Computer Science 112 B1
Introduction to Computer Science Il

Boston University, Spring 2023

Unit 1: From Python to Java

Course Overview; A First LOOK @t JAVa..........ouuuieiiiiiiiieeeee et 2
Java Basics; Conditional Execution and User Input..................... pre-lecture: 10 / in-lecture: 17
Static Methods; A First LOOK @t LOOPSuuuuuiiuuiiiiiiiiiiiiiiiiiiiiieisraieiareieaeansssesnensnnnrnnnnannn.. 30/35
Variable Scope; Loops ReVISItedo 42 /45
Primitives, Objects and RefErenCeSoocuiiiiiiiiiiecee e 54 /63
I S -) TSRS 74/ 81
Defining New Types of Objects; Memory Management..........c.ccccceveeiiieeeiniiee e 91/99
INNEIIEANCE ...t e s n e 125/132

Unit 2: Data Structures and Algorithms

A Bag Data STrUCIUIE ... e 141
= ToTU] =1 o] o PSPPSRI 153
Recursive BacktraCKing.........eeui it 165
A First Look at Sorting and Algorithm ANalySiSceeiiiiiiiiie e 179
Sorting 11: Quicksort and MErgesOrt..........cooiiiiiiiiii e 194
LINKEA LISTS ... eieieeeeee ettt et e e s bt e e s b e e e e e sbb e e e e abneeeeaan 214
ADTs and Interfaces; The LiSt ADT ..o e e e e e eeeaae 244
The Stack and QUEUE ADTScoiiuiiiiiiiiie ettt b e s be et esnbee e saneeaas 262
BINAIY TrBES ..ottt e e e e e e et e et e e e e e e b n e e e e e e e e e aanbraeeeas 281
SEAICH THEES ...ttt sttt a b e e bt st e et e e eate e sbe e e naaeeaa 295
HASH TaADIES ...ttt 310

Heaps and Priority QUEUESeiii et e et e et e e e e snee e e e s eneeeeeeaes 323

Introduction to Computer Science ||

Course Overview;
A First Look at Java

Computer Science 112
Boston University

David G. Sullivan, Ph.D.

Welcome to Computer Science 112!

We will study fundamental data structures.
» ways of imposing order on a collection of information
» sequences: lists, stacks, and queues
* trees
* hash tables

We will also:
» study algorithms related to these data structures
* learn how to compare data structures & algorithms

+ Goals:

+ learn to think more intelligently about programming problems
* acquire a set of useful tools and techniques

+ We will use the Java language.
* but learning Java is not the primary focus of the course!

CAS CS 112 B1 Boston University, Spring 2023

CAS CS 112 B1

Sample Problem: A Data "Dictionary"

Given a large collection of data, how can we arrange it
so that we can efficiently:

* add a new item
+ search for an existing item

Some data structures provide better performance than others
for this application.

More generally, we'll learn how to characterize the efficiency
of different data structures and their associated algorithms.

Prerequisites

CS 111, or the equivalent

* ideally with a B- or better

+ if not CS 111, solid coding skills in one of the following:
» Python
» Java
o C++

+ comfortable with recursion

* some exposure to object-oriented programming

Reasonable comfort level with mathematical reasoning

* mostly simple algebra, but need to understand
the basics of logarithms (we’ll review this)

» we'll do some simple proofs

Boston University, Spring 2023

Course Materials

* Required: Coursepack
 use it during pre-lecture and lecture — need to fill in the blanks!
» PDF version is available on Blackboard
* recommended: get it printed
+ one option: FedEx Office (Cummington & Comm Ave)

* Required in-class software: Top Hat Pro platform
+ used for pre-lecture quizzes and in-lecture exercises

» create your account and purchase a subscription ASAP
(see Lab 0O for more details)

Preparing for Lecture
» Short video(s) and/or reading(s)

» Short online quiz

» Preparing for lecture is essential!
» gets you ready for the lecture questions and discussions
* we won't cover everything in lecture

CAS CS 112 B1 Boston University, Spring 2023

Course Website
www.cs.bu.edu/courses/cs112

“ Introduction to Computer Science Il

1
Home Welcome!

Syllabus
Schedule
Lectures
Labs

Problem Sets

Staff . .
Course information
Office Hours
Resources Course description
o The second course for computer science majors and anyone seeking a rigorous
Covers advanced and data structures using the
Policies Java language. Topics include searching and sorting, recursion, algorithm analysis,
linked lists, stacks, queues, trees, and hash tables.

CS 111, or the equivalent. If you have not had significant prior experience with recursion,
you are strongly encouraged to take CS 111 first

» not the same as the Blackboard site for the course

use Blackboard to access info. on:

* the pre-lecture videos/readings posted by 36 hours
« the pre-lecture quizzes before lecture

* a note with the pages that we covered in lecture

Labs

Will help you prepare for and get started on the assignments

Will also reinforce essential skills

ASAP: Complete Lab 0 (on the course website)
+ short tasks to prepare you for the semester

CAS CS 112 B1 Boston University, Spring 2023

Grading

1. Problem sets (20%) — see syllabus for due dates

2. Exams
» two midterms (30%) — Wed nights 6:30-8:00; no makeups!
+ final exam (40%)
» can replace lowest problem set and lowest midterm

» wait until you hear its dates/times from me;
initial info posted by Registrar will likely be incorrect;
make sure you're available for the entire exam period!

3. Participation (10%)

To pass the course, you must have
a passing PS average
and a passing exam average.

Participation

» Full credit if you:

+ earn 85% of the Top Hat points over the entire semester

(voting from outside classroom and voting for someone else
are not allowed!)

» attend 85% of the labs

+ If you end up with x% for a given component where x < 85,
you will get x/85 of the possible points.

» This policy is designed to allow for occasional absences
for special circumstances — including isolation for Covid-19.

+ If you need to miss a lecture:
» watch its recording ASAP (available on Blackboard)

* keep up with the pre-lecture tasks and the assignments
* do not email me!

CAS CS 112 B1 Boston University, Spring 2023

Course Staff

* Instructors: David Sullivan (B1 lecture)
Christine Papadakis-Kanaris (A1/C1 lectures)

» Teaching Assistants (TAs)
plus Undergrad Course Assistants (CAs)

» see the course website:
http://www.cs.bu.edu/courses/cs112/staff.html

» Office-hour calendar:
http://www.cs.bu.edu/courses/cs112/office_hours.html

» For questions: post on Piazza or cs112-staff@cs.bu.edu

Getting Started with Java

* You all have a solid foundation in a programming language.

» For most of you, that language (Python) is not the one
that we'll use (Java)!

+ We'll cover some of the trickier aspects of Java together
* in lecture
* in the labs

* You'll need to learn the rest on your own.
* something you will do many times in your career!
* an important skill in its own right

CAS CS 112 B1 Boston University, Spring 2023

CAS CS 112 B1

Python vs. Java

Here's a very simple Python program:

print('hello!")

Here's the comparable program in Java:

public class Helloworld {
public static void main(String[] args) {
System.out.println("hello!™);

}
}
Python vs. Java
Python Java
print('hello!") ‘ public class Helloworld {
public static void
main(string[] args) {
System.out.println("hello!™);
}
}
» Classes are only » Classes define data types,
used to define but they can also serve as
new data types. "containers" for other code.
* not all programs * all programs need
need a class at least one class
* Functions/methods are + Every program needs at least
useful but not required. method called main().
» can put all code in the » with the header shown above
global scope + most code is inside methods

Boston University, Spring 2023

CAS CS 112 B1

Python vs. Java (cont.)

Python

def main(Q:
print("hello!")

main()

« Blocks of code are
defined using
indentation.

» Simple statements end
at the end of the line.

 String literals can be
surrounded with either
single or double quotes.

Java

public class Helloworld {
public static void
main(String[] args) {
System.out.printin("hello!™);
}

» Blocks of code are (usually)
defined using curly braces ({ }).
* indentation isn't required,
but we use it for readability!

+ Simple statements end
with a semi-colon.

 String literals must be
surrounded with double quotes.

Python vs. Java (cont.)

Python

def main(Q):
print('hello!")

mainQ

* You can run a program
without pre-processing it.
» can also execute code
from the Shell/console

* When you run a program,
the interpreter begins at
the top of the file.

 to execute a function,
need to explicitly call it

Java

public class Helloworld {
public static void
main(string[] args) {
System.out.printin("hello!™);
}

» The program must be compiled
before it can be run.

 turns it into lower-level code
 there is no Shell in Java
* When you run a program,
Java begins with main().
+ even if there's code before it
* itcalls main() for us

Boston University, Spring 2023

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Converting a Simple Program

Computer Science 112
Boston University

Converting from Python to Java

* Python:

quarters = 10
dimes = 3

nickels
pennies

7
6

cents = 25*quarters + 10*dimes + 5*nickels + pennies
print('total in cents 1is:', cents)

» Java: this version still doesn't work!

public class ChangeAdder {
public static void main(string[] args) {
quarters = 10;
dimes = 3;
nickels
pennies

7
6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);

Boston University, Spring 2023

10

CAS CS 112 B1

Printing Values
» Python: a print statement can have multiple expressions:
print(expr,, expr,, ... €Xpr,)

+ the resulting values are displayed on the same line,
separated by spaces

» Java: you are limited to a single expression:
System.out.printin(expr) ;

+ if you need more than one value,
use string concatenation

Printing Values: Other Examples

Python Java
a =3 a = 3;
b =75 b =5;
print(a, b) System.out.printin(a + " " + b);
output;
35

print('$' + str(dollars)) System.out.printin("$" + do1l1ars);

no conversion needed!

Boston University, Spring 2023

CAS CS 112 B1

Declaring a Variable

» Java requires that we specify the type of data
that a variable will store before we attempt to use it.

» This is called declaring the variable.
* syntax:
type variable;

* examples:
int cents;

/ N\

type of

name of

the variable the variable

int quarters = 10;

Converting from Python to Java

* Python:
quarters = 10

dimes =
nickels
pennies

cents =

print('total in cents is:

« Java:

7
6

o w

25*quarters + 10*dimes + 5*nickels + pennies
', cents)

here's the fixed version

public class ChangeAdder {
public static void main(string[] args) {

int quarters = 10; // declare and assign, or...
int dimes = 3;

int nickels
int pennies

7;
6;

int cents; // declare first, assign later
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);

Boston University, Spring 2023

12

Pre-Lecture
From Python to Java:
Conditional Execution

and User Input

Computer Science 112
Boston University

Basic Changes

Python Java

avg = 85 avg = 85;
if avg >= 90: if avg >= 90:

grade = 'A' grade = "A";
elif avg >= 80: elif avg >= 80:

grade = 'B' grade = "B";
elif avg >= 70: elif avg >= 70:

grade = 'C' grade = "c"
elif avg >= 60: elif avg >= 60:

grade = 'D' grade = "D";
else: else:

grade = 'F' grade = "F";
print(avg, '=', grade) print(avg, "=", grade);

CAS CS 112 B1

Boston University, Spring 2023

13

Printing
Python Java
avg = 85 avg = 85;
if avg >= 90: if avg >= 90:
grade = 'A' grade = "A";
elif avg >= 80: elif avg >= 80:
grade = 'B' grade = "B";
elif avg >= 70: elif avg >= 70:
grade = 'C' grade = "C";
elif avg >= 60: elif avg >= 60:
grade = 'D' grade = "D";
else: else:
grade = 'F' grade = "F";
print(avg, '=', grade) System.out.printin(avg + " = " + grade);
Declaring Variables
Python Java
avg = 85
if avg >= 90: avg = 85;
grade = 'A' .
elif avg >= ?05 if avg >= 90:
grade = 'B rade = "A";
elif avg >= 70: .9 PV
e elif avg >= 80:
grade = 'C rade = "B":
elif avg >= 60: .9 ~oon
TR elif avg >= 70:
grade = 'D nen.
else: 1_fgrade = 68 ’
_ 1t ell avg >= H
grade = 'F grade = "D";
print(avg, '=', grade) else:
grade = "F";
System.out.printin(avg + " = " + grade);

CAS CS 112 B1

Boston University, Spring 2023

14

Conditional Execution
Python Java
avg = 85 int avg = 85;
if avg >= 90: String grade;
grade = 'A' if (avg >= 90) {
elif avg >= 80: grade = "A";
grade = 'B' } else if (avg >= 80) {
elif avg >= 70: grade = "B";
grade = 'C' } else if (avg >= 70) {
elif avg >= 60: grade = "C";
grade = 'D' } else if (avg >= 60) {
else: grade = "D";
grade = 'F' } else {
print(avg, '=', grade) } grade = "F";
System.out.printin(avg + " = " + grade);
Getting User Input
Python Java
avg = int(input('average: ')) Scanner scan = new Scanner(System.in);
if avg >= 90: . _ .
grade = ‘A" int avg = scan.nextInt(Q);
elif avg >= 80: String grade;
grade = 'B' if (avg >= 90) {
elif avg >= 70: grade = "A";
grade = 'C' } else if (avg >= 80) {
elif avg >= 60: grade = "B";
grade = 'D' } else if (avg >= 70) {
else: grade = "C";
grade = 'F' } else if (avg >= 60) {
. _ grade = "D";
print(avg, '=', grade) } else {
grade = "F";
}
System.out.println(avg + " = " + grade);

CAS CS 112 B1 Boston University, Spring 2023

15

+ scan.nextInt()

« scan.next()

« scan.nextLine()

+ scan.nextbouble()
* read in a floating-point value and return it

Scanner Methods: A Partial List

* read in an integer and return it

* read in a single "word" and return it as a String

* read in a "line" of input (could be multiple words)
and return it as a String

Getting User Input

Java

Python

avg = int(input('average:
if avg >= 90:

grade = 'A'
elif avg >= 80:

grade = 'B'
elif avg >= 70:

grade = 'C'
elif avg >= 60:

grade = 'D'
else:

grade = 'F'
print(avg, '=', grade)

"

Scanner scan = new Scanner(System.in);
System.out.print("average: ");
int avg = scan.nextInt(Q);

String grade;
if (avg >= 90) {

grade = "A";

} else if (avg >= 80) {
grade = "B";

} else if (avg >= 70) {
grade = "C";

} else if (avg >= 60) {
grade = "D";

} else {
grade = "F";

}

System.out.println(avg + " = " + grade);

CAS CS 112 B1 Boston University, Spring 2023

16

CAS CS 112 B1

Java Basics;
User Input and Conditional Execution

Computer Science 112
Boston University

Recall: Declaring a Variable

» Java requires that we specify the type of data
that a variable will store before we attempt to use it.

» This is called declaring the variable.
* syntax:
type variable;

* examples:
int count; <—— says that count will store an integer

area; <—— says that area will store a
floating-point number (one with a decimal)

» Optional: you can assign an initial value at the same time:

int count = 0;
double area = 125.5;

Boston University, Spring 2023

17

CAS CS 112 B1

Commonly Used Data Types in Java
» 1int -aninteger

int count = 0;

« double - afloating-point number (one with a decimal)
doubTle area = 125.5;

e String - a sequence of 0 or more characters

String message = "welcome to CS 112!";

¢« boolean -either true or false
boolean isPrime = false;

unlike in Python, the boolean literals
are not capitalized

Recall: Converting from Python to Java
* Python:

quarters = 10 # we don't declare a variable's type
dimes =
nickels
pennies

7
6

o w

cents = 25*quarters + 10*dimes + 5*nickels + pennies
print('total in cents is: ', cents)

« Java: here's the fixed version

public class ChangeAdder {
public static void main(string[] args) {
int quarters = 10; // declare and assign, or...
int dimes = 3;
int nickels
int pennies

7;
6;

int cents; // declare first, assign later
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);

Boston University, Spring 2023

18

CAS CS 112 B1

Getting Input from the User

* Python:

quarters = int(input('Enter the number of quarters: '))
dimes = int(input('Enter the number of dimes: '))

nickels = int(input('Enter the number of nickels: "))
pennies = int(input('Enter the number of pennies: '))
cents = 25*quarters + 10*dimes + 5*nickels + pennies

print('total in cents 1is: ', cents)

How should you fill in the blank?

+ Java:
import java.util.¥;

public class ChangeAdder {
public static void main(string[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Enter the number of quarters: ");
int quarters = ;

int dimes = 3;
int nickels =
int pennies =

7;
6;

int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);

Boston University, Spring 2023

19

Recall: Scanner Methods: A Partial List

* scan.nextInt() where scan is a
* read in an integer and return it Scanner object

+ scan.nextbouble()
* read in a floating-point value and return it

« scan.next()
* read in a single "word" and return it as a string

« scan.nextLine()

* read in a "line" of input (could be multiple words)
and return itas a String

Getting Input from the User

+ Java:
import java.util.*;

public class ChangeAdder {
public static void main(string[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Enter the number of quarters: ");
int quarters = console.nextInt();
System.out.print("Enter the number of dimes: ");
int dimes = console.nextInt();
System.out.print("Enter the number of nickels: ");
int nickels = console.nextInt();
System.out.print("Enter the number of pennies: ");
int pennies = console.nextInt();

int cents;
cents = 25*%quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);

CAS CS 112 B1 Boston University, Spring 2023

20

CAS CS 112 B1

Recall: Conditional Execution

Python Java
avg = int(input('average: ')) Scanner scan = new Scanner(System.in);
System.out.print("average: ");
if avg >= 60: int avg = scan.nextInt(Q);
print('passing')
print('congrats!"') if (avg >= 60) {
else: System.out.printin("passing");
print('failing"') System.out.printin("congrats!");
} else {

System.out.println("failing");
1

+ Snytax notes:
 the condition is surrounded
by parentheses (no colon)

* each block is surrounded by
curly braces

What does this print?

int x = 5;
if (x < 15) {
if (x > 8) {
System.out.printin("one");
} else {
System.out.printin("two");
}
}
if (x > 2) {
System.out.printin("three");
}

Boston University, Spring 2023

21

CAS CS 112 B1

What happens if | shift these two lines over?

int x = 5;
if (x < 15) {
if (x > 8) {

System.out.printin("one™);
} else {
System.out.printin("two");

}
}
if (x > 2) {
System.out.printin("three");
}
Java vs. Python
int x = 5; // the original Java version
if (x < 15) {
if (x > 8) {
System.out.printin("one");
} else {
System.out.printin("two");
3
}
F x> D) output:
Ssystem.out.printin("three™); two
} three
X =5 # the equivalent Python code
if x < 15:
if x > 8:
print('one')
else:
print('two") output:
if x > 2: two
print('three') three

Boston University, Spring 2023

22

CAS CS 112 B1

Java vs. Python

int x = 5;
if (x < 15) {
if (x > 8) {
System.out.printin("one™);
} else {
System.out.printin("two™);
}

}

if (x > 2) {
System.out.printin("three");

}

X =5
if x < 15:
if x > 8:
print('one'")
else:
print('two')
if x > 2:
print('three')

output:
two
three

output?

To make the Java version behave the same...

int x = 5;
if (x < 15) {
if (x > 8) {
System.out.printin("one");

}
} else {
System.out.printin("two");
}

if (x > 2) {
System.out.printin("three");
}

X =5
if x < 15:
if x > 8:
print('one')
else:
print('two')
if x > 2:
print('three'")

Boston University, Spring 2023

23

CAS CS 112 B1

Java's Logical Operators

Python
operator equivalent example
&& and avg >= 80 && avg <= 85
[] or avg < 0 || avg > 100
! not !(avg < 80 || avg > 90)

Operators and Data Types

Each data type has its own set of operators.

» the int version of an operator produces an int result
» the double version produces a double result

* eftc.

Rules for numeric operators:
+ if the operands are both of type int,
the int version of the operator is used.
* examples: 15 + 30
1/2
25 * quarters // quarters is an int
« if at least one of the operands is of type double,
the doub1e version of the operator is used.

* examples: 15.5 + 30.1
1/2.0
25.0 * quarters

Boston University, Spring 2023

24

CAS CS 112 B1

Two Types of Division

* The int version of / performs integer division,
which discards everything after the decimal.

* like // in Python

* The doubTe version of / performs floating-point division,
which keeps the digits after the decimal.

* Examples:
statement output
System.out.printin(5 / 3.0); 1.6666666666666667
System.out.printin(5 / 3); 1

System.out.printin(16.0 / 5);

System.out.printin(l6 / 5);

An Incorrect Extended Change-Adder Program
import java.util.*; How Can We Fix It?

public class ChangeAdder2 {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Enter the number of quarters: ");
int quarters = console.nextInt();
System.out.print("Enter the number of dimes: ");
int dimes = console.nextInt();
System.out.print("Enter the number of nickels: ");
int nickels = console.nextInt(Q);
System.out.print("Enter the number of pennies: ");
int pennies = console.nextInt();

int cents;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.printin("total in cents is: " + cents);
double dollars = cents / 100;

System.out.print("total in dollars 1is: $" + dollars);

Boston University, Spring 2023

25

CAS CS 112 B1

An Incorrect Program for Computing a Grade
/%

* ComputeGrade.java

* This program computes a grade as a percentage.

public class ComputeGrade {
public static void main(string[] args) {
int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;

grade = pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

* What is the output?

Will This Fix Things?
/%

* ComputeGrade.java

* This program computes a grade as a percentage.

public class ComputeGrade {
public static void main(String[] args) {
int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;

grade = pointsEarned / possiblePoints * 100.0;
System.out.printin("The grade is: " + grade);

Boston University, Spring 2023

26

CAS CS 112 B1

Type Casts

* To compute the percentage, we need to tell Java to treat
at least one of the operands as a double.

» We do so by performing a type cast:

grade = (double)pointsearned / possiblePoints * 100;

or

grade

* General syntax for a type cast:
(type) variable

pointsarned / (double)possiblePoints *

100;

Corrected Program for Computing a Grade
/%

* ComputeGrade.java

* This program computes a grade as a percentage.

public class ComputeGrade {
public static void main(String[] args) {
int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;

grade = (double)pointsEarned / possiblePoints * 100;

System.out.println("The grade is: + grade);

Boston University, Spring 2023

CAS CS 112 B1

Evaluating a Type Cast

» Example of evaluating a type cast:

pointsEarned = 13;
possiblePoints = 15;
grade = (double)pointsEarned / possiblePoints * 100;
(double)13 / 15 * 100;
13.0 / 15 * 100;
0.8666666666666667 * 100;
86.66666666666667;

* Note that the type cast occurs after the variable is replaced
by its value.

* It does not change the value stored in the variable.
* in the example above, pointsEarned is still 13

Type Conversions

» Java will automatically convert values from one type
to another provided there is no potential loss of information.

+ Example: we don't need a type cast here:

double d = 3;
variable of value of

type double type int

« 3is converted to 3.0
« 3.0 is assigned to d
* anyint can be assigned to a variable of type double

Boston University, Spring 2023

28

CAS CS 112 B1

Type Conversions (cont.)

The compiler will complain if the necessary type conversion
could (at least in some cases) lead to a loss of information:

int i = 7.5; // won't compile
variable of value of
type int type double

This is true regardless of the actual value being converted:
int i = 5.0; // won't compile

In such cases, we need to perform the conversion ourselves:
doubTle area = scan.nextbouble(); // get from user
int approximateArea = (int)area;
System.out.println(approximateArea);

Type Conversions (cont.)

When an automatic type conversion is performed as part of
an assignment, the conversion happens after the evaluation
of the expression to the right of the =.

Example:
double d = 1 / 3;
; // uses integer division. why?

=0
= 0.0;

Boston University, Spring 2023

29

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Functions / Static Methods

Computer Science 112
Boston University

Functions / Methods

Python distinguishes between:
+ functions: named blocks of code that:
» take 0 or more inputs/parameters
* return a value
* methods: functions that are "inside" an object
* have a self parameter

def grade(avg): class Rectangle:

if avg >= 90: def __init__(self, w, h):
grade = 'A' self.width = w

elif avg >= 80: self.height = h
grade = 'B'

elif avg >= 70: def area(self):
grade = 'C' a = self.width * self.height

elif avg >= 60: return a
grade = 'D'

else:
grade = 'F'

return grade

Boston University, Spring 2023

30

CAS CS 112 B1

Functions / Methods

» Python distinguishes between:

 functions: named blocks of code that:
+ take 0 or more inputs/parameters
* return a value

* methods: functions that are "inside" an object
* have a self parameter

+ In Java, both types of functions are called methods.
+ static methods — like Python functions
* non-static or instance methods — like Python methods

Functions / Static Methods

Python Java
def grade(avg): public static String grade(int avg) {

if avg >= 90: String grade;

grade = 'A’ if Cavg >= 90) {
elif avg >= 80: grade = "A";

grade = 'B' } else if (avg >= 80) {
elif avg >= 70: grade = "B";

grade = 'C' } else if (avg >= 70) {
elif avg >= 60: grade = "C";

grade = 'D' } else if (avg >= 60) {
else: grade = "D";

grade = 'F' } else {
return grade } grade = "F";

return grade;
1

* Format of the header:
public static return-type method-name(parameters)

where each parameter is preceded by its type.

Boston University, Spring 2023

CAS CS 112 B1

Pre-Lecture
From Python to Java:
for Loops

Computer Science 112
Boston University

Shortcut Operators

Python Java
result = 2 int result = 2;
n=>5 int n = 5;
result *= n result *= n;
n+=1 N++;

» Python has operators that < Java also has these operators.

combine arithmetic with
assignment: + In addition, it has two special
ones for adding/subtracting 1:

X++ Iisthesameas x =x + 1

+=

= x-- isthesameas x =x -1
etc.

*

Boston University, Spring 2023 32

for Loops

Python Java
def fac(n): public static int fac(int n) {

result = 1 int result = 1;
for x in range(2, n+l): for (int x = 2; x <= n; x++) {

result *= x result *= x;
return result }

return result;
}

for Loops in Java

+ Syntax:
for (initialization; continuation-test; update) {
body
}
* In our example: initialization ~ continuation test

for ((int x = 2|; x <= n]; [x+4) {

result *= x; \update

CAS CS 112 B1 Boston University, Spring 2023

CAS CS 112 B1

Executinga for Loop

for (initialization; continuation-test; update) {
body
3

Notes:
* the initialization is
only performed once

perform the
initialization

is the
est true?,

* the body is only
executed if the

yes test is true

execute the * we repeatedly do:
body of the loop
T test

perform the bOdy

update update

until the test is false
execute statement |
after the loop N

Tracing a for Loop

for (int x = 2; X <= n; x++) { fac(5
result *= x; n=5
}
initialization:
int x = 2;
no X X <= n result
1
2 true 2

‘ execute body: W
result *= x;

perform update:
X++

execute statement
after the log

Boston University, Spring 2023

34

Static Methods;
A First Look at Loops

Computer Science 112
Boston University

Recall: Functions / Methods

» Python distinguishes between:
+ functions: named blocks of code that:
» take 0 or more inputs/parameters
* return a value
* methods: functions that are "inside" an object
* have a self parameter

» In Java, both types of functions are called methods.
 static methods — like Python functions
* non-static or instance methods — like Python methods
» example?

CAS CS 112 B1

Boston University, Spring 2023

35

CAS CS 112 B1

A Side Note on Conditional Execution

Python Java
def grade(avg): public static String grade(int avg) {

if avg >= 90: String grade;

grade = 'A' if Cavg >= 90) {
elif avg >= 80: grade = "A";

grade = 'B' } else if (avg >= 80) {
elif avg >= 70: grade = "B";

grade = 'C' } else if (avg >= 70) {
elif avg >= 60: grade = "C";

grade = 'D' } else if (avg >= 60) {
else: grade = "D";

grade = 'F' } else if (avg < 60) {
return grade } grade = "F";

return grade; // error
}

+ What if we changed the eTse to an else if?
» compiler error: grade may not have been initialized
(the compiler worries all of the conditions might be false)
» always use an else if you know one choice must execute!

A method for finding the larger of two real numbers.
What's the correct header?

public

max () {

if (vall > val2) {
return vall;

} else {
return val2;

}

» Here's an example of calling it:
double larger = max(10.5, 20.7);

Boston University, Spring 2023

36

CAS CS 112 B1

Another Static Method

/ void indicates that the method does not return a value

public static void printsquareInfo(int sideLength, String units) {
int perim = 4 * sideLength; X\
int area = sideLength * sideLength; takesan int followed by a String

System.out.printin("side Tength = " + sideLength + " " + units);
System.out.printin("perimeter = " + perim + " " + units);
System.out.printin("area = " + area + " " + units + " squared")

Here's an example of calling it:

printsquareinfo(8, "inches"); // no value is returned!
// in Python, would return None

What's the output?

Practice: Computing Absolute Value

* Write a method named abs for computing the absolute value
of a floating-point number n:

public static abs() {

Boston University, Spring 2023

37

The Math Class

« Java's built-in Math class contains static methods for
mathematical operations.

* examples:
abs(value) — returns the absolute value of value

round(value) - returns the result of rounding
value to the nearest integer

pow(base, expon) - returns the result
of raising base tothe expon power

sqrt(value) - returns the square root of value

* To use a static method defined in another class,
we prepend the name of the class.

doubTe numvals = Math.pow(2, 20);

class static method
name name

Calling Functions / Static Methods

 If the function or static method is in the current file,
just use its name:

Python Java

avg = 85 int avg = 85;

Tetter_grade = grade(avg) Sstring letter_grade = grade(avg);

 |f the function or static method is in a different module/class:
* import it as needed
» prepend the module/class name

Python Java
import math // we don't need to import Math!
x = math.sqrt(100) doubTle x = Math.sqrt(100);

CAS CS 112 B1

Boston University, Spring 2023

38

CAS CS 112 B1

Calling (Non-Static) Methods

» Because (non-static) methods are inside an object,
we prepend the name of the object:

Python Java
sl = 'hello' Scanner scan = new Scanner(System.in);
s2 = sl.upper() int avg = scan.nextInt();

Tracing a for Loop

+ Trace this loop by filling in the table::

for (int i = 2; i <= 10; i += 2) {
System.out.println(i * 10);

i <= 10 value printed

|

Boston University, Spring 2023

39

CAS CS 112 B1

Python

templates:

To Get N Repetitions

Java

for i in range(W):

body of loop

for (int i =0; i < WN; i++) {
body of loop

}

example: what do these print?

for i in range(5): for (int i =0; i < 5; i++) {
print('Hip, hip!") System.out.println("Hip, hip!™);
print('Hooray!") System.out.println("Hooray!");
}
+ to get 100 repetitions instead:
for i in range(100): for (int i = 0; i < 100; i++) {
print('Hip, hip!") system.out.printIn("Hip, hip!");
print('Hooray!") System.out.println("Hooray!");
}

Which option(s) work?

Fill in the blanks below to print the integers from 1 to 5:

for (

}

System.out.println(i);

Boston University, Spring 2023

40

CAS CS 112 B1

More Practice

Fill in the blanks below to print the integers from 10 to 20:

for (; :)1
System.out.println(i);
3

Fill in the blanks below to print the integers from 10 down to 1:

for (; :)1
System.out.printin(i);
}

Boston University, Spring 2023

41

CAS CS 112 B1

Pre-Lecture
Variable Scope in Java

Computer Science 112
Boston University

Variable Scope

* The scope of a variable is the portion of a program
in which the variable can be used.

+ By default, the scope of a variable in Java:
* begins at the point at which it is declared

* ends at the end of the innermost block
that encloses the declaration

public static void printResults(int a, int b) {
System.out.println("Here are the stats:");
. int sum = a + b;
. System.out.print("sum = ");
§ System.out.printin(sum);

3{doub1é"évg =(a+b)/2.0;
iiSystem.out.print("average = "); > scope of

iiSystem.out.printin(avg); avg

scope of sum

Boston University, Spring 2023

42

CAS CS 112 B1

Local Variables

« Variables that are declared inside a method are local variables.
» they cannot be used outside that method.

public static void printResults(int a, int b) {
System.out.printin("Here are the stats:");
i int sum = a + b;
i System.out.print("sum = ");

‘ . scope of sum
. System.out.printin(sum); P

i{doub1e avg = (a + b) / 2.0;
iiSystem.out.print("average = "); >~ scope of
iiSystem.out.println(avg); avg

Special Case: Parameters

* What about the parameters of a method?
+ they do not follow the default scope rules!
* their scope is limited to their method

public c1ass Myc1ass {

! System.out.println("Here are the stats "),<\

: - scope
int sum = a + b; of
i System.out.print("sum = "); aandb

§ System.out.printin(sum);
" double avg = (a + b) / 2.0;

- System.out.print("average = ");
| System.out.println(avg);

int ¢ = a + b; // does not compilel!

Boston University, Spring 2023

Special Case: for Loops

* When a variable is declared in the initialization clause of
a for loop, its scope is limited to the loop.

+ Example:

for Ginti=0;1<5; i++) {
int j =1 * 3;

System.out.println(j); scope of 1

// the following 1ine won't compile
System.out.print(i);
System.out.println(" values were printed.");

Special Case: for Loops

* To allow i to be used outside the loop, we need to
declare it outside the loop:

* Example:

ifor (A =0;1<5; i++) {
‘ int j =1 * 3;

i System.out.printin(j);
3 >> scope
| .. . of 1
- // now this will compile

i System.out.print(i);

- System.out.printIn(" values were printed.");

CAS CS 112 B1

Boston University, Spring 2023

44

From Python to Java:
Loops Revisited; Variable Scope

Computer Science 112
Boston University

Definite vs. Indefinite Loops

+ for loops are definite loops
+ we use them when we know how many repetitions we need
» templates for N repetitions:

Python Java
for i in range(W): for (int i =0; i < WN; i++) {
body of loop body of loop
}

* Indefinite loops are used when:
+ we don't know how many repetitions are needed
* it's harder to determine the number of repetitions
» Java provides two options: while and do..while

CAS CS 112 B1 Boston University, Spring 2023

45

CAS CS 112 B1

while Loops

Python

Java

def fac(n):
result = 1
while n > 1:
result *= n
n-=1
return result

» Here again, the Java
version needs:

* parens around the
condition (no colon)

» curly braces around
the block (the body
of the loop)

public static long fac(long n) {
long result = 1;
while (n > 1) {
result *= n;
n--;
}

return result;

+ The int type in Java uses
4 bytes per integer.

* gives an approx. domain of
[-2 billion, +2 billion]

» For larger integers, we can
use the Tong type instead.

+ uses 8 bytes per integer

What is the final value printed by this loop?

int a = 10;
while (a > 2) {
a=a-2;
System.out.println(a * 2);
}
a>2 a output
before loop 10
1st iteration 10 > 2 (true) 8 16

2nd iteration

3rd iteration
(if any)
4th iteration
(if any)

Boston University, Spring 2023

46

CAS CS 112 B1

Using a Loop When Error-Checking

» Let's say we want the user to enter a positive integer.

» If the number is <= 0, we want to ask the user to try again.

+ Here's one way of doing it using a wh1ile loop:
Scanner console = new Scanner(System.in);

System.out.print("Enter a positive integer: ");

int num = console.nextInt(Q);
while (num <= 0) {

System.out.print("Enter a positive integer:

num = console.nextInt();

}

* Note that we end up duplicating code.

"

Error-Checking Using a do-while Loop

* ado..while loop allows us to eliminate the duplication:

Scanner console = new Scanner(System.in);
int num;
do {

System.out.print("Enter a positive integer:

num = console.nextInt();
} while (num <= 0);

")

+ The code in the body of a do-while loop is always executed

at least once.

Boston University, Spring 2023

47

do-while Loops

* In general, a do-wh1ile statement has the form
do {
one or more statements
} while (test);

* note the need for a semi-colon after the condition

+ We do not use a semi-colon after a whi1e loop's condition:
while (test) {

one or more statements

}

* beware of using one — it can actually create an infinite loop!

Evaluating a do-while Loop

Steps: .

1. execute the statements v
in the body

2. evaluate the test

body of the loop

3. if it's true, go back to
step 1

(if it's false, continue to the
next statement)

next statement

CAS CS 112 B1

Boston University, Spring 2023

48

CAS CS 112 B1

Comparing while and do-while

while loop do-while loop

body of the loop

body of the loop

next statement

* In a do-whiTe, the first test comes after executing the body.
 thus, the body is always executed at least once

next statement

Which Type of Loop Should You Use?

* Use a for loop when the number of repetitions is known in
advance — i.e., for a definite loop.

» Otherwise, use a while loop or do-while loop:

» use a while loop if the body of the loop may not be
executed at all

* i.e., if the condition may be false at the start of the loop

* use a do-while loop if:
+ the body will always be executed at least once
 doing so will allow you to avoid duplicating code

Boston University, Spring 2023

49

CAS CS 112 B1

Another Example of Variable Scope

public class MyProgram {

©odint 1 = 55
|) . P . scope of
System.out.printinGl. 2 D; methodl's
11§X§E§m-°Ut;Pfi”t1n£i_/ 1)5 ______ }»scopeofj version of 1
} ,,
public static void main(string[] args) {
// The following 1ine won't compile.
System.out.printin(i + j);
Cdinti=4;
i System.out.println(i * 6); scope of
i methodl(); main's
F e version of 1

If we comment out the problematic line,

what is printed at the end of the program?

pubTlic class MyProgram {
public static void methodl() {

int i = 5;
System.out.printin(i * 3);
int j = 10;

System.out.printin(j / i);
}

public static void main(string[] args) {
// The following 1ine won't compile.
// System.out.println(i + j);
int i = 4;
System.out.println(i * 6);
methodl();

System.out.printin(i); // what would this print?

Boston University, Spring 2023

50

CAS CS 112 B1

Recall: for Loops and Variable Scope

* When a variable is declared in the initialization clause of
a for loop, its scope is limited to the loop.

+ Example:

for Ginti=0;1<5; i++) {
int j =1 * 3;

System.out.println(j); scope of 1

System.out.print(i);
System.out.println(" values were printed.");

Recall: for Loops and Variable Scope (cont.)

+ Limiting the scope of a loop variable allows us to use the
standard loop templates multiple times in the same method.

* Example:
public static void myMethod() {

for (Gint i =0; i <5; i++) {
int j =1 * 3;

3 System.out.printin(j); SﬁﬂxiOf
.

for (int i =05 1 < 7; i+4) {

| System.out.println("Go BU!"); scope of
3 second i

Boston University, Spring 2023

51

CAS CS 112 B1

Practice with Scope

public static void drawRectangle(int height) {
for (int i = 0; i < height; i++) {
/I which variables could be used here?

int width = height * 2;
for (int j = 0; j < width; j++) {
System.out.print("*");

/I what about here?
}
/I what about here?
System.out.printin();

/l what about here?
}

public static void repeatMessage(int numTimes) {

/I what about here?

for (int i = 0; i < numTimes; i++) {
System.out.printin("what is your scope?");
}

Recall this static method...

* Write a method named abs for computing the absolute value

of a floating-point number n:

public static double abs(double n) {

if (n >=0) {
return n;
} else {

return -1 * n;

Boston University, Spring 2023

CAS CS 112 B1

Here's an alternative approach. Why won't it work?

* Write a method named abs for computing the absolute value
of a floating-point number n:

public static double abs(double n) {

if (n >=0) {

int result = n;
} else {

result = -1 * n;
}

return result;

How can we fix it?

* Write a method named abs for computing the absolute value
of a floating-point number n:

public static double abs(double n) {

if (n >=0) {

int result = n;
} else {

result = -1 * n;
}

return result;

Boston University, Spring 2023

53

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Primitives, Objects, and References

Computer Science 112
Boston University

Recall: Variables and Values in Python

In Python, when we assign a value to a variable,
we're not actually storing the value in the variable.

Rather:
+ the value is somewhere else in memory
+ the variable stores the memory address of the value.

Example: x = 7
Memory

4000

X 4001 7

4002

4003

Boston University, Spring 2023

54

Recall: References

Memory

4000

x|4001 4001 7

4002

4003

We say that a variable stores a reference to its value.
» also known as a pointer

Because we don't care about the actual memory address,
we use an arrow to represent a reference:

Memory

X > 7

Recall: Simplifying Our Mental Model

In Python, when a variable represents certain types of values:

* integers
« floats
* strings
 other immutable (unchangeable) values
it's okay to picture the value as being inside the variable.

CAS CS 112 B1

Boston University, Spring 2023

55

CAS CS 112 B1

Primitive Types

* In Java, some types of data are stored inside their variables:

int x = 7;)(IIII

* it's not a simplification
 there is no reference!

* These data types are known as primitive types:
e int
« long
« double
» boolean
a few others

* Primitive values are not objects.

Object vs. Primitive

* Recall: An object is a construct that groups together:

e one or more data values String object for "hello"

(the object's attributes or fields)

« one or more functions contents |'n|e| 110!
(known as the object's methods) length

- Every object is an instance replace()

of a class. sp1it0

« they are just "single" values anint
+ there is nothing else grouped with the value 112
+ they are not instances of a class
+ they only use a small number of bytes
» that's why they can be easily stored inside their variables!

Boston University, Spring 2023

56

CAS CS 112 B1

Reference Types
Java stores objects the same way that Python does:

String sl = "hello, world";

leI—» "hello, world"

» the object is stored outside the variable
+ the variable stores a reference to the object

Data types that work this way are known as reference types.
* variables of those types are reference variables

Why Declare Variables?

One reason:
» primitives are stored inside variables
« different primitive values require different amount of memory

primitive type size
int 4 bytes
double 8 bytes
Tong 8 bytes
boolean 1 byte

Declaring a variable tells the compiler how much memory
to allocate!

int count = 1; count <— 4bytes
double result = 3.14159;
result|3.14159| < 8bytes

Boston University, Spring 2023

57

CAS CS 112 B1

What About Python?

* In Python, everything is an object.
« thus, all variables hold references (memory addresses)

* As aresult, Python can make every variable the same size.
» and thus we don't need to declare the variable!

count = 1 countEI—» 1
result = 3.14159 result| ———» 3.14159

Boston University, Spring 2023

58

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Working with Strings

Computer Science 112
Boston University

Representing Individual Characters in Java

The char type is used to represent individual characters.
It is a primitive type.

To specify a char literal, we surround the character

by single quotes:

* examples: 'a' ‘'z' 'o'" '7" '?

« can only represent single characters "hi'<—— emor
+ if you want a char, don’t use double-quotes!

a" is a string
a'isachar

Boston University, Spring 2023

59

CAS CS 112 B1

Working with String Objects

Python Java
sl = "hello" string s1 = "hello";
s2 = "world!" string s2 = "world!";
Sl=Sl+" n+sz Sl=Sl+" n+sz;

num_chars = len(sl)
s2 = s1[0:5] + s1[-1]

s3 = s2.upper()

int numChars = sl.length();
s2 = sl.substring(0, 5)

+ sl.charAt(numChars - 1);
String s3 = s2.toUppercCase();

A style convention:

* When a name in Python

has more than one word,

the convention is to
separate the words
with _ characters.

* In Java, we instead capitalize
the first letter of each new word.

Working with String Objects

Python Java
sl = "hello" String s1 = "hello";
s2 = "world!" String s2 = "world!";
sl =s1+"" + s2 sl =s1 + " " + s2;

num_chars = len(sl)
s2 = s1[0:5] + s1[-1]

s3 = s2.upper()

int numChars = sl.length();
s2 = sl.substring(0, 5)

+ sl.charAt(numChars - 1);
String s3 = s2.toUppercCase();

* Python hasa len()
function that takes a
string as input.

* InJava, strings have a Tength()
method.

* inside the String object
e a non-static method

Boston University, Spring 2023

CAS CS 112 B1

Working with String Objects

Python Java
sl = "hello" String sl1 = "hello";
s2 = "world!" String s2 = "world!";
sl=s1+"" +s2 sl =s1+"" + s2;

num_chars = Ten(sl)
s2 = s1[0:5] + s1[-1]

s3 = s2.upper()

int numChars = sl.length();
s2 = sl.substring(0, 5)

+ sl.charAt(numcChars - 1);
String s3 = s2.toUppercCase();

* Python has special
operators for slicing
and indexing strings.

 |n Java, we use non-static
methods instead:

e substring(start, end)
for slicing

« charAt(index) forindexing

+ We can't use negative indices.

 uses.length() - 1for
the last character

Working with String Objects

Python Java
sl = "hello" String s1 = "hello";
s2 = "world!" String s2 = "world!";
sl =s1+"" + s2 sl =s1 + " " + s2;

hum_chars = len(sl)
s2 = s1[0:5] + s1[-1]

s3 = s2.upper()

int numChars = sl.length();
s2 = sl.substring(0, 5)

+ sl.charAt(numChars - 1);
String s3 = s2.toUppercase();

» Python strings also
have methods.

* In Java, the equivalent methods
often have different names.

Boston University, Spring 2023

CAS CS 112 B1

After running this, what is the value of s3?

Java
String sl1 = "hello";
String s2 = "world!";
sl =s1+"" + s2;

int numChars = sl.length();
s2 = sl.substring(0, 5)

+ sl.charAt(numChars - 1);
String s3 = s2.toUppercCase();

sl[::]

s2[]
numChars|[|
s3]

Boston University, Spring 2023

62

From Python to Java:
Primitives, Objects, and References

Computer Science 112
Boston University

Recall: Variables and Values in Python

* In Python, when we assign a value to a variable,
we're actually storing a reference to the value.

* Example: x = 7 Memory

4000

X 4001 7

* We depict a reference using an arrow.

Memory
X > 7

* When a value is immutable (unchangeable),
we can picture it as being inside its variable.

X7]

CAS CS 112 B1 Boston University, Spring 2023

63

CAS CS 112 B1

Recall: Primitive Types vs. Reference Types

* In Java, some types of data are stored inside their variables:

int x = 7; x

* it's not a simplification
 there is no reference!

» These primitive types are not defined by a class.
* their values are not objects
» they are just "single" or "simple" values

* Reference types are types that are defined by a class.
* their values are objects
» they group together fields and methods
 variables of these types hold a reference to an object

Which of these is a reference type in Java?
A. char B. double C. string D. scanner

E. more than one of the above

sample variables of these types picturing the variables in memory

char ch = 'g'; ch|:|
double avg = 85.3; avg|:|
String s = "hello"; s|:|
Scanner in = new Scanner..; in |:|

Boston University, Spring 2023

64

CAS CS 112 B1

A.

Which of these is a reference type in Java?

char B. double C. string D. scanner

E. more than one of the above

Note:

. types begin with an upper-case letter
* because we capitalize class names in Java

. types begin with a lower-case letter

Recall: Why do we declare variables in Java?

One reason: doing so allows the compiler to give each variable
the correct amount of memory!

int count = 1; count < 4bytes
double result = 3.14159; result|3.14159| < 8bytes

In Python, we're always storing a reference,
so all variables have the same size!

* the size of a memory address (usually 8 bytes)

count = 1 count I:—!—» 1
result = 3.14159 result| ——» 3.14159

» thus, we don't need to declare the type

Boston University, Spring 2023

65

CAS CS 112 B1

Using Methods in an Existing Class

Using an object from an existing class involves calling
its non-static methods.

» the ones inside the object

How do we figure out:

* which methods are available
* what they do

* how to call them

Example: What if | want to figure out the length of a string,
but | don't remember how?

The API of a Class

The methods defined in a given class are the AP/ of that class.

* API = application programming interface

The API of all classes that come with Java is available here:
https://docs.oracle.com/javase/8/docs/api/

 there's a link on the Resources page of the course website

Boston University, Spring 2023

66

select —
the
package
name
(optional)

String
isin
java.lang
Scanner
isin
java.util

Consulting the Java API

[E Overview (ava Platform

& > C @ Secure | https;//docs.oracle.com/javase/8/docs/api/

Java.beans.beancontex &

java.lang.instrument
java.lang.invoke
java.lang. management
java.lang.ref
Java.lang.reflect

GnTmerermssion
SecurityManager
Short

StackTraceElement
StrictMath
String
StringBuffer
StringBuilder
System
Thread
ThreadGroup
ThreadLocal
Throwable
Void

Enums
Character.UnicodeScrip
ProcessBuilder.Redirect
Thread.State
Exceptions

ArithmeticException

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

PREV NEXT FRAMES NO FRAMES

Java™ Platform, Standard Edition 8
API Specification

This document is the API specification for the Java™ Platform, Standard Edition.

See: Description

“ >

Profiles
s compactl
 compact2
* compact3
Package Description
java.applet Provides the classes necessary to cr
an applet and the classes an applet
to communicate with its applet cont
java.awt Contains all of the classes for creati
user interfaces and for painting gra
and images.
< »

select —
the

class

name

Consulting the Java API

[S] string (ava Platform

SEE X

& C | @ Secur

e | https;//docs.oracle.com/javase/8/docs/api/

java.beans beancontex a
Java.io

java.lang
java.lang.annotation
java.lang.instrument
java.lang.invoke
java.lang.management
java.lang.ref
java.lang_reflect

4 »
“Runtmepermission |
SecurityManager

StackTraceElement

StringBuilder
System
Thread
ThreadGroup
ThreadLocal
Throwable
Void

Enums
Character.UnicodeScrip

ProcessBuilder.Redirect
Thread State

Exceptions
ArithmeticException

ArrayindexOutOfBound

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP Standard Ed. 8
PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3

java.lang

Class String

java.lang.Object

java.lang.String

All Implemented Interfaces:
Serializable, CharSequence, Comparable<String>

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence

The String class represents character strings. All string literals in Java programs,
such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String
buffers support mutable strings. Because String objects are immutable they can be
shared. For example:

String str = "abc";

< >

CAS CS 112 B1

Boston University, Spring 2023

67

CAS CS 112 B1

Consulting the Java API (cont.)

» Scroll down to see a summary of the available methods:

[8] string (ava Platform SE = x

< C' | @ Secure | https://docs.oracle.com/javase/8/docs/api/ DAL I O BN]

T —— INSTULIIS LIS IHUEX WILILI UIIS SUIIY UL U1 TSt UCCULTEnce =
of the specified character.

java.io
la . .

j:x? \a:g annotation int lastIndex0f(int ch, int fromIndex)

Java lang.instrument Returns the index within this string of the last occurrence

Java.lang.invoke of the specified character, searching backward starting at

java.lang.management
java.lang.ref
Java, fov\glve"eu = int lastIndex0f(String str)

4 > Returns the index within this string of the last occurrence
“Runtimepermission |

the specified index

- of the specified substring.
SecurityManager
Short int lastIndex0f(String str, int fromIndex)
StackTraceElement ST
StrictMath Returns the index within this string of the last occurrence
String of the specified substring, searching backward starting at
StringBuffer the specified index.
StringBuilder
System int length()
Thread } i
ThreadGroup Returns the length of this string.
ThreadLocal g
Thirowabie boolean matches (String regex)
Void Tells whether or not this string matches the given
Enums regular expression
Character UnicodeScrip int offsetByCodePoints(int index, int codePointOffset)
ProcessBuilder.Redirect Returns the index within this String that is offset from
Thread.State the given index by codePointOffset code points.
Exceptions boolean regionMatches(boolean ignoreCase, int toffset,
ArithmeticException String other, int ooffset, int len)

ArrayindexOutOfBound , Tests if two string regions are equal
’ 8 e

Consulting the Java API (cont.)
+ Clicking on a method name gives you more information:

length

public int length{() |—method header

i Returns the length of this string. The length is equal to the number of Unicode
behavior code units in the string.

Specified by:
length in interface CharSequence
Returns:

the length of the sequence of characters represented by this object.

* From the header, we can determine:
 the return type: int

+ the parameters we need to supply:
the empty () indicates that Tength has no parameters

Boston University, Spring 2023

68

CAS CS 112 B1

substring Method

substring

public String substring({int beginIndex,
int endIndex)

@ Returns a new string that is a substring of this string. The substring begins at the specified
beginIndex and extends to the character at index endIndex — 1. Thus the length of the
~ substring 18 endIndex-beginIndex.

String substring(int beginIndex, int endIndex)

* return type:

* parameters:

* behavior: returns the substring that:
* begins at beginIndex
* ends at endIndex -1

Which of these correctly fills in the blank?

charAt

|public char charAt(int index) |

Returns the char value at the specified index. An index ranges from 0 to length() - 1.

String s = "PS 1 is due next week!";
int len = s.length(Q);
// get the last character in s

A. String last = s.charAt(int len - 1);
B. String last = s.charAt(len - 1)

C. char last = s.charAt(int Ten - 1);
D. char last = s.charat(len - 1);

E.

more than one of them

Boston University, Spring 2023

69

CAS CS 112 B1

Adding chars...

charAt

public charAt(int index)

Returns the char value at the specified index. An index ranges from 0 to length() - 1.

¢ Because charAt() returns a char,
we have to be careful when we use its return value!

* example:
String s = "Perry Sullivan";
System.out.println(s.charAt(0) + s.charAt(6));
output:
?7?
Adding chars...fixed!

charAt

public charAt(int index)

Returns the char value at the specified index. An index ranges from 0 to length() - 1

* Because charAt() returns a char,

we have to be careful when we use its return value!

* example:
String s = "Perry Sullivan";
System.out.println(s.charAt(0) +"" + s.charAt(6));

Boston University, Spring 2023

CAS CS 112 B1

After running this code, what are s1 and s3?

String sl = "Go";
String s2 = "Terriers!";

String s3 = sl + " " + s2;
s2.substring(0, 5);
sl = s2.toUppercCase();
sl s3

A. "TERRI" "Go Terriers!"

B. "TeErrI" "TERRI Terri"

C. "TERRIERS!" "Go Terriers!"

D. "TERRIERS!" "TERRIERS! Terriers!"
E. none of these

Processing a String One Character at a Time

» Let's say that we want a method that prints a string vertically,
one character per line.
* example: printvertical("helTlo") should print:
h

o ——m

» Use a for loop, along with calls to methods inside the string:

public static void printvertical(String s){

for (int i =0; i < ;o d+4) {

Boston University, Spring 2023

71

Testing for Equivalent Primitive Values

* The == and != operators are used to compare primitives.

e int, double, char, etc.

* Example:

Scanner console = new Scanner(System.in);
System.out.print("Choose an option: ");

int choice = console.nextInt();

if (choice == 1) { // this works just fine

playsudoku() ;
} else if (choice == 2) {
playChess();
} else {
System.out.printin("invalid input");
3
Testing for Equivalent Objects
« The == and != operators do not typically work

when comparing objects.

* Example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();

if (choice == "regular™) { // doesn't work
processRegular();
} else {
}
o choice == "regular" compiles, but it evaluates to false,

even when the user does enter "regular"!

* it compares the memory addresses of the two strings,
rather than their values!

CAS CS 112 B1

Boston University, Spring 2023

72

CAS CS 112 B1

Testing for Equivalent Objects (cont.)

» To test for equivalent objects, use a method called equals:
* example:

Scanner console = new Scanner(System.in);

System.out.print("regular or diet? ");

String choice = console.next();

if (choice.equals("regular'™)) {
processRegular();

} else {

}

e choice.equals("regular") compares the string represented
by the variable choice with the string "regular"

» returns true when they are equivalent
» returns false when they are not

Boston University, Spring 2023

73

Pre-Lecture
From Python to Java:
Lists / Arrays, Part |

Computer Science 112
Boston University

Sequences

* A sequence is a collection of values in which each value
has a position or index.

0 1 2 3 4 <«—indices
| 51]50]36]29]30] «—elements

* The values are known as elements of the sequence.

CAS CS 112 B1

Boston University, Spring 2023

74

Sequences in Python and Java

* In Python, a list is a sequence of arbitrary values.
[2, 4, 6, 8]
['cs', 'math', 'english', 'psych']
+ the elements can have arbitrary types:
['star wars', 1977, 'pPG', [35.9, 460.9]]

+ Java provides a similar construct known as an array.
» the elements must have the same type
* less flexible than a list, with less built-in functionality
* it also has less overhead, and it's easier to use efficiently

Array Variables

* We use a variable to represent the array as a whole.

* Example:
int[] temps;

« the [] indicates that it will represent an array
» the int indicates that the elements will be ints

CAS CS 112 B1

Boston University, Spring 2023

75

Basic Operations on Lists / Arrays

Python Java
temps = [51, 50, 36, 29, 30] int[] temps = {51, 50, 36, 29, 30};
first = temps[0] int first = temps[0];

num_temps = len(temps)
last = temps[-1]

temps[2] = 40
temps[3] += 5
print(temps[3])
print(temps)

int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;

temps[3] += 5;
System.out.printin(temps[3]);
System.out.println(temps);

« Python uses [] to both:

» surround list literals
* index into the list

+ Java uses:
e { } tosurround array literals
o [] toindex into the array
» cannot use negative indices

Basic Operations on Lists / Arrays (cont.)

Python Java
temps = [51, 50, 36, 29, 30] int[] temps = {51, 50, 36, 29, 30};
first = temps[0] int first = temps[0];

num_temps = len(temps)
last = temps[-1]

temps[2] = 40
temps[3] += 5
print(temps[3])
print(temps)

int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;

temps[3] += 5;
System.out.printin(temps[3]);
System.out.printin(temps); // no!

- Tlen(values) gives the
length of the list values

+ Printing a list displays its
contents.

« values.length gives the length
of the array values
« length is not a method
* in strings, itis: s.length()

+ Printing an array does not
display its contents.

CAS CS 112 B1

Boston University, Spring 2023

76

CAS CS 112 B1

Arrays and References

Arrays are objects.
Thus, an array variable does not store the array itself.

Rather, it stores a reference to the array.
» the memory address of the array

int[] temps = {51, 50, 36, 29, 30};

temps| —}—[51[50[36[29]30]

Printing an array displays a value based on its address!
System.out.println(temps);

output:
[T1@lelfd124

Printing the Contents of an Array

import java.util.*;

public class FunwithArrays {

public static void main(String[] args) {
int[] temps = {51, 50, 36, 29, 30};
int first = temps[0];
int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;

temps[3] += 5;
System.out.printin(temps[3]);
System.out.printin(Arrays.toString(temps));

output:
numTemps [| P

Boston University, Spring 2023

7

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Lists / Arrays, Part Il

Computer Science 112
Boston University

Other Differences

Python Java
temps = [51, 50, 36, 29, 30] int[] temps = {51, 50, 36, 29, 30};
first_two = temps[0:2] // no operator for slicing!
temps = temps + [45, 29] // no operator for concatenating!
new_temps = [65] * 5 // no operator for multiplying!

» To get similar functionality in Java:

» the Arrays class has static methods that take an array

» example: Arrays.copyOofRange(values, start, end)
returns the slice values[start : end]

« there are built-in collection classes for lists
+ they can be used instead of an array

» objects of these classes have non-static methods
(methods inside them) for list operations

» we'll soon be building our own collection classes!

Boston University, Spring 2023

78

CAS CS 112 B1

Constructing and Filling a List / Array

Python

Java

temps = [0] * 4
print('enter 4 temps:')

temps[0] = int(input())
temps[1] = int(input())
temps[2] = int(input())
temps[3] = int(input(Q))
print(temps)

int[] temps = new int[4];
System.out.println("enter 4 temps:");

temps[0] = scan.nextInt();
temps[1] = scan.nextInt();
temps[2] = scan.nextInt();
temps[3] = scan.nextInt();

System.out.printin(
Arrays.tostring(temps));

Scanner scan = new Scanner(System.in);

» General pattern:

type[] variable = new typel[length];

double[] vals = new double[100]; // room for 100 doubles
String[] names = new String[10]; // room for 10 Strings

+ Initially, the arrays are filled with the default value of their type:

int 0
double 0.0

boolean false

objects the special value null

Constructing and Filling a List / Array (cont.)

Python

Java

temps = [0] * 100
print('enter 100 temps:')
for 1 in range(100):

temps[i] = int(input(Q))
print(temps)

Scanner scan = new Scanner(System.in);
int[] temps = new int[100];
System.out.println("enter 100 temps:");
for (int i = 0;1 < 100; i++) {

temps[i] = scan.nextInt(Q);

System.out.println(
Arrays.toString(temps));

To make the code more flexible...

temps = [0] * 100
print('enter 100 temps:')
for i in range(len(temps)):

temps[i] = int(input())
print(temps)

Scanner scan = new Scanner(System.in);
int[] temps = new int[100];
System.out.printin("enter 100 temps:'");
for (int i = 0;1 < temps.length; i++) {
temps[i] = scan.nextInt();

System.out.println(
Arrays.toSstring(temps));

Boston University, Spring 2023

79

CAS CS 112 B1

Processing a Sequence Using a Loop

Index-based:
Python Java
for i in range(len(list)): for (int i =0; i < array.length; i++) {

do something with list[i]

do something with array[1]
}

where list is the list variable

Element-based:
Python

for val in list:

where array is the array variable

Java
for (int val : array) {

do something with val do something with val

}

where list is the list variable

where array is the array variable

* Index-based is more flexible:
* you can use it to change the element with index 1
» you can keep track of where you saw a given value

Boston University, Spring 2023

80

From Python to Java:
Lists / Arrays

Computer Science 112
Boston University

Recall: Sequences in Python and Java

In Python, a list is a sequence of arbitrary values.
[2, 4, 6, 8]
['cs', 'math', 'english', 'psych']
+ the elements can have arbitrary types:
['star wars', 1977, 'PG', [35.9, 460.9]]

Java provides a similar construct known as an array.
» the elements must have the same type
* less flexible than a list, with less built-in functionality
* it also has less overhead

+ example: a Java array of 1000 integers
will use much less memory than
a Python list of 1000 integers

* it is easier to use it efficiently

CAS CS 112 B1

Boston University, Spring 2023

81

Which of the following is valid Java?

int[] vals = [2, 4, 5, 7, 3];

int vals = {2, 4, 5, 7, 3};

[2.0, 4, 5.0, 7.0, 3];
{2, 4, 5, 7, 3};

int[] vals

o0 W >

int[] vals

What does this print?

import java.util.*;

public class FunwithArrays {
public static void main(String[] args) {
int[] vals = {2, 4, 5, 7, 3};
vals[1l] = 6;
vals[2] *= vals[1];
System.out.printin(Arrays.toString(vals));

CAS CS 112 B1 Boston University, Spring 2023

82

CAS CS 112 B1

What does this modified version print?
import java.util.*;

public class FunwithArrays {
public static void main(string[] args) {
int[] vals = {2, 4, 5, 7, 3};
vals[1l] = 6;
vals[2] *= vals[1l];
System.out.printin(vals);

How can | make a list/array with room for 10 ints?

Python Java

temps = [0] * 10 int[] temps =

Boston University, Spring 2023

83

CAS CS 112 B1

A Method for Finding the Smallest Value

public static int minvall(int[] values) {
int min = values[0];

for (int i = 0; ;o di++) {
if (. <min) {
min = ;
}
}
return min;
}
first blank second and third blanks
A. i <= values.length i
B. i < values.lengthQ) i
C. 1 <= values.length(Q) values[i]
D. i < values.length values[i]
E. i < values.lengthQ) values[i]

Here’s the method in the context of a program...

public class ArrayMethods {
/*

* minvall - uses an index-based loop to find

* and return the smallest value in the array values.

*/
public static int minvall(int[] values) {
int min = values[0];

for (int i = 0; ; i++) {
if (< min) {
min = ;
3
}

return min;

}

public static void main(string[] args) {
int[] values = {7, 8, 9, 6, 10, 7, 9, 5};
int min = minvall(values);
System.out.printin("the min value is

+ min);

Boston University, Spring 2023

84

CAS CS 112 B1

Finding the Smallest Value, version 2

public class ArrayMethods {
/7‘:
* minval2 - uses an element-based loop to find
* and return the smallest value in the array values.
7':/
public static int minval2(int[] values) {
int min = values[0];
for (int val : values) {
if (val < min) {
min = val;
3

}

return min;

}

public static void main(string[] args) {
int[] values = {7, 8, 9, 6, 10, 7, 9, 5};
int min = minval2(values);
System.out.printin("the min value is

+ min);

What if we wanted to do this instead?

public class ArrayMethods {

/*
* minIndex - uses an Toop to find and
* and return the index of the smallest value in values.
*/

public static int minIndex(int[] values) {
int minIndex = ;

for () {

if () {

} on / aler
} y OU,' 0W/7.I

return minIndex;

}

public static void main(String[] args) {
int[] values = {7, 8, 9, 6, 10, 7, 9, 5};
int minInd = minIndex(values);
System.out.printin("min value is at index " + minInd);

Boston University, Spring 2023

CAS CS 112 B1

Copying a Reference Variable

When we assign the value of one reference variable to
another, we copy the reference to the object.
We do not copy the object itself.

Example involving objects:

"hello, world";
sl;

String sl
String s2

Sl[:zg > hello, world"

S

Copying a Reference Variable

What does this do?

int[] values = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = values;

va1ues[:;;F————ﬂ 718|967]9]5|
other[::]

Given the lines of code above, what will the lines below print?
other[2] = 4;
System.out.println(values[2] + " " + other[2]);

Boston University, Spring 2023

86

CAS CS 112 B1

Copying an Array

* To actually create a copy of an array, we can:

» create a new array of the same length as the first
« traverse the arrays and copy the individual elements

Example:

int[] values = {7, 8, 9, 6, 10, 7, 9, 5};

int[] other = new int[values.length];

for (int i = 0; i < values.length; i++) {
other[i] = values[i];

values| {7 |8 [9|6 [10]7][9]5]
other[——[0Jo0Jo]o0]o]o]o]o0]

Copying an Array (cont.)

To actually create a copy of an array, we can:
» create a new array of the same length as the first
 traverse the arrays and copy the individual elements

Example:

int[] values = {7, 8, 9, 6, 10, 7, 9, 5};

int[] other = new int[values.length];

for (int i = 0; i < values.length; i++) {
other[i] = values[i];

values[| —»{ 7 | 8[9]6[10]7[9]5 |
otherE—\>|7|8|9|6|10|7|9|5|

What do the following lines print now?

other[2] = 4;
System.out.printin(values[2] + " " + other[2]);

Boston University, Spring 2023

87

CAS CS 112 B1

Shifting Values in an Array

Let's say a small business is using an array to store the
number of items sold in the past ten days.

numsold [——|15[8 [19] 2 | 5[8 |11]18] 7 | 16|

numsold[0] gives the number of items sold today
numsold[1] gives the number of items sold 1 day ago
numsold[2] gives the number of items sold 2 days ago
etc.

Shifting Values in an Array (cont.)

At the start of each day, it's necessary to shift the values over
to make room for the new day's sales.

numsold [——{15 18] 7 | 16|
N\ AY AY AY AY Y
VI VI

numsold [——[0 [15] 8]19] 2[5 [8[11]18] 7]

» the last value is lost, since it's now 10 days old

8 |11

AN \

\

8 [19[2 5
\ \ \

In order to shift the values over, we need to perform
assignments like the following:

numso1d[9] = numsSol1d[8];
numsold[6] = numSold[5];
numsold[2] = numSold[1];

» what is the general form (the pattern) of these assignments?

Boston University, Spring 2023

88

CAS CS 112 B1

Shifting Values in an Array (cont.)

* Here's one attempt at code for shifting all of the elements:

for (int i = 0; i < numsold.length; i++) {
numsold[i] = numSold[i - 1];
}

* If we run this, we get an ArrayIndexoutofBoundsException.
Why?

Shifting Values in an Array (cont.)

» This version of the code eliminates the exception:

for (int i = 1; i < numsold.length; i++) {
numsold[i] = numSold[i - 1];
}

e Let's trace it to see what it does:

numsold [——{15] 8 [19] 2 | 5[8 [11]18] 7 |16]|

* wheni == 1, we perform numsold[1] = numSo1d[0] to get:

numsold | —F—{15|75]19] 2 | 5| 8 [11]18] 7 | 16|

* when i == 2, we perform numso1d[2] = numSold[1] to get:

numsold [——{15]15]175] 2 | 5[8 [11]18] 7 | 16|

this obviously doesn't work!

Boston University, Spring 2023

89

CAS CS 112 B1

Shifting Values in an Array (cont.)

+ How can we fix this code so that it does the right thing?

for (int i = 1; i < numsold.length; i++) {
numsold[i] = numsold[i - 11;
}

1

for (;

}

» After performing all of the shifts, we would do: numsol1d[0] = O;
numsold [——{15[15] 8 [19] 2 | 5[8 |11]18] 7 |
il
numsold [——| 0 [15] 8 [19] 2 | 5|8 |11]18] 7|

"Growing" an Array

* Once we have created an array, we can't increase its size.

» Instead, we need to do the following:
1. create a new, larger array (use a temporary variable)
2. copy the contents of the original array into the new array
3. assign the new array to the original array variable

» Example for our values array:
int[] values = {7, 8, 9, 6, 10, 7, 9, 5};
%ﬁé[] temp new int[16];

for (int i = 0; i < values.length; i++) {
temp[i] = values[i];

}

values = temp;

Boston University, Spring 2023

90

CAS CS 112 B1

Pre-Lecture
From Python to Java:
Writing Your Own Classes

Computer Science 112
Boston University

Recall: Classes As Blueprints

* Aclass is a blueprint — a definition of a data type.

» specifies the data values and methods of that type

Objects are built according to the blueprint
provided by their class.

» they are "values" / instances of that type

Boston University, Spring 2023

91

CAS CS 112 B1

Example: A Rectangle Class

» Let's say that we want to create a data type for objects

that represent rectangles.

» Every Rectangle object should have _
two variables inside it (width and height) width
for the rectangle's dimensions. height

« these variables are referred to as fields

» We'll also put functions/methods inside the object.

An Initial Rectangle Class

Python

class Rectangle:
def __init__(self, w, h):
self.width = w
self.height = h

Java
public class Rectangle {
int width;
int heigl

non-static, no return ty
public Rectangle(int w, int h) {
this.width = w;
this.height = h;

pe

__init__is the constructor.

+ used to create objects
of the class

» The constructor has the same
name as the class.

Boston University, Spring 2023

CAS CS 112 B1

An Initial Rectangle Class

Python

Java

class Rectangle:
do not declare
the fields!

def __init__(self, w, h):

self.width = w
self.height = h

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

» The fields are defined by
assigning something to
them in the constructor.

» The fields must be declared
separately.

+ outside of any method
» usually near the class header

Blueprint Class vs. Client Program

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {

this.width = w;
this.height = h;

}

o width
[T height

r2|:|

public class RectangleClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.width * rl.height;
System.out.println("rl's area =

int area2 = r2.width * r2.height;
System.out.println("r2's area =

// grow both rectangles
rl.width += 50; rl.height += 10;
r2.width += 5; r2.height += 30;

system.out.printin("rl: "+ rl.width+" x" + rl.height);
system.out.printin("r2: "+ r2.width+" x " + r2.height);

+ areal);

+ area2);

Boston University, Spring 2023

93

CAS CS 112 B1

Adding Functionality to an Object

Python

Java

class Rectangle:
// do not declare
// the fields!

def __init__(self, w, h):
self.width = w
self.height = h

def grow(self, dw, dh):
self.width += dw
self.height += dh

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

¥ non-static

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

+ selfisinthe param list.

* it gets its value from the

called object
* ex: rl.grow(50,10)

- thisis notin the parameter list

+ it also gets its value from the
called object

* ex: rl.grow(50,10)

Adding Functionality to an Object

Python

Java

class Rectangle:
// do not declare
// the fields!

def __init__(self, w, h):
self.width = w
self.height = h

def grow(self, dw, dh):
self.width += dw
self.height += dh

def area(self):
return self.width
* self.height

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

}

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

}

public int area() {
return this.width * this.height;
1

Boston University, Spring 2023

Simplifying the Client Program: Before

public class RectanglecClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.width * rl.height;

System.out.println("rl's area = " + areal);
int area2 = r2.width * r2.height;
System.out.println("r2's area = " + area2);

// grow both rectangles
rl.width += 50; rl.height += 10;
r2.width += 5; r2.height += 30;

system.out.printin("rl: "+ rl.width+" x" + rl.height);
system.out.printin("r2: "+ r2.width+" x" + r2.height);

Simplifying the Client Program: After

public class RectangleClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();

System.out.println("rl's area = " + areal);
int area2 = r2.area();
System.out.println("r2's area = " + area2);

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

System.out.printin("rl: "+ rl.width+" x" + rl.height);
System.out.println("r2: "+ r2.width+" x" + r2.height);

CAS CS 112 B1 Boston University, Spring 2023

CAS CS 112 B1

Pre-Lecture
From Python to Java:

Adding Methods to an Object

Computer Science 112
Boston University

» We'll also put functions/methods inside the object.

Recall: A Rectangle Class

Let's say that we want to create a data type for objects

that represent rectangles.

Every Rectangle object should have
two variables inside it (width and height)
for the rectangle's dimensions.

» these variables are referred to as fields

width
height

Boston University, Spring 2023

96

CAS CS 112 B1

Adding Functionality to an Object

Python

Java

class Rectangle:
// do not declare
// the fields!

def __init__(self, w, h):
self.width = w
self.height = h

def grow(self, dw, dh):
self.width += dw
self.height += dh

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

¥ non-static

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

+ selfisinthe param list.

* it gets its value from the

called object
* ex: rl.grow(50,10)

- thisis notin the parameter list

+ it also gets its value from the
called object

* ex: rl.grow(50,10)

Adding Functionality to an Object

Python

Java

class Rectangle:
// do not declare
// the fields!

def __init__(self, w, h):
self.width = w
self.height = h

def grow(self, dw, dh):
self.width += dw
self.height += dh

def area(self):
return self.width
* self.height

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

}

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

}

public int area() {
return this.width * this.height;
1

Boston University, Spring 2023

Simplifying the Client Program: Before

public class RectanglecClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.width * rl.height;

System.out.println("rl's area = " + areal);
int area2 = r2.width * r2.height;
System.out.println("r2's area = " + area2);

// grow both rectangles
rl.width += 50; rl.height += 10;
r2.width += 5; r2.height += 30;

system.out.printin("rl: "+ rl.width+" x" + rl.height);
system.out.printin("r2: "+ r2.width+" x" + r2.height);

Simplifying the Client Program: After

public class RectangleClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();

System.out.println("rl's area = " + areal);
int area2 = r2.area();
System.out.println("r2's area = " + area2);

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

System.out.printin("rl: "+ rl.width+" x" + rl.height);
System.out.println("r2: "+ r2.width+" x" + r2.height);

CAS CS 112 B1 Boston University, Spring 2023

CAS CS 112 B1

From Python to Java:
Defining New Types of Objects

Memory Management

Computer Science 112
Boston University

Recall: Classes As Blueprints

* Aclass is a blueprint — a definition of a data type.

» specifies the data values and methods of that type

Objects are built according to the blueprint
provided by their class.

+ they are "values" / instances of that type

Boston University, Spring 2023

99

CAS CS 112 B1

Another Analogy

« Aclass is like a cookie cutter.

» specifies the "shape" that all objects
of that type should have

» Objects are like the cookies.

» created with the "shape"
specified by their class

Another Example: A Class for Time Objects

+ Let's say that we want to create a data type for objects
that represent military times (e.g., 10:30 or 17:50).

* A Time object for 10:30 would look like this:

hour
minute

* We would create it as follows:
Time tl = new Time(10, 30);

tl Ij hour
minute

A

Boston University, Spring 2023

100

Which of these is a valid initial Time class?

A. B.
public class Time { public class Time {
public Time(int h, int m) { int hour;
self.hour = h; int min;

1f.min = m; .
s¢ mn m public Time(int h, int m) {

} this.hour = h;
this.min = m;

}
C. D.
public class Time { public class Time {
public void TimeCint h, int m){| int hour;
self.hour = h; int min;

1f.min = m; ic void Time(i i
self.min = m public void Time(int h, int m) {

1 this.hour = h;
this.min = m;

Which method call increases r's height by 5?

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

b

public int area() {
return this.width * this.height;

b

B

public class MyClient {
public static void

main(string[] args) { :
Rectangle r = new Rectangle(10, 15);| r IE'_, width
777 ; height

CAS CS 112 B1 Boston University, Spring 2023 101

CAS CS 112 B1

Static vs. Non-Static

When writing a method for growing a Rectangle,
we could in theory have written a static method:

public static void grow(Rectangle r, int dw, int dh) {
r.width += dw;
r.height += dh;

}

This would allow us to replace these statements in the client
rl.width += 50; rl.height += 10;

with the method call
Rectangle.grow(rl, 50, 10);

(Note: We need to use the class name, because we're calling
the method from outside the Rectangle class.)

Static vs. Non-Static (cont.)

A better approach is to give each Rectangle object
the ability to grow itself.

This is what our non-static grow() method does.
« also known as an instance method

public void grow(int dw, int dh) { // no static
this.width += dw;
this.height += dh;

3

We don't pass the Rectangle object as an explicit parameter.

Instead, the Java keyword th1is gives us access to
the called object.

» every non-static method has this special variable
 referred to as the implicit parameter

Boston University, Spring 2023

102

Comparing the Static and Non-Static Versions

« Static:
public static void grow(Rectangle r, int dw, int dh) {
r.width += dw;
r.height += dh;

* sample method call: Rectangle.grow(rl, 50, 10);

* Non-static:
pubTlic void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

+ there's no keyword static in the method header

+ the Rectangle object is not an explicit parameter

+ the implicit parameter this gives access to the object
* sample method call: r1.grow(50, 10);

Types of Instance Methods

* There are two main types of instance methods:
* mutators — methods that change an object's internal state
» accessors — methods that retrieve information from an object
without changing its state

* Examples of mutators:
« grow() in our Rectangle class

* Examples of accessors:
» area() in our Rectangle class
o String methods: Tength(), substring(), charat()

CAS CS 112 B1 Boston University, Spring 2023 103

CAS CS 112 B1

Practice Defining Instance Methods

Add a mutator method that scales the rectangle's dimensions

by a specified factor (an integer).
public scale() {

}

Add an accessor method that determines if the rectangle
is a square (true or false).

public issquare() {

Limiting Access to Fields

The current version of our RectangTe class allows clients
to directly access a Rectangle object's fields:

rl.width = 100;
rl.height += 20;

This means that clients can make inappropriate changes:
rl.width = -100;

To prevent this, we can declare the fields to be private:
public class Rectangle {
private int x;
private 1int y;
private int width;
private int height;

}

This indicates that these fields can only be accessed or

modified by methods that are part of the Rectangle class.

Boston University, Spring 2023

104

CAS CS 112 B1

Limiting Access to Fields (cont.)

Now that the fields are private, our client program won't compile:

public class RectangleClient {
public static void main(string[] args) {

Rectangle rl = new Rectangle(100,

Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();
System.out.println("rl's area =

int area2 = r2.area();
System.out.println("r2's area

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

50);

+ areal);

+ area2);

System.out.printin("rl: "+ rl.width+" x" + rl.height);
System.out.printin("r2: "+ r2.width+" x" + r2.height);

Adding Accessor Methods for the Fields

public class Rectangle {

3

private int width;
private int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

}

public int getwidth(Q {
return this.width;
}

pubTlic int getHeight() {
return this.height;
}

public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;

These methods are public, which indicates that they can be
used by code that is outside the Rectangle class.

Boston University, Spring 2023

105

Limiting Access to Fields (cont.)

* Now the client can use the accessor methods:

public class RectangleClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();
System.out.println("rl's area = " + areal);

int area2 = r2.area();
System.out.println("r2's area

+ area2);

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

system.out.printin("rl: "+ rl.getwidth(Q) +" x " + rl.getHeight());
System.out.printin("r2: "+ r2.getwidthQ) +" x " + r2.getHeight());

Access Modifiers

« publicand private are known as access modifiers.
+ they specify where a class, field, or method can be used

* Aclass is usually declared to be pubTic:
public class Rectangle {

* indicates that objects of the class can be used anywhere,
including in other classes

* Fields are usually declared to be private.
» Methods are usually declared to be public.

* We occasionally define private methods.
» serve as helper methods for the pub1ic methods
» cannot be invoked by code that is outside the class

CAS CS 112 B1 Boston University, Spring 2023 106

Encapsulation

» Encapsulation is a key principle of object-oriented programming.

* |t means that clients should not have direct access
to the internals of objects of a class.

» preventing inappropriate changes

* To achieve it, we must make the fields private.

public class Rectangle {
private int width;
private int height;

» To allow clients to have appropriate indirect access,
we provide accessor and mutator methods.

Practice Exercise: Working with Private Fields

public class Rectangle { // inside the main method
private int width; // of a client program
private int height; Rectangle r = new Rectangle(10, 15);

System.out.printin(r.area());
r.width = r.width + 25;
r.height = r.height + 30;
System.out.printin(r.width);
System.out.printin(r.height);

public Rectangle(int w, int h){
this.width = w;
this.height = h;

public void grow(int dw, int dh){
this.width += dw;
this.height += dh;

b

public int area(){
return this.width * this.height;

b

B

* How many lines won't compile in the client above?

* Why can the client still call the area() method?

CAS CS 112 B1 Boston University, Spring 2023 107

Practice Exercise: Working with Private Fields (cont.)

public class Rectangle {

private int width;
private int height;

public Rectangle(int w, int h){
this.width = w;
this.height = h;
}
public void grow(int dw, int dh){
this.width += dw;
this.height += dh;
}
public int area(){
return this.width * this.height;
}
public int getwidth(Q) {
return this.width;

}
public int getHeight() {
return this.height;

public void setwidth(int w) {

public void setHeightCint h) {

// inside the main method

// of a client program

Rectangle r = new Rectangle(10, 15);
System.out.println(r.area());
r.width = r.width + 25;

r.height = r.height + 30;
System.out.printin(r.width);

System.out.printin(r.height);

* To allow a client to see a
field's value, we need to add
a public accessor method.

* To allow a client to change
a field, we need to provide
a public mutator method.

Make the necessary changes above.

A Common Mistake

}

public class Rectangle {

private int width;
private int height;

public Rectangle(int w, int h){
this.width = w;
this.height = h;

public void grow(int dw, int dh){
this.width += dw;
this.height += dh;
b
public int area(Q{
return this.width * this.height;
b

public int getwidth() {
return this.width;
b

public int getHeight() {
return this.height;
b

// inside the main method

// of a client program

Rectangle r = new Rectangle(10, 15);
System.out.printin(r.area());
r.getwidth() = r.getwidth() + 25;
r.getHeight() = r.getHeight() + 30;
System.out.printin(r.getwidth());
System.out.printin(r.getHeight());

* The above does not work!

e Accessors let us see a
field's value, but they don't
let us change it!

* The left-hand side of an assignment statement must be a variable!

CAS CS 112 B1

Boston University, Spring 2023

108

CAS CS 112 B1

Mutators: Allowing Only Appropriate Changes

public void setwidth(int w) {
if (w<=0) {
throw new IllegalArgumentException();

b
this.width = w;
b
public void setHeight(int h) {

if (h <= 0) {
throw new IllegalArgumentException();
b

. . . » Throwing an exception ends
this.h ht = h;
} 15.Nhe1g the method call early.
» preventing the bad change

* Unless the client does
something special,
the exception will cause it
to crash with an error!

Another Mutator...Fixed!

* Here's another mutator method that we already had:
public void grow(int dw, int dh) {
this.width += dw;
this.height += dh;
}

* We fix it to prevent inappropriate changes:
public void grow(int dw, int dh) {
this.setwidth(this.width + dw);
this.setHeight(this.height + dh);

» rather than adding error-checking to this method,
it calls the new mutator methods to:

» do the error-checking for us
* make the changes if appropriate

* note: we use this to call other methods in the
same object!

Boston University, Spring 2023

109

CAS CS 112 B1

A Constructor...Fixed!

* To prevent bad initial values:

public Rectangle(int w, int h) {
this.setwidth(w);
this.setHeight(h);

b

» here again, we take advantage of the error-checking
done by setwidth and setHeight
 if a bad value is passed in for w or h:
» the mutator will throw an exception

+ that exception will end the constructor early,
preventing the object from being created

What is printed?

Rectangle rl new Rectangle(20, 55);

Rectangle r2 new Rectangle(20, 55);

Rectangle r3 = rl;

System.out.printin((rl == r2) + " " + (rl == r3));

ri

r2

r3

Boston University, Spring 2023

110

CAS CS 112 B1

Testing for Equivalent Objects

* If o1 and o2 are variables that refer to objects,
ol == o2
compares the references stored in the variables.

* |t doesn't compare the objects themselves.

Testing for Equivalent Objects (cont.)

» To test for equivalent objects, we need an equals method.

* o0l.equals(o2) should return:
« true if object ol is equivalent to object 02
« false otherwise

* We already saw a method like this for String objects:

Scanner console = new Scanner(System.in);

System.out.print("regular or diet? ");

String choice = console.next();

if (choice.equals("regular™)) {
processRegular();

} else {

}

Boston University, Spring 2023

111

CAS CS 112 B1

equals () Method for Our Rectangle Class

public boolean equals(Rectangle other) {

if (other == null) {
return false;

} else if (this.width != other.width) {
return false;

} else if (this.height != other.height) {
return false;

} else {
return true;

%

* Note: The method is able to access the fields in other
directly (without using accessor methods).

» Methods of a class can access the private fields of any object
from their class.

equals () Method for Our Rectangle Class (cont.)

* Here's an alternative version:

public boolean equals(Rectangle other) {
return (other != null
&& this.width == other.width
&& this.height == other.height);

Boston University, Spring 2023

112

Converting an Object to a String

« The tostring() method allows objects to be displayed
in a human-readable format.

* it returns a string representation of the object

« This method is called for us when we:
+ attempt to print an object:

Rectangle rl = new Rectangle(10, 20);
System.out.println(rl);

// the 1line above is equivalent to:
System.out.printin(rl.tostring());

» concatenate an object with a string:
String result = "dimensions of " + ril;

// the 1line above 1is equivalent to:
String result = "dimensions of " + rl.tostringQ;

tostring() Method for Our Rectangle Class

public Sstring tostring() {
return this.width + " x " + this.height;
3

* Note: the method does not do any printing.

* It returns a string that can then be printed.

CAS CS 112 B1 Boston University, Spring 2023

113

CAS CS 112 B1

Client Program Before toString()

public class RectangleClient {
public static void main(string[] args) {

Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();
System.out.println("rl's area = " + areal);

int area2 = r2.area();
System.out.println("r2's area

+ area2);

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

system.out.printin("rl: "+ rl.getwidthQ) +" x " + rl.getHeight());
System.out.printin("r2: "+ r2.getwidthQ +" x " + r2.getHeight());

Client Program After toString()

public class RectanglecClient {
public static void main(string[] args) {

Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

int areal = rl.area();
System.out.println("rl's area = " + areal);

int area2 = r2.area();
System.out.println("r2's area = " + area2);

// grow both rectangles
rl.grow(50, 10);
r2.grow(5, 30);

System.out.printin("rl: " +rl);
System.out.printin("r2: " +r2);

Boston University, Spring 2023

114

CAS CS 112 B1

Memory Management, Type |: Stack Storage

* Method parameters and other local variables are stored

in a region of memory known as the stack.

» For each method call, a new stack frame is added to the top

of the stack.

public class Foo {

public static int y(int i) {
int j =1 * 3; -
return j; !

} i[24]

public static int x(int i) { L2
int j =1 - 2;

, return y(i + j); i[5]

public static void i[3]

main(string[] args) {
) System.out.println(x(5)); args| |

}

* When a method completes, its stack frame is removed.

y(8)

x(5)

Memory Management, Type |I: Heap Storage

» Objects are stored in a memory region known as the heap.

* Memory on the heap is allocated using the new operator:

int[] values = new int[30];
Rectangle r = new Rectangle(10, 50);

* new returns the memory address of the start of the object
on the heap.

* a reference!

* An object stays on the heap until there are no remaining
references to it.

* Unused objects are automatically reclaimed by a process
known as garbage collection.

* makes their memory available for other objects

Boston University, Spring 2023

CAS CS 112 B1

Memory Management Example

public class RectanglecClient {

public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

;i:grow(SO, 10);

r2.grow(5

, 30);

» After the objects are created:

stack heap
width
height
main p
[]
g

width
height

Memory Management Example

pubTlic class RectangleClient {

public static void main(string[] args) {
rl = new Rectangle(100, 50);
r2 = new Rectangle(20, 80);

Rectangle
Rectangle

Fi:grow(SO, 10);

r2.grow(5,

stack

grow

[0

this E'

30);

heap

During the method call r1.grow(50, 10):

| ——" width

height

width
height |80 |

Boston University, Spring 2023

CAS CS 112 B1

Memory Management Example

public class RectanglecClient {
public static void main(string[] args) {

Rectangle rl =
Rectangle r2 =

r-'i:grow(SO, 10);

r2.grow(5, 30);

» After the method call r1.grow(50, 10):

stack heap

N\

width

height

new Rectangle(100, 50);
new Rectangle(20, 80);

width
height

Memory Management Example

pubTlic class RectangleClient {
public static void main(String[] args) {

Rectangle rl =
Rectangle r2 =

l."i:grow(SO, 10);

r2.grow(5, 30);

* During the method call r2.grow(5, 30):

stack heap

grow

th'isl:l

width
height

new Rectangle(100, 50);
new Rectangle(20, 80);

width
height |80 |

Boston University, Spring 2023

117

Memory Management Example

public class RectanglecClient {
public static void main(string[] args) {
Rectangle rl = new Rectangle(100, 50);
Rectangle r2 = new Rectangle(20, 80);

r-'i:grow(SO, 10);
r2.grow(5, 30);

» After the method call r2.grow(5, 30):

stack heap
width

height

N\

rl E width
e | heignt

Why Mutators Don't Need to Return Anything

* A mutator operates directly on the called object,
so any changes it makes will be there after the method returns.

» example: the call r2.grow(5, 30) from the last slide

g&t"‘l’ﬁs — width
N EI height

1 m width
o | heigt

» grow gets a copy of the reference in r2,
so it changes the internals of the object to which r2 refers

CAS CS 112 B1 Boston University, Spring 2023

118

CAS CS 112 B1

Memory Management, Type lll: Static Storage

Static storage is used for class variables, which are declared
outside any method using the keyword static:

public class MyMethods {
public static int numCompares;

There is only one copy of each class variable.
» shared by all objects of the class
» Java's version of a global variable

To create a constant whose value can never change,
make it both static and final.

public static final double PI = 3.14159;

The Java runtime allocates memory for class variables
when the class is first encountered.

« this memory stays fixed for the duration of the program

What if we want to keep track of how many

Rectang]le objects a program has created?

pubTlic class Rectangle {
private int width;
private int height;

public Rectangle(int w, int h){
this.setwidth(w);
this.setHeight(h);

}

public void grow(int dw, int dh){
this.setwidth(this.width + dw);
this.setHeight(this.height + dh);

}

public int area(){
return this.width * this.height;

}

Boston University, Spring 2023

119

CAS CS 112 B1

Increment the
static variable public Rectangle(int w, int h){

What if we want to keep track of how many

Rectangle objects a program has created?

public class Rectangle {

private int width;

private int height;

private static int numCreated = 0;

every time that this.setwidth(w);
we create a this.setHeight(h);
Rectangle. numCreated++;

public void grow(int dw, int dh){
this.setwidth(this.width + dw);
this.setHeight(this.height + dh);

3

public int area(){
return this.width * this.height;

}
, o

» Add a static variable — one that belongs to the class as a whole.

* notfinal — because we want to be able to change it!

Review: Which of these fixes the line of client code?

Rectangle r = new Rectangle(25, 10);
r.height = r.width + 10; // how can we fix this?

r.getHeight() = r.getwidth() + 10;
r.setHeight(r.getwidth() + 10);
this.setHeight(this.getwidth() + 10);

Rectangle.setHeight(Rectangle.getwidth() + 10);

moow»>

more than one of the above

Boston University, Spring 2023

120

CAS CS 112 B1

What gets printed? (Draw a diagram below!)

public class Rectangle {
private int width;
private int height;

public Rectangle(int w, int h){
this.setwidth(w);
this.setHeight(h);

}

public void grow(int dw, int dh){
this.setwidth(this.width + dw);
this.setHeight(this.height + dh);

}

public int area(){
return this.width * this.height;

}

// accessors and mutators
// for the fields

public String tostring() {
return
this.width+" x " + this.height;

// in main method of a new client
Rectangle rl = new Rectangle(80, 40);
Rectangle r2 = rl;

rl.grow(20, 5);
System.out.printin(r2);

Memory diagram for the above exercise

* During the call to grow():

stack heap

width
height

Boston University, Spring 2023

Recall: Functions / Methods

» Python distinguishes between:
* functions: named blocks of code that:
+ take 0 or more inputs/parameters
* return a value
* methods: functions that are "inside" an object
* have a self parameter

» In Java, both types of functions are called methods.
+ static methods — like Python functions
» non-static or instance methods — like Python methods
» methods that are "inside" an object
* have a this parameter

Recall: Calling Functions / Static Methods

 If the function or static method is in the current file,
just use its name:
Python Java

avg = 85 int avg = 85;
Tetter_grade = grade(avg) Sstring letter_grade = grade(avg);

 If the function or static method is in a different module/class:
» import the module or class as needed
» prepend the module/class name

Python Java
import math // we don't need to import Math!
x = math.sqrt(100) double x = Math.sqrt(100);

CAS CS 112 B1 Boston University, Spring 2023 122

CAS CS 112 B1

Recall: Calling Non-Static Methods

* Because non-static methods are inside an object,
we prepend the name of the object:

Python Java
sl = 'hello' String sl = "hello";
s2 = 'world' String s2 = "world";
s3 = sl.upper() String s3 = sl.touppercase(Q);

* Why can't we use the class name?
String s2 = String.toUppercCase();

Which one makes a valid call to methodone()?

» Consider a class called Mystery with the following API:

public Mystery(int x)
pubTlic static int methodone(int b, int c)
pubTic double methodTwo(int d)

* You are writing client code that begins as follows:

new Mystery(10);
new Mystery(20);
// call methodone()

Mystery ml
Mystery m2

double d = Mystery.methodone(5);
int n = Mystery.methodone(5, 2);
double d = ml.methodone(5, 2.5);

int n = ml.methodone(10);

moow»>

more than one works

Boston University, Spring 2023

123

CAS CS 112 B1

Which one makes a valid call to methodTwo () ?

+ Consider a class called Mystery with the following API:

pubTic Mystery(int x)
pubTic static int methodone(int b, int c)
pubTic doubTle methodTwo(int d)

* You are writing client code that begins as follows:

Mystery ml
Mystery m2

new Mystery(10);
new Mystery(20);
// call methodTwo()

double d = Mystery.methodTwo(5);
int n = Mystery.methodTwo(5, 2);
int d = ml.methodTwo(5, 2.5);

double n = ml.methodTwo(10);

moow»

more than one works

Boston University, Spring 2023

124

Pre-Lecture
From Python to Java: Inheritance

Computer Science 112
Boston University

Recall: A Class for Rectangle Objects

« Every Rectang]le object has two fields:

* width

+ height width | 200 |
height

« |t also has methods inside it:

« grow()

« area()

e toString(Q

* efc.

CAS CS 112 B1 Boston University, Spring 2023 125

CAS CS 112 B1

Recall: A Class for Rectangle Objects

Python

Java

class Rectangle:
// do not declare
// the fields!

def __init__(self, w, h):

self.width = w
self.height = h

def grow(self, dw, dh):
self.width += dw
self.height += dh

def area(self):
return self.width
* self.height

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {

this.width = w;
this.height = h;
}

public void grow(int dw, int dh) {

this.width += dw;
this.height += dh;
}

public int area() {

}

return this.width * this.height;

Squares == Special Rectangles!

* A square also has a width and a height.
* but the two values must be the same

» Assume that we also want square objects unit

to have a field for the unit of measurement.

- Square objects should mostly behave like Rectangle objects:

width
height

Rectangle r = new Rectangle(20, 30);
int areal = r.area();

Ssquare sq = new Square(40, "cm");

int area2

sqg.area();

» But there may be differences as well:

output:

System.out.printin(r); =) 20 x 30

System.out.printin(sq); =)

output:

square with 40-cm sides

Boston University, Spring 2023

126

CAS CS 112 B1

Using Inheritance

Python Java

class Rectangle: public class Rectangle {
// do not declare int width;
// the fields! int height;

def _init_(self, w, h):
self.width = w
self.height = h

... # other methods
def area(self):
return self.width
*self.height

public Rectangle(int w, int h) {
this.width = w;
this.height = h;
}
. // other methods
public int area() {
return this.width * this.height;
}

}

class square(Rectangle):

def _init_(self, side, unit):

self.width = side
self.height = side
self.unit = unit

inherits other methods

public class Square extends Rectangle {
String unit; // inherits other fields

public Square(int side, String unit) {
this.width = side;
this.height = side;
this.unit = unit;

// inherits other methods

Terminology

+ Square is a subclass of Rectangle.

+ Rectangle is a superclass of square.

Boston University, Spring 2023

127

Using Inheritance

Python Java
class Rectangle: public class Rectangle {
// do not declare int width;
// the fields! int height;
def _init_(self, w, h): public Rectangle(int w, int h) {
s_e'lfw;ith - 'W ’ this.width = W,
self.height = h) this.height = h;
other methods ... // other methods
def area(self): public int area() {
return self.width return this.width * this.height;
*self.height }
i
class square(Rectangle): public class Square extends Rectangle {
String unit; // inherits other fields
def _init_(self, side, unit): public Square(int side, String unit) {
use superclass _init__ // use superclass constructor
super()._init_(side, side) super(side, side);
self.unit = unit this.unit = unit;
inherits other methods // inherits other methods

Example of an Inherited Method

» The Rectangle class has this tostring() method:

public String tostring() {
return this.width + " x " this.height;
}

* The square class inherits it from Rectangle.
square sgq = new Square(40, "cm");
System.out.println(sq);

output:
40 x 40

CAS CS 112 B1 Boston University, Spring 2023 128

CAS CS 112 B1

Overriding an Inherited Method

» A subclass can override / replace an inherited method
with its own version, which must have the same:

* return type
* name
* number and types of parameters

» Example: our square class can define its own tostring():

public String tostring() {
String s = "square with ";
s += this.width + "-" + this.unit + " sides";

}

* Printing a square will now call this method, not the inherited one:
Square sgq = new Square(40, "cm");
System.out.println(sq);

output:
square with 40-cm sides

Encapsulation

public class Rectangle {
private int width;
private int height;

public Rectangle(int w, int h) {
this.setwidth(w);
this.setHeight(h);

}

public int getwidth() {
return this.width;

}

public int getHeight() {
return this.height;

}
public void setwidth(int w) {
if (w<=0) {
throw new I1legalArgumentException();
this.width = w;
}

public void setHeight(int w) {

Boston University, Spring 2023 129

CAS CS 112 B1

Encapsulation and Inheritance

public class Rectangle {
private int width;
private int height;

public int getwidth() {
return this.width;
}

public int getHeight() {
return this.height;

}

public class square extends Rectangle {
private Sstring unit;

public string getunit() {
return this.unit;

public String toString() {
String s = "square with ";
S += this.width + "-" + this.unit + "sides";
return s;

Encapsulation and Inheritance

* A subclass has direct access to the public fields and methods

of a superclass.

* it cannot access its private fields and methods

+ Example: we can think of a square object as follows:

height[|
units [] [} field defined in Square;

width[]|\ private fields inherited from Rectangle;
cannot be accessed directly by Square methods

it can be accessed directly by Square methods

Boston University, Spring 2023

130

CAS CS 112 B1

Encapsulation and Inheritance

public class Rectangle {
private int width;
private int height;

public int getwidth() {
return this.width;
}

public int getHeight() {
return this.height;

}

public class Square extends Rectangle {
private String unit;

public String getunit() {
return this.unit;

public String tostring({
String s = "square with ";
s += this.getwidth(Q + "-"
+ this.unit + "sides";
return s;

Writing a Constructor for a Subclass

» With private fields in Rectangle, this constructor won't compile:

public Square(int side, String unit) {
this.width = side;
this.height = side;
this.unit = unit;

}

* To initialize inherited fields, a constructor should use super()
to invoke a constructor from the superclass, as we did earlier:

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

* must be done as the very first line of the constructor!

Boston University, Spring 2023

131

CAS CS 112 B1

From Python to Java:

Inheritance and Polymorphism

Computer Science 112

Boston University

Recall: Using Inheritance

public class Rectangle {
int width;
int height;

public Rectangle(int w, int h) {
this.setwidth(w);
this.setHeight(h);

}

... // other methods

public String tostring() {
return this.width + " x " + this.height;

}

width
height

public class square extends Rectangle {
String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

public string tostring() { // overrides
String s = "square with ";
s += this.width + "-";
s += this.unit + " sides";
return s;
} // inherits other methods

width
height
unit

Boston University, Spring 2023

132

CAS CS 112 B1

What change is needed if the fields are private?

public class Rectangle {
private int width;
private int height;

public Rectangle(int w, int h) {

this.setwidth(w); width
this.setHeight(h); .
} height
... // other methods

public String toString({
return this.width + " x " + this.height;

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {

super(side, side); width
height

this.unit = unit;

public String tostring() { // overrides)
String s = "square with "; unit | cm

’
s += this.width + "-";
S 4= this.unit + " sides";
return s;
} // inherits other methods

Encapsulation and Inheritance (cont.)

» Faulty approach: redefine the inherited fields in the subclass

public class Rectangle {
private int width;
private int height;

}

public class Square extends Rectangle {
private int width; /7 NOT a good idea!
private int height;
private String units;

* You should NOT do this!

Boston University, Spring 2023

133

Another Example of Method Overriding

» The Rectangle class has the following mutator method:

public void setwidth(int w) {
if (w <= 0) {
throw new ITlegalArgumentException();

this.width = w;
}

* The square class inherits it. Why should we override it?

* One option: have the square version change width and height.

Which of these works?

A. // square version, which overrides
// the version inherited from Rectangle
public void setwidth(int w) {
this.width = w;
this.height = w;
3

B. // square version, which overrides
// the version inherited from Rectangle
public void setwidth(int w) {
this.setwidth(w);
this.setHeight(w);
3

C. either version would work

D. neither version would work

CAS CS 112 B1 Boston University, Spring 2023 134

CAS CS 112 B1

Accessing Methods from the Superclass

The solution: use super to access the inherited version
of the method — the one we are overriding:

// Square version

public void setwidth(int w) {

super.setwidth(w); // call the Rectangle version
super.setHeight(w);

Only use super if you want to call a method from
the superclass that has been overridden.

If the method has not been overridden, use this as usual.

Accessing Methods from the Superclass

We need to override all of the inherited mutators:

// Square versions

public void setwidth(int w) {
super.setwidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setwidth(h);
super.setHeight(h);

}

public void grow(int dw, int dh) {
if (dw != dh) {
throw new ITlegalArgumentException();
}
super.setwidth(this.getwidth() + dw);
super.setHeight(this.getHeight() + dh);

N\getwidth() and getHeight()

are not overridden, so we use this.

Boston University, Spring 2023

135

Inheritance Hierarchy

* Inheritance leads classes to be organized in a hierarchy:

public class Shape {
Shape // fields and methods
// common to all shapes
. - }
Tr1ang1e| |Rectang1e| |E111pse| oubTic class Rectangle
extends Shape {
|Square| |Circ1e| }

» Aclass in Java inherits directly from at most one class.

* However, a class can inherit indirectly from a class higher up
in the hierarchy.

» example: square inherits indirectly from shape

The Object Class

» If a class doesn't explicitly extend another class,
it implicitly extends a special class called object.

* Thus, the object class is at the top of the class hierarchy.
« all classes are subclasses of this class

+ the default tostring() and equals () methods are defined
in this class

Object

———””””

|Triang1e| |Rectang1e| |E111pse|

|Square| |C1' rc1e|

CAS CS 112 B1 Boston University, Spring 2023 136

CAS CS 112 B1

Polymorphism

» We've been using reference variables like this:
Rectangle rl = new Rectangle(20, 30);

* variable rlis declared to be of type Rectangle
* it holds a reference to a Rectangle object

* |In addition, a reference variable of type T can hold a reference
to an object from a subclass of T:

Rectangle rl = new Square(50, "cm");

« this works because Square is a subclass of Rectangle
* asquare is a rectangle!

» The name for this feature of Java is polymorphism.
» from the Greek for “many forms”
» the same code can be used with objects of different types!

Polymorphism and Collections of Objects

Polymorphism is useful when we have a collection of objects
of different but related types.

* Example:
* let's say that you need a collection of different shapes:
» we can store all of them in an array of type Shape:
Shape[] myShapes = new Shape[5];

myShapes[0] = new Rectangle(20, 30);
myShapes[1l] = new Square(50, "cm");
myShapes[2] = new Triangle(10, 8);
myShapes[3] = new Circle(10);
myShapes[4] = new Rectangle(50, 100);

Boston University, Spring 2023

137

Processing a Collection of Objects

* We can print out a description of each shape as follows:
Shape[] myshapes = new Shape[5];

myShapes[0] = new Rectangle(20, 30);
myShapes[1] = new Square(50, "cm");
myShapes[2] = new Triangle(10, 8);
myShapes[3] = new Circle(10);
myShapes[4] = new Rectangle(50, 100);

for (int i = 0; i < myShapes.length; i++) {
System.out.printin(myShapes[i]);
1

* For each element of the array, the appropriate tostring()
method is called!

« myShapes[0]: the Rectangle version of tostring() is called
« myShapes[1]: the Square version of tostring() is called
* efc.

Practice with Polymorphism
|0bject|

Shape|

S

Triang1e| |Rectang1e| |E11ipse|

|Square| |Circ1e|

* Which of these assignments would be allowed?
Shape sl1 = new Triangle(10, 8);
Square sq = new Rectangle(20, 30);
Rectangle rl = new Circle(1l5);
Object o = new Circle(15);

CAS CS 112 B1 Boston University, Spring 2023 138

|0bject|

Which of these would be allowed?

Shape
Triang1e| |Rectang1e| |E111pse|
|Square| |circ1e|

Circle c = new Shape(5);

both would be allowed

oo w >

neither would be allowed

Shape s2 = new Square(8, "inch");

Another Hierarchy

¢ G has two non-static methods.

» Eextends G
* itinherits G's fields and methods
* it overrides method2 with its own version
it adds a new method called method3

* F also extends G
* jtinherits G's fields and methods
* it overrides method2

« Hextends E
* it inherits E's fields and methods
* it overrides method1

method2

G
method1
method2

E F
method2
method3

H
method1

CAS CS 112 B1 Boston University, Spring 2023

139

CAS CS 112 B1

Which Version of a Method Will Run?

Example:
G g = new HO;
g.method2(); // which version runs?

To determine which version of a method will run:
« start at actual type of the object itself

* go up the hierarchy as needed met(r?od1
until you find the method ST
* the first version you encounter E F
is the one that will run method2 method2
method3
* In this case:
 start at H, since we have an H object H
* H doesn't have its own method?2 methodt
e gouptoE

« E does have a method?2, so it’s the version that runs!

More Practice
Consider the following object declarations:

E el = new EQ;
G %1 = new HQ);
F f1 = new FQ);

For each of the following calls using these objects:
» will the call compile?

* if so, which version of the method will run? G

method1
el.method1l() method?2
el.method2()

E F
el.method3() method?2 method?2
gl.methodl() me?Pd3
fl.method1l() H
f1l.method2() method1

fl.method3()

Boston University, Spring 2023

140

A Bag Data Structure

Computer Science 112
Boston University

What is a Bag?

» Abag is just a container for a group of data items.
* analogy: a bag of candy

» The positions of the data items don’t matter (unlike a sequence).
* {3, 2,10, 6} is equivalent to {2, 3, 6, 10}

» The items do not need to be unique (unlike a set).
« {7,2,10,7, 5} isn’t a set, butitis a bag

CAS CS 112 B1 Boston University, Spring 2023 141

Implementing a Bag Data Structure

» We can create a blueprint class for bags.

» Each object of this class will represent an entire bag of items.
» example: one object might represent {3, 2, 10, 6}

» This will be an example of a collection class.
» each object will represent a collection of items

Implementing a Bag Data Structure (cont.)

» The operations we want each bag object to support:
» add(item): add itemto the bag

» remove (item): remove one occurrence of itenm (if any)
from the bag

» contains(item): check if itemis in the bag
« numItems(): getthe number of items in the bag

» grab(): get an item at random, without removing it

« reflects the fact that the items don’t have a position
(and thus we can’t say "get the 5" item in the bag")

« toArray(): get an array containing the current contents
of the bag

» We want the bag to be able to store objects of any type.

CAS CS 112 B1 Boston University, Spring 2023 142

One Possible Bag Implementation

* One way to store the items in the bag is to use an array:

public class ArrayBag {
private [1 items;

}

* What type should the array be?

» This allows us to store any type of object in the items array,
thanks to the power of polymorphism:

ArrayBag bag = new ArrayBag();
bag.add("hell0");
bag.add(new Rectangle(20, 30));

» How could we keep track of how many items are in a bag?

Two Methods with the Same Name

* In Java, two methods in a given class can have the same name.

* To do so, the methods must have:

 a different number of parameters
and/or

» parameters of different types

* We saw this earlier with the substring methods in string:

String substring(int beginIndex, int endIndex)
String substring(int beginIndex)

» This is known as method overloading.

* When a method call is made, the compiler uses the values
being passed in to figure out which version to call.

CAS CS 112 B1 Boston University, Spring 2023

143

Two Constructors for the ArrayBag Class

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;
public ArrayBag(int maxsize) {
, -

* We can have two different constructors!
+ the parameters must differ in some way

* The first one is useful for small bags.
» creates an array with room for 50 items.

* The second one allows the client to specify the max # of items.

Two Constructors for the ArrayBag Class

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

public ArrayBag(int maxSize) {
if (maxSize <= 0) {
throw new ITlegalArgumentException(
) "maxSize must be > 0");
this.items = new Object[maxSize];
this.numItems = 0;

}

» If the user inputs an invalid maxsize, we throw an exception.

CAS CS 112 B1 Boston University, Spring 2023 144

What if we want to keep track of how many

ArrayBag objects a program has created?

public class ArrayBag {
private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;
Increment the private static int numBagsCreated = 0;

static variable public ArrayBag() {

every time that this.items = new Object[DEFAULT_MAX_SIZE];
we create an this.numItems = 0;

ArrayBag. numBagsCreated++;

Static

ublic ArrayBag(int maxSize) {

variables are if (maxSize <= 0) {

like globals. throw new I1legalArgumentException(...);
They can be }
accessed by this.items = new Object[maxSize];
any method this.numItems = 0;
of the class. numBagsCreated++;
...
}

* Add a static variable — one that belongs to the class as a whole.
» notfinal — because we want to be able to change it!

Adding ltems

+ We fill the array from left to right. Here's an empty bag:

items[—)—» nul1| null | null| null}|
numItems 0

+ After adding the first item:
items[—F—»] [nul1 | null]| null|

numItems| 1 /

["hello, world"|

» After adding the second item:

items[—}—»] [\ [null]null}

numItems 2

["hello, world"] | "howdy" |

CAS CS 112 B1 Boston University, Spring 2023 145

Adding Items (cont.)

+ After adding the third item:

items| ——» [[~\LnuiT]
numItems| 3 E////
["hello, world"] | "howdy" | ["bye"]

+ After adding the fourth item:
items| ——»]

numItems 4

\\I

|
["helTo, world"]| | "howdy" | ["bye"]|"see ya!"|

+ At this point, the ArrayBag is full!
* it's non-trivial to "grow" an array, so we don't!
+ additional items cannot be added until one is removed

A Method for Adding an ltem to a Bag

public class ArrayBag {
private Object[] items;
private int numItems;

« takes an object of any type!
« returns a boolean to indicate whether
the operation succeeded

public boolean add(Object item) {

if (item == null) {
throw new ITlegalArgumentException("no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!

} else {
this.items[this.numItems] = 1item;
this.numItems++;
return true; // success!

}
* Initially, this.numItems is 0, so the first item goes in position 0.

* We increase this.numItems because we now have 1 more item.
* and so the next item added will go in the correct position!

CAS CS 112 B1 Boston University, Spring 2023 146

In add (), could we replace

this.items.length with maxSize?
public class ArrayBag {
private Object[] items;
private int numItems;

5&511c ArrayBag(int maxsize) {
if (maxSize <= 0) {
throw new ITlegalArgumentException(...);
}

this.items = new Object[maxSize];
this.numItems = 0;

public boolean add(Object item) {

if (item == null) {
throw new ITlegalArgumentException("no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!

} else {
this.items[this.numItems] = 1item;
this.numItems++;
return true; // success!

Example: Adding an Item

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message); o 113¢ boolean add(object item) {
else {
this.items[this.numItems] = item;
this.numItems++;
return true;
stack heap
this items[—F—» null [null |[null]| null]
item numItems 0
bl —1T71 »["hello, world"]
message| — |
args >

» add's stack frame includes:
« 1item, which stores...
« this, which stores...

CAS CS 112 B1 Boston University, Spring 2023 147

CAS CS 112 B1

Example: Adding an Item (cont.)

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

b.add(message) ;

public boolean add(object item) {

} else {
this.items[this.numItems] = item;
this.numItems++;
return true;
;.
stack heap
this items —4——[» Tnul1]null] null]
item — numItems| O

message| —
args >

b ”’//iiijifzzgﬁ"he11o, world" |

* The method modifies the items array and numItems.
* note that the array holds a copy of the reference to the item,
not a copy of the item itself.

Example: Adding an ltem (cont.)

b.add(message) ;

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

public boolean add(Object item) {

é1se {

this.items[this.numItems] = item;
this.numItems++;
return true;

items[—F——] , Tnull[null] null]

b //ﬁ "hello, world"]

3
stack heap
this >
item | numItems| 1
message| —1 |
args >

» The method modifies the items array and numItems.
* note that the array holds a copy of the reference to the item,
not a copy of the item itself.

Boston University, Spring 2023

148

CAS CS 112 B1

Example: Adding an ltem (cont.)

public static void main(string[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);

this.items[this.numItems] = item;

[null [null | null}

b.add(message); [93 pboolean add(object item) {
else {
this.numItems++;
return true;
stack heap } -
items| —}—»f

numItems 1

b ////>| "hello, world" |

message| —f
args >

« After the method call returns, add's stack frame is removed

from the stack.

Determining if a Bag Contains an Item

items __’l | \ | |nu'|1 |nu1'| |nu'|'| | null |

numItems 3 / \ \

["hello, wor1d™] ["go BU!"| ["what's in the bag?"|

» Let’s write the ArrayBag contains() method together.
» should return true if an object equal to itemis found,

and false otherwise.

contains(

item) {

Boston University, Spring 2023

149

Would this work instead?

items| ——s L\ | nu11 [null [null | nutt .
numItems| 3 / \ \
["heT1To, worTd™] ["go BU!"| |"what's in the bag?"|

+ Let's write the ArrayBag contains() method together.

* should return true if an object equal to itemis found,
and false otherwise.

public boolean contains(Object item) {
for (int i = 0; i < this.items.length; i++) {
if (this.items[i].equals(item) { // not ==
return true;

}

}

return false;
}

What about this?
items ——’l | \ | |nu'|1 |nu1'| |nu'|'| | null |
numItems 3 / \ \
["hello, wor1d™] ["go BU!"| ["what's in the bag?"|

» Let’s write the ArrayBag contains() method together.

» should return true if an object equal to itemis found,
and false otherwise.

public boolean contains(Object item) {
for (Object myItem : this.items) {
ebm@mmkau if (myItem.equals(item)) {
00p return true;
}
}

return false;

CAS CS 112 B1 Boston University, Spring 2023 150

Another Incorrect contains() Method

public boolean contains(Object item) {
for (int i = 0; i < this.numItems; i++) {
if (this.items[i].equals(item)) {
return true;
} else {
return false;
}

}

return false;

3
* What's the problem with this?

A Method That Takes Another Bag as a Parameter

* Now let’'s add a method containsAll(ArrayBag other)

* returns true if all of the items in the ArrayBag called other
are in the called ArrayBag, and false otherwise.

public boolean containsAll1(ArrayBag other) {
if (other == null || other.numItems == 0) {
return false;

}
for () {

}

return —

}

* Because this method is part of the ArrayBag class,
it is able to access the private fields of the other ArrayBag.

CAS CS 112 B1 Boston University, Spring 2023 151

CAS CS 112 B1

A Type Mismatch

Here are the headers of two ArrayBag methods:

public boolean add(Object item)
public oObject grab()

Polymorphism allows us to pass String objects into add():

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

However, this will not work:
String str = stringBag.grab(Q); // compiler error
« the return type of grab() is object
+ Object isn’t a subclass of string, so polymorphism doesn't help!

Instead, we need to use a type cast:
String str = (String)stringBag.grabQ);
« this cast doesn't actually change the value being assigned
« it just reassures the compiler that the assignment is okay

Boston University, Spring 2023

152

Recursion

Computer Science 112
Boston University

Printing a Series of Integers

« printseries(nl, n2) should print the series of integers from
n1to n2, where n1 <= n2.

+ example: printSeries(5, 10) should print the following:
5,6, 7, 8,9, 10

» Here's an iterative solution - one that uses a loop:

pubTlic static void printSeries(int nl, int n2) {
for (int i = nl; i < n2; i++) {
System.out.print(i + ", ");
}

System.out.printin(n2);

CAS CS 112 B1 Boston University, Spring 2023 153

Another Solution

* Here's an alternative solution to the same problem:
pubTic static void printSeries(int nl, int n2) {

if (n1 == n2) { // base case
System.out.printin(n2);

} else { // recursive case
System.out.print(nl + ", ");

printSeries(nl + 1, n2);
}

* A method that calls itself is a recursive method.

* This approach to problem-solving is known as recursion.

Tracing a Recursive Method

pubTic static void printSeries(int nl, int n2) {
if (n1 == n2) {
System.out.println(n2);
} else {
System.out.print(nl + ", ");
printSeries(nl + 1, n2);

}

* What happens when we execute printseries(5, 7)?

printSeries(5, 7):
System.out.print(5 + ", ");
printSeries(6, 7):

System.out.print(6 + ", ");
printSeries(7, 7):
System.out.printin(7);
return
return
return

CAS CS 112 B1 Boston University, Spring 2023 154

CAS CS 112 B1

Tracing a Recursive Method: Second Example

public static void mystery(int i) {
if (<= 0) { // base case
return;
}

// recursive case
System.out.printin(i);
mystery(i - 1);
System.out.printin(i);

3
« What is the output of mystery(2)?
A. 2 B. 2 C. 2 D. 2
1 1 1 1
0 0 1
1 2
2

A Recursive Method That Returns a Value

Simple example: summing the integers from 1 to n

public static int sum(int n) {
if (n <= 0) {
return O;
}

int rest = sum(n - 1);
return n + rest;

Boston University, Spring 2023

155

CAS CS 112 B1

Tracing a Recursive Method on the Stack

public static int sum(int n) {

if (n <= 0) {
return 0; .
The final result
}
int rest = sum(n - 1); gets built up
return n + rest; on the way back
from the base case!
3
base case
Example: sum(3) n[o]
rest[|
retun 0 rest = sum(0)
n n n =0
restC_]| | restC__]|| res

return 1+0

n n n n n
rest[]| | rest[__]|| rest[__] rest[||| rest

return 2+1+

restl_J|| rest[] rest[| rest[] restl__ ||| rest[]

n[3] n[3] n[3] n[3] n[3] n(3] h(3]
rest’f 3 |

return 3+3

time ————» final result: 6

Designing a Recursive Method

Start by programming the base case(s).

* What instance(s) of this problem can | solve directly
(without looking at anything smaller)?

Find the recursive substructure.

* How could I use the solution to any smaller version
of the problem to solve the overall problem?

Solve the smaller problem using a recursive call!
» store its result in a variable

Do your one step.
* build your solution from the result of the recursive call
* use concrete cases to figure out what you need to do

Boston University, Spring 2023

156

Processing a String Recursively

» A string is a recursive data structure. It is either:
° empty (llll)
» asingle character, followed by a string

* Thus, we can easily use recursion to process a string.
» process one or two of the characters ourselves
* make a recursive call to process the rest of the string

» Example: print a string vertically, one character per line:

public static void printvertical(String str) {
if (str == null || str.equals("™)) {
return;
}

System.out.printin(str.charAt(0)); // first char
printvertical(str.substring(1)); // rest of string

Counting Occurrences of a Character in a String

e numoccur(c, s) should return the number of times that
the character c appears in the string s

e« numoccur('n', "banana") should return 2
e« numoccur('a', "banana") should return 3

» Wil the following typical approach work?
» base case: empty string (or null)
» delegate s.substring(1) to the recursive call
» we're responsible for handling s.charAat(0)

CAS CS 112 B1 Boston University, Spring 2023 157

CAS CS 112 B1

Which combination is correct?

public static int numOccur(char c, String s) {

if (s == null || s.equals("")) { // base case

return 5
} else { // recursive case
int rest = ;
// do our one step!
}
}
first blank second blank
A. s.substring(l)
B. " numoccur(c, s.substring(l))
C. 0 s.substring(1)
D. 0 numoccur(c, s.substring(l))

Determining Our One Step

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numoccur(c, s.substring(l));
// do our one step!

* In our one step, we take care of s.charAt(0).

» we build the solution to the larger problem on the
solution to the smaller problem (in this case, rest)

» does what we do depend on the value of s.charAt(0)?

* Use concrete cases to figure out the logic!

Boston University, Spring 2023

158

CAS CS 112 B1

Consider this concrete case...

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numOccur(c, s.substring(l));
// do our one step!

numoccur('r', "recurse")
numOccur('r', "recurse™)
c="r"', s = "recurse"

What value is eventually assigned to rest?
(i.e., what does the recursive call return?)

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numOccur(c, s.substring(l));
// do our one step!

numoccur('r', "recurse")
A' n n
2 numoccur('r', "recurse")
c="r", s = "recurse"
B 1 int rest = 777
C. 0
D none of the above

Boston University, Spring 2023

159

CAS CS 112 B1

Consider Concrete Cases

numoccur('r', "recurse") # first char is a match
* whatis its solution?
+ what is the next smaller subproblem?
+ what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

numoccur('a', "banana") # first char is not a match
» what is its solution?
+ what is the next smaller subproblem?
» what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

Now complete the method!

pubTlic static int numOccur(char c, String s) {
if (s == null || s.equals("")) {
return 0;
} else {
int rest = numoccur(c, s.substring(l));
if (s.charAt(0) == c) {

return ;
} else {

return ;

Boston University, Spring 2023

160

Tracing a Recursive Method on the Stack

public static int numoccur(char c, String s) {
if (s == null || s.equals("")) {

return 0O;
} else { .
int rest = numoccur(c, s.substring(l)); The ﬁn‘?l result
if (s.charat(0) == c) { gets built up
return 1 + rest; on the way back
}else { from the base case!
return rest; :
} ¥ base case
} S| ™ |
numoccur('a', "aha") rest| |
return 0 ~
s["g" s["a" SE
rest rest re 0
return 1+0
s["ha"] s["ha" s["ha" s["ha" s["ha"]
rest_ ||| rest rest rest rest
return 1
sf'aha’] sf'aha’] sf'aha'| sl'aha'| si'aha’| sl'aha’] sf'aha’]
rest[]| | rest ||| rest rest rest rest_ ||| res
return 1+1
time ——»

Common Mistake

e This version of the method does not work:

public static int numoccur(char c, String s) {
if (s == null || s.equals("™)) {
return 0;
h

int count = 0;

if (s.charAat(0) == c) {
count++;

h

numoccur(c, s.substring(l));
return count;

CAS CS 112 B1 Boston University, Spring 2023 161

Another Faulty Approach

» Some people make count "global" to fix the prior version:
public static int count = 0;

public static int numoccur(char c, String s) {
if (s == null || s.equals("")) {

return O;

3

if (s.charAt(0) == o) {
count++;

3

numoccur(c, s.substring(l));
return count;

}

* Not recommended, and not allowed on the problem sets!

* Problems with this approach?

Extra Practice: Removing Vowels From a String
« removevVowels(s) - removes the vowels from the string s,
returning its "vowel-less" version!

removevowels("recursive") should return "rcrsv"

removevowels("vowel") should return "vwl"

» Can we take the usual approach to recursive string processing?
* base case: empty string
» delegate s.substring(1) to the recursive call
» we're responsible for handling s.charat(0)

CAS CS 112 B1 Boston University, Spring 2023 162

Applying the String-Processing Template

public static String removevowels(String s) {
if (s.equals("™)) { // base case

return .
} else { // recursive case

String rem_rest = ;
// do our one step!

Consider Concrete Cases

removevowels("after") # first char is a vowel
+ what is its solution?
» what is the next smaller subproblem?
» what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

removevowels("recurse") # first char is not a vowel
» what is its solution?
» what is the next smaller subproblem?
+ what is the solution to that subproblem?

* how can we use the solution to the subproblem?
What is our one step?

CAS CS 112 B1 Boston University, Spring 2023 163

CAS CS 112 B1

removevowels ()

public static String removevowels(String s) {

if (s.equals("™)) { // base case
return "";
} else { // recursive case
String rem_rest = removevowels(s.substring(1));
if (M"aeiou".indexof(s.charAat(0)) !'= -1) {
} else {
}
}

Boston University, Spring 2023

164

Recursive Backtracking

Computer Science 112
Boston University

The n-Queens Problem

» Goal: to place n queens on an n x n chessboard
so that no two queens occupy:

» the same row
» the same column
» the same diagonal.

» Sample solution for n = 8: Q

Q

» This problem can be solved using a technique called
recursive backtracking.

CAS CS 112 B1 Boston University, Spring 2023 165

Recursive Strategy for n-Queens

+ findsolution(row) — to place a queen in the specified row:
+ try one column at a time, looking for a "safe" one
 if we find one: — place the queen there
— make a recursive call to go to the next row

+ if we can’t find one: — backtrack by returning from the call
— try to find another safe column
in the previous row

+ Example: 5
* row O:
col 0: safe
« row 1: |[] Q) Q
Q Q Q
U \)
col 0: same col col 1: same diag col 2: safe
4-Queens Example (cont.)
* row 2: [[q] Q O Kol [[] Q
Q Q/ Q Q
Q Y Q Q)
U 9 Y

col 0: same col col 1: same diag col 2: same col/diag col 3: same diag

* We've run out of columns in row 2!

» Backtrack to row 1 by returning from the recursive call.

+ pick up where we left off

» we had already tried columns 0-2, so now we try column 3:
Q Q

we left offin col 2 try col 3: safe

» Continue the recursion as before.

CAS CS 112 B1 Boston University, Spring 2023 166

CAS CS 112 B1

4-Queens Example (cont.)

row 2: |fq) Q
Q Q
Q Q
Z) 0: same col col 1: safe
row 3: [2188 Q Q] M
& CIANEE a
Q Q Q Q
Q Q N 9

col 0: same col/diag col 1: same col/diag col 2: same diag col 3: same col/diag

Backtrack to row 2:

Q QY Q []

Q S Q
K Q
CAN U

we left offin col 1 col 2: same diag ~ col 3: same col

Backtrack to row 1. No columns left, so backtrack to row 0!

4-Queens Example (cont.)

row O: Q
row 1: 3 Q) @ a
Q Q Q Q
)
row 2: &
Q
Q
row 3: [Mq a Q
Q) Q
Q @R\ Q
o] Q Q

A solution!

Boston University, Spring 2023

167

A Blueprint Class for an N-Queens Solver

pubTlic class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

« Here's what the object | false | false | false | false
looks like initially:

. |fa1se |fa1se| false |fa1se
NQueens object

|
|
board | __4____>| //T //T'__+——(j""|fa1se |fa1se| false |fa1se|
|

//other fields

|fa1se |fa1se| false |fa1se

A Blueprint Class for an N-Queens Solver

public class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

Q
private void placeQueen(int row, int col) { Q
this.board[row][col] = true; Q
// modify other fields here...
}
« Here's what it looks like | true |fa1se | false | false

after placing some queens:

. |fa1se |fa1se| fa1se| true
NQueens object

board | __F___>| //I //T’_,f—”r”'|fa1se| true |fa1se| fa1se|

//other fields

|fa1se |fa1se| false |fa1se

CAS CS 112 B1 Boston University, Spring 2023 168

CAS CS 112 B1

A Blueprint Class for an N-Queens Solver

pubTlic class NQueens {
private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

privatg void placeQueen(int row, int col) {
this.board[row] [col] = true; private helper methods
// modify other fields here... that will only be called

by code within the class.

private void removeQueen(int row, int col){ wakingthem private
this.board[row][col] = false; means we don't need
// modify other fields here... to do error-checking!
}

private boolean isSafe(int row, int col) {
// returns true if [row][col] 1is "safe", else false
H

private boolean findSolution(int row) {
// see next slide!

Recursive-Backtracking Method

private boolean findSolution(int row) {
if (row == this.board.length) {
this.displayBoard();
return true;
}
for (int col = 0; col < this.board.length; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;
}

this.removeQueen(row, col);

}

return false;

+ takes the index of a row (initially 0)

» uses a loop to consider all possible columns in that row

» makes a recursive call to move onto the next row

» returns true if a solution has been found; false otherwise

Boston University, Spring 2023

169

. . . Q
Tracing findSolution() a
private boolean findsolution(int row) { Q
if (row == this.board.length) {
// code to process a solution goes here...
3
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) { Note: row++
this.placeQueen(row, col); will not work
if (this.findsolution(row +“1)) { here
return true;
3
this.removeQueen(row, col);
¥ We can pick up backtrack!
return false: where we left off, row: 3
‘backtrackl because row and col:0,1,2,3,4
- —] col are stored in return false
row: 2 |
col:0.1,2,3.4 the stack frame! row: 2 row: 2
return false ¢ col: 0,1 col: 0,1
row: 1 row: 1 row: 1 row: 1 row: 1 row: 1
col: 0,1,2 col: 0,1,2 col: 0,1,2 col: 0,1,2,3 | col: 0,1,2,3 || col: 0,1,2,3
row: 0 row: 0 row: 0 row: 0 row: 0 row: 0 row: 0
col: 0 col: 0 col: 0 col: 0 col: 0 col: 0 col: 0
time —»
. Q
Once we place a queen in the last row... a
private boolean findSolution(int row) { Q
if (row == this.board.length) { Q

this.displayBoard();
return true;
3
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;
}

this.removeQueen(row, col);

}
row: 3
return false; |col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

tme —— »

CAS CS 112 B1 Boston University, Spring 2023 170

. Q
...we make one more recursive call... a
private boolean findsolution(int row) { Q
if (row == this.board.length) { Q
this.displayBoard();
return true;
for (int col = 0; col < this.board.Tength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;
this.removeQueen row: 4 ;
row: 3 row: 3
; return false; |cor0,1,2 col:0,1,2
row: 2 row: 2
col: 0 col: 0
row: 1 row: 1
col: 0,1,2,3 col: 0,1,2,3
row: 0 row: 0
col: 1 col: 1
time —»
. Q
...and hit the base case! a
private boolean findSolution(int row) { Q
if (row == this.board.length) { Q

this.displayBoard();
) return true;
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) {
return true;

CAS CS 112 B1

}
this.removeQueen row: 4 ;
} return true
row: 3 row: 3
return false; |col:0,1,2 col:01.2

row: 2 row: 2
col: 0 col: 0
row: 1 row: 1
col:0,1,2,3 || col: 0,1,2,3
row: 0 row: 0
col: 1 col: 1

tme —— »

Boston University, Spring 2023

CAS CS 112 B1

. Q
true is sent back... a
private boolean findsolution(int row) { Q
if (row == this.board.length) { Q
this.displayBoard();
return true;
for (int col = 0; col < this.board.Tength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) { // if (true)
return true;
this.removeQueen row: 4 ;
return true
row: 3 row: 3 row: 3
; return false; |co0,1,2 col:0,1,2 col:0,1,2
row: 2 row: 2 row: 2
col: 0 col: 0 col: 0
row: 1 row: 1 row: 1
col: 0,1,2,3 col: 0,1,2,3 col: 0,1,2,3
row: 0 row: 0 row: 0
col: 1 col: 1 col: 1
time —»
. Q
...and all the earlier calls also return true! a
private boolean findSolution(int row) { Q
if (row == this.board.length) { Q

this.displayBoard();
return true;
}
for (int col = 0; col < this.board.Tlength; col++) {
if (this.issafe(row, col)) {
this.placeQueen(row, col);
if (this.findsolution(row + 1)) { // if (true)
return true;

}
this.removeQueen row: 4 ;
} return true
row: 3
N £a] row: 3 row: 3 col:0,1,2
return rtalse; |col:0,1,2 col:0,1,2
return true row: 2
row: 2 row: 2 row: 2 col: 0
col: 0 col: 0 col: 0 return true
row: 1 row: 1 row: 1 row: 1
col: 0,1,2,3 col: 0,1,2,3 col: 0,1,2,3 || col: 0,1,2,3
row: 0 row: 0 row: 0 row: 0
col: 1 col: 1 col: 1 col: 1

tme —— »

Boston University, Spring 2023

172

Using a "Wrapper" Method

» The key recursive method is private:

private boolean findSolution(int row) {
}

+ We use a separate, public "wrapper” method
to start the recursion:

public boolean findSolution()
return this.findsolution(0);
}

+ an example of overloading — two methods with
the same name, but different parameters

+ this method takes no parameters

» it makes the initial call to the recursive method
and returns whatever that call returns

« it allows us to ensure that the correct initial value
is passed into the recursive method

Recursive Backtracking in General

» Useful for constraint satisfaction problems

* involve assigning values to variables according to
a set of constraints

* n-Queens: variables = Queen’s position in each row
constraints = no two queens in same row/col/diag

* many others: factory scheduling, room scheduling, etc.

» Backtracking greatly reduces the number of possible solutions
that we consider.

e ex: |o » there are 16 possible solutions that
Q begin with queens in these two positions

« backtracking doesn't consider any of them!

* Recursion makes it easy to handle an arbitrary problem size.
+ stores the state of each variable in a separate stack frame

CAS CS 112 B1 Boston University, Spring 2023 173

Template for Recursive Backtracking

/7 n 1s the number of the variable that the current
s/ call of the method is responsible for
boolean findsolution(int n, possibly other params) {
if (found a solution) {
this.displaysolution();
return true;

}

// loop over possible values for the nth variable
for (val = first to last) { Note: n++
if (this.isvalid(val, n)) { will not work
this.applyvalue(val, n); _ — herel
if (this.findsolution(n + 1, other params)) {
return true;

}
this.removevalue(val, n);
}
}
return false; // backtrack!

Template for Finding Multiple Solutions

(up to some target number of solutions)

boolean findsolutions(int n, possibly other params) {
if (found a solution) {
this.displaySolution(Q);
this.solutionsFound++;
return (this.solutionsFound >= this.target);

}

s/ loop over possible values for the nth variable
for (val = first to last) {
if (isvalid(val, n)) {
this.applyvalue(val, n);
if (this.findsolutions(n+ 1, other params)) {
return true;
3

this.removevalue(val, n);

}

return false;

CAS CS 112 B1 Boston University, Spring 2023 174

Data Structures for n-Queens

» Three key operations:

« issafe(row, col):check to see if a position is safe
e placeQueen(row, col)
e removeQueen(row, col)

* Intheory, our 2-D array of booleans would be sufficient:

pubTic class NQueens {
private boolean[][] board;

» It's easy to place or remove a queen:

private void placeQueen(int row, int col) {
this.board[row] [col] = true;
3

private void removeQueen(int row, int col) {
this.board[row] [col] = false;
3

* Problem: issafe() takes a lot of steps. What matters more?

Additional Data Structures for n-Queens

» To facilitate issafe(), add three arrays of booleans:

private boolean[] colEmpty;
private boolean[] upDiagEmpty;
private boolean[] downDiagEmpty;

* An entry in one of these arrays is:

— true if there are no queens in the column or diagonal
— false otherwise

» Numbering diagonals to get the indices into the arrays:

o downDiag =
upDiag = (boardSize — 1) + row — col
0 3 0 2 3
) 3 0 <§\ <z\

N
N
N

AN
Y
D

<
2 2/
&

Y Q
Q

6 3|6

N

@\Awmm

o
N
[$)]

87978751

o
@

w

CAS CS 112 B1 Boston University, Spring 2023 175

Using the Additional Arrays

* Placing and removing a queen now involve updating four
arrays instead of just one. For example:

private void placeQueen(int row, int col) {
this.board[row] [col] = true;
this.colEmpty[col] = false;
this.upDiagEmpty[row + col] = false;
this.downDiagEmpty[
(this.board.Tength - 1) + row - col] = false;
3

* However, checking if a square is safe is now more efficient:

private boolean issafe(int row, int col) {
return (this.colEmpty[col]
&& this.upDiagEmpty[row + col]
&& this.downDiagEmpty[
(this.board.length - 1) + row - col]);

Recursive Backtracking Il: Map Coloring

+ We want to color a map using only four colors.

» Bordering states or countries cannot have the same color.
+ example:

not allowed!

CAS CS 112 B1 Boston University, Spring 2023 176

CAS CS 112 B1

Applying the Template to Map Coloring

boolean findsolution(n, perhaps other params) {
if (found a solution) {
this.displaysolution();
return true;
b
for (val = first to Tast) {
if (this.isvalid(val, n)) {
this.applyvalue(val, n);
if (this.findsolution(n + 1, other params)) {
return true;
}

this.removevalue(val, n);

}

¥ template element | meaning in map coloring

return false;
3 n
found a solution
val
isValid(val, n)
applyValue(val, n)
removeValue(val, n)

Map Coloring Example

consider the states in alphabetical order. colors = { red, , green,

We color Colorado through
Utah without a problem. so we backtrack...

Colorado:

Idaho:

Kansas

Montana:

Nebraska:

North Dakota:

South Dakota:

Utah:

No color works for Wyoming,

Boston University, Spring 2023

177

CAS CS 112 B1

Map Coloring Example (cont.)

Now we can complete
the coloring:

Boston University, Spring 2023

178

A First Look at Sorting
and Algorithm Analysis

Computer Science 112
Boston University

Sorting an Array of Integers

1 2 n-2 n-1

0
ar| 15[7 [36] -

» Ground rules:
» sort the values in increasing order
+ sort “in place,” using only a small amount of additional storage

» Terminology:
* position: one of the memory locations in the array
» element: one of the data items stored in the array
* element i: the element at position i

* Goal: minimize the number of comparisons C and the number
of moves M needed to sort the array.

* move = copying an element from one position to another
example: arr[3] = arr[5];

CAS CS 112 B1 Boston University, Spring 2023 179

CAS CS 112 B1

Defining a Class for our Sort Methods

public class Sort {
public static void bubbleSort(int[] arr) {

public static void insertionSort(int[] arr) {

b
}

» Our sort class is simply a collection of methods like Java’s
built-in Mmath class.

» Because we never create Sort objects, all of the methods in
the class must be static.

» outside the class, we invoke them using the class name:
e.g., sort.bubbleSort(arr)

A Method for Swapping Elements

» A private helper method used by several of the algorithms:

private static void swap(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] arr[b];
arr[b] temp;

}

» For example:

int[] arr = {15, 7, 3, 6, 12};
swap(arr, 0, 1);
System.out.println(Arrays.toString(arr));

output:
[7, 15, 3, 6, 12]

* Note that every swap requires 3 moves.

Boston University, Spring 2023

180

CAS CS 112 B1

Selection Sort

Basic idea:
+ consider the positions in the array from left to right
+ for each position, find the element that belongs there and put it
in place by swapping it with the element that’s currently there

Example:
0 1 2 3 4
15| 6 | 2|12 | 4
7
0 1 2 3 4
6 15|12 | 4
V_/V
0 1 2 3 4 0 1 2 3 4
2 | 4 [15]|12 | 6 2 | 4 12| 15
- _ v \7

Why don’t we need to consider position 47

L]

Selecting an Element

When we consider position i, the elements in positions
0 through i - 1 are already in their final positions.
_ 0 1 2 3 4 5 6
example for 1 = 3:) 4 7 12112511017

To select an element for position 1:

» consider elements i, i+1,1i+2,..,arr.length - 1, and
keep track of indexMin, the index of the smallest element

seen thus far 0 ;) 5 . 5 6
indexMmin: 3, 5 2 | 4|7 (21|25 10|17

* when we finish this pass, indexMin is the index of the
element that belongs in position 1.

* swap arr[i] and arr[indexMin]:

0 1 2 3 4 5 8

2 | 4|7 (110|25|21 |17

Boston University, Spring 2023

181

What will things look like after 2 positions are handled?

0 1 2 3 4 5
12| 5 (2 |13|18]| 4

Implementation of Selection Sort

» Use a helper method to find the index of the smallest element:
private static int indexSmallest(int[] arr, int start) {
int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexmin]) {
indexMin = i;
}

}

return indexMmin;

}

» The actual sort method is very simple:

public static void selectionsort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, 1i);
swap(arr, i, j);

CAS CS 112 B1 Boston University, Spring 2023 182

CAS CS 112 B1

Time Analysis

» Some algorithms are much more efficient than others.

» The time efficiency or time complexity of an algorithm is some
measure of the number of operations that it performs.

« for sorting, we’ll focus on comparisons and moves

» We want to characterize how the number of operations
depends on the size, n, of the input to the algorithm.

« for sorting, n is the length of the array
* how does the number of operations grow as n grows?

+ We'll express the number of operations as functions of n
e C(n) = number of comparisons for an array of length n
* M(n) = number of moves for an array of length n

Counting Comparisons by Selection Sort

private static int indexSmallest(int[] arr, int start){
int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {

if (Carr[i] < arr[indexmin]) {
indexMin = i;

}

return indexMin;

public static void selectionSort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int j = indexsmallest(arr, i);
swap(arr, i, j);

}

» To sort n elements, selection sort performs n - 1 passes:
on 1st pass, it performs comparisons to find indexsmallest
on 2nd pass, it performs comparisons

on th.e (n-1)st pass, it performs 1 comparison
 Addingthemup: c(n) =1 +2+ ..+ (0 -2)+ (-1

Boston University, Spring 2023

183

CAS CS 112 B1

Counting Comparisons by Selection Sort (cont.)

The resulting formula for c(n) is the sum of an arithmetic
sequence:
n-1
cn) =1+2+.+M=-2)+ (-1 =i
i=1
Formula for the sum of this type of arithmetic sequence:

ii_m(m+l)
i1 2

Thus, we can simplify our expression for C(n) as follows:
n-1

c(n) = 21'
i1
_(n-DUUn-1D+1)
B 2

_(n-Dn
B 2

c(n) = n%/2 - n/2

Focusing on the Largest Term

When n is large, mathematical expressions of n are dominated

by their “largest” term — i.e., the term that grows fastest as a
function of n.

« example: n | n2/2 n/2 n2/2 - n/2
10 50 5 45
100 5000 50 4950

10000 50,000,000 5000 49,995,000

In characterizing the time complexity of an algorithm,
we’ll focus on the largest term in its operation-count expression.

 for selection sort, c(n) =n2/2 -n/2 ~ n?/2

In addition, we'll typically ignore the coefficient of the largest term
(e.g., n?2 > n?).

Boston University, Spring 2023

184

Big-O Notation

We specify the largest term using big-O notation.
* e.g., wesaythat c(n) =n?/2-n/2 is O(n?)

Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7,10 o
logarithmic time 31ogqpn, Tog,n + 5 O(logn)

g linear time 5n, 10n - 2Tog,n o(n)

S| nlogn time 4nlog,n, nlog,n+n O(nlogn)
quadratic time 2n2+3n,n2-1 O(n2)
exponential time 2", 5en + 2n? Oo(cm

For large inputs, efficiency matters more than CPU speed.

* e.g., an O(log n) algorithm on a slow machine will
outperform an O(n) algorithm on a fast machine

Ordering of Functions

« We can see below that: n? grows faster than nlog,n
nlog,n grows faster than n
n grows faster than log,n

160

140 -

120 -

100 -

—=—n"2
80 | ——nlogn

—>—n

60 - ——logn

40

20 ~

CAS CS 112 B1 Boston University, Spring 2023 185

CAS CS 112 B1

Ordering of Functions (cont.)

« Zooming in, we see that: n?>=nforalln>=1
nlog,n >=nforalln >=2
n > log,n for all n >= 1

—a—n2
——nlogn
_)(_n

—x—logn

Big-O Time Analysis of Selection Sort

» Comparisons: we showed that c(n) =n2/2-n/2
* selection sort performs O(n2) comparisons

* Moves: after each of the n-1 passes, the algorithm does one swap.

* n-1swaps, 3 moves per swap
e M(n) = 3(n-1) = 3n-3
+ selection sort performs O (n) moves.

* Running time (i.e., total operations): ?

Boston University, Spring 2023

186

CAS CS 112 B1

Insertion Sort

+ Basicidea:
+ going from left to right, “insert” each element into its proper
place with respect to the elements to its left
» “slide over” other elements to make room

+ Example:
0 1 2 3 4

=1 12| 6

i
A
N

“2 15212 6

Inserting an Element

« When we consider element 1, elements 0 through i - 1

are already sorted with respect to each other.
01 2 3 4

example for i = 3: 6 |14|119]| 9

« Toinsert element 1i:
* make a copy of element 1, storing it in the variable toInsert:

0 1 2 3

toInsert| 9 6 |14|119| 9

e consider elements i-1,1-2, ...
«ifan element > toInsert, slide it over to the right
« stop at the first element <= toInsert
0 1 2 3

toInsert| 9 3] 14 | 19

» copy toInsert into the resulting “hole™ | 6 | 9 |14 | 19

Boston University, Spring 2023

187

Insertion Sort Example (done together)

description of steps 12| § 2 113118 4

Implementation of Insertion Sort

public class Sort {

public static void insertionSort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
if Carr[i] < arr[i-1]1) {
int toInsert = arr[i];

int j = 1;

do {
arr[jl = arr[j-1];
i=3-1

} while (j > 0 & & toInsert < arr[j-1]1);

arr[j] = tolInsert;

CAS CS 112 B1 Boston University, Spring 2023 188

Time Analysis of Insertion Sort

» The number of operations depends on the contents of the array.

* Dbest case: array is sorted
* each element is only compared to the element to its left
* we never execute the do-while loop!
s C(n=—___ , M(n)=______, running time =
¥~.also true if array
* worst case: array is in reverse order is almost sorted

* each element is compared to all of the elements to its left:
arr[1] is compared to 1 element (arr[0])
arr[2] is compared to 2 elements (arr[0] and arr[1])

arr[n-1] is compared to n-1 elements
e C(N=142+..+(n-1)=
* similarly, M(n) = , running time =

* average case: elements are randomly arranged
* on average, each element is compared to half
of the elements to its left

+ stillgetc(n)=M(n)=_____, running time =

Bubble Sort

» Perform a sequence of passes from left to right
» each pass swaps adjacent elements if they are out of order
* larger elements “bubble up” to the end of the array

At the end of the kth pass:
+ the k rightmost elements are in their final positions
+ we don’'t need to consider them in subsequent passes.

+ Example: 0 1 2 3 4
28 | 24 |37 | 15| 5

after the first pass: 24 128 1151 5 | 37

after the second: 24 | 15 5 28 | 37

after the third: 15| 5 | 24| 28| 37

after the fourth: 5 | 751 24| 28 | 37

CAS CS 112 B1 Boston University, Spring 2023 189

CAS CS 112 B1

Implementation of Bubble Sort

public class Sort {

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {
for (int j =0; j <1; j++) {
if (arr[j] > arr[j+1]1) {
swap(arr, j, j+1);

}

* Nested loops:
 the inner loop performs a single pass
 the outer loop governs:
 the number of passes (arr.length - 1)
- the ending point of each pass (the current value of 1)

Time Analysis of Bubble Sort

» Comparisons (n = length of array):
+ they are performed in the inner loop

* how many repetitions does each execution
of the inner loop perform?

value of i number of comparisons
n-—1 n-—1
n-—2 n-2
1+2+...+n-1=
2 2
1 1

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {
for (int j =0; j < 1i; j++) {
if (arr[j] > arr[j+1]) {
swap(arr, j, j+1);

}

Boston University, Spring 2023

190

CAS CS 112 B1

Time Analysis of Bubble Sort
Comparisons: the kth pa:\Lss performs n - k comparisons,
e

soweget c(n) = X, i = n?2/2-n/2 = O(n?)
i=1

Moves: depends on the contents of the array
* in the worst case:

e M(n) =
* in the best case:

Running time:
¢ C(n) is always O(n2), M(n) is never worse than O(n2)
 therefore, the largest term of c(n) + M(n) is O(n?)

Bubble sort is a quadratic-time or O (n?) algorithm.
» can’t do much worse than bubble!

Practicing Time Analysis

+ Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i =0; i < n; i++) {
X += 13 // statement 1
for (int j =0; j < 1i; j++) {

X += J;

3

3

return x;

}

» What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

Boston University, Spring 2023

191

What about now?

» Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i =0; i < 3*n + 4; i++) {
X += 13 // statement 1
for (int j =0; j < 1i; j++) {

X += J;

}

}

return Xx;

}

» What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

Practicing Time Analysis

+ Consider the following static method:
public static int mystery(int n) {

int x = 0;

for (int i = 0; i < n; i++) {
X += 1; // statement 1
for (int j =0; j < 1; j++) {

X += j; // statement 2

3

3

return x;

}

» What is the big-O expression for the number of times that
statement 2 is executed as a function of the input n?

value of i number of times statement 2 is executed

CAS CS 112 B1 Boston University, Spring 2023 192

CAS CS 112 B1

Extra Practice: Which algorithm is this?

original array array after some number of passes

12

52 (13|/18| 4 | ==® | 2| 5 |12 |13

18

4

. selection sort

. insertion sort

. bubble sort

. it could be more than one of them

Boston University, Spring 2023

193

Sorting II: Quicksort and Mergesort

Computer Science 112
Boston University

Quicksort

» Like bubble sort, quicksort uses an approach based on swapping
out-of-order elements, but it's more efficient.

* Arecursive, divide-and-conquer algorithm:

« divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

[12] 814 46 [13] == [6 [8] 4]14]12]13]

» conquer: apply quicksort recursively to the subarrays,
stopping when a subarray has a single element

+ combine: nothing needs to be done, because of the way
we formed the subarrays

CAS CS 112 B1 Boston University, Spring 2023 194

Partitioning an Array Using a Pivot

The process that quicksort uses to rearrange the elements
is known as partitioning the array.

It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
« left subarray: all values <= pivot } equivalent to the criterion
* right subarray: all values >= pivot | ©nthe previous page.

7 115 4| 9|6 |18| 9 |12
l partition using a pivot of 9

7191469 18|15|12

all values <=9 all values >=9

» The subarrays will not always have the same length.

» This approach to partitioning is one of several variants.

Possible Pivot Values

« First element or last element
* risky, can lead to terrible worst-case behavior
» especially poor if the array is almost sorted

[4] 8]14]12] 6 |18| == | 4| 8 |14]12] 6|18
pivot = 18

+ Middle element (what we will use)
+ Randomly chosen element

« Median of three elements
* left, center, and right elements
» three randomly selected elements

+ taking the median of three decreases the probability of
getting a poor pivot

CAS CS 112 B1 Boston University, Spring 2023 195

Partitioning an Array: An Example
first Tast

arr » 7 (15| 4| 9|6 18| 9 |12
pivot = 9
« Maintain indices 1 and j, starting them “outside” the array:

i=first-1 1 J
j=Tlast+1 7 |15 4 9 6 18] 9 |12

» Find “out of place” elements:
* increment i until arr[i] >= pivot
» decrement j until arr[j] <= pivot

1‘
7 11514196 |18] 9 |12

.

 Swap arr[i] andarr[j]:
i J
71914 |96 |18|15|12

Partitioning Example (cont.)

i j

from prev. page: 71914196 181512
i 3

« Find: 7191496 |18|15]|12
i

+ Swap: 71946 |9|18|15]|12
j i

* Find: 719146 |9|18|15]|12

and now the indices have crossed, so we return j.

« Subarrays: left = from first to j, right= from j+1 to Tast

first j i Tast
7191469181512

CAS CS 112 B1 Boston University, Spring 2023 196

Partitioning Example 2

. Start i j
(pivot = 13): 24| 5 | 2 | 1318 | 4 |20 19
i j
« Find: 245 | 2|13 (18| 4 {2019
i J
. Swap: 4 (5] 2 (13|118(24|20|19
i3]
* Find: 4 |52 13|118(24|20|19
and now the indices are equal, so we return j.
i3]
* Subarrays: 4 (5] 2 (13|18 (24|20|19

Partitioning Example 3 (done together)

- Start 1 j
(pivot = 5): 4 |14 7 | 5|2 19|26 6
+ Find: 4 11417 | 5|2 (19|26]| 6

CAS CS 112 B1 Boston University, Spring 2023 197

CAS CS 112 B1

Partitioning Example 4

Start i
(pivot = 15): 8 |10 151201 9 18
Find: 8 | 10 15120 | 9 18

private static int partition(int[] arr, int first, int last)

{

partition() Helper Method

int pivot = arr[(first + Tast)/2];

int i = first - 1;
int j = last + 1;

while (true) {

// index going left to right
// index going right to Teft

do {
T4+
} while (arr[i] < pivot);
do {.
1 while (arr[j] > pivot);
if (< 3) {
swap(arr, i, j);
} else {
return j; /7 arr[j] = end of Teft array
}
}
first Tast
7 |15] 4 18| 9 |12

Boston University, Spring 2023

198

CAS CS 112 B1

Implementation of Quicksort

public static void quickSort(int[] arr) { // "wrapper" method
gsort(arr, 0, arr.length - 1);
3

private static void gSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) { // 7f left subarray has 2+ values
gsort(arr, first, split); // sort it recursively!

}

if (last > split + 1) { /7 1F right has 2+ values
gsort(arr, split + 1, last); // sort it/

}

} // note: base case is when neither call 1is made,
// because both subarrays have only one element!

split
first 3) last

71914|6)|9|18]|15|12

A Quick Review of Logarithms

« Tlogyn = the exponent to which b must be raised to get n
e logyn = p if b? = n

+ examples: 1o0g,8 = 3 because 2° = 8
109,,10000 = 4 because 10* = 10000

* Another way of looking at logs:
* let's say that you repeatedly divide n by b (using integer division)
« Togyn is an upper bound on the number of divisions
needed to reach 1
» example: Tog,18 is approx. 4.17
18/2 = 9 9/2 = 4 4/2 = 2 2/2 =1

Boston University, Spring 2023

199

CAS CS 112 B1

A Quick Review of Logs (cont.)

is proportional to Tog,n for any base b

« Tlogy,n grows much more slowly than n

O(logn) algorithm — one in which the number of operations

Tog,n

2 1

1024 (1K) 10
1024%1024 (1Im) 20
1024*1024*1024 (1G) 30

Thus, for large values of n:

* a O(logn) algorithm is much faster than a O (n) algorithm

« logn << n

* a O(nlogn) algorithm is much faster than a O (n?) algorithm

*n*logn << n*n
nlogn << n?

Time Analysis of Quicksort

Partitioning an array of length n requires approx. n comparisons.

* most elements are compared with the pivot once; a few twice

* repeated recursive calls give:

n/2 n/2
'n/4] [n/4] [n/4] [n/4]

e C(n) =7

Similarly, M(n) and running time are both

best case: partitioning always divides the array in half

comparisons

n

2*(n/2) =n

4*(n/4) = n
0

at each "row" except the bottom, we perform n comparisons
there are rows that include comparisons

Boston University, Spring 2023

200

CAS CS 112 B1

Time Analysis of Quicksort (cont.)

worst case: pivot is always the smallest or largest element
* one subarray has 1 element, the otherhas n - 1

* repeated recursive calls give: comparisons

« C(n) = > i= 0(n2). wm(n) and runtime are also 0(n?).
iz2

average case is harder to analyze
« C(n) >nTog,n, butit’s still 0(nTogn)

Mergesort

The algorithms we've seen so far have sorted the array in place.

+ use only a small amount of additional memory

Mergesort requires an additional temporary array
of the same size as the original one.

+ it needs O(n) additional space, where n is the array size

It is based on the process of merging two sorted arrays.
* example:

[2] 8 [14]24]
N
[2] 5] 78] 9]11]14]24]

Gl71olm &

Boston University, Spring 2023

201

Merging Sorted Arrays

» To merge sorted arrays A and B into an array C, we maintain
three indices, which start out on the first elements of the arrays:

;
al 2|8 [14]24] k

] cl [[[[[[|

Bl 5] 7] 9] 11]

» We repeatedly do the following:
» compare Ali] and BJ[j]
» copy the smaller of the two to C[k]
* increment the index of the array whose element was copied
* increment k
i

Al 2] 8]14]24] K

J cle| | [[[[| |
B 5| 7] 9] 11]

Merging Sorted Arrays (cont.)
+ Starting point:

;
Al 2] 8 [14]24] k

] cl [[T[T T |

B| 5] 7] 9] 11]

» After the fjrst copy:
1

Al 2] 8 |14]24] K

J cf2| [[[[[[|

B 5| 7] 9] 11]

* After the second copy:
1

Al 2] 8 [14]24] K

J cl2fs] [[[[[|

B 5| 7] 9] 11]

CAS CS 112 B1 Boston University, Spring 2023 202

Merging Sorted Arrays (cont.)
» After the t_hird copy:

;
Al 2] 8 |14]24] k
] clefsfz] | [[[|

Bl 5| 7| 9] 11]

+ After the fourth copy:
1

Al 2] 8 |14]24] K
' cl2lsl718] | | [|

j
B 5| 7] 9] 11]

* After the fifth copy:
1

Al 2] 8 |14]24] K
cl2sl7]8l9] | [|

Bl 5| 7] 9] 11]

Merging Sorted Arrays (cont.)
+ After the sixth copy:

;
Al 2] 8 |14]24] k
icl2|s] 7891z | |

B 5| 7| 9] 11|

» There's nothing left in B, so we simply copy the remaining
elements from A:
;
Al 2] 8 |14]24] K
Jocl2|s] 78] 9]11]14]24]

B 5| 7] 9] 11]

CAS CS 112 B1 Boston University, Spring 2023 203

Divide and Conquer

+ Like quicksort, mergesort is a divide-and-conquer algorithm.
+ divide: split the array in half, forming two subarrays

* conquer: apply mergesort recursively to the subarrays,
stopping when a subarray has a single element

» combine: merge the sorted subarrays

[12] 8 [14] 4 | 6 [33] 2 [27]

splt |12 8 |14 4| [6[33] 2]27]
it~ (12 8 [[14] 4 || 6 [33][2]27]
o [l e =]z]z]
mege | 8 |12 4 [14|] 6 [33][2]27]
mege | 4 | 8 |12/14| |2 [6 [27]33]
merge |2 468 12]14]27]33]

Tracing the Calls to Mergesort

the initial call is made to sort the entire array:
[12] 8 14] 4 |6 33]2]27]

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

12| 8

CAS CS 112 B1 Boston University, Spring 2023 204

CAS CS 112 B1

Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 [14] 4 |

12 | 8

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

[12] 8 |14] 4 | 6 [33] 2 |27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14] 4 |

12 | 8

Boston University, Spring 2023

205

CAS CS 112 B1

Tracing the Calls to Mergesort

merge the sorted halves of {12, 8}:

[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

[12] 8 |=| 8 |12

end of the method, so return to the call for the 4-element subarray, which now has
a sorted left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[8 |12]14] 4 |

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

[12] 8 |14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

14| 4

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 | 27]

[8 |12]14] 4 |

14 | 4

base case...

Boston University, Spring 2023

206

CAS CS 112 B1

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 14| 4 | 6 [33] 2 | 27]

| 8 |[12]14] 4 |

14 | 4

make a recursive call to sort its right subarray:

[12] 8 14| 4 | 6 [33] 2 | 27|

| 8 [12]14] 4 |

14 | 4

base case...

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 |14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

14| 4

merge the sorted halves of {14, 4}:

[12] 8 [14] 4 | 6 [33] 2 | 27]

[8]12]14] 4 |

[14] 4 | =] 4 | 14]

Boston University, Spring 2023

207

CAS CS 112 B1

Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has
two sorted 2-element subarrays:

[12] 8 [14] 4 | 6 [33] 2 [27]

[8 [12] 4 |14]

merge the 2-element subarrays:

[12] 8 14| 4 | 6 [33] 2 | 27|

[8[12] 4 14| =] 4|8 |12]14]

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a
sorted left subarray:

[4] 8|12]14] 6 [33] 2| 27]

perform a similar set of recursive calls to sort the right subarray. here's the result:

[4] 8]12]14] 2| 6 |27]33]

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

[4] 8]12]14] 2| 6 |27]33]

4

[2]4]6] 8]12]14]27]33]

Boston University, Spring 2023

208

CAS CS 112 B1

Implementing Mergesort

» In theory, we could create new arrays for each new pair of
subarrays, and merge them back into the array that was split.

+ Instead, we'll create a temp. array of the same size as the original.

 pass it to each call of the recursive mergesort method
+ use it when merging subarrays of the original array:

e [Emla[m] e [5]2]77]

i

wm (a8 (123 [[|

+ after each merge, copy the result back into the original array:
arr| 4 [8 [12]14] 6 [33] 2 |27]

1

tep| 4 [8 [12]14] | | | |

A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int TeftStart, int lefteEnd, int rightStart, int rightend) {

int i = TeftStart; // index into Tleft subarray
int j = rightstart; // index into right subarray
int k = TeftStart; // index into temp

while (i <= TeftEnd & j <= righteEnd) {
if (arr[i] < arr[j]) {
temp[k] = arr[i];
i++; k++;
} else {
temp[k] = arr[j]l;
J++; k++;
}
}

while (i <= leftend) {
temp[k] = arr[i];
T++; k++;

}

while (j <= rightend) {
temp[k] = arr[j];
J++; k++;

}

for (i = leftstart; i <= righteEnd; i++) {
arr[i] = temp[i];
}

Boston University, Spring 2023

209

A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int leftStart, int leftend, int rightStart, int rightend) {

int i = leftStart; // index into left subarray
int j = rightstart; // index into right subarray
int k = leftStart; // index into temp

while (i <= TefteEnd & j <= rightend) { // both subarrays still have values
if (arr[i] < arr[j]) {
temp[k] = arr[i];

T4+ k++;
} else {
temp[k] = arr[jl;
J++; k++;
}
}
}
leftstart leftend|rightstart rightend
arr:| .. 4 8 12 | 14 2 6 27 | 33
temp:

Methods for Mergesort

* Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

}
}
start end
arr:| .. 12 8 14 4 6 33 2 27
temp:

CAS CS 112 B1 Boston University, Spring 2023 210

CAS CS 112 B1

What does the array look like after

the first recursive call returns?
* Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

msort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

) } start end
arr:| 12 8 14 4 6 33 2 27
A: 4 8 12 | 14 6 33 2 27
B: 8 12 | 14 4 6 33 2 27
C: 12 8 14 4 2 6 27 | 33
D: 4 8 12 | 14 2 6 27 | 33

Methods for Mergesort

* Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

+ We use a "wrapper" method to create the temp array,
and to make the initial call to the recursive method:
public static void mergesSort(int[] arr) {

int[] temp = new int[arr.Tlength];
msort(arr, temp, 0, arr.length - 1);

Boston University, Spring 2023

211

CAS CS 112 B1

Time Analysis of Mergesort

Merging two halves of an array of size n requires 2n moves.

Why?

Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

n/2

n/2

moves

2n

2%2*%(n/2) = 2n

[n/4]

In/4| [n/4] [n/4]

D

* how many levels are there?
e« M(n) =7
« C(n) =7

4%2%*(n/4) = 2n

at all but the last level of the call tree, there are 2n moves

Summary: Sorting Algorithms

algorithm | best case | avgcase |worstcase| €extramemory
selection sort O(nd) O(nd) O(nd) o
insertion sort O(n) O(n?) O(n?) o
bubble sort 0O(n?d) 0O(n?d) O(n?) o
quicksort O(nlogn) | O(n Togn) Oo(n?) best/avg: O (1og n)
worst: O(n)
mergesort | O(nlogn) | O(nTogn) | O(nlogn) o(n)

 Insertion sort is best for nearly sorted arrays.

» Mergesort has the best worst-case complexity, but requires
O(n) extra memory — and moves to and from the temp. array.

» Quicksort is comparable to mergesort in the best/average case.

+ efficiency is also O(n Tog n), but less memory and fewer moves

* its extra memory is from...
» with a reasonable pivot choice, its worst case is seldom seen

Boston University, Spring 2023

212

CAS CS 112 B1

Extra Practice: What does partitioning give here?

« Start
(pivot = 9):

8 10| 7 | 9|20 3 | 6 |18
8 | 6|7] 3]]20|10| 9 |18
7 |89 (10(20] 3 | 6 |18
8 | 6|79 |20 3 10|18
8 | 6|7] 3|20|9 10|18

Boston University, Spring 2023

213

Linked Lists

Computer Science 112
Boston University

Representing a Sequence of Data

» Sequence — an ordered collection of items (position matters)
+ we will look at several types: lists, stacks, and queues

* Most common representation = an array

Advantages of using an array:

» easy and efficient access to any item in the sequence
« items[i] gives you the item at position i in O(1) time
» known as random access
» very compact (but can waste space if positions are empty)

Disadvantages of using an array:
* have to specify an initial array size and resize it as needed

* inserting/deleting items can require shifting other items
» ex: insert 63 between 52 and 72

items | *I—Pl 31 | 52 | 72 | . |

CAS CS 112 B1 Boston University, Spring 2023 214

CAS CS 112 B1

Alternative Representation: A Linked List

items —

52

72

A

null

» Each node is an object that contains:

* asingle item

* a'"link" (i.e., a reference) to

the node containing the next item

« The last node in the linked list has a link value of nul1.

holds a reference to the first node.
* e.g., items in the example above

A linked list stores a sequence of items in separate nodes.

31

The linked list as a whole is represented by a variable that

Arrays vs. Linked Lists in Memory

» In an array, the elements occupy consecutive memory locations:

items

items| 0x100

31 52 72
Ox100 0x104 _ 0Ox108
31 52 72

» In alinked list, the nodes are distinct objects.
+ do not have to be next to each other in memory

+ that's why we need the links to get from one node to the next!

items

items| 0x520

. 31 52 72
null

0Ox520 Ox812 Ox208
31 52 72
0x812 0x208 null

Boston University, Spring 2023

215

0x200

Linked Lists in Memory

items

0x520 Ox812 0x208
31 52 72
null

0x200 | 0x520
0Ox204

0x208 72
0x212 | null
0x216

0x520 31
0x524 | 0x812
0x528

Ox812 52
0x816 | 0x208

» Here's how the above linked list might actually look in memory:

<— the variable i tems

} the last node
} the first node

} the second node

Features of Linked Lists

» They can grow without limit (provided there is enough memory).

» Easy to insert/delete an item — no need to "shift over" other items.
 for example, to insert 63 between 52 and 72:

+ they don't provide random access
* need to "walk down" the list to access an item
+ the links take up additional memory

before:- 31 55 7>
1tems null

after:
_ 31 52 72
1tems null

" A
63
+ Disadvantages:

CAS CS 112 B1

Boston University, Spring 2023

216

CAS CS 112 B1

A String as a Linked List of Characters

'CI lal ltl
> null

strl >

A

Each node represents one character.

Java class for this type of node:

pubTic class StringNode { ch| ¢
private char ch;
private StringNode next; next|] —1 —*

same type as the node itself!

pubTlic StringNode(char c, StringNode n) {
this.ch = c;
this.next = n;

}

» The string as a whole is represented by a variable that holds
a reference to the node for the first character (e.g., strl above).

A String as a Linked List (cont.)

* An empty string will be represented by a null value.

example:
StringNode str2 = null;

+ We will use static methods that take the string as a parameter.
* e.g., we'll write Tength(strl) instead of strl.length()
» outside the class, call the methods using the class name:
StringNode.length(strl)

» This approach allows the methods to handle empty strings.
o if strl == null:
« Tength(strl) will work
« strl.length() will throw a NuTTPointerException

Boston University, Spring 2023

217

Building a Linked List of Characters |

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

1 't'
str null

* We can use the stringNode constructor to build the linked list
from the previous slide.

* One way is to start with the last node and work towards the front:
StringNode strl = new StringNode('t', null);

Building a Linked List of Characters Il

public StringNode(char c,
StringNode n) {

this » 'a’ this.ch = ¢;
this.next = n;
C lal ~ }
" \A
ltl
strl >
null

* We can use the stringNode constructor to build the linked list
from the previous slide.
* One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);
strl = new StringNode('a', strl);

CAS CS 112 B1 Boston University, Spring 2023 218

CAS CS 112 B1

Building a Linked List of Characters IlI

public StringNode(char c,
StringNode n) {
this.ch = c;
this.next = n;

}

lal ltl
null

strl

y

We can use the stringNode constructor to build the linked list
from the previous slide.
One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);
strl = new StringNode('a', strl);

Building a Linked List of Characters IV

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

ICI lal ltl

trl
Str null

y

Y

We can use the stringNode constructor to build the linked list
from the previous slide.

One way is to start with the last node and work towards the front:

StringNode strl = new StringNode('t', null);

strl = new StringNode('a', strl);

strl = new StringNode('c', strl);
Later, we'll see methods that can be used to build a linked list
and add nodes to it.

Boston University, Spring 2023

219

» Practice:

Review of Variables

* A variable or variable expression represents both:
* a"box" or location in memory (the address of the variable)
+ the contents of that "box" (the value of the variable)

StringNode str;
StringNode temp;

0x200 0x520 0x812 0x208
str ch g’ ' [l g]
temp \\J

// points to the first node

// points to the second node

* Example: temp.next.ch

expression | address value Assumptions:

— ch field has the same
str 0x200 0x520 (ref to the 'd" node) memory address as
str.ch the node itself.

* next field comes
str.next 2 bytes after the start
of the node.
More Complicated Expressions
0x200 0x520 0x812 0x208
str “d’ ‘0’ ‘ g ’
0x204 null

* Next, consider temp.next.ch
It represents the ch field of the node to which temp.next refers.

« address =
« value =

« Start with the beginning of the expression: temp.next
It represents the next field of the node to which temp refers.

» address =
e value =

CAS CS 112 B1

Boston University, Spring 2023

220

CAS CS 112 B1

Find the address and value of s.next.next.ch
0xc000 0xbe00 0x3004 0xbb00 0xa004

s.nextis...

* itholds...
thus, s.next.next is...

it holds...
thus, s.next.next.chis...

it holds...

address value

A. 0xbe00 "r'

B. 0x3004 'e'
C. 0xbb00 'a'
D. none of these

Review of Assignment Statements

* An assignment of the form

varl = var?2;
« takes the value inside var?2
e copiesitinto varl

Example involving integers: 0x400
int x = 5; x| 5
inty = x; 0x804
5
y 5
Example involving references: 0x600
int[] al = {3, 4, 5}; al — 3 | 4 | 5 |
int[] a2 = al; 0x256
0x320 2

Boston University, Spring 2023

221

CAS CS 112 B1

What About These Assignments?

0x200 .
ctr 320 Qx812 0x208 * Identify the two boxes.
d ° El « Determine the value in the box
Ox204 null

temp E\J specified by the right-hand side.
* Copy that value into the box
specified by the left-hand side.
1) str.next = temp.next;

2) temp.next = temp.next.next;

Writing an Appropriate Assignment

+ If temp didn't already refer to the 'o' node, what assignment
would be needed to make it refer to that node?

0x200 0x520 0x812 0x208
str d" 0" v g '
Ox204 null
temp

« start by asking: where do | currently have a reference
to the 'o' node?

» then ask: what expression can | use for that box?

» then write the assignment:

Boston University, Spring 2023

222

CAS CS 112 B1

A Linked List Is a Recursive Data Structure!

* Recursive definition: a linked list is either
a) empty or
b) a single node, followed by a linked list

+ Viewing linked lists in this way allows us to write recursive
methods that operate on linked lists.

Recursively Finding the Length of a String
* For a Java string object: str e]

public static int length(String str) {
if (str.equals("")) {
return 0;
} else {
int lenRest = Tength(str.substring(1l));
return 1 + TenRest;

* For a linked-list string: ser[o< a’ T

> null

A4

public static int Tength(StringNode str) {
if (str == null) {
return 0O;
} else {
int lenRest = length(str.next);
return 1 + lenRest;

Boston University, Spring 2023

223

CAS CS 112 B1

An Alternative Version of the Method

+ Original version:

public static int Tength(StringNode str) {
if (str == null) {
return 0;
} else {

int lenRest = length(str.next);
return 1 + lenRest;

Version without a variable for the result of the recursive call:

public static int length(StringNode str) {
if (str == null) {

return 0;
} else {
return 1 + length(str.next);
}
}
Tracing Tength()
public static int length(StringNode str) {
if (str == null) {
return 0;
} else {
return 1 + length(str.next);
3
¥ Ox128 Ox720 0x404
¢! a' "t
strll: > null

Example: stringNode.length(strl)

str:null
return 0;
str:0x404|(str:0x404 | str:0x404
t t return 1+0
str:0x720|[str:0x720(|str:0x720|[str:0x720||str:0x720
“at” “at” “at” “at” return 1+1
str:0x128||str:0x128([str:0x128||str:0x128||str:0x128|[str:0x128| str:0x128
"cat" "cat" "cat" "cat" "cat" "cat" return 1+2
time ————»

Boston University, Spring 2023

224

Using lteration to Traverse a Linked List
* Many tasks require us to traverse or "walk down" a linked list.
* We just saw a method that used recursion to do this.
* It can also be done using iteration (for loops, while loops, etc.).

* We make use of a variable (call it trav) that keeps track of
where we are in the linked list.

EW! ‘a’ "I' lk,
5”‘: null

» Template for traversing an entire linked list:

StringNode trav = str; // start with first node
while (trav != null) {

// process the current node here

trav = trav.next; // move trav to next node

Example of Iterative Traversal

» toUppercCase(str): converting str to all upper-case letters

I.FY ‘.i, ln! le!
str: null

: lFl ‘I’ IN! IEY
str
null

» Similar to the built-in method for Java string objects.

* This method processes linked-list strings:
* uses a loop to process one stringNode at a time
* modifies the internals of the string (unlike the built-in version)
+ thus, it doesn't need to return anything

CAS CS 112 B1 Boston University, Spring 2023 225

CAS CS 112 B1

Example of Iterative Traversal (cont.)

« toUppercCase(str): converting str to all upper-case letters

Str null

t IFY EI! ‘N! iEl
s r| I
null

* Here's the method:

public static void toUppercCase(StringNode str) {
StringNode trav = str;
while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;
}
}

 uses a built-in static method from the Character class
to convert a single char to upper case

Tracing toUppercCase(): Before the Loop

Str lfl |.i| lnl lel
null

A 4

Calling stringNode.toUppercCase(str) adds a stack frame to the stack:

trav
str
\\
\ T=0 | \l
str » "F' 1 n lel
» null
StringNode trav = str;
trav ~
str
\ | -) Al]
Stl" "F' 'I n lel
» null

Boston University, Spring 2023

226

CAS CS 112 B1

Tracing toUppercCase(): First Iteration of Loop

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

3
after updating trav.ch:
trav
str
—
e
::::\\\A -
str- 'Fl I.II lnl lel
> » null
after updating trav:
trav —
str \\
str 'Fl l.il lnl lel
null

Tracing toUppercCase(): Second lteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
after updating trav.ch:
trav
— |
str ~]
I~
Str o IFI II' lnl lel
» null
after updating trav:
trav —
str ~]
I~
Str. ol IFI III lnl lel
» null

Boston University, Spring 2023

227

CAS CS 112 B1

Tracing toUppercCase(): Third lteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

3
after updating trav.ch:
trav —
str
\ '
Str- » 'F' 'I' lN' |e|
» null
after updating trav:
trav —]
str
\‘))
str 'F' I lN' lel
null

Tracing touUppercCase(): Fourth Iteration

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
after updating trav.ch:
trav .
str
str fe = T INE !
» null
after updating trav:
trav| null
str ~]
I~
Str. ol IFI III INI IEI
» null

Boston University, Spring 2023

228

CAS CS 112 B1

Tracing toUppercCase(): Finishing Up

while (trav != null) {
trav.ch = Character.toUppercCase(trav.ch);
trav = trav.next;

}
results of the final iteration:
travl null
str
—1
Str. o IFI lIl INI IEI
» null
and now trav == null, so we end the loop and return:
str 'F! "' "N 'E'
null

Getting the Node at Position i in a Linked List

« getNode(str, i) —should return a reference to the ith node

in the linked list to which str refers

TE R "n' e’
str »

null

+ Examples:

e getNode(str, 0) should return a ref. to the 'f' node
e getNode(str, 3) should return a ref. to the 'e' node
e getNode(str.next, 2) should return a ref. to...?

More generally, when 0 < i < length of list,
getNode(str, i) is equivalentto getNode(str.next, i-1)

Boston University, Spring 2023

229

Getting the Node at Position i in a Linked List

lfl |.i| lnl lel
null

str »

» Recursive approach to getNode(str, i):
e if i == 0, return str (base case)
» else call getNode(str.next, i-1) and return what it returns!
» other base case?

* Here's the method:

private static StringNode getNode(StringNode str, int i) {
if (i <0 || str == null) { // base case 1
return null;

} else if (i == 0) { // base case 2: just found
return str;
} else {

return getNode(str.next, i-1);

}

Deleting the Item at Position i
+ Special case: i == 0 (deleting the first item)

* Update our reference to the first node by doing:
str = str.next;

£

str -—p ljl |a| lvl lal
null

CAS CS 112 B1

Boston University, Spring 2023

230

Deleting the Item at Position i (cont.)
 Generalcase: i > 0

1. Obtain a reference to the previous node:
StringNode prevNode = getNode(i - 1);

(example fori==1)

Str‘ » ljl lal lvl lal
null

prevNode

Deleting the Item at Position i (cont.)
* Generalcase: i > 0
2. Update the references to remove the node
(example fori==1)
before:
Str! » 1 J \l lal lvl lal
null
+
prevNode
after:
str » ' 'a' 'v' 'a'
\ null
+
prevNode I e)

CAS CS 112 B1 Boston University, Spring 2023 231

CAS CS 112 B1

Inserting an Item at Position i

» Special case: i == 0 (insertion at the front of the list)

» Step 1: Create the new node. Fill in the blanks!

before:
ch| 'f'
str 3" ! Te!
> » null
after: —
ch f I
newNode
~Sa
str 3’ 'c' 'e'
null
StringNode newNode = new StringNode());
Inserting an Item at Position i (cont.)
* Special case: i == 0 (continued)
+ Step 2: Insert the new node. Write the assignment!
before (result of previous slide):
ch f I
newNode
~a
str 3’ ¢! 'e'
> » null
after: —
ch f I
newNode
/ \
str 3’ ¢! 'e'
> » null

Boston University, Spring 2023

232

CAS CS 112 B1

Inserting an Item at Position i (cont.)

» General case: i > 0 (insert before the item currently in posn 1)
before:

1 al Al C e
str >
null
ch 1 m 1
after (assume that i == 2): m'
newNode /-f”"”ﬂ#'#/#(//flfﬂ> %
str o2 ¢ €
x—»| null
ch| 'm’ X
prevNode

StringNode prevNode = getNode(i - 1);
StringNode newNode = new StringNode(ch,);
// one more 1ine

Returning a Reference to the First Node

* Both deletechar() and insertcChar() return a reference to
the first node in the linked list. For example:

public static StringNode deleteChar(StringNode str, int i) {

;f (G =0 { // special case
str = str.next;
} else { // general case

StringNode prevNode = getNode(str, i-1);
if (prevNode != null && prevNode.next != null) {
prevNode.next = prevNode.next.next;

}
return str;

}

* Clients should call them as part of an assignment:
sl StringNode.deletechar(sl, 0);
s2 StringNode.insertChar(s2, 0, 'h');
* |f the first node changes, the client's variable will be updated
to point to the new first node.

Boston University, Spring 2023

233

CAS CS 112 B1

Creating a Copy of a Linked List

» copy(str) — create a copy of the entire list to which str refers

* Recursive approach:
* base case: if stris empty, return null
 else: — make a recursive call to copy the rest of the linked list
— create and return a copy of the first node,
with its next field pointing to the copy of the rest

public static StringNode copy(StringNode str) {
if (str == null) { // base case
return null;

}

// make a recursive call to copy the rest of the Tist
StringNode copyRest = copy(str.next);

// create and return a copy of the first node,
// with 7ts next field pointing to the copy of the rest
return new StringNode(str.ch, copyRest);

Tracing copy (): the initial call

* From aclient: stringNode s2 = StringNode.copy(sl);

public static stringNode copy(stringNode str) {
if (str == null) {
return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}
stack heap
copyRest
str
SZ \ vd] IO 1 lg 1
sl » null

Boston University, Spring 2023

234

Tracing copy (): the recursive calls

* From aclient: stringNode s2 = StringNode.copy(sl);

public static StringNode copy(StringNode str) {
if (str == null) {
return null;

}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

copyRest

str

copyRest

str ~

s2 \\\\\\\A d' . o' 'g'

null

sl L |

Tracing copy (): the recursive calls
public static StringNode copy(...) {
if (str == null) {
return null;
3
StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);
}
copyRest
str
copyRest
str
copyRest
str ~
o \ 'd' \ |0| \ lgl
s1 | > nu11

CAS CS 112 B1 Boston University, Spring 2023 235

CAS CS 112 B1

Tracing copy (): the recursive calls

copyRest

str

copyRest

str

copyRest

str

copyRest
str

s2

sl

null

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

{nu11|

Tracing copy (): the base case

copyRest

str

copyRest

str

copyRest

str

copyRest
str

s2

sl

null

public static StringNode copy(...) {
if (str == null) {
return nulil;
1

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

null

A 4

Boston University, Spring 2023

236

CAS CS 112 B1

Tracing copy (): returning from the base case

copyRest

null

public static StringNode copy(...) {
if (str == null) {
return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);

str

copyRest

str

copyRest

str

s2

sl

null

Tracing copy (): returning from the base case

public static StringNode copy(...) {
if (str == null) {
return null;

3
StringNode copyRest = copy(str.next);
return new StringNode(str.ch,
copyRest);
}
copyRest| null 'g’
str null
copyRest
str
copyRest
str ~
. \ d’ \ o' \ lgl
sl » null

Boston University, Spring 2023

CAS CS 112 B1

Tracing copy (): returning from the base case

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}
lgl
/ nutl
copyRest
str
copyRest
str ~J]_
Sz \ ldl \ lol lgl
s1 null

Tracing copy (): returning from the base case

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);

return new StringNode(str.ch,
copyRest);
}
lgl)
/ null
copyRest 'o'
str —
copyRest
str ~
SZ \ vdl \ Iol lgl
sl » null

Boston University, Spring 2023

238

CAS CS 112 B1

Tracing copy (): returning from the base case

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);

copyRest

str

s2

return new StringNode(str.ch,
copyRest);
}
lgl)

null

/ 'O'
\ ldl lol lgl
null

sl

Tracing copy (): returning from the base case

copyRest
str

s2

sl

public static StringNode copy(...) {
if (str == null) {
return null;
3

StringNode copyRest = copy(str.next);

return new StringNode(str.ch,
copyRest);
}
lgl .
null
/ ° <
'dl
\ ldl lol lgl
» null

Boston University, Spring 2023

239

CAS CS 112 B1

Tracing copy (): Final Result

* From aclient: StringNode s2 = StringNode.copy(sl);

e s2 now holds a reference to a linked list that is a copy of the

linked list to which s1 holds a reference.

lgl)

null

lol)

ldl
52 ldl lol lgl
sl null

Using a "Trailing Reference" During Traversal

When traversing a linked list, one trav may not be enough.

Ex: insert ch = "n' at the right place in this sorted linked list:

Py o b Z
t | I
str null

Traverse the list to find the right position:

StringNode trav = str;

while (trav != null && trav.ch < ch) {
trav = trav.next;

}

When we exit the loop, where will trav point? Can we insert 'n'?

The following changed version doesn't work either. Why not?

while (trav != null && trav.next.ch < ch) {
trav = trav.next;
1

Boston University, Spring 2023

240

CAS CS 112 B1

Using a "Trailing Reference" (cont.)

* To get around the problem seen on the previous page,
we traverse the list using two different references:
» trav, which we use as before
» trail, which stays one node behind trav

] [P | LI | [}

C p z

a

str »
null

AN

trail| null trav

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {
trail = trav;
trav = trav.next;
}
// if trail == null, insert at the front of the 1list
// else insert after the node to which trail refers

Using a "Trailing Reference" (cont.)

* To get around the problem seen on the previous page,
we traverse the list using two different references:
« trav, which we use as before
e trail, which stays one node behind trav

lal lcl 1 1 IZI
str > P
null
e i
trail 7 trav
StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {
trail = trav;
trav = trav.next;
1
// if trail == null, insert at the front of the list

// else insert after the node to which trail refers

Boston University, Spring 2023

241

CAS CS 112 B1

Doubly Linked Lists

ch lcl 3! Tt

next null

prev| null

» In a doubly linked list, every node stores two references:
« next, which works the same as before
« prev, which holds a reference to the previous node
« in the first node, prev has a value of nulT

» The prev references allow us to "back up" as needed.
* remove the need for a trailing reference during traversal!

+ Insertion and deletion must update both types of references.

What expression using t would give us 'e'?

0xc000 0xbe00 0x3004 0xbb00 0xa004
lbl Irl Iel lal lkl
5| I »
l null

. Ij’ Extra practice!

.hext.ch
.hext

.hext.next.ch

OO0 w>»
+t + t

.hext.next

Boston University, Spring 2023

242

CAS CS 112 B1

What are the address and value of str.next.next?

str

moowp

0x200

address

0x522
0x812
0x814
0x208
0x210

0x520 0x812 0x208
3 d ’ & 0 7] g Hl
null
Extra practice!
value
0x812
1 O 1
0x208
1 g 1
null

Boston University, Spring 2023

243

ADTs and Interfaces

The List ADT

Computer Science 112
Boston University

Representing a Sequence: Arrays vs. Linked Lists

» Sequence — an ordered collection of items (position matters)
+ we will look at several types: lists, stacks, and queues

« Can represent any sequence using an array or a linked list

array

linked list

representation
in memory

elements occupy consecutive
memory locations

nodes can be at arbitrary
locations in memory; the links
connect the nodes together

advantages

provide random access
(access to any item in
constant time)

* no extra memory needed for
links

can grow to an arbitrary length
allocate nodes as needed

inserting or deleting does not
require shifting items

disadvantages

have to preallocate the
memory needed for the
maximum sequence size

* inserting or deleting can
require shifting items

no random access (may need
to traverse the list)

need extra memory for links

CAS CS 112 B1

Boston University, Spring 2023

244

CAS CS 112 B1

Abstract Data Types

An abstract data type (ADT) is a model of a data structure
that specifies:

 the characteristics of the collection of data
 the operations that can be performed on the collection

It's abstract because it doesn’t specify how the ADT will be
implemented.

A given ADT can have multiple implementations.

The List ADT

A list is a sequence in which items can be accessed,
inserted, and removed at any position in the sequence.

The operations supported by our List ADT:
» getItem(i): getthe item at position i
« additem(item, 1i):add the specified item at position i
» removeItem(i): remove the item at position i
» Tength(): get the number of items in the list

« isFul1(Q): test if the list already has the maximum number

of items

Note that we don’t specify how the list will be implemented.

Boston University, Spring 2023

245

Specifying an ADT Using an Interface

» In Java, we can use an interface to specify an ADT:

public interface List {
Object getIitem(int i);
boolean additem(Object item, int i);
Object removeItem(int i);
int Tength(Q);
boolean isFull(Q);
}

» An interface specifies a set of methods.
* includes only their headers
» does not typically include the full method definitions

Like a class, it must go in a file with an appropriate name.
* in this case: List.java

» Methods specified in an interface must be public,
so we don’'t need the keyword pubTic inthe headers.

Implementing an ADT Using a Class

* To implement an ADT, we define a class.

+ We specify the corresponding interface in the class header:
public class ArrayList 7mplements List {

« tells the compiler that the class will define all of the methods
in the interface

* if the class doesn't define them, it won't compile

« We'll look at two implementations of the L1ist interface:
e ArrayList — uses an array to store the items
o LLList —uses a linked list to store the items

CAS CS 112 B1 Boston University, Spring 2023 246

Recall: Polymorphism
» A reference variable of type T can hold a reference
to an object from a subclass of T:

Rectangle rl = new Square(50, "cm");

* this works because Square is a subclass of Rectangle
* asquare is a rectangle!

Another Example of Polymorphism

* An interface can be used as the type of a variable:
List myList;

» We can then assign an object of any class that implements
the interface:

List 11
List 12

new ArrayList(20);
new LLList();

» This allows us write code that works with any implementation
of an ADT:

public static void processList(List vals) {
for (int i = 0; i < vals.lengthQ); i++) {

}

+ vals can be an object of any class that implements List

+ regardless of which class vals is from,
we know it has all of the methods in the List interface

CAS CS 112 B1 Boston University, Spring 2023 247

CAS CS 112 B1

Implementing a List Using an Array

pubTlic class ArrayList implements List {
private Object[] items;
private int Tlength;

public ArrayList(int maxSize) {

// code to check for invalid maxSize goes here...

this.items = new Object[maxSize];
this.length = 0;

public int length(Q) {
return this.length;

public boolean isFull({

return (this.length == this.items.length);
3
11'51:E 'items: —>| | | | null ‘ |
Tength 2 ﬁ
E
a variable of type .) - L 2
ArrayList an ArrayList object |"f0r"|

Recall: The Implicit Parameter

public class ArrayList implements List {
private Object[] items;
private int Tlength;

public ArrayList(int maxSize) {

this.items = new Object[maxSize];
this.length = 0;

public int length(Q) {
return this.length;

public boolean isFull() {
return (this.length == this.items.length);

}

+ All non-static methods have an implicit parameter (this)

that refers to the called object.

In most cases, we're allowed to omit it!
» we'll do so in the remaining notes

Boston University, Spring 2023

248

CAS CS 112 B1

Omitting The Implicit Parameter

pubTlic class ArrayList implements List {
private oObject[] items;
private int length;

public ArrayList(int maxSize) {
items = new Object[maxSize];
length = 0;

public int Tength(Q {
return length;
3

public boolean isFull() {
return (length == items.length);
}

}

* In a non-static method, if we use a variable that
* isn't declared in the method
* has the name of one of the fields
Java assumes that we're using the field.

Adding an Item to an ArrayList

» Adding at position i (shifting items i, i+1, ... to the right by one):

public boolean additem(Object item, int i) {
if (item == null || i <0 || i > length) {
throw new ITlegalArgumentException();
} else if ((srFullQ) {
return false;
3

// make room for the new ijtem
for (int j = length - 1; j >=1; j--) {
items[j + 1] = items[j];

}
items[i] = item;
Tength++;
return true;
3

example fori= 3: 0 1 2 3/}4[\5[}6 7 8
items ——>| | | | I|I|I| | | |
length| 6

Boston University, Spring 2023

249

Adding an Item to an ArrayList

* Adding at position i (shifting items i, i+1, ... to the right by one):

public boolean additem(Object item, int i) {

if (item == null || i <0 || i > Tength) {
throw new IllegalArgumentException();

} else if (isFullQ) {
return false;

}

// make room for the new item

for (int j = Tength - 1; j >=1; j--) {
items[j + 1] = items[j];

3
items[i] = item;
Tength++;
return true;

}

example fori = 3: 0o 1 2 3 4 5 6 7 8
sens [T T L T T T T |
length| 7

Removing an Item from an ArrayList

* Removing item i (shifting items i+1, i+2, ... to the left by one):

public Object removeItem(int i) {
if (A <0 || i >= Tength) {
throw new IndexoutOofBoundsException();

Object removed = items[i];

// shift items after items[i] to the left
for (int j = 1; j < length - 1; j++) {

items[length - 1] = null;

length--;
return removed;

}

example fori=1: 1
0 2 3 4 5 6 7 8

items[—1— , | [| | | ~Jnu11]nu11|nui1|nuit]

fength] 5 Y A MeTissa]
j ATl een”| [reely”
removed |_—|—> "Tristan"

CAS CS 112 B1 Boston University, Spring 2023 250

Getting an Item from an ArrayList

* Getting item i (without removing it):

public Object getItem(int i) {
if (3 <0 || 1 >= length) {
throw new IndexoutOofBoundsException();

return items[i];

Implementing a List Using a Linked List

pubTlic class LLList implements List {
private Node head;
private int length;

}
head null "how" "are" "you"
ea >
rist[> > > » null
, Tength| 3 -
variable of type b dummy head node
LLList LLL1st object -

Node o\bjécts
 Differences from the linked lists we used for strings:

* we "embed" the linked list inside another class
» users of our LLL1ist class won't actually touch the nodes

* we use non-static methods instead of static ones
myList.length() instead of Tength(myList)

* we use a special dummy head node as the first node

CAS CS 112 B1 Boston University, Spring 2023 251

CAS CS 112 B1

Using a Dummy Head Node

null "how" "are you

null

head
length| 3

\ 4

»
»

A 4
A 4

. . dummy head node
LLL1st object

The dummy head node is always at the front of the linked list.

* like the other nodes in the linked list, it's of type Node
* it does not store an item
* it does not count towards the length of the list

Using it allows us to avoid special cases when adding and
removing nodes from the linked list.

An empty LLL1 st still has a dummy head node:

| null

head >
null

Tength| o

private \pr"ivate Node next;

public class LLList implements List {

An Inner Class for the Nodes

private class Node { item| "hi"
private Object item;

next — 1>

since only private Node(Object i, Node n) { Node object
b item = 1;
will use it next = n;

}

+ We make Node an inner class, defining it within LLList.

+ allows the LLL1i st methods to directly access Node’s private
fields, while restricting access from outside LLList
» the compiler creates this class file: LLList$Node.class

For simplicity, our diagrams may show the items inside the nodes.

"hi" instead of /

—

—t>

Boston University, Spring 2023

252

CAS CS 112 B1

Other Details of Our LLL1ist Class
public class LLList implements List {

private class Node {
// see previous slide

private Node head;
private int length;

public LLList() {

head = new Node(null, null);
length = 0;

public boolean isFull() {
return false;

}

» Unlike ArrayList, there’s no need to preallocate space for the
items. The constructor simply creates the dummy head node.

» The linked list can grow indefinitely, so the list is never full!

Getting a Node
» Private helper method for getting node i
» to get the dummy head node, use i = -1

private Node getNode(int i) {
// private method, so we assume i is valid/

Node trav = ;
int travindex = -1;
while () {
travindex++;
}
return trav;
} trav travIndex| -1
example fori=1: -1, 0 1 2
item| null "how" "are" "you"
head » T
next > > nu
Tength| 3
LLList object Node objects

Boston University, Spring 2023

253

CAS CS 112 B1

Getting an ltem

public Object getItem(int i) {
if (A <0 || i >= Tength) {
throw new IndexoutofBoundsException();

}

Node n = getNode(i);
return _________;

example fori=1:
[]

-1 0 v 1 2
item| null "how" "are" "you"
head > T
t > > nu
Tength| 3 nex
LLListonct Node objects

Adding an Itemto an LLL1ist

public boolean additem(Object item, int i) {
if (item == null || i <0 || i > Tength) {
throw new ITlegalArgumentException();
}

Node newNode = new Node(item, null);
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

Tength++;
return true;
}
This works even when adding at the front of the list (i =
-1 0 1 2
item| null "how" "are" "you"
head > R o o]
-Iength 2 next \ / > nu
prevNode "hitt

newNodel —|—> /

0):

Boston University, Spring 2023

254

addItem() Without a Dummy Head Node

public boolean additem(Object item, int i) {
if (item == null || i <0 || i > Tength) {
throw new IllegalArgumentException();
}

Node newNode = new Node(item, null);

if (3 = 0) { // case 1: add to front
newNode.next = head;
head = newNode;
} else { // case 2: i > 0
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

}

length++;
return true;

}

(the gray code shows what we would need to add if we didn't have a dummy head node)

Removing an Item from an LLList

public Object removeItem(int i) {
if (i <0 || i >= length) {
throw new IndexoutOofBoundsException();

}
Node prevNode = getNode(i - 1);
Object removed = prevNode.next.1item;
// what 1ine goes here?
length--;
return removed;

}

+ This works even when removing the first item (i = 0):
removedl I :I"how"l |"are“| |"you"|
-1 o/ 1 2
item| null / 7
nexE

head
length| 3

null

A 4

prevNode

CAS CS 112 B1 Boston University, Spring 2023 255

Efficiency of the List ADT Implementations

n = number of items in the list

ArrayList LLLiSst
getItem(Q) only one case: best:
worst:
average:
addrtem() best: best:
worst: worst:
average: average:

Example of Using a Reference to the Last Node

mylist.addItem("you", 99)

* before the call is made:

null "how" "how" are
« —» null

length| 99 44__.—‘//////7
last

LLL1st object

head

A 4

A 4
A 4

« use last to add the new item's node to the end of the linked list:

null "how" "how" are you
—> .. ——p » null

length| 99 44__.—‘//////7
last

head

A 4

A 4
A 4

CAS CS 112 B1 Boston University, Spring 2023 256

CAS CS 112 B1

Example of Using a Reference to the Last Node (cont)

mylist.addItem("you", 99)

« after the call is made:

head | null "how" "how" "are" "you"
7 > M —1 - —» null
length| 100 /
last

LLL1st object

Efficiency of the List ADT Implementations (cont.)

n = number of items in the list

ArraylList LLList
removeItem()| best: best:

worst: worst:

average:. average:

space
efficiency

Boston University, Spring 2023

257

CAS CS 112 B1

A Reference to the Second-to-Last Node Doesn't Help
mylist.removeItem(99)

« before the call is made:

a1l "how" "how" "aren "you"
head »
> » —1> - ——> null
Tength| 100
last
beforeLast]

LLL1ist object

« we can use beforeLast to remove the last node and update 1ast:

null "how" "how" "are" "you"
head >
> » —1» - — null null
Tength| 99
last
beforeLast]

A Reference to the Second-to-Last Node Doesn't Help
mylist.removeItem(99)

« butin order to update beforeLast, we need to walk down the linked list!

null "how" "how" "are" "you"
head >
> > —1> - —» null null
Tength| 99
last
beforeLast]

LLL1ist object

Boston University, Spring 2023

258

CAS CS 112 B1

Recall: Another Example of Polymorphism

» An interface can be used as the type of a variable:
List myList;

» We can then assign an object of any class that implements
the interface:

List 11
List 12

new ArrayList(20);
new LLList(Q);

Counting the Number of Occurrences of an Iltem

public class MyClass {
public static int numoccur(List 1, Object item) {
int numoccur = 0;
for (int i = 0; i < 1.TengthQ; i++) {
Object itemAt = 1.getItem(i);
if (itemAt.equals(item)) {
numoOCCUr++;

}

return numoccur;
}o...
» This method works fine if we pass in an ArrayList object.
+ time efficiency (as a function of the length, n) = ?

» However, it's not efficient if we pass inan LLList.

» each call to getItem() calls getNode ()

» to access item 0, getNode () accesses 2 nodes (dummy + node 0)
» to access item 1, getNode () accesses 3 nodes

» to access item i, getNode () accesses i+2 nodes

e 2+3+ ...+ (n¥1)=7?

Boston University, Spring 2023

259

CAS CS 112 B1

Solution: Provide an Iterator

public class MyClass {
public static int numoOoccur(List 1, Object item) {

int numOccur = 0;

ListIterator iter = 1.iterator(Q);

while (iter.hasNext()) {
Object itemAt = iter.next();
if (itemAt.equals(item)) {

NUMOCCUr++;

3

}

return numoccur;

Y.

« We add an iterator() method to the L1ist interface.

* it returns a separate iterator object that can efficiently
iterate over the items in the list

The iterator has two key methods:
« hasNext(): tells us if there are items we haven't seen yet
« next(): returns the next item and advances the iterator

An Interface for List Iterators

* Here again, the interface only includes the method headers:

public interface ListIterator { // in ListIterator.java
boolean hasNext();
Object next(Q);

}

We can then implement this interface for each type of list:
o LLListIterator for an iterator that works with LLLists
e ArrayListIterator for an iterator for ArrayLists

» We use the interfaces when declaring variables in client code:

public class MyClass {
public static int numoccur(List 1, Object item) {
int numOccur = 0;
ListIterator iter = 1.iterator();

+ doing so allows the code to work for any type of list!

Boston University, Spring 2023

260

Using an Inner Class for the lterator

public class LLList {
private Node head;
private int length;

private class LLListIterator implements ListIterator {
private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over dummy head node

}
, o

public ListIterator iterator() {
return new LLListIterator();
1

Using an inner class gives the iterator access to the list’s internals.

* The iterator() method is an LLL1ist method.
* it creates an instance of the inner class and returns it
* its return type is the interface type
« so it will work in the context of client code

Full LLListIterator Implementation

private class LLListIterator implements ListIterator {
private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over the dummy head node

public boolean hasNext() {
return (nextNode != null);

public object next() {
// throw an exception if nextNode is null

Object item =

nextNode = ;
return item; I;#ow"l |"are"| |“you"|
¥ Pl
¥ item| null / 7 /
head >
Tength 3 next > > » null
LLList
object nextNode
LLListIterator object

CAS CS 112 B1 Boston University, Spring 2023 261

The Stack and Queue ADTs

Computer Science 112
Boston University

Stack ADT \I_I‘

» A stack is a sequence in which:
* items can be added and removed only at one end (the top)
* you can only access the item that is currently at the top

» Operations:
» push: add an item to the top of the stack
* pop: remove the item at the top of the stack
» peek: get the item at the top of the stack, but don’t remove it
+ isEmpty: test if the stack is empty
* isFull: test if the stack is full

+ Example: a stack of integers

start: push 8: 8 pop: pop: push 3:
15 15 15 3
7 7 7 7

CAS CS 112 B1 Boston University, Spring 2023 262

CAS CS 112 B1

A Stack Interface: First Version

public interface Stack {
boolean push(Object item);
Object popQ);
Object peek();
boolean iseEmpty();
booTlean isFull();

}

push() returns false if the stack is full, and true otherwise.

pop() and peek () take no arguments, because we know that
we always access the item at the top of the stack.

* return null if the stack is empty.

The interface provides no way to access/insert/delete an item
at an arbitrary position.
» encapsulation allows us to ensure that our stacks are
only manipulated in appropriate ways

Implementing a Stack Using an Array: First Version

public class ArrayStack implements Stack {

private Object[] items;
private int top; // index of the top item

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...

items = new Object[maxSize];

top = -1;
}
+ Example: the stack | 15
7
0 1 2
items[——» | Tnull]
sl > |
[s —
7
variable of type . - h 2
ArrayStack ArraysStack object | 15 I

» Items are added from left to right (top item = the rightmost one).
* why does this approach make sense?

Boston University, Spring 2023

263

Collection Classes and Data Types

pubTlic class ArrayStack implements Stack {
private Object[] items;

private int top; // index of the top item
} 0 1 2 3
items| —1—» | [null | null]
sl > | \
_— s ——Y
7

» So far, our collections have allowed us to add objects of any type.
ArrayStack sl = new ArrayStack(4);

| [

sl.push(7); // 7 is turned into an Integer object for 7
sl.push("hi™);
String item = sl.popQ); // won't compile

String item = (String)sl.pop(Q); // need a type cast

+ We'd like to be able to limit a given collection to one type.

ArrayStack<String> s2 = new ArrayStack<String>(10);

s2.push(7); // won't compile
s2.push("hello™);

String item = s2.popQ); // no cast needed!

Limiting a Stack to Objects of a Given Type

+ We can do this by using a generic interface and class.

» Here's a generic version of our Stack interface:
pubTlic interface Stack<T> {
boolean push(T item);
T popQ);
T peek();
boolean iseEmpty();
boolean isFull();
3

* Itincludes a type variable T in its header and body.
» used as a placeholder for the actual type of the items

CAS CS 112 B1 Boston University, Spring 2023 264

A Generic ArrayStack Class

public class ArrayStack<T> implements Stack<T> {
private T[] items;

private int top; // index of the top item
public boolean push(T item) {

}
}

» Once again, a type variable T is used as a placeholder for the
actual type of the items.

+ When we create an ArrayStack, we specify the type of items
that we intend to store in the stack:

ArrayStack<String> sl = new ArrayStack<String>(10);
ArrayStack<Integer> s2 = new ArrayStack<Integer>(25);

» We can still allow for a mixed-type collection:
ArrayStack<object> s3 = new ArrayStack<Object>(20);

Using a Generic Class

public class ArrayStack<String> {
private String[] items;
private int top;

ﬁﬂB]ic boolean push(String item) {

ArrayStack<String> sl =
new ArrayStack<String>(10);

public class ArrayStack<T> ... {
private T[] items;
private int top;

ﬁﬂ61ic boolean push(T item) {

ArrayStack<Integer> s2 =
new ArrayStack<Integer>(25);

public class ArrayStack<Integer> {
private Integer[] items;
private int top;

bGB1ic boolean push(Integer item) {

CAS CS 112 B1 Boston University, Spring 2023 265

CAS CS 112 B1

ArrayStack Constructor

+ Java doesn'’t allow you to create an object or array using
a type variable. Thus, we cannot do this:
public Arraystack(int maxSize) {

// code to check for invalid maxSize goes here...

items = new T[maxSize]; // not allowed
top = -1;
}

* Instead, we do this:
public Arraystack(int maxSize) {

// code to check for invalid maxSize goes here...

items = (T[])new Object[maxSize];
top = -1;
}

» The cast generates a compile-time warning, but we’ll ignore it.

» Java’s built-in ArrayList class takes this same approach.

Testing if an ArrayStack is Empty or Full
+ Empty stack:

ftems] —F—— [| [[[[| | |
top| -1

public boolean iseEmpty() {

return (top == -1);
}
» Full stack:
. 0 1 2 3 4 5 6 7 8
ftems| —4—— [| [[[T T [|
top| 8

public boolean isFull({
return (top == items.length - 1);
}

Boston University, Spring 2023

266

Pushing an Item onto an ArrayStack

ftems| 34— [[| [| [[| |
top| 4

pubTic boolean push(T item) {
// code to check for a null item goes here
if (isFullQ) {
return false;
}

top++;
items[top] = item;
return true;

ArrayStack pop() and peek()
0 1 2 3 4 5 6 7
items __>|

| | | | | | [|nu11|nu11|nu11|nu11|
top v v v v

Gol 1G] 63

w

removed

public T pop({
if (isEmpty(Q) {
return null;
3

removed = items[top];
items[top] = null;

top--;

return removed;

}

* peek just returns items[top] without decrementing top.

CAS CS 112 B1 Boston University, Spring 2023 267

Implementing a Generic Stack Using a Linked List

public class LLStack<T> implements Stack<T> {

private Node top; // top of the stack
,
+ Example: the stack 15
7
s2 | I
top > null

variable of type

LLStack LLStack object

Nodéomeds
» Things worth noting:

* our LLStack class needs only a single field:
a reference to the first node, which holds the top item

+ top item = leftmost item (vs. rightmost item in ArrayStack)
* we don’'t need a dummy node
» only one case: always insert/delete at the front of the list!

Other Details of Our LLStack Class

public class LLStack<T> implements Stack<T> {
private class Node {
private T 1item;
private Node next;

}

private Node top;

public LLStack() {
top = null;

pubTlic boolean isEmpty() {
return (top == null);

1

public boolean isFull() {
return false;

}

3
« The inner Node class uses the type parameter T for the item.
+ We don’t need to preallocate any memory for the items.
+ The stack is never full!

CAS CS 112 B1 Boston University, Spring 2023 268

LLStack push()

top: > » null

newNode[—— 7

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

LLStack push()

null

~+
]
e
A
by
y
A 4

newNodel —|—> /

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

CAS CS 112 B1 Boston University, Spring 2023 269

LLStack pop() and peek()
removedl —|—>| 15 | | 7 |

1 1
[I

null

top >

A\ 4

public T pop({
if CisEmpty(Q)) {
return null;
}

T removed = ;

return removed;

}

public T peek() {
if (isEmpty() {
return null;
}

return top.item;

Efficiency of the Stack Implementations

ArrayStack LLStack
pushQ o(1) o(1)
pop O o(1) o(1)
peek o(1) o(1)
space O(m) where m is the O(n) where n is the number of
efficiency g?it{girggted maximum number | items currently on the stack

CAS CS 112 B1 Boston University, Spring 2023 270

Applications of Stacks

» Converting a recursive algorithm to an iterative one
* use a stack to emulate the runtime stack

« Making sure that delimiters (parens, brackets, etc.) are balanced:
* push open (i.e., left) delimiters onto a stack

» when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

* example:
5% [3+ {(5+ 16 - 2)]
push [push { push ((), s0 1.s0
pop. pop.
get (, { get {,
[[[which [which [
matches doesn't
. . . . match
+ Evaluating arithmetic expressions
Queue ADT e
<= <=

* A queue is a sequence in which:
 items are added at the rear and removed from the front

« first in, first out (FIFO) (vs. a stack, which is last in, first out)

* you can only access the item that is currently at the front

» Operations:
* insert: add an item at the rear of the queue
» remove: remove the item at the front of the queue
* peek: get the item at the front of the queue, but don’t remove it
» isEmpty: test if the queue is empty
+ isFull: test if the queue is full

+ Example: a queue of integers
stat. 12 8
inserts: 12 8 5

remove: 8 5

CAS CS 112 B1 Boston University, Spring 2023 271

CAS CS 112 B1

Our Generic Queue Interface

public interface Queue<T> {
boolean insert(T item);
T remove();
T peek();
boolean iseEmpty();
booTlean isFull();

* dinsert() returns false if the queue is full, and true otherwise.

* remove() and peek () take no arguments, because
we always access the item at the front of the queue.

* return null if the queue is empty.

» Here again, we will use encapsulation to ensure that the
data structure is manipulated only in valid ways.

Implementing a Queue Using an Array

public class ArrayQueue<T> implements Queue<T> {
private T[] items;
private int front;
private int rear;
private int numItems;

}
+ Example: 0 1 2 3
queuel I 'items: — 'l | | | | |
front| 1 ﬁ
7
variable of type rear| 3 3 +
ArrayQueue numItems| 3 | 25 | | 51 |

ArrayQueue object

+ We maintain two indices:
« front: the index of the item at the front of the queue
« rear: the index of the item at the rear of the queue

Boston University, Spring 2023

272

CAS CS 112 B1

Avoiding the Need to Shift Items

Problem: what do we do when we reach the end of the array?

example: a queue of integers:
front rear

[54] 4 |21]17 89|65 | | |

the same queue after removing two items and inserting two:
front rear

[| [21]17]89]65]43]81]

we have room for more items, but shifting to make room is inefficient

Solution: maintain a circular queue. When we reach the end of
the array, we wrap around to the beginning.
insert 5: wrap around!

rear front

[s | |21]17]89]65]43]81]

Maintaining a Circular Queue

* We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: front rear
items ——>| | 21 | 17 | 89 | 43 | |
q: front 1
rear 4
numItems 4

Boston University, Spring 2023

273

Maintaining a Circular Queue

» We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: front rear
items[—]——» |21] 17 |89 |43 81|
q >
: front 1
rear 5
numItems 5
e g.insert(81l): // rear 1s not at end of array
e rear = (rear + 1) % items.length;
=(C 4 +1D% 6
= 5 % 6 =5 (% has no effect)

Maintaining a Circular Queue

* We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;
rear = (rear + 1) % items.length;

+ Example: rear front
items| —}—» 33 [21] 17 | 89 | 43 | 81 |
q >
: front 1
rear 0
numItems 6
e q.insert(81): // rear is not at end of array
e rear = (rear + 1) % items.length;
=(C 4 +1)% 6
= 5 % 6 =5 (% has no effect)

« q.insert(33): s/ rear is at end of array

e rear = (rear + 1) % items.length;
=(C 5 +1 % 6
6

= 6 % =0 wrap around!

CAS CS 112 B1 Boston University, Spring 2023 274

CAS CS 112 B1

Inserting an Item in an ArrayQueue
* We increment rear before adding the item:

front rear

e |] P]]

front rear

e [T [T T T TN]

pubTic boolean insert(T item) {
// code to check for a null item goes here
if GsFullQ)) {
return false;
}

rear = (rear + 1) % items.length;
items[rear] = item;

numItems++;

return true;

ArrayQueue remove()

front rear
before: |] [P Py Pyl 1]
v v v
Lol] D5 5]
front rear
after: | [Joun1]]

removed 10 || || 9 || 13|

public T remove() {
if (isEmpty()) {
return null;

}

T removed =

numItems--;
return removed;

Boston University, Spring 2023

275

CAS CS 112 B1

Constructor

public ArrayQueue(int maxSize) {
// code to check for an invalid maxSize goes here...
items = (T[])new Object[maxSize];
front = 0;
rear = -1;
numItems = O;

}

* When we insert the first item in a newly created ArrayQueue,
we want it to go in position 0. Thus, we need to:

» start rear at -1, since then it will be incremented to 0
and used to perform the insertion

« start front at 0, since it is not changed by the insertion

0 1 0 1
items| —1— null | null | .. items| —1 [null | ..
front| 0 front| 0

rear| -1 rear| O is
numItems| O numItems| 1 | "hi" |

Testing if an ArrayQueue is Empty or Full

* In both empty and full queues, rear is one "behind" front:

rear front

initial configuration: | | | | | | | |

rear front
after two insertions and | | | | | | | |

two removals

rear front
after 7 more insertions: [5 [36]21]17[89]65]43]

» This is why we maintain numItems!

public boolean isEmpty() {
return (numItems == 0);

}

pubTlic boolean isFull() {
return (numItems == items.length);

}

Boston University, Spring 2023

276

Implementing a Queue Using a Linked List

public class LLQueue<T> implements Queue<T> {

private Node front; s/ front of the queue
private Node rear; // rear of the queue
}
| "hi"| |"howu| |uare"| |"you"|
+ Example: T T T
item| | | | !
front >
queuel I »> next > > » null
rear |
J

variable of type
LLQueue LLQueue object

Node objects

* In alinked list, we can efficiently:
* remove the item at the front
* add an item to the rear (if we have a ref. to the last node)

» Thus, this implementation is simpler than the array-based one!

Other Details of Our LLQueue Class

public class LLQueue<T> implements Queue<T> {
private class Node {
private T 1item;
private Node next;

}

private Node front;
private Node rear;

public LLQueue() {
front = null;
rear = null;

}
pubTlic boolean isEmpty() {
return (front == null);

1

pubTic boolean isrFull() {
return false;

}

CAS CS 112 B1 Boston University, Spring 2023 277

Inserting an Item in an Empty LLQueue

front| null

rear| null

. | |" - The next field in the newNode

iten| n2W l will be nu11 regardless of whether
| the queue is empty. Why?

Nod | I >
newNode noll

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if Cisempty()) {
front = newNode;
rear = newNode;
} else {
// we'll add this later!

}

return true;

Inserting an Item in a Non-Empty LLQueue

| "hi" | |"how"| |"are"| |"you"|
T
front ! ! ! |
rear ~— > > > \
\} — "now"
item _\

newNodel I > ol

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if Gisempty()) {

front = newNode; A. rear = newNode;
rear = newNode; rear.next = newNode;
} else {

B. rear.next = newNode;
rear = newNode;

either Aor B
neither A nor B

o

}

return true; D

CAS CS 112 B1 Boston University, Spring 2023 278

CAS CS 112 B1

Removing from an LLQueue with One Item

renoved[—]

front 7
rear 14—

A 4

public T remove() {
if (isEmpty()) {
return null;

}
T removed = ;
if (front == rear) { // removing the only item

front = null;

rear = null;
} else {

// we'll add this later
}

return removed;

Removing from an LLQueue with Two or More ltems

removedl 5—>|m| |"how"| |"are“| |"you"|
1 1 T 1

front | | | |

N N

rear N \J > > null
E—— 4

public T remove() {
if Gisempty()) {
return null;

}

T removed = ;

if (front == rear) { // removing the only item
front = null;
rear = null;

} else {

}

return removed;

Boston University, Spring 2023

279

CAS CS 112 B1

Efficiency of the Queue Implementations

ArrayQueue LLQueue
insert() o(1) o(1)
remove () o(1) Oo(1)
peek O o(1) o(1)
space O(m) where m is the O(n) where n is the number of
efficiency ﬁpﬂgirﬂzted maximum number | items currently in the queue

Applications of Queues

« first-in first-out (FIFO) inventory control
» OS scheduling: processes, print jobs, packets, etc.

« simulations of banks, supermarkets, airports, etc.

Boston University, Spring 2023

280

Binary Trees

Computer Science 112
Boston University

* insert a new item

Motivation: Implementing a Dictionary

+ A data dictionary is a collection of data with two main operations:
+ search for an item (and possibly delete it)

+ If we use a sorted list to implement it, efficiency = O(n).

data structure searching for an item

inserting an item

a list implemented using | O(log n)
an array using binary search

O(n)
because we need to shift
items over

a list implemented using | O(n)
a linked list using linear search

(binary search in a linked
listis O(nlogn))

O(n)

(O(1) to do the actual
insertion, but O(n) to find
where it belongs)

* In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

« We’'ll also look at other applications of trees.

CAS CS 112 B1 Boston University, Spring 2023

281

What Is a Tree?

root

node

\

edge

» A tree consists of:
* aset of nodes
+ a set of edges, each of which connects a pair of nodes

» Each node may have one or more data items.
» each data item consists of one or more fields
+ key field = the field used when searching for a data item
+ data items with the same key are referred to as duplicates

» The node at the "top" of the tree is called the root of the tree.

Relationships Between Nodes

» Ifanode N is connected to nodes directly below it in the tree:
* Nis referred to as their parent
+ they are referred to as its children.
« example: node 5 is the parent of nodes 10, 11, and 12

Each node is the child of at most one parent.

Nodes with the same parent are siblings.

CAS CS 112 B1 Boston University, Spring 2023 282

Relationships Between Nodes (cont.)

* A node’s ancestors are its parent, its parent’s parent, etc.
* example: node 9’s ancestors are 3 and 1

* A node’s descendants are its children, their children, etc.
+ example: node 1’s descendants are all of the other nodes

Types of Nodes

* A leaf node is a node without children.

« An interior node is a node with one or more children.

CAS CS 112 B1 Boston University, Spring 2023 283

CAS CS 112 B1

A Tree is a Recursive Data Structure

+ Each node in the tree is the root of a smaller tree!
« refer to such trees as subtrees to distinguish them from
the tree as a whole
» example: node 2 is the root of the subtree circled above
+ example: node 6 is the root of a subtree with only one node

+ We'll see that tree algorithms often lend themselves to
recursive implementations.

Path, Depth, Level, and Height

<+— Jevel 0

<+— |evel 1

depth=2 ——» <+— |evel 2

» There is exactly one path (one sequence of edges) connecting
each node to the root.

+ depth of a node = # of edges on the path from it to the root
* Nodes with the same depth form a level of the tree.

+ The height of a tree is the maximum depth of its nodes.
» example: the tree above has a height of 2

Boston University, Spring 2023

284

CAS CS 112 B1

Binary Trees

* In a binary tree, nodes have at most two children.
+ distinguish between them using the direction left or right

* Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:
* one or more pieces of data (the key, and possibly others)
* aleft subtree, which is itself a binary tree
* a right subtree, which is itself a binary tree

Which of the following is/are not true?

(26)
(1) ()
OROMEO
O

This tree has a height of 4.

There are 3 leaf nodes.

The 38 node is the right child of the 32 node.

The 12 node has 3 children.

more than one of the above are not true (which ones?)

moow>

Boston University, Spring 2023

285

Representing a Binary Tree Using Linked Nodes

pubTlic class LinkedTree {
private class Node {
private int key;
private LLList data;
private Node Teft;
private Node right;

// 1imit ourselves to int keys
// Tist of data for that key
// reference to left child

// reference to right child
1

private Node root;

Representing a Binary Tree Using Linked Nodes
pubTlic class LinkedTree {

private class Node { key (not showing
private int key; Teft |right] data field)
private LLList data; ¢
private Node left; /
private Node right; ref. to left child ref. to right child
} - (nu17 if none) (nu17 if none)
private Node root; 26
} |
root ‘// \\‘
@ 12 32
LinkedTree
object / | \ nutl | N \

4 18 38

o @ @ nu'I'I| \ nu'I'I|nu'I'I nu'I'I|nu'I'I
(D :

null |nu'|'|

CAS CS 112 B1 Boston University, Spring 2023 286

Traversing a Binary Tree

» Traversing a tree involves visiting all of the nodes in the tree.
+ visiting a node = processing its data in some way
» example: print the key

+ We'll look at four types of traversals.
« each visits the nodes in a different order

» To understand traversals, it helps to remember that every node
is the root of a subtree.

12 is the root of —4

<—— 32 s the root of
26’s left subtree i

', 26's right subtree
4 is the root of
12’s left subtree

1: Preorder Traversal

» preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

» preorder because a node is visited before its subtrees

» The root of the tree as a whole is visited first.

CAS CS 112 B1 Boston University, Spring 2023 287

Implementing Preorder Traversal

public class LinkedTree {
private Node root;

public void preorderPrint() {
if (root != null) {
preorderPrintTree(root);
}

System.out.printin(Q;
3

private static void preorderPrintTree(Node root) {
System.out.print(root.key + " ");
if (root.left != null) {

: Not always the
preorderPrintTree(root.left); y

same as the root

if (root.right != null) { of the entire tree.

preorderPrintTree(root.right);
}
}
« preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

« preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Tracing Preorder Traversal
void preorderPrintTree(Node root) {
System.out.print(root.key + " ");
if (root.left !'= null) {
preorderPrintTree(root.left); e
}
if (root.right != null) {
preorderPrintTree(root.right); 0 e
}
! - o
base case, since
neither recursive
call is made! order in which nodes are visited:
we go back
root: @ up the tree
print 4 by returning!
root: root: root: root: @
print 8 print 6
root: @ root: @ root: @ root: @ root: @ root: @
print 9
root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)
print 7
time

CAS CS 112 B1 Boston University, Spring 2023 288

Using Recursion for Traversals

void preorderPrintTree(Node root) {
System.out.print(root.key + " "); 0
if (root.left != null) {

preorderPrintTree(root.left); o e
}
if (root.right != null) {
preorderPrintTree(root.right); e e e
}
; - (4)
base case, since
neither recursive . : -
call is made! order in which nodes are visited:
we go back

root: @ up the tree
print 4 by returning!

root: root: root: root: @

print 8 print 6

» Using recursion allows us to easily go back up the tree.

[* Using a loop would be harder. Why?

2: Postorder Traversal

» postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree

2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N

» postorder because a node is visited after its subtrees

» The root of the tree as a whole is visited last.

CAS CS 112 B1 Boston University, Spring 2023 289

CAS CS 112 B1

Implementing Postorder Traversal

public class LinkedTree {
private Node root;

public void postorderPrint() {
if (root != null) {
postorderPrintTree(root);
3

System.out.println(Q);
}

private static void postorderPrintTree(Node root) {
if (root.left != null) {
postorderPrintTree(root.left);
}

if (root.right !'= null) {
postorderPrintTree(root.right);
}

System.out.print(root.key + " ");
}

* Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root) {
if (root.left != null) {
postorderPrintTree(root.left);
) (9)
if (root.right != null) {

postorderPrintTree(root.right); 0 G

}
System.out.print(root.key + " ");

: @

order in which nodes are visited:

root: @

print 4

root: root: root: root: @

print 8 print 6

root: @ root: @ root: @ root: @ root: @ root: @

root: @ root: @ root: (7) root: (7) root: (7) root: (7) root: (7)

time

Boston University, Spring 2023

290

3: Inorder Traversal

+ inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree

* The root of the tree as a whole is visited between its subtrees.

+ We'll see later why this is called inorder traversal!

Implementing Inorder Traversal

public class LinkedTree {
private Node root;

pubTlic void inorderPrint() {
if (root != null) {
inorderPrintTree(root);
}

System.out.printin(Q);
}

private static void inorderPrintTree(Node root) {
if (root.left != null) {
inorderPrintTree(root.left);
}

System.out.print(root.key + " ");

if (root.right !'= null) {
inorderPrintTree(root.right);
}

* Note that the root is printed between the two recursive calls.

CAS CS 112 B1 Boston University, Spring 2023 291

Tracing Inorder Traversal

void inorderPrintTree(Node root) { a

if (root.left != null) {
inorderPrintTree(root.left);
) (9)
System.out.print(root.key + " ");
if (root.right != null) {
inorderPrintTree(root.right);

}

: O,

order in which nodes are visited:

root: @
print 4
root: (8) root: root: root: @
print 8 print 6
root: @ root: @ root: @ root: @ root: @ root: @
print 9
root: (7) root: (7) root: (7) root: (7) root: (7) root: (7) root: (7)
time

Level-Order Traversal

» Visit the nodes one level at a time, from top to bottom
and left to right.

» Level-order traversal of the tree above: 7 9 5 8 6 2 4

* We can implement this type of traversal using a queue.

CAS CS 112 B1 Boston University, Spring 2023 292

Tree-Traversal Summary

preorder: root, left subtree, right subtree
postorder: left subtree, right subtree, root
inorder: left subtree, root, right subtree
level-order: top to bottom, left to right

» Extra practice: perform each type of traversal on the tree below:

O
(15) Q
ONORNONO
12 (&) ONCD
(@

Tree Traversal Puzzle
» preorder traversal: AMPKLDHT
« inorder traversal: PMLKAHTD

* Draw the tree!

+ What's one fact that we can easily determine from one
of the traversals?

» How could we determine the nodes in each of the root's subtrees?

« What are the roots of each subtree?

CAS CS 112 B1 Boston University, Spring 2023 293

Using a Binary Tree for an Algebraic Expression

+ WEe'll restrict ourselves to fully parenthesized expressions
using the following binary operators: +, —, *, /

« Example: ((a + 3 *) - (d/ 2))

» Leaf nodes are variables or constants.

* Interior nodes are operators.
+ their children are their operands

Traversing an Algebraic-Expression Tree

* Inorder gives conventional ’

algebraic notation.
 print ‘(" before the recursive o o

call on the left subtree e ° 0 e

 print)’ after the recursive
call on the right subtree Q e

» fortree atright: ((a + (b * ¢)) - (d / e))

» Preorder gives functional notation.
» print ‘("s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree
» for tree above: subtr(add(a, mult(b, c)), divide(d, e))

» Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

 for tree above: push a, push b, push c, multiply, add,..

CAS CS 112 B1 Boston University, Spring 2023 294

CAS CS 112 B1

Search Trees

Computer Science 112
Boston University

Binary Search Trees

+ Search-tree property: for each node k (k is the key):
+ all nodes in k’s left subtree are < k °

 all nodes in k’s right subtree are >= k
* Our earlier binary-tree example is A A

a search tree:

« With a search tree, an inorder traversal visits the nodes in order!
* in order of increasing key values

Boston University, Spring 2023

295

CAS CS 112 B1

Searching for an Item in a Binary Search Tree

» Algorithm for searching for an item with a key k:

if k == the root node’s key, you’re done
else if k < the root node’s key, search the left subtree
else search the right subtree

* Example: search for 7

Implementing Binary-Tree Search

public class LinkedTree { // Nodes have keys that are ints
private Node root;

pubTic LLList search(int key) { // "wrapper method"
Node n = searchTree(root, key); // get Node for key
if (n == null) {

return null; // no such key
} else {
return n.data; // return Tist of values for key
}
}
private static Node searchTree(Node root, int key) {
if () {
. two base cases
b else if () A (order matters!)
} else if () {
} else { Mm
recursive cases
}
}

Boston University, Spring 2023

296

CAS CS 112 B1

Inserting an Item in a Binary Search Tree

public void insert(int key, Object data)
will add a new (key, data) pair to the tree

Example 1: a search tree containing student records
» key = the student's ID number (an integer)
» data = a string with the rest of the student record
* we want to be able to write client code that looks like this:

LinkedTree students = new LinkedTree();
students.insert(23, "Ji1l Jones,sophomore,comp sci");
students.insert(45, "Al zhang,junior,english");

Example 2: a search tree containing scrabble words
* key = a scrabble score (an integer)
» data = a word with that scrabble score

LinkedTree tree = new LinkedTree(Q);
tree.insert(4, "lost");

Inserting an Item in a Binary Search Tree (cont.)

To insert an item (k, d), ixfzg'e;nsertes

"photooxidizes")

we start by searching for k.

If we find a node with key k, we add
d to the list of data values for that node.

* example: tree.insert(4, "sail")

If we don’t find k, the last node seen
in the search becomes the parent P
of the new node N.

+ if k < P’s key, make N the left child of P
+ else make N the right child of P

Special case: if the tree is empty,
make the new node the root of the tree.

Important: The resulting tree is still a search tree!

Boston University, Spring 2023

297

CAS CS 112 B1

Implementing Binary-Tree Insertion

« We'llimplement part of the insert () method together.
* We'll use iteration rather than recursion.

* Our method will use two references/pointers: parent

* trav: performs the traversal down
to the point of insertion @

* parent: stays one behind trav

s
« like the trail reference that we @ @

sometimes use when traversing

a linked list ° @ @
@

trav

Implementing Binary-Tree Insertion

public void insert(int key, Object data) { insert35:
Node parent = null;
Node trav = root;
while (trav != null) {
if (trav.key == key) {
trav.data.addIitem(data, 0);
return;

parent

}
// what should go here?

}

Node newNode = new Node(key, data);

if (root == null) { // the tree was empty
root = newNode;

} else if (key < parent.key) {
parent.left = newNode;

} else {
parent.right = newNode;

1

Boston University, Spring 2023

298

CAS CS 112 B1

Deleting Items from a Binary Search Tree

» Three cases for deleting a node x

+ Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

* Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

Deleting ltems from a Binary Search Tree (cont.)

+ Case 3: x has two children
* we can't give both children to the parent. why?

* instead, we leave x's node where it is, and we replace its
key and data with those from another node

* the replacement must maintain the search-tree inequalities

ex:
delete 12

two options: which ones?

Boston University, Spring 2023

299

CAS CS 112 B1

Deleting Items from a Binary Search Tree (cont.)

+ Case 3: x has two children (continued):

* replace x's key and data with those from the smallest node
in X’s right subtree—call it y

* we then delete y
« it will either be a leaf node or will have one right child. why?

« thus, we can delete it using case 1 or 2

ex: delete 12

/ copy node y's

X contents into delete @ X
node x node y

Which Node Would Be Used To Replace 97?

(®
(4) (17
ONOMOND
ONO 15) (o
@D

A 4
B. 8
C. 10
D. 15
E. 17

Boston University, Spring 2023

300

CAS CS 112 B1

Implementing Deletion delete 26:

public LLList delete(int key) { parent
// Find the node and its parent. « tay
Node parent = null; @
Node trav = root; @
while (trav != null && trav.key != key) {
parent = trav;
if (key < trav.key) { @ @
trav = trav.left;
} else {
trav = trav.right; @

, ! (35)
// Delete the node (if any) and return the removed 1items.
if (trav == null) { // no such key

return null;
} else {

LLList removedData = trav.data;

deleteNode(trav, parent); // call helper method
return removedData;

Implementing Case 3

private void deleteNode(Node toDelete, Node parent) {
if (tobelete.left != null && toDelete.right != null) {
// Find a replacement - and

// the replacement's parent. toDelete
Node replaceParent = toDelete;

// Get the smallest item @

// in the right subtree.

Node replace = toDelete.right;

// what should go here? @ @

// Replace tobelete's key and data @
// with those of the replacement 1item.

toDelete.key = replace.key;

toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {

Boston University, Spring 2023

301

Implementing Cases 1 and 2

private void deleteNode(Node toDelete, Node parent) {
if (tobelete.left != null && toDelete.right != null) {

} else {
Node toDeletecChild;

if (tobelete.left != null)

e1$etoDe1eteChﬂd = toDelete.left; @ parent
toDeleteChild = toDelete.right; K/

// Note: 1in case 1, toDeletecChild @ @

// will have a value of null. ‘)////tODdem

if (toDelete == root)
root = toDeletecChild;

else if (tobelete.key < parent.key)
parent.left = toDeletechild;

else
parent.right = toDeletechild; toDeleteChild
}
}
Recall: Path, Depth, Level, and Height
<+— Jevel 0
<+— level 1
depth=2 ——» <+— level 2

» There is exactly one path (one sequence of edges) connecting
each node to the root.

depth of a node = # of edges on the path from it to the root

* Nodes with the same depth form a level of the tree.

The height of a tree is the maximum depth of its nodes.
« example: the tree above has a height of 2

CAS CS 112 B1 Boston University, Spring 2023

302

Efficiency of a Binary Search Tree

» For a tree containing n items, what is the efficiency
of any of the traversal algorithms?

» you process all n of the nodes
» you perform O(1) operations on each of them

» Search, insert, and delete all have the same time complexity.
* insert is a search followed by O(1) operations
+ delete involves either:
+ a search followed by O(1) operations (cases 1 and 2)

+ a search partway down the tree for the item,
followed by a search further down for its replacement,
followed by O(1) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

+ Time complexity of searching:
* best case:

e worst case:

» you have to go all the way down to level h
before finding the key or realizing it isn't there

+ along the path to level h, you process h + 1 nodes

* average case:

* What is the height of a tree containing n items?

CAS CS 112 B1 Boston University, Spring 2023 303

CAS CS 112 B1

Balanced Trees

A tree is balanced if, for each of its nodes, the node’s subtrees
have the same height or have heights that differ by 1.

+ example: @

+ 26: both subtrees have a height of 1

« 12: left subtree has height 0 @ @

right subtree is empty (height = -1)

+ 32: both subtrees have a height of 0 @ @ @

« all leaf nodes: both subtrees are empty

For a balanced tree with n nodes, height = O(log n)

+ each time that you follow an edge down the longest path,
you cut the problem size roughly in half!

Therefore, for a balanced binary search tree, the worst case
for search / insert / delete is O(h) = O(log n)

+ the "best" worst-case time complexity

What If the Tree Isn't Balanced?

Extreme case: the tree is equivalent to a linked list
* height=n -1

Therefore, for a unbalanced
binary search tree, the worst case
for search / insert / delete is O(h) = O(n)

+ the "worst" worst-case time complexity

We’'ll look next at search-tree variants
that take special measures to ensure balance.

Boston University, Spring 2023

304

CAS CS 112 B1

2-3 Trees

* A 2-3 tree is a balanced tree in which:
+ all nodes have equal-height subtrees (perfect balance)
» each node is either
* a 2-node, which contains one data item and 0 or 2 children
* a 3-node, which contains two data items and 0 or 3 children
+ the keys form a search tree

+ Example:

3-node: KL k2

AV VA

Search in 2-3 Trees

+ Algorithm for searching for an item with a key k:
if k == one of the root node’s keys, you’re done
else if k < the root node’s first key A A A
search the left subtree
else if the root is a 3-node and k < its second key
search the middle subtree

else
search the right subtree

» Example: search for 87

Boston University, Spring 2023

305

Insertion in 2-3 Trees

» Algorithm for inserting an item with a key k:

search for k, but don’t stop until you hit a leaf node
let L be the leaf node at the end of the search

if L is a 2-node
add k to L, making it a 3-node 10) 10
3] (20] ‘ L

else if L is a 3-node
split L into two 2-nodes containing the items with the
smallest and largest of: k, L’s 1st key, L's 2"dkey
the middle item is “sent up” and inserted in L’s parent

example: add 52

A= A

Example 1: Insert 8

» Search for 8:

CAS CS 112 B1 Boston University, Spring 2023 306

CAS CS 112 B1

Example 2: Insert 17

» Search for 17:

» Split the leaf node, and send up the middle of 14, 17, 20
and insert it the leaf node’s parent:

28 61)

W

) (14.20) (34) &)

Example 3: Insert 92

* In which node will we initially try to insert it?

Boston University, Spring 2023

307

CAS CS 112 B1

Example 3: Insert 92

» Search for 92:

» Split the leaf node, and send up the middle of 92, 93, 97
and insert it the leaf node’s parent:

* In this case, the leaf node’s parent is also a 3-node, so we
need to split is as well...

Example 3 (cont.)
+ We split the [77 90] node and we send up the middle of 77, 90, 93:

+ We try to insert it in the root node, but the root is also full!

* Then we split the root,
which increases the
tree’s height by 1, but ===
the tree is still balanced.

+ This is only case in which
the tree’s height increases.

Boston University, Spring 2023

308

Efficiency of 2-3 Trees

A 2-3 tree containing n items has a height h <= log,n.

» Thus, search and insertion are both O(log n).
» search visits at most h + 1 nodes
* insertion visits at most 2h + 1 nodes:
« starts by going down the full height
« in the worst case, performs splits all the way back up to the root

Deletion is tricky — you may need to coalesce nodes!
However, it also has a time complexity of O(log n).

» Thus, we can use 2-3 trees for a O(log n)-time data dictionary!

Extra Practice

+ Starting with an empty 2-3 tree, insert the following
sequence of keys:

51, 3,40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14

You should get back the tree from the previous slide!

CAS CS 112 B1 Boston University, Spring 2023 309

CAS CS 112 B1

Hash Tables

Computer Science 112

Boston University

Data Dictionary Revisited

We've considered several data structures that allow us to store
and search for data items using their key fields:

data structure

searching for an item

inserting an item

a linked list

using linear search

a list implemented using | O(log n) o(n)
an array using binary search
a list implemented using | O(n) O(n)

binary search tree

balanced search trees
(2-3 tree, others)

+ We'll now look at hash tables, which can do better than O(logn).

Boston University, Spring 2023

310

CAS CS 112 B1

Ideal Case: Searching = Indexing

We would achieve optimal efficiency if we could treat
the key as an index into an array.

Example: storing data about members of a sports team
* key = jersey number (some value from 0-99).

« class for an individual player's record:
public class Player {
private int jerseyNum;
private String firstName;
3
» store the player records in an array:
Player[] teamRecords = new Player[100];

In such cases, search and insertion are O(1):

public Player search(int jerseyNum) {
return teamRecords[jerseyNum];
3

Hashing: Turning Keys into Array Indices

In most real-world problems, indexing is not as simple as
the sports-team example. Why?

To handle these problems, we perform hashing:
» use a hash function to convert the keys into array indices
"sulTivan" > 18 "Papadakis" > 25

* use techniques to handle cases in which multiple keys
are assigned the same hash value

The resulting data structure is known as a hash table.

Boston University, Spring 2023

311

hash

key value
y = function

* examples:

the same hash code.

Hash Functions

» A hash function defines a mapping from keys to integers.

* We then use the modulus operator to get a valid array index.

%
=) integer =) integerin [0, n —1]

h("ant") = ASCII for 'a' — ASCII for 'a' = 0
h("cat") = ASCII for 'c' — ASCII for 'a' = 2

* h(key) is known as the key's hash code.

(n = array length)

* Here's a very simple hash function for keys of lower-case letters:
h(key) = ASCII value of first char — ASCII value of 'a'

* A collision occurs when items with different keys are assigned

store multiple data items.

* Two options:

1. each bucket is itself an array
* need to preallocate, and a bucket may become full

2. each bucket is a linked list
* items with the same hash code are "chained" together
» each "chain" can grow as needed

"ant"

"ape"

null

0
1| null
2
3

null

"cat"

null

Dealing with Collisions I: Separate Chaining

» Each position in the hash table serves as a bucket that can

CAS CS 112 B1 Boston University, Spring 2023

312

CAS CS 112 B1

Dealing with Collisions Il: Open Addressing
When the position assigned by the hash function is occupied,
find another open position.

Example: "wasp" has a hash code of 22,
but it ends up in position 23 because of "ant"
position 22 is occupied. 1
2| "cat"
We'll consider three ways of finding an 3
open position — a process known as probing. 4 ema”
. . 5
We also perform probing when searching. 6
» example: search for "wasp" 7
* look in position 22
« then look in position 23 22| "wolf"
- need to figure out when to safely stop 23 [“wasp
searching (more on this soon!) 241 "vak
25| "zebra"
Linear Probing
Probe sequence: h(key), h(key) + 1, h(key) + 2, ...,
wrapping around as necessary.
Examples:
+ "ape" (h = 0) would be placed in position 1, of "ant"
because position 0 is already full. 1| "ape”
e "bear" (h=1):try1,1+1,1+2-open! 2 "eat”
+ where would "zebu" end up? 3 "bear"
41 "emu"
Advantage: if there is an open cell, Z
linear probing will eventually find it. ;
Disadvantage: get "clusters" of occupied cells i S
that lead to longer subsequent probes. ii “wolf™
was
» probe length = the number of positions 24 ,,yakp,,
considered during a probe 25 ["2ebra”

Boston University, Spring 2023

313

Quadratic Probing
« Probe sequence: h(key), h(key) + 12, h(key) + 22, h(key) + 32, ...,
wrapping around as necessary.
+ Examples:
+ "ape"(h=0):try 0,0+ 1 —open! o "ant"
« "pear" (h=1):try1,1+1,1+4—open! 1| "ape"
+ "zebu"? 2| "cat"
3
+ Advantage: smaller clusters of occupied cells 4 "emu”
. . . L 5] "bear"
» Disadvantage: may fail to find an existing 6
open position. For example: 7
table size = 10
x = occupied 0 SLx |25 e
) . 1 181 6| x |16 36 22| "wolf"
trying to insert a - -
key with h(key) =0 2 7 23| "wasp
offsets of the probe 3 8 24 yak
sequence in italics 4l x |464 9| x |9 49 25| "zebra"
Double Hashing
* Use two hash functions:
* h1 computes the hash code
* h2 computes the increment for probing
* probe sequence: h1, h1 +h2, h1 +2*h2, ... oo
« Examples: 1| "bear”
. 2| "cat"
* h1=our previous h 3 ape
* h2 = number of characters in the string 4 “ape"
. "ape" (h1=0,h2=23):try 0, 0 + 3 — open! . e
* "bear" (h1 =1, h2 =4): try 1 — open!
n n 6
« "zebu"?
7
» Combines good features of linear and quadratic: 1= . '1'f"
* reduces clustering ,,WO ~
I e , 23] "wasp
+ will find an open position if there is one, 24 ["yak”
provided the table size is a prime number 25 ["zebra”

CAS CS 112 B1 Boston University, Spring 2023 314

CAS CS 112 B1

Removing Items Under Open Addressing

* Problematic example (using linear probing): "ant"

+ insert "ape" (h=0):try 0,0 + 1 — open!

* remove "ape"

"pear"

+ search for "ape": try 0, 0 + 1 — conclude not in table "emu"

0
1
* insert"pbear" (h=1):try 1,1 +1,1+ 2 —open! > "cat”
3
4
5

» search for "bear"; try 1 — conclude not in table,

but "bear" is further down in the table!

22| "wolf"

» To fix this problem, distinguish between:

23| "wasp"

* removed positions that previously held an item 4 [g

* empty positions that have never held an item 25| "zebra"

» During probing, we don't stop if we see a removed position.
ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 — found!

* We can insert items in either empty or removed positions.

An Interface For Hash Tables

public interface HashTable {
boolean insert(Object key, Object value);
Queue<Object> search(object key);
Queue<Object> remove(Object key);

* qinsert() takes a key-value pair and returns:
* true if the key-value pair can be added
* false if it cannot be added (referred to as overflow)

* search() and remove () both take a key, and return a queue
containing all of the values associated with that key.
» example: an index for a book
» key = word
* values = the pages on which that word appears
* return null if the key is not found

Boston University, Spring 2023

315

CAS CS 112 B1

An Implementation Using Open Addressing

public class OpenHashTable implements HashTable {

private class Entry {
private Object key;

private LLQueue<Object> values;

}
private Entry[] table;

private int probeType; —1—»] "ant" |
’ Y LLQueue
0 object
table >

probeType | LINEAR 1 — | ——» "ape” |

2 null »lLLQueue

3 null object

4 null

» We use a private inner class for the entries in the hash table.

We use an LLQueue for the values associated with a given key.

Empty vs. Removed

* leave the Entry object in the table

When we remove a key and its values, we:

» set the Entry object's key and values fields to nu11

» example: after remove("ape"):

.I ”ant" I
" LLQueue

0 object

table » - -

probeType | LINEAR 1 — | null ["ape

2] num null LLQueue

3] null object

4 null

L]

Note the difference:

 atruly empty position has a value of nu1T in the table
(example: positions 2, 3 and 4 above)

* aremoved position refers to an Entry object whose

key and values fields are nul1 (example: position 1 above)

Boston University, Spring 2023

316

Probing Using Double Hashing

private int probe(Object key) {
int i = hl(key); // first hash function
int h2 = h2(key); // second hash function

// keep probing until we get an empty position or match
while (table[i] != null && 'key.equals(table[i].key)) {
i = (i + h2) % table.length;

}
return i;
}
* |tis essential that we:
+ check for table[i] != null first. why?

+ call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

» The while loop in our probe method could lead to an infinite loop.

while (table[i] != null && 'key.equals(table[i].key)) {
i = ((+ h2) % table.length;
3

* When would this happen?

» We can stop probing after checking n positions (n = table size),
because the probe sequence will just repeat after that point.
» for quadratic probing:

(h1+n?)%n = h1%n
(hM1+(+1)2)%n = (h1+n2+2n+1)%n=(h1+1)%n

+ for double hashing:
(h1+n*h2)%n = h1%n
(h1+ (n+1)h2) % n = (h1+n*h2+h2) % n=(h1+h2)%n

CAS CS 112 B1 Boston University, Spring 2023 317

CAS CS 112 B1

Avoiding an Infinite Loop (cont.)

private int probe(Object key) {

int i = hl(key); // first hash function
int h2 = h2(key); // second hash function
int numChecked = 1;

// keep probing until we get an empty position or a match

while (table[i] !'= null && 'key.equals(table[i].key)) {

}

if (numChecked == table.length) {
return -1;

}
i = + h2) % table.length;
numChecked++;

return i;

Search and Removal

public LLQueue<Object> search(object key) {

}

// throw an exception if key == null

int i = probe(key);

if (i == -1 || table[i] == null) {
return null;

} else {

return table[i].values;

}

public LLQueue<Object> remove(Object key) {

// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;

}

LLQueue<Object> removedvals = table[i].values;
table[i].key = null;

table[i].values = null;

return removedvals;

Boston University, Spring 2023

318

CAS CS 112 B1

Insertion
» We begin by probing for the key.

» Several cases:
1. the key is already in the table (we're inserting a duplicate)
-> add the value to the values in the key's Entry

2. the key is not in the table: three subcases:

a. encountered 1 or more removed positions while probing
- put the (key, value) pair in the first removed position
seen during probing. why?

b. no removed position; reached an empty position
- put the (key, value) pair in the empty position

c. no removed position or empty position
- overflow; return false

Tracing Through Some Examples
+ Start with the hash table at right with:

« double hashing (1) “ant”
» our earlier hash functions h1 and h2 —
2 cat
+ Perform the following operations: Z T
* insert "bear" (h1 =1, h2 = 4): s [Fox"
* insert "bison" (h1 = 1, h2 = 5): 6
7
* insert "cow" (h1 =2, h2 = 3): 8
9
+ delete "emu" (h1 =4, h2 = 3): 10

» search "eel" (h1 =4, h2 = 3):

* insert "bee" (h1 = ,h2 =):

Boston University, Spring 2023

319

CAS CS 112 B1

Dealing with Overflow

» Overflow = can't find a position for an item

* When does it occur?
* linear probing:
* quadratic probing:
* double hashing:

« if the table size is a prime number: same as linear
« if the table size is not a prime number: same as quadratic

» To avoid overflow (and reduce search times), grow the hash table
when the % of occupied positions gets too big.
+ problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

» Characteristics of a good hash function:
1) efficient to compute
2) uses the entire key
+ changing any char/digit/etc. should change the hash code
3) distributes the keys more or less uniformly across the table
4) must be a function!
+ a key must always get the same hash code

* In Java, every object has a hashCode () method.

* the version inherited from Object returns a value
based on an object's memory location

» classes can override this version with their own

Boston University, Spring 2023

320

CAS CS 112 B1

Hash Functions in OpenHashTable

« Initial hash function: returns a value in [0, table.length - 1]
public int hl(object key) {
int hl = key.hashCode() % table.length;
if (hl < 0) {
hl += table.length;
}

return hl;

}

+ Second hash function (for double hashing):

public h2(0Object key) {
int h2 = key.hashCode() % 5;
if (h2 < 0) {
h2 += 11;
3
h2 += 5;
return h2;

}
* 5and 11 are values that could be adjusted as needed

» provide a range of possible increments >=5

Hash Table Efficiency

In the best case, search and insertion are O(1).

* |n the worst case, search and insertion are linear.

» open addressing: O(m), where m = the size of the hash table
» separate chaining: O(n), where n = the number of keys

» With good choices of hash function and table size,

complexity is generally better than O(log n) and approaches O(1).

load factor = # keys in table / size of the table.

To prevent performance degradation:
» open addressing: try to keep the load factor < 1/2
» separate chaining: try to keep the load factor < 1

» Time-space tradeoff: bigger tables have better performance,
but they use up more memory.

Boston University, Spring 2023

321

Hash Table Limitations

It can be hard to come up with a good hash function for a
particular data set.

The items are not ordered by key. As a result, we can't easily:

 print the contents in sorted order
» perform a range search (find all values between v1 and v2)
+ perform a rank search — get the kth largest item

We can do all of these things with a search tree.

Extra Practice

Start with the hash table at right with: ol ant
* double hashing 1
* h1(key) = ASCII of first letter — ASCII of 'a’ 2| "cat"
* h2(key) = key.length() 3
+ shaded cells are removed cells : e
What is the probe sequence for "baboon"? 6
(the sequence of positions seen during probing) 7
8
9
10

If we insert "baboon", in what position will it go?

CAS CS 112 B1

Boston University, Spring 2023

322

CAS CS 112 B1

Heaps and Priority Queues

Computer Science 112
Boston University

Priority Queue

A priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

* ("Jean Morrison", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

* use a higher priority for items that are "more important"

Example application: scheduling a shared resource like the CPU

» give some processes/applications a higher priority,
so that they will be scheduled first and/or more often

Key operations:

* insert: add an item (with a position based on its priority)
* remove: remove the item with the highest priority

One way to implement a PQ efficiently is using a type of
binary tree known as a heap.

Boston University, Spring 2023

323

CAS CS 112 B1

Complete Binary Trees

» A binary tree of height h is complete if:
* levels 0 through h - 1 are fully occupied
+ there are no “gaps” to the left of a node in level h

<

+ Complete:

Not complete (:_: = missing node):

N

Representing a Complete Binary Tree

» A complete binary tree has a simple array representation.

* The tree's nodes are stored in the array @
in the order given by a level-order traversal.
* top to bottom, left to right @ @

* Examples:
(26) [10] 8 [17]14] 3]
@ @ -

(10
0@@ oG

[26[12]32] 4 [18]28] (1) (3)

Boston University, Spring 2023

324

CAS CS 112 B1

Navigating a Complete Binary Tree in Array Form

* Giventhe nodein al[i]:

. its left child is in a[2*i + 1] (o) (212)

* itsright childisin a[2*i + 2]

e itsparentisinal(i - 1)/2] @ @ @ @
(using integer division)
+ Examples: @ @

« the left child of the node in a[1] isina[2*1 + 1] = a[3]
the left child of the node in a[2] isin a[2*2 + 1] =a[5]
the right child of the node in a[3] isina[2*3 + 2] =a[8]

* The root node is in a[0]

the right child of the node in a[2] is in
the parent of the node in a[4] isina[(4-1)/2] =a[1]

the parent of the node in a[7] is in

What is the left child of 247

» Assume that the following array represents a complete tree:

0 1 2 3 4 5 6 7 8
|26 12[32]24 |18 2847]10] 9 |

Boston University, Spring 2023

325

Heaps

» Heap: a complete binary tree in which each interior node
is greater than or equal to its children

* examples:

(28) (18 (12
(1) (20) @ @O @©
12) (&) (® O@

+ The largest value is always at the root of the tree.

* The smallest value can be in any leaf node - there’s no
guarantee about which one it will be.

* We're using max-at-top heaps.
* in a min-at-top heap, every interior node <= its children

Which of these is a heap?
A. (aa B. ‘ﬂ)
(18) (20 (8) @
(12)(1®) () @

D. more than one (which ones?)

E. none of them

CAS CS 112 B1 Boston University, Spring 2023 326

How to Compare Objects

» We need to be able to compare items in the heap.

+ If those items are objects, we can't just do something like this:
if (iteml < item2)
Why not?

* Instead, we need to use a method to compare them.

An Interface for Objects That Can Be Compared

» The comparable interface is a built-in generic Java interface:

public interface Comparable<T> {
public int compareTo(T other);
» Itis used when defining a class of objects that can be ordered.

» Examples from the built-in Java classes:

pubTlic class String implements Comparable<String> {
pubTlic int compareTo(String other) {

}

public class Integer implements Comparable<Integer> {

public int compareTo(Integer other) {

CAS CS 112 B1 Boston University, Spring 2023 327

An Interface for Objects That Can Be Compared (cont.)

public interface Comparable<T> {
public int compareTo(T other);

e iteml.compareTo(item2) should return
* a negative integer if i teml "comes before" item?2
* a positive integer if iteml "comes after" item?2
* 0if iteml and item2 are equivalent in the ordering

* These conventions make it easy to construct appropriate

method calls:

numeric comparison comparison using compareTo
iteml < item2 iteml.compareTo(item2) < O
iteml > item2 iteml.compareTo(item2) > 0O
iteml == item2 iteml.compareTo(item2) ==

Heap Implementation

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

pubTlic Heap(int maxSize) {
contents = (T[])new Comparable[maxSize];
numItems = O;

@ contents —]

—— g Lyl by o]
numItems| 6
& @ e £ 3 3
@oe a Heap object

« Heap is another example of a generic collection class.
» as usual, T is the type of the elements

- extends Comparable<T> specifies T must implement
Comparable<T>

* must use Comparable (not Object) when creating the array

CAS CS 112 B1 Boston University, Spring 2023 328

CAS CS 112 B1

Heap Implementation (cont.)

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

}
(28) contents| ————— ;[[[T[]l
numItems 6
(16) (20) ; 28] [16][20] [12] (8] [5]

a Heap object

(12 (&) (&)

» The picture above is a heap of integers:
Heap<Integer> myHeap = new Heap<Integer>(20);
» works because Integer implements Comparable<Integer>
» could also use string or Double

Removing the Largest Item from a Heap
* Remove and return the item in the root node.

* In addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

* Algorithm:
1. make a copy of the largest item
2. move the last item in the heap

until it is >= its children (or it'’s a leaf) @ e

4. return the largest item

to the root ‘@
3. “sift down” the new root item O

sitdon {5 ()
(20) @'9 (12) = (16) (12
(18) (&) (1) (8) ()

Boston University, Spring 2023

329

CAS CS 112 B1

Sifting Down an Item

» To sift down item x (i.e., the item whose key is x):

1. compare x with the larger of the item’s children, y
2. if x <y, swap x and y and repeat

* Other examples:

bedo (10 (18)
(1) ’B = (1) (19
olololoNelololo
nen (7
@ @
(15 (18) (10)

Inserting an Item in a Heap

+ Algorithm:

1. put the item in the next available slot (grow array if needed)
2. “sift up” the new item until it is <= its parent
(or it becomes the root item)

+ Example: insert 35

putitin
place:

sift it up: @ @\ @
(1) (1) = (16) (3 = (16) (20)
HOB) OO OO

Boston University, Spring 2023

330

CAS CS 112 B1

remove () Method

public T remove() {
// check for empty heap goes here
T toRemove = contents[0];

contents[0] = contents[numItems - 1];
contents[numItems - 1] = null;
numItems--;

siftbown(0);

return toRemove;

e

|28|20|12|16|8|5| |5|20|12|16|8| |20|16|12|5|8|
numltems: 6 numltems: 5 numltems: 5
toRemove: 28 toRemove: 28 toRemove: 28

Extra practice: After calling remove()
on this heap, what will it look like?

(35
(26) (23
Bw® @

A. @ B. @ C. @
(23) (19 (23) (8) (18) (29
HE® OI0IO H@O®

D. none of these

Boston University, Spring 2023

331

CAS CS 112 B1

If Time Permits: siftbown() Method

private void siftbown(int i) { // assume i = 0
T toSift = contents[i];

int parent = 1i;
int child = 2 * parent + 1;
while (child < numItems) {
// If the right child is bigger, set child to be 1its index.
if (child < numItems - 1 &&
contents[child].compareTo(contents[child + 1]) < 0) {
child = child + 1;

}
if (toSift.compareTo(contents[child]) >= 0) {
break; // we’re done

// Move child up and move down one Tevel in the tree.
contents[parent] = contents[child];

parent = child; .
child = 2 * parent + 1; @ toSift: 7

3 parent| child

contents[parent] = toSift; @ @ 0 1

1 3

* We don'’t actually swap 1 4
items. We put the sifted item o 4 : 4 9

in place at the end. [26718[23[15] 7 [10]

insert() Method

public void insert(T item) {
if (numItems == contents.length) {
// code to grow the array goes here..

contents[numItems] = item;
siftUp(numItems);
numItems++;

(20 (20 (35
(1)) (2 = () (12 = (1) (20
®® O)0l® O ®@

0O 1 2 3 4 0O 1 2 3 4 0O 1 2 3 4 5
[20/16]12/ 58| | [20/16]12] 5|8 [35] [35/16/20]/5 | 8 [12]
numltems: 5 numltems: 5 numltems: 6

item: 35 item: 35

Boston University, Spring 2023

332

CAS CS 112 B1

Time Complexity of a Heap

(5)
(1) (8)
(149 @) (1) @29)

A heap containing n items has a height <= log,n. Why?

Thus, removal and insertion are both O(log n).
* remove: go down at most log,n levels when sifting down;
do a constant number of operations per level

 insert: go up at most log,n levels when sifting up;
do a constant number of operations per level

This means we can use a heap for a O(log n)-time priority queue.

Using a Heap for a Priority Queue

Recall: a priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

* ("Jean Morrison", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

* use a higher priority for items that are "more important"

To implement a PQ using a heap:
+ order the items in the heap according to their priorities
» every item in the heap will have a priority >= its children
+ the highest priority item will be in the root node
» get the highest priority item by calling heap. remove()!

For this to work, we need a "wrapper" class for items that
we put in the priority queue.

 will group together an item with its priority
» with a compareTo() method that compares priorities!

Boston University, Spring 2023

333

CAS CS 112 B1

A Class for Items in a Priority Queue

public class PQItem implements Comparable<PQItem> {
// group an arbitrary object with a priority
private Object data;
private int priority;

public int compareTo(PQItem other) {
// error-checking goes here..
return (priority - other.priority);

Example: PQItem item = new PQItem(''Dave Sullivan", 5);

Its compareTo() compares PQItems based on their priorities.

e iteml.compareTo(item2) returns:
* a negative integer if i teml has a lower priority than item2
+ a positive integer if iteml has a higher priority than item2
0 if they have the same priority

Using a Heap for a Priority Queue

null| ...

contents
L / | \
@ Pa : numItems| 3
a Heap object

data| "Bob" | ["Dave"] |"Jean"
priority| 15 5 10

PQItehoMems
« Sample client code:

Heap<PQItem> pq = new Heap<PQItem>(50);
pg.insert(new PQItem("Dave", 5));
pg.insert(new PQItem("Jean", 10));
pg.insert(new PQItem("Bob", 15));

PQItem mostImportant = pq.remove(); // will get Bob!

Boston University, Spring 2023

334

CAS CS 112 B1

Using a Heap to Sort an Array

Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

0 1 2 3 4 5 6
[5]16] 8 [14]20] 1 [26]

0 1 2 3 4 5 6
[7]16] 8 [14]20]| 5 [26|

0 1 2 3 4 5 6
[7]5]8[14]/20[16]26]
It isn’t efficient, because it performs a linear scan to

find the smallest remaining element (O(n) steps per scan).

Heapsort is a sorting algorithm that repeatedly finds the /argest
remaining element and puts it in place.

It is efficient, because it turns the array into a heap.
« it can find/remove the largest remaining in O(logn) steps!

Converting an Arbitrary Array to a Heap

To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:
contents[i],wherei = ((n-1)-1)/2 = (n-2)/2
2. sift down contents[i] and all elements to its left

Example: 0 1 2 3 4 5 &6
[5[16] 8 [14][20] 1 [26] e

(18) (&)
19 @) (D) @9

Last element’s parent = contents[(7 - 2) /2] = contents[2].

Sift it down: e e
(1) (&)

!
©
©

Boston University, Spring 2023

335

Converting an Array to a Heap (cont.)

* Next, sift down contents[1]:

(5) (5)
(16) (20) = (20) (26)
DIDIOIOBNOIDIOIO

* Finally, sift down contents[0]:

(5) (2 (2
() (26) = (o (5) = () ()
WeWeE Wew® Wi E

Creating a Heap from an Array

public class Heap<T extends Comparable<T>> {
private T[] contents;
private int numItems;

public Heap(T[] arr) {
// Note that we don't copy the array!
contents = arr;
numItems = arr.length;
makeHeap () ;

}

private void makeHeap() {
int Tast = contents.length - 1;
int parentofLast = (last - 1)/2;
for (int i = parentofLast; i >= 0; i--) {
siftbown(i);
}

CAS CS 112 B1 Boston University, Spring 2023 336

Heapsort

pubTlic static <T extends Comparable<T>> void
heapsort(T[] arr) {

// Turn the array into a max-at-top heap.

Heap<T> heap = new Heap<T>(arr);

int endunsorted = arr.length - 1;

while (endunsorted > 0) {
// Get the largest remaining element and put 7t
// at the end of the unsorted portion of the array.
T TargestRemaining = heap.remove();
arr[endunsorted] = largestRemaining;

endunsorted--;

+ We define a generic method, with a type variable in the method
header. It goes right before the method's return type.

« T is a placeholder for the type of the array — and the heap's items.
* can be any type T that implements Comparable<T>.

Heapsort Example
, 0 1 2 3 4 5 &
» Sort the following array: [13]6 [45[10] 3 [22] 5 |

* Here’s the corresponding complete tree:

(13
(6) (49
DIOIO

+ Begin by converting it to a heap:

sift down @ sift down @ sift down @

6

5@ B S @ B =@ (@
WO@E OO@GE OO®E

no change, because
45 >= jts children

CAS CS 112 B1 Boston University, Spring 2023 337

CAS CS 112 B1

Heapsort Example (cont.)

» Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 6
(45[10]22] 6 [3 [13] 5 |
@ @ endUnsorted: 6

* We begin looping:

while (endunsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

remove()
copies 45; remove() heapSort() puts 45 in place;
moves 5 sifts down 5; decrements endUnsorted
to root returns 45

Heapsort Example (cont.)

* Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 &
[45]10]22| 6 | 3 [13]| 5|
@ @ endUnsorted: 6

* Remove the largest item and put it in place:

0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 45 [22[10[13] 6 [3 | 5]5| [22[10/13[6 |3 | 5 [45]

endUnsorted: 6 endUnsorted: 5
largestRemaining: 45

Boston University, Spring 2023

338

CAS CS 112 B1

copy 22; e
move 5

to root

= (10)
0O

toRemove: 22

sift down 5;
return 22

Heapsort Example (cont.)

put 22 in place;
decrement endUnsorted

0 1 2 3 4 5 6 0 1 2 3 4 5 6

[13[10]/ 5[6 |3 [5[45] [13[10] 5|6 |3 [22/45]
endUnsorted: 5 endUnsorted: 4
largestRemaining: 22

put 13 in place;
decrement

o (100 (5) = =

toRemove: 13

0 1 2 3 4 5 6 0O 1 2 3 4 5 6
[[[[[l22fa5] | | | | [13[22[45]
endUnsorted: 4 endUnsorted: 3
largestRemaining: 13

Boston University, Spring 2023

339

CAS CS 112 B1

Heapsort Exam ple (cont.)
copy 10;
move 3 sift down 3; put 10 in place;
to root return 10 decrement

0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 10 le[3]5]3[13[22]45] [6]3]5[10][13]22]45]

endUnsorted: 3 endUnsorted: 2
largestRemaining: 10

copy 6;

move 5 sift down 5; put 6 in place;

to root return 6 decrement
=)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 6 I513]5][10/13][22]45] [5]3 |6 [10][13]22]45]

endUnsorted: 2 endUnsorted: 1
largestRemaining: 6

Heapsort Example (cont.)

s D ® o @
move 3 sift down 3; put 5in place;

to root return 5 decrement
0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 5 I3]3]6][10[13][22]45] [3 |56 [10][13]22]45]
endUnsorted: 1 endUnsorted: 0

largestRemaining: 5

* And now we terminate the loop:

while (endunsorted > 0) {
// Get the largest remaining element and put 7t
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = largestRemaining;

endunsorted--;

Boston University, Spring 2023

340

CAS CS 112 B1

Time Complexity of Heapsort

(5)
(1) (8)
(14) @9 (1) 29)

Time complexity of creating a heap from an array?
Time complexity of sorting the array?

Thus, total time complexity = ?

How Does Heapsort Compare?

algorithm | bestcase | avg case |worstcase extra

memory
selection sort O(n?) O(n?) o) o
insertion sort o(n) O(n?) O(n?) o
bubble sort Oo(n?) Oo(n?) Oo(n?) o
quicksort O(nlogn) | O(nlogn) o2 O(log n)
worst: O(n)

mergesort | O(nlogn) | O(n Togn) | O(nlogn) O()

heapsort | O(nTogn) | O(nlogn) | O(nlogn) o)

Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

Insertion sort is still best for arrays that are almost sorted.
* heapsort will scramble an almost sorted array before sorting it!

Quicksort is still typically fastest in the average case.

Boston University, Spring 2023

341

CAS CS 112 B1

End-of-Semester Lessons

Object-oriented programming allows us to capture the
abstractions in the programs that we write.

+ creates reusable building blocks
» key concepts: encapsulation, inheritance, polymorphism

Abstract data types allow us to organize and manipulate
collections of data.

+ agiven ADT can be implemented in different ways

» fundamental building blocks: arrays, linked nodes

Efficiency matters when dealing with large collections of data.
* some solutions can be much faster or more space efficient
» what’s the best data structure/algorithm for your workload?

» example: sorting an almost sorted collection

End-of-Semester Lessons (cont.)

Use the tools in your toolbox!
* interfaces, generic data structures
* lists/stacks/queues, trees, heaps, hash tables
* recursion, recursive backtracking, divide-and-conquer

Use built-in/provided collections/interfaces:

e java.
« java.
» java.
e java.
« java.
e java.

util.
util.
util.
util.
util.
util.

ArrayList<T> (implements List<T>)
LinkedList<T> (implements List<T> and Queue<T>)

Stack<T>

TreeMap<K, V> (a balanced search tree) \ .
implement

HashMap<K, V> (a hash table) Map<K, V>

PriorityQueue<T> (a heap)

But use them intelligently!
* ex: LinkedList maintains a reference to the last node in the list
« Tist.add(item, n) will add item to the end in O(n) time
o Tist.addLast(item) will add item to the end in O(1) time!

Boston University, Spring 2023

342

Practice: After turning this array into a heap,
what will it look like?

0 1 2 3 4
[6]4[18/11] 8 |

0 1 2
(18[11] 8 |

w |O|w

4

[4]
4
8

0 1 2
[18]11] 6 | 4 |

3 4

A
B
0 1 2
C. [11]e6]18] 48
D

none of the above

Heapsort Extra Practice

, 0O 1 2 3 4 5
* Sort the following array: g T15] 4 [30[18]26]

* Here’s the corresponding complete tree:

(8)
(15) (&)
(30) (18) 29

* What does it look like after we turn it into a heap?

* What do the heap and the array look like after each repetition
of the loop in heapsort?

CAS CS 112 B1 Boston University, Spring 2023 343

	lecture00_first_look
	lecture01_a_basics
	lecture01_b_cond_execution_user_input
	lecture01_in_class
	lecture02_a_static_methods
	lecture02_b_for_loops
	lecture02_in_class
	lecture03_a_variable_scope
	lecture03_in_class
	lecture04_a_primitives_objects_references
	lecture04_b_working_with_strings
	lecture04_in_class
	lecture05_a_arrays
	lecture05_b_arrays2
	lecture05_in_class
	lecture06_a_classes
	lecture06_b_classes2
	lecture06_in_class_0708
	lecture09_a_inheritance
	lecture09_in_class_10a
	lecture10b_arraybag_11
	unit6_1_recursion
	unit6_2_backtracking
	unit7_1_sorting1_bigO
	unit7_2_sorting2
	unit8_1_linked_lists
	unit8_2_interfaces_list_adt
	unit8_3_stacks_queues
	unit9_1_trees
	unit9_2_search_trees
	unit9_3_hash_tables
	unit9_4_heaps
	Blank Page

