to create the log at right?
LSN | record contents

undo-only 100 | txn: 1; BEGIN
210 | txn: 1; item: D1; old: 45; new: 75
+ To make the rest of the problem [300 [txn: 2: BEGIN
easier, add the new values 420 | txn: 2; item: D2; old: 80; new: 25
to the log... 500 | txn: 2; item: D3; old: 30; new: 60
525 | txn: 2; COMMIT
570 | txn: 1; item: D3; old: 60; new: 90

Practice Problem

: . txn 1
* Recall the three logging schemes: writes 75 for bl
* undo-redo, undo-only, redo-only writes 90 for D3

txn 2
writes 25 for D2

+ Atthe start of recovery, what are writes 60 for D3

the possible on-disk values
under undo-on Iy? LSN | record contents
. . 100 | txn: 1; BEGIN
* does not pin values in memory 210 |txn: 1; item: D1; old: 45; new: 75
= may go to disk at any time [300 |txn: 2: BEGIN

» at commit, forces values 420 | txn: 2; item: D2; old: 80; new: 25
written by txn to disk 500 | txn: 2; item: D3; old: 30; new: 60
=> older values are no longer |525 | txn: 2, COMMIT

possible 570 | txn: 1; item: D3; old: 60; new: 90
in-memory possible on-disk
D1:
D2:
D3:

CAS CS 460 Boston University, Spring 2026 310

Practice Problem

. ; . txn 1
Recall the three logging schemes: writes 75 for Dl
* undo-redo, undo-only, redo-only writes 90 for D3
txn 2

writes 25 for D2

+ At the start of recovery, what are writes 60 for D3

the possible on-disk values

under redo-onlv? LSN | record contents
) y: . 100 |txn: 1; BEGIN
* does pin vaIue; INMeMOory %10 [txn: 1; item: D1; old: 45; new: 75
=» can't go to disk until commit [300 [txn: 2; BEGIN
+ at commit, unpins values 420 | txn: 2; item: D2; old: 80; new: 25
but does not force them to disk | 500 | txn: 2; item: D3; old: 30; new: 60
=>» older values are still 525 | txn: 2; COMMIT
possible 570 | txn: 1; item: D3; old: 60; new: 90
in-memory possible on-disk
D1:
D2:
D3:

Practice Problem

: . txn 1
* Recall the three logging schemes: writes 75 for bl
* undo-redo, undo-only, redo-only writes 90 for D3
txn 2

writes 25 for D2

+ Atthe start of recovery, what are writes 60 for D3

the possible on-disk values
under undo-redo? LSN | record contents
. . 100 |txn: 1; BEGIN
* does not pin values in MEeMOry [210 | txn: 1; item: D1; old: 45; new: 75
= may go to disk at any time [300 |txn: 2: BEGIN
« at commit, does not force dirty [420 | txn: 2; item: D2; old: 80; new: 25

data to disk 500 | txn: 2; item: D3; old: 30; new: 60
=>» older values are still 525 | txn: 2; COMMIT
possible 570 | txn: 1; item: D3; old: 60; new: 90
in-memory possible on-disk
D1:
D2:
D3:

CAS CS 460 Boston University, Spring 2026 311

Comparing the Three Logging Schemes

Factors to consider in the comparison:
» complexity/efficiency of recovery
* size of the log files
» what needs to happen when a txn commits

+ other restrictions that a logging scheme imposes
on the system

We'll list advantages and disadvantages of each scheme.

Undo-only:
+ smaller logs than undo-redo
+ simple and quick recovery procedure (only one pass)

— forces log and data to disk at commit;
have to wait for the 1/Os

Comparing the Three Logging Schemes (cont.)

Redo-only:
+ smaller logs than undo-redo
+/ — recovery: more complex than undo-only, less than undo-redo
— must be able to cache all changes until the txn commits
* limits the size of transactions
» constrains the replacement policy of the cache
+ forces only log records to disk at commit

Undo-redo:

— larger logs

— more complex recovery

+ forces only log records to disk at commit

+ don’t need to retain all data in the cache until commit

CAS CS 460 Boston University, Spring 2026 312

CAS CS 460

Checkpoints

» As a DBMS runs, the log gets longer and longer.

* thus, recovery could end up taking a very long time!

» To avoid long recoveries, periodically perform a checkpoint.

+ force data and log records to disk to create a
consistent on-disk database state

* during recovery, don’t need to consider operations
that preceded this consistent state

Static Checkpoints

Stop activity and wait for a consistent state.

1) prohibit new transactions from starting and wait until all
current transactions have aborted or committed.

Once there is a consistent state:

2) force all dirty log records to disk
(dirty = not yet written to disk)

3) force all dirty database pages to disk
4) write a checkpoint record to the log

» these steps must be performed in the specified order!

When performing recovery, go back to the most recent
checkpoint record.

Problem with this approach?

Boston University, Spring 2026

313

CAS CS 460

Dynamic Checkpoints

» Don’t stop and wait for a consistent state.
Steps:

1) prevent all update operations during the checkpoint
2) force all dirty log records to disk
3) force all dirty database pages to disk
4) write a checkpoint record to the log
* include a list of all active txns

* When performing recovery:
» backward pass: go back until you’ve seen the start records
of all uncommitted txns in the most recent checkpoint record
» forward pass: begin from the log record that comes after
the most recent checkpoint record. why?

* note: if all txns in the checkpoint record are on the commit list,
we stop the backward pass at the checkpoint record

Example of Recovery with Dynamic Checkpoints
* Initial datum LSNs: D4: 110 D5: 140,0 D6: 80

LSN | record contents backward pass forward pass
100 |txn: 1; BEGIN
110 | txn: 1; item: D4; old: 20; new: 15; olsn: 0
120 | txn: 2; BEGIN stop here
130 | txn: 1; COMMIT add to
commit list
140 | txn: 2; item: D5; old: 12; new: 13; olsn: 0 undo: D5 =12
datum LSN =0
150 | CHECKPOINT (active txns = 2) note active txns
160 | txn: 2; item: D4; old: 15; new: 50; olsn: 110 don’t undo start here
skip
170 | txn: 3; BEGIN skip skip
180 | txn: 3; item: D6; old: 6; new: 8; olsn: 80 don’t undo skip

Could D4 have a datum LSN of less than 110?

Boston University, Spring 2026

314

Reviewing the Log Record Types

* Why is each type needed?
» assume undo-redo logging

» update records: hold the info. needed to undo/redo changes

» commit records: allow us to determine which changes should be
undone and which should be redone

» begin records: allow us to determine the extent of the backward
pass in the presence of dynamic checkpoints

» checkpoint records: limit the amount of the log that is processed
during recovery

Extra Practice

* What type of logging is being

used to create the log at right? original values:

D1=1000, D2=3000

LSN | record contents
100 | txn: 1; BEGIN
» At the start of recovery, what are 150 | txn: 1; item: D1; new: 2500
the possible on-disk values? 350 | txn: 2; BEGIN
400 | txn: 2; item: D2; new: 6780
470 | txn: 1; item: D1; new: 2750
550 | txn: 1; COMMIT
585 | txn: 2; item: D1; new: 1300

CAS CS 460 Boston University, Spring 2026 315

Extra Practice

* What if the DBMS were using

undo-only logging instead? original values:

D1=1000, D2=3000
LSN | record contents

100 | txn: 1; BEGIN
* Atthe start of recovery, what are 150 | txn: 1; item: D1; new: 2500

the possible on-disk values? 350 | txn: 2: BEGIN

400 | txn: 2; item: D2; new: 6780
470 | txn: 1; item: D1; new: 2750
550 | txn: 1; COMMIT

585 | txn: 2; item: D1; new: 1300

in-memory possible on-disk
D1: 1000
D2: 3000

Extra Practice

* What if the DBMS were using

undo-redo logging instead? original values:

D1=1000, D2=3000
LSN | record contents

100 | txn: 1; BEGIN
* Atthe start of recovery, what are 150 | txn: 1; item: D1; new: 2500

the possible on-disk values? 350 | txn: 2; BEGIN

400 | txn: 2; item: D2; new: 6780
470 | txn: 1; item: D1; new: 2750
550 | txn: 1; COMMIT

585 | txn: 2; item: D1; new: 1300

in-memory possible on-disk
D1: 1000
D2: 3000

CAS CS 460 Boston University, Spring 2026 316

Two-Phase Commit;
Course Wrap-up

Computer Science 460
Boston University

David G. Sullivan, Ph.D.

Atomicity
* In a centralized database, logging and recovery are enough
to ensure atomicity.

* if a txn's commit record makes it to the log,
all of its changes will eventually take effect

+ if a txn's commit record isn't in the log when a crash occurs,
none of its changes will remain after recovery

* What about atomicity in a distributed database?

CAS CS 460 Boston University, Spring 2026 317

CAS CS 460

» A distributed transaction involves data stored at multiple sites.

Recall: Distributed Transactions

One of the sites serves as the coordinator of the transaction.

The coordinator divides a distributed transaction into

subtransactions, each of which executes on one of the sites.

txn 1

read balancel
write(balancel - 500)
read balance2
write(balance2 + 500)

"
\

subtxn 1-1

read balancel
write(balancel - 500)

subtxn 1-2

read balance2
write(balance2 + 500)

Distributed Atomicity

In a distributed database:
 each site performs local logging and recovery of its subtxns

 that alone is not enough to ensure atomicity

The sites must coordinate to ensure that either:

« all of the subtxns are committed

or
* none of them are

Boston University, Spring 2026

318

CAS CS 460

Distributed Atomicity (cont.)

» Example of what could go wrong:
» a subtxn at one of the sites deadlocks and is aborted

» before the coordinator of the txn finds out about this,
it tells the other sites to commit, and they do so

* Another example:
+ the coordinator notifies the other sites that it's time to commit
» most of the sites commit their subtxns
» one of the sites crashes before committing

Two-Phase Commit (2PC)

+ A protocol for deciding whether to commit a distributed txn.

+ Basic idea:
+ coordinator asks sites if they're ready to commit
+ if a site is readyj, it:
1. prepares its subtxn — putting it in the ready state
2. tells the coordinator it's ready
« if all sites say they're ready, all subtxns are committed
» otherwise, all subtxns are aborted (i.e., rolled back)

» Preparing a subtxn means ensuring it can be either
committed or rolled back — even after a failure.

* need to at least...
* some logging schemes need additional steps

« After saying it's ready, a site must wait to be told what to do next.

Boston University, Spring 2026

319

CAS CS 460

2PC Phase I: Prepare

When it's time to commit a distributed txn T, the coordinator:
 force-writes a prepare record for T to its own log
* sends a prepare message to each participating site

If a site can commit its subtxn, it:
+ takes the steps needed to put its txn in the ready state
+ force-writes a ready record for T to its log
» sends a ready message for T to the coordinator and waits

If a site needs to abort its subtxn, it:
+ force-writes a do-not-commit record for T to its log
» sends a do-not-commit message for T to the coordinator
» can it abort the subtxn now?

Note: we always log a message before sending it to others.
+ allows the decision to send the message to survive a crash

2PC Phase Il: Commit or Abort

The coordinator reviews the messages from the sites.

« if it doesn't hear from a site within some time interval,
it assumes a do-not-commit message

If all sites sent ready messages for T, the coordinator:
» force-writes a commit record for T to its log
» T is now officially committed
» sends commit messages for T to the participating sites

Otherwise, the coordinator:
 force-writes an abort record for T to its log
» sends abort messages for T to the participating sites

Each site:

 force-writes the appropriate record (commit or abort) to its log

e commits or aborts its subtxn as instructed

Boston University, Spring 2026

320

CAS CS 460

2PC State Transitions

initial

prepare msg received; log records flushed

A

ready

abort msg commit msg
received received

aborted committed

A subtxn can enter the aborted state from the initial state at
any time.

After entering the ready state, it can only enter the aborted state
after receiving an abort message.

A subtxn can only enter the committed state from the ready state,
and only after receiving a commit message.

Recovery When Using 2PC

When a site recovers, its decides whether to undo or redo
its subtxn for a txn T based on the last record for T in its log.

Case 1: the last log record for T is a commit record.
» redo the subtxn's updates as needed

Case 2: the last log record for T is an abort record.
» undo the subtxn's updates as needed

Case 3: the last log record for T is a do-not-commit record.
» undo the subtxn's updates as needed
* why is this correct?

Boston University, Spring 2026

321

CAS CS 460

Recovery When Using 2PC (cont.)

» Case 4: the last log record for T is from before 2PC began
(e.g., an update record).

» undo the subtxn's updates as needed
* this works in both of the possible situations:

» 2PC has already completed without hearing from this site
why?

» 2PC is still be going on
why?

» Case 5: the last log record for T is a ready record.
+ contact the coordinator (or another site) to determine T's fate
+ the site will still be able to commit or abort as needed. why?

« if it can't reach another site, it must block until it can reach one!

What if the Coordinator Fails?

The other sites can either:
+ wait for the coordinator to recover
 elect a new coordinator

* In the meantime, each site can determine the fate of any
current distributed transactions.

« Case 1: a site has not received a prepare message for txn T
 can abort its subtxn for T

+ preferable to waiting for the coordinator to recover,
because it allows the T's fate to be decided

» Case 2: a site has received a prepare message for T,
but has not yet sent ready message

* can also abort its subtxn for T now. why?

Boston University, Spring 2026

322

What if the Coordinator Fails? (cont.)

» Case 3: a site sent a ready message for T but didn't hear back
+ poll the other sites to determine T's fate

evidence conclusion/action

at least one site has 2?7
a commit record for T

at least one site has 2?7
an abort record for T

no commit/abort records for T; 7?7
at least one site does not have
a ready record for T

no commit/abort records for T; can't know T's fate unless
all surviving sites have coordinator recovers. why?
ready records for T

2PC Practice Problem 1

+ Atxn T requires subtxns at sites A (the coordinator), B, and C.
» As part of 2PC:
* site A sends prepare messages to B and C
* sites B and C send ready messages to A
Given the above scenario, which of the following will always be true?

A. Sites B and C have already taken the steps needed
to prepare their subtxns.

B. Sites B and C can commit their subtxns
before hearing back from site A.

C. Transaction T will eventually be committed.
D. more than one of the above

CAS CS 460 Boston University, Spring 2026 323

2PC Practice Problem 2

» Txns 1 and 2 require subtxns at A (the coordinator), B, and C.

« At a given point in time, the sites have the following logs:

site A (coordinator) site B site C
record contents record contents record contents
txn: 1; BEGIN txn: 1; BEGIN txn: 1; BEGIN
txn: 1; item: D1; old: 45; ... txn: 1; item: D3; old: 50; ... txn: 1; item: D6; old: 15; ...
txn: 2; BEGIN txn: 1; item: D4: old: 70; ... txn: 2; BEGIN
txn: 2; item: D2; old: 80; ... txn: 2; BEGIN txn: 1; item: D7; old: 20; ...
txn: 1; PREPARE txn: 2; item: D5; old: 60; ... txn: 1; READY
txn: 1; READY txn: 1; READY txn: 2; item: D8; old: 10
txn: 2; PREPARE txn: 2; item: D9; old: 35; ... txn: 2: READY

» Which of these could be the next log record that site A writes?
A. txn: 1; COMMIT
B. txn: 2; COMMIT
C. txn: 2; ABORT
D. more than one of the above

2PC Practice Problem 2 (cont.)
* Txns 1 and 2 require subtxns at A (the coordinator), B, and C.

» At a given point in time, the sites have the following logs:

site A (coordinator) site B site C
record contents record contents record contents
txn: 1; BEGIN txn: 1; BEGIN txn: 1; BEGIN
txn: 1; item: D1; old: 45; ... txn: 1; item: D3; old: 50; ... txn: 1; item: D6; old: 15; ...
txn: 2; BEGIN txn: 1; item: D4: old: 70; ... txn: 2; BEGIN
txn: 2; item: D2; old: 80; ... txn: 2; BEGIN txn: 1; item: D7; old: 20; ...
txn: 1; PREPARE txn: 2; item: D5; old: 60; ... txn: 1; READY
txn: 1; READY txn: 1; READY txn: 2; item: D8; old: 10
txn: 2; PREPARE txn: 2; item: D9; old: 35; ... txn: 2: READY

(assuming nothing else has been added to site A's log)
* Which of these could be the next log record that site B writes?

A. txn: 1; COMMIT
B. txn:2; COMMIT
C. txn: 2; ABORT

CAS CS 460 Boston University, Spring 2026 324

CAS CS 460

2PC Practice Problem 3

» Txns 1 and 2 require subtxns at A (the coordinator), B, and C.

« At a given point in time, the sites have the following logs:

site A (coordinator) site B site C
record contents record contents record contents
txn: 1; BEGIN txn: 1; BEGIN txn: 1; BEGIN
txn: 1; item: D1; old: 45; ... txn: 1; item: D3; old: 50; ... txn: 1; item: D6; old: 15; ...
txn: 2; BEGIN txn: 1; item: D4: old: 70; ... txn: 2; BEGIN
txn: 2; item: D2; old: 80; ... txn: 2; BEGIN txn: 1; item: D7; old: 20; ...
txn: 1; PREPARE txn: 2; item: D5; old: 60; ... txn: 1; READY
txn: 1; READY txn: 1; READY txn: 2; item: D8; old: 10
txn: 2; PREPARE txn: 2; item: D9; old: 35; ... txn: 2: READY

+ If site B crashes now, what should happen during its recovery?

2PC Practice Problem 4

site A (coordinator) site B site C
record contents record contents record contents
txn: 1; BEGIN txn: 1; BEGIN txn: 1; BEGIN
txn: 1; item: D1; old: 45; ... txn: 1; item: D3; old: 50; ... txn: 1; item: D6; old: 15; ...
txn: 2; BEGIN txn: 1; item: D4: old: 70; ... txn: 2; BEGIN
txn: 2; item: D2; old: 80; ... txn: 2; BEGIN txn: 1; item: D7; old: 20; ...
txn: 1; PREPARE txn: 2; item: D5; old: 60; ... txn: 1; READY
txn: 1; READY txn: 1; READY txn: 2; item: D8; old: 10
txn: 2; PREPARE txn: 2; item: D9; old: 35; ... txn: 2: READY

 If site A (the coord.) crashes now, what should the other sites do?
txn 1 txn 2
site B:

site C:

Boston University, Spring 2026

325

Looking Back

+ Recall our two-layer view of a DBMS: e e |‘
* When choosing an approach to storage §n9ine+
information management, / § =

0S
choose an option for each layer. B ﬁ ﬁ B

disks
» We've seen several options for the storage layer:

+ transactional storage engine

+ plain-text files (e.g., for XML or JSON)

* native XML DBMS

* NoSQL DBMS (with support for sharding and replication)

* We've also looked at several options for the logical layer:
* relational model
* semistructured: XML, JSON
» other NoSQL models: key/value pairs, column-families

One Size Does Not Fit All

+ An RDBMS is an extremely powerful tool for managing data.

* However, it may not always be the best choice.
+ see the first lecture for a reminder of the reasons why!

» Need to learn to choose the right tool for a given job.

* In some cases, may need to develop new tools!

CAS CS 460 Boston University, Spring 2026 326

Implementing a Storage Engine

* We looked at ways that data is stored on disk.

» We considered index structures.
» B-trees and hash tables

+ provide efficient search and insertion according to
one or more key fields

* We also spoke briefly about the use of caching
to reduce disk 1/Os.

memory
BDB memory pool OS buffer cache

disk

Implementing a Transactional Storage Engine

» We looked at how the “ACID” properties are guaranteed:
Atomicity: either all of a txn’s changes take effect or none do

Consistency preservation: a txn’s operations take the
database from one consistent state to another

Isolation: a txn is not affected by other concurrent txns

Durability: once a txn completes, its changes survive failures

CAS CS 460 Boston University, Spring 2026 327

CAS CS 460

Distributed Databases and NoSQL Stores

We looked at how databases can be:
» fragmented/sharded
* replicated

We also looked at NoSQL data stores:
» designed for use on clusters of machines
» can handle massive amounts of data / queries

Logical-to-Physical Mapping

The topics related to storage engines are potentially relevant
to any database system.
* not just RDBMSs

* any logical layer can be built on top of any storage layer

Regardless of the model, you need a logical-to-physical mapping.

In PS 3, you implemented part of a
logical-to-physical mapping for the

relational model using Berkeley DB. ¥
SQL parser

“middle layer”

41

storage engine

’_\7
810

disks

Boston University, Spring 2026

328

	00a_intro_compressed
	00b_ER
	00c_relational_model
	01a_rel_algebra
	02_a_sql_simple_select
	02_sql1
	03_a_pattern_matching_nulls
	03_b_distinct_aggregates
	03_c_subqueries
	03_sql2
	04_a_group_by_having
	04_b_joins2
	04_c_outer_joins
	04_sql3
	05_a_types_create_insert
	05_b_other_sql
	05_sql4
	06_sql_practice
	07a_storage
	07b_index_structures
	08_mapping
	09_xml
	10_txns_schedules
	11a_concurrency_locking
	11b_concurrency_timestamps
	12_distributed
	13_map_reduce
	14_nosql
	15_recovery
	16_wrap_up
	Blank Page

