Lab 2, Task 4: Relational-algebra queries

1) task 3, problem 1

Π_{name, capacity} (σ_{name LIKE 'CAS%' OR name LIKE 'CGS%'} (Room))

2) task 3, problem 5

 π_{name} ($\sigma_{dept name = 'computer science'}$ (Student $\bowtie_{id = student id}$ MajorsIn))

or

π_{name} (Student [⋈]_{id} = student_id and dept_name = 'computer science' MajorsIn))

or

π_{name} (Student [⋈]_{id} = student_id</sub> (σ_{dept_name} = 'computer science'</sub> MajorsIn))

or

 $\pi_{name} (\sigma_{id = student_id and dept_name = 'computer science'} (Student × MajorsIn))$

or...

3) task 3, problem 6

If we assume student names are unique:

 π_{name} (Student) – π_{name} (Student $\bowtie_{id = student_id and course_name = 'CS 460'}$ Enrolled)

If we don't make that assumption, we would use a two-step process:

- first, find the ids of students not enrolled in 460 and assign that set of ids to a variable
 Non460 ← Π_{id} (Student) − Π_{student id} (O_{course name = 'CS 460'} Enrolled)
- second, perform a natural join of the Student relation with the result of the first step and project the name column from the result of the natural join

 π_{name} (Student \bowtie Non460)