
Using Probabilistic Reasoning
to Automate Software Tuning

A thesis presented

by

David Gerard Sullivan

to

The Division of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

September, 2003

Copyright  2003 David Gerard Sullivan

All rights reserved.

Advisor: Margo I. Seltzer Using Probabilistic Reasoning David Gerard Sullivan
to Automate Software Tuning

Abstract

Complex software systems typically include a set of parameters that can be adjusted

to improve the system’s performance. System designers expose these parameters,

which are often referred to as knobs, because they realize that no single configuration

of the system can adequately handle every possible workload. Therefore, users are

allowed to tune the system, reconfiguring it to perform well on a specific workload.

However, manually tuning a software system can be an extremely difficult task, and

it is often necessary to dynamically retune the system as workload characteristics

change over time. As a result, many systems are run using either the default knob

settings or non-optimal alternate settings, and potential performance improvements

go unrealized. Ideally, the process of software tuning should be automated, allowing

software systems to determine their own optimal knob settings and to reconfigure

themselves as needed in response to changing conditions.

This thesis demonstrates that probabilistic reasoning and decision-making

techniques can be used as the foundation of an effective, automated approach to

software tuning. In particular, the thesis presents a methodology for automated

software tuning that employs the influence diagram formalism and related learning

and inference algorithms, and it uses this methodology to tune four knobs from the

Berkeley DB embedded database system. Empirical results show that an influence

diagram can effectively generalize from training data for this domain, producing

considerable performance improvements on a varied set of workloads and

outperforming an alternative approach based on linear regression.

The thesis provides a detailed roadmap for applying the proposed software-

tuning methodology to an arbitrary software system. It also proposes novel methods

of addressing three challenges associated with using an influence diagram for
iii

software tuning: modeling the performance of the software system in a tractable

manner, determining effective discretizations of continuous variables in the model,

and estimating parameters of the model for which no training data is available. In

addition, the thesis discusses the design of workload generators that can produce the

necessary training data, and it proposes a technique for ensuring that a workload

generator captures the steady-state performance of the system being tuned.
iv

Contents

List of Figures . ix
List of Tables . xi
Acknowledgments . xii

1 Introduction 1
1.1 Overview of the Thesis . 5
1.2 Contributions . 8

2 Automated Software Tuning 10
2.1 High-Level Architecture. 10
2.2 Criteria . 11
2.3 Possible Approaches . 14

2.3.1 Empirical Comparisons . 14
2.3.2 Feedback Mechanisms . 15
2.3.3 Analytical Models . 17

2.4 Using a Workload Generator for Tuning. 19
2.5 Choosing an Approach to Automated Tuning . 20
2.6 Related Work . 22

2.6.1 Work Based on Empirical Comparisons . 22
2.6.2 Work Based on Feedback Mechanisms . 24
2.6.3 Work Based on Analytical Models . 27

2.7 Conclusions . 30

3 Probabilistic Reasoning and Decision-Making 31
3.1 Basics from Probability Theory and Decision Theory 31

3.1.1 Joint and Marginal Probability Distributions 33
3.1.2 Conditional Probabilities . 35
3.1.3 Bayes’ Law . 37
3.1.4 Independence and Conditional Independence 37
3.1.5 Expected Values . 38
3.1.6 Making Optimal Decisions Under Uncertainty 39
3.1.7 Conclusions . 40

3.2 Influence Diagrams . 40
3.2.1 Structure of the Model . 40
3.2.2 Parameters of the Model . 43
3.2.3 Conditional Independencies in Influence Diagrams. 43
3.2.4 Evaluating an Influence Diagram . 44
3.2.5 Conclusions . 52

4 Test System: Berkeley DB 53
4.1 Overview . 53

4.1.1 Btree Access Method . 54
4.1.2 Memory Pool Subsystem . 56
v

4.1.3 Locking Subsystem. 57
4.1.4 Transaction Subsystem . 58
4.1.5 Logging Subsystem. 59

4.2 The Knobs . 60
4.2.1 Page Size . 60
4.2.2 Minimum Keys Per Page . 62
4.2.3 DB_RMW . 62
4.2.4 Deadlock-Resolution Policy . 63

4.3 Workload Characteristics . 64
4.3.1 Transaction Characteristics. 64
4.3.2 Access Locality . 65
4.3.3 Concurrency . 67

4.4 An Influence Diagram for Berkeley DB . 68
4.4.1 Decision Nodes . 68
4.4.2 Value Nodes . 68
4.4.3 Chance Nodes and the Structure of the Model 71

4.4.3.1 Intermediate Chance Nodes and Their Parents 72
4.4.3.2 Parents of the Value Nodes . 77

4.5 Conclusions . 79

5 Using an Influence Diagram for Software Tuning 80
5.1 Designing the Structure of the Model . 80

5.1.1 Choosing Variables for the Model . 81
5.1.1.1 Decision Nodes . 81
5.1.1.2 Value Nodes . 82
5.1.1.3 Root Chance Nodes. 83
5.1.1.4 Unnecessary Variables. 84
5.1.1.5 Using Normalized Variables . 85
5.1.1.6 Avoiding Unnecessary Dependencies . 86

5.1.2 Adding Arcs to the Model. 87
5.1.3 Limiting the Number of Parents of a Node. 89
5.1.4 Checking and Refining the Model . 91

5.2 Gathering the Training Data. 93
5.3 Discretizing the Continuous Variables . 95

5.3.1 Simple Discretization Methods . 97
5.3.1.1 Equal-width Bins . 97
5.3.1.2 Equal-height Bins. 98
5.3.1.3 Limitations . 100

5.3.2 Learning Discretizations of Variables in a Bayesian Network 101
5.3.2.1 The MDL Principle . 102
5.3.2.2 Computing the Description Length . 103
5.3.2.3 Friedman and Goldszmidt’s Algorithm. 106

5.3.3 Learning Discretizations of Variables in an Influence Diagram . . . 109
5.3.3.1 Dealing with Decision Nodes . 109
5.3.3.2 Dealing with Value Nodes . 110
5.3.3.3 Simplifying the Specification of Initial Cutoff Values 111
5.3.3.4 An Additional Modification . 114

5.4 Learning the Parameters of the Model . 114
vi

5.4.1 Estimating Probabilities . 115
5.4.1.1 Maximum Likelihood Estimation . 115
5.4.1.2 Incorporating Prior Estimates. 116
5.4.1.3 Dealing with Incomplete Data. 117

5.4.2 Estimating Expected Values . 118
5.4.2.1 Using Simple Averages . 118
5.4.2.2 Incorporating Prior Estimates. 118
5.4.2.3 Dealing with Incomplete Data. 119

5.4.3 Estimating Unseen Parameters . 120
5.4.3.1 Determining Nearest-Neighbor Estimates 121
5.4.3.2 Testing for Monotonic Parent-Child Relationships 124
5.4.3.3 Determining Constraints on Expected Values 126
5.4.3.4 Finalizing Estimates for Unseen Expected Values 127
5.4.3.5 Estimating Unseen Probability Parameters. 129

5.4.4 Learning Weights for the Value Nodes . 132
5.5 Using the Model . 136

5.5.1 Dealing with Unobservable Workload Characteristics 136
5.5.2 Tuning the Knobs for a Given Workload. 139

5.6 Updating the Model Over Time . 140
5.7 Related Work . 141
5.8 Conclusions . 143

6 Designing a Workload Generator for Use in Software Tuning 145
6.1 Architecture . 145
6.2 Criteria . 146
6.3 Determining a Steady State. 147

6.3.1 Focusing on the Requisite Conditions . 147
6.3.2 Testing for Stability Over Time. 149

6.4 db_perf: A Workload Generator for Berkeley DB . 151
6.4.1 Overview . 151
6.4.2 Specifying the Database and Workload . 152
6.4.3 Using Initial Scans to Reduce Running Times 154

6.5 Related Work . 157
6.6 Conclusions . 158

7 Evaluation 160
7.1 Gathering the Data . 160

7.1.1 Test Platform . 160
7.1.2 Test Database . 161
7.1.3 Knob Settings . 162
7.1.4 Workload Characteristics. 163
7.1.5 Running the Workloads . 167

7.2 Creating the Models . 171
7.2.1 Learning the Weights of the Value Nodes . 171
7.2.2 Discretizing the Continuous Variables . 173
7.2.3 Constructing and Manipulating the Models Using Netica 174

7.3 Determining the Final Model. 175
vii

7.4 Evaluating the Final Model . 179
7.4.1 Performance of the Recommended Knob Settings 179
7.4.2 Ability of the Model to Generalize . 180
7.4.3 Comparison with a Regression-Only Approach 181

7.5 Additional Experiments . 184
7.5.1 Evaluating the Impact of Training-Set Size 185
7.5.2 Evaluating the Procedure for Estimating Unseen Parameters 187
7.5.3 Evaluating Aspects of the Discretization Algorithm 193

7.6 Conclusions . 196

8 Conclusions 198
8.1 Assessment of the Proposed Methodology. 198
8.2 Future Work . 202
8.3 Summary. 204

References 206
viii

List of Figures

1.1 An example of an influence diagram . 3

3.1 An example of a directed acyclic graph . 41
3.2 An example of an influence diagram and its associated parameters 42
3.3 Pseudocode for evaluating an influence diagram. 46
3.4 The checkpoint-interval influence diagram . 47
3.5 Evaluating the checkpoint-interval influence diagram, part I 48
3.6 Evaluating the checkpoint-interval influence diagram, part II 49
3.7 Evaluating the checkpoint-interval influence diagram, part III. 50
3.8 Evaluating the checkpoint-interval influence diagram, a summary 51

4.1 An example of a B+link tree . 55
4.2 An influence diagram for tuning the Berkeley DB database system 69
4.3 The leaves, overflows, and db_size nodes and their parents 72
4.4 The leaves/txn, oflw/txn, and pages/txn nodes and their parents. 73
4.5 The page_loc, leaf_loc_rate, loc_rate, and loc_size nodes and their parents . . . 74
4.6 The pct_loc/txn node and its parents . 75
4.7 The misses/txn node and its parents . 76
4.8 The pct_writes and pct_wlocks nodes and their parents 77
4.9 The faults/txn value node and its parents. 78
4.10 The waits/txn value node and its parents . 79

5.1 The misses/txn node and surrounding nodes. 86
5.2 The waits/txn value node and some of the nodes that affect it 87
5.3 Adding an intermediate chance node . 89
5.4 Using an intermediate node to limit the number of a node’s parents 90
5.5 Invalid conditional-independence assertions . 92
5.6 Example of an equal-width discretization . 98
5.7 Pseudocode for an algorithm to perform equal-height discretization. 99
5.8 Example of an equal-height discretization. 100
5.9 Pseudocode for Friedman and Goldszmidt’s algorithm 108
5.10 Pseudocode for an algorithm to learn the discretizations of continuous

variables in an influence diagram. 113
5.11 The faults/txn value node and its parents. 121
5.12 Pseudocode for an algorithm to learn constraints on the expected value

of a chance or value node in an influence diagram . 128
5.13 Pseudocode for an algorithm to construct a discrete probability distribution

with a desired expected value for a chance node in an influence diagram. . . 131
5.14 Throughput as a function of waits/txn and faults/txn 134
5.15 An extended influence diagram for Berkeley DB. 138
ix

6.1 A faulty method of capturing steady-state performance 148
6.2 Maintaining a sliding measurement window. 150
6.3 Pseudocode for converting a number to a key string . 153
6.4 A false steady state . 156

7.1 Interleaving small and large items on a page . 166
7.2 Outliers in the training data. 172
7.3 Other candidate model structures . 177
7.4 The final model . 178
7.5 Performance of the final model on the test workloads. 180
7.6 Ability of the model to generalize . 181
7.7 Comparing with a regression-only approach . 183
7.8 Varying the number of training examples . 186
7.9 Comparing four methods of estimating unseen parameters 191
7.10 Comparing different initial discretizations for the value nodes 194
7.11 Comparing two methods of improving a node’s discretization 195
x

xi

List of Tables

2.1 Assessing a tuner’s accuracy . 12

3.1 A sample joint probability distribution for the variables A and B 34

4.1 Overview of the nodes in the influence diagram in Figure 4.2 70

7.1 Distributions of the workload characteristics used in the experiments 163
7.2 Using keygroups to control locality in the generated workloads 165
7.3 Summary of the variables included in the data files . 169
7.4 Optimal knob settings for the test-set workloads . 170
7.5 Discretizations of variables in the final model. 176
7.6 Terms considered as possible independent variables in the

regression equations . 182
7.7 Procedures for estimating unseen parameters . 188
7.8 Accuracies of different procedures for estimating unseen parameters. 189

Acknowledgments

I owe a tremendous debt of gratitude to my advisor, Margo Seltzer. She took me on

when I was an incoming master’s student with a limited background in computer sci-

ence, and she taught me how to do research. Margo has been an advisor in the fullest

sense of the word—offering wisdom, care, and support about not only academic and

professional matters, but personal ones as well. She taught by example the impor-

tance of balancing work and family, and she supported me as I worked to maintain

my own balance in this regard, especially after the arrival of my son. Last fall, when

the completion of this thesis still seemed out of reach, Margo helped me to see that

the end was in sight, and she used praise and encouragement, rather than pressure,

to coax me to the finish line.

I am also extremely grateful to Barbara Grosz, who introduced me to artificial

intelligence and encouraged me to bring together my dual interests in systems and

AI. Through her advice and encouragement, Barbara helped me to become a more

confident researcher and a better writer and presenter. When I contemplated leaving

the Ph.D. program several years ago, both Barbara and Margo offered an amazing

degree of understanding and support, giving me the freedom to leave if I needed to,

while helping me to realize that it was worthwhile to stay. Without the two of them, I

might never have finished.

I also had the good fortune to have Avi Pfeffer on my thesis committee. The

work presented in this dissertation began as a project for one of his courses, and his

expertise in probabilistic reasoning was essential to its completion. I am grateful for

his willingness to answer my questions and to ask good questions of his own—

questions that forced me to clarify my thinking and to flesh out the methodology

presented in this thesis.
xii

During my six years as a graduate student, I benefited from the company and

assistance of fellow students from two research groups: the SYRAH group (formerly

known as VINO), and the AI research group. Chris Small, who was finishing up when

I was just starting, generously and patiently answered my questions about a wide

range of topics, from UNIX tips and kernel hacking to career plans and home

ownership. Keith Smith, Yaz Endo, David Krinsky, and Robert Haas also provided

valuable assistance as I got started. Dan Ellard and Lex Stein were my office-mates

for the bulk of my time in grad school, and I enjoyed my time and conversations with

both of them, including talks about parenthood with Dan and about politics with Lex

(especially during the Florida election debacle of 2000). Dan graciously allowed me to

use for my experiments some of the machines that he maintained, which greatly

facilitated my work. I shared many enjoyable walks and lunches with Kobi Gal,

whose friendship and advice helped me to make it through the second half of grad

school. He understood both what I was working on and what I was working

through—the insecurities, doubts, and questions—and he helped me to maintain a

positive outlook. I am grateful to all of these people, and to the others with whom I

shared my time in ESL and Maxwell Dworkin.

I couldn’t have made it to this point without the love and support of my

friends and family members, who allowed me to remain sane, happy, and focused on

the important things in life. Many thanks to each of them. In particular, John

Hamilton and Scott MacDonald helped me to get through some rough patches that I

encountered along the way, and generous baby-sitting help from my sisters, Karen

and Kristen, my mother, Diane, and my mother-in-law, Rita Nuscher, gave me extra

time for both work and relaxation. Were it not for the extra workdays that my mother

and mother-in-law made possible during my final months of work on this thesis, I

would still be running experiments.

I feel blessed to have been raised in such a wonderful family, with three great

siblings and two amazing parents, who valued education and helped me to grow and
xiii

develop as an individual. The self-giving of my parents continues to this day, and my

own experiences as a parent have only increased my love and respect for them.

This thesis is dedicated to the two loves of my life—my partner, Dave, and my

son, Perry. Dave’s love has been the foundation of all that I have done as a grad

student. He encouraged me to pursue my dream of getting a Ph.D., and when I found

myself questioning my original career plans, he enabled me to envision a future in

which I would be doing work that makes me happy and fulfilled. Dave’s attentiveness

to my needs, his willingness to listen when things were difficult, and his good-hearted

companionship through everything were essential to my completion of this thesis,

and I am so grateful to him for his unwavering love and support. Along the way, we

managed to build a family and a life together—a life that brings me tremendous

happiness. Perry’s arrival two years ago was the fulfillment of our dream of being

parents, and he has transformed our lives for the better with his affection,

enthusiasm, and curiosity. I look forward to watching him develop his own interests

and pursue his own dreams in the months and years ahead.
xiv

To Dave and Perry

Chapter 1

Introduction

It is…black magic…how databases are tuned. It is tough to ship a
tuning guru with every database.

– Surajit Chaudhuri, database researcher [Kan02]

As the above remarks indicate, manually tuning the performance of a database sys-

tem is an extremely challenging task. The same can be said of other complex software

systems—operating systems, Web servers, and the like. Because the optimal configu-

ration of such a system is typically workload-dependent, system designers often

include a set of parameters called knobs that can be used to reconfigure the system

for a particular workload. But the process of tuning these knobs—finding the optimal

knob settings for a given workload—is complicated enough that it typically requires a

“tuning guru” with extensive knowledge and experience. Moreover, because the opti-

mal settings tend to change over time as workload characteristics change, the guru

needs to be available to continually retune the system. As a result, manufacturers of

these systems would need to “ship a tuning guru” with every copy of the software to

ensure good performance.

In light of the challenges involved in manual software tuning, many have

called for the development of software systems that are self-tuning or knob-free

[Bar93, Ber98, Bro93, Cha00, inter alia]. Such systems would be able to determine

their own optimal knob settings for a given workload and to reconfigure themselves

as needed in response to changing conditions. The idea of self-tuning software

systems is not new [Bad75, Ble76], but the need for them is increasing as a result of

several trends. First, the complexity of software systems continues to grow, which
1

makes manual tuning more and more difficult. Second, complex software systems

increasingly are used by organizations and individuals who do not possess the

necessary tuning expertise and who cannot afford to hire someone who does. Even

large organizations suffer from both a shortage of qualified people and the growing

human costs associated with computer systems. Alan Ganek, a vice-president at

IBM, projected in April of 2002 that these human costs—which were then

approximately equal to equipment costs—would be twice as large as equipment costs

in five or six years [Kan02]. Third, software systems are increasingly being embedded

in a wide variety of devices, and systems running in such contexts must, by necessity,

be self-tuning [Ber98, Sel99a]. Given all of these trends, there is clearly a need for an

automated approach to software tuning.

A number of prior research efforts have addressed the problem of automating

the software-tuning process; Chapter 2 includes an overview of this research. In

addition, a number of commercial software developers have added a limited degree of

self-tuning to their products [Cha99, Sch99, Spi98, Zil01]. However, much remains to

be done before software systems are fully self-tuning. For one thing, most of the prior

work on automated tuning has attempted to adjust individual knobs in isolation,

whereas a comprehensive approach to automated tuning will need to be capable of

tuning multiple knobs simultaneously—taking into account interactions between the

knobs and ways in which they jointly affect the performance of the system. In

addition, most previous efforts have focused on a specific algorithm or module,

without attempting to provide general guidance about how to automate the software-

tuning process. To facilitate the construction of self-tuning systems, what is needed is

a methodology for automated software tuning—a systematic approach that can be

applied to an arbitrary software system.

This thesis proposes just such a methodology, one based on the use of

probabilistic reasoning and decision-making techniques that have been developed by

researchers in artificial intelligence, operations research, and other related fields. In

particular, the methodology proposed here employs the influence diagram formalism
2

[How84] and related learning and inference algorithms [Hec95, Sha86] to predict the

system’s performance under various combinations of workload characteristics and

knob settings, and to thereby determine the optimal knob settings for a given

workload. Influence diagrams are graphical, probabilistic models that allow decision-

makers to reason about the variables that influence the outcome of their decisions. In

particular, influence diagrams model probabilistic dependencies among the relevant

variables, and they exploit conditional independencies to simplify both the

specification of the model and the process of inferring the expected outcomes of a

particular set of decisions.

In applying influence diagrams to software tuning, the decisions are the knob

settings, and the relevant variables include workload characteristics (e.g., degree of

concurrency), underlying performance statistics (e.g., number of cache misses), and

overall performance measures (e.g., throughput or, conversely, measures of events

such as page faults that reduce performance). For example, Figure 1.1 shows a

possible influence diagram for tuning the frequency with which checkpoints are

taken in a database system. The rectangular checkpoint int node is an example of

what is known as a decision node; it represents the knob being tuned. The diamond-

shaped time to recover and checkpt overhead nodes are value nodes; they represent

the values that the tuning process seeks to optimize. Finally, the oval-shaped nodes

are chance nodes; they represent random variables that are relevant to the tuning

process. Arcs are used to connect these nodes in ways that provide information about

checkpoint int

log entries

MB per

time to

Figure 1.1. An example of an influence diagram.

log writes
per sec

checkpoint

recover

per MB

checkpt
overhead

aborts
per sec
3

how the nodes are related; if there is an arc from node A to node B, A is referred to as

a parent of B. More information about the meaning of these nodes and arcs is

provided in Chapter 3.

An influence diagram associates a set of parameters with each node. These

parameters include a set of expected values for each value node—one parameter for

each assignment of values to the node’s parents—and one or more probability

distributions for each chance node. For a chance node without parents, there is a

single distribution over the possible values of the variable; for a chance node with

parents, there is a conditional probability distribution for each assignment of values

to its parents. By applying well-known techniques for learning these parameters

from training data [Hec95], we can effectively learn a mapping from combinations of

workload characteristics and knob settings to expected performance, and thereby

determine the optimal knob settings for a given workload.

A tuning methodology based on influence diagrams takes advantage of the

knowledge of domain experts about how the relevant variables are related—but this

expertise is only needed once, when the structure of the influence diagram is

designed by the software developer. Once the appropriate model structure is

determined, it can be used as the foundation of a tuning module that runs without

human intervention. This module can learn the initial parameters of the model using

statistics gathered from actual or simulated workloads, even if the model includes

variables that cannot be directly measured or estimated. Over time, newly gathered

statistics can be used to modify these parameters, allowing the tuning module to

refine its performance estimates and to adapt to changes in the environment in which

the software system runs. And as the workload imposed on the system varies over

time, the tuning module can use the influence diagram to determine the optimal knob

settings for each workload—including previously unseen combinations of workload

characteristics—and adjust the knobs accordingly. In short, the methodology

presented in this thesis provides an effective, automated approach to software

tuning.
4

1.1 Overview of the Thesis

The next three chapters provide the necessary background material for the thesis.

Chapter 2 presents a more complete overview of the problem of automated software

tuning. It begins by positioning the software module that determines the optimal

knob settings within a high-level architecture for automated software tuning and dis-

cusses the criteria that this module should meet. It then offers a taxonomy of three

possible approaches to automating the software-tuning process and discusses repre-

sentative examples of prior work using each of these approaches. The third of these

approaches, model-based tuning, is the one that I adopt in this thesis, with an influ-

ence diagram serving as the model.

Influence diagrams are essentially a tool for decision-making under

uncertainty. Chapter 3 provides an overview of the concepts from probability and

decision theory that are needed to understand the semantics of influence diagrams

and how they are used to infer optimal decisions. The chapter then explains the

structure and parameters of an influence diagram, focusing in particular on the

conditional independence relationships that are encoded in the model’s structure.

Finally, it reviews the standard algorithm for evaluating an influence diagram to

determine the optimal decisions.

Chapter 4 introduces the Berkeley DB embedded database system [Ols99,

Sle01], the software system that I use to assess the effectiveness of an influence-

diagram-based approach to software tuning. The chapter discusses the essential

features of this software system, including the four knobs that I tune and the

characteristics of the workloads that I consider. It also introduces the structure of the

influence diagram that I have developed to tune the system.

Chapter 5 presents the actual software-tuning methodology—a step-by-step

approach for using an influence diagram for software tuning. It includes guidelines

for designing the structure of the model, as well as explanations of how to learn the

initial parameters of the model from training data and how to update the values of

these parameters over time. This chapter also addresses three challenges associated
5

with using an influence diagram for tuning: incorporating performance measures in

the model, dealing with continuous variables in the model, and estimating

parameters for which no training data is available.

In developing an influence diagram for software tuning, one or more

performance measures must be included as part of the model; the influence diagram

is used to determine the knob settings that optimize these performance measures for

a given workload. Ideally, we would like to be able to use a single performance

measure—e.g., the throughput of the system—so that the influence diagram can

simply optimize the value of that measure. However, this approach is often

impractical. Because the number of parameters associated with a node in an

influence diagram is exponential in the number of parents of the node, it is important

to limit the number of parents associated with any one node. A single, overarching

performance measure will typically have a large number of parents, and thus the

processes of learning its parameters and performing inference using the model can

become intractable. As a result, it is often necessary to use multiple performance-

related nodes—each with a smaller number of parents—and to optimize the sum of

the expected values of these nodes. Chapter 5 explains how regression can be used to

learn appropriate weights for these separate nodes so that optimizing their sum is

equivalent to optimizing the overall performance measure.

The challenge posed by continuous variables in an influence diagram stems

from the fact that current algorithms and tools for working with influence diagrams

are limited in their ability to handle such variables. As a result, each continuous

variable in the model must be discretized by dividing its range of possible values into

subranges, each of which is treated as a single value. Determining an effective

discretization for a single variable is a non-trivial problem, and the need to discretize

multiple variables simultaneously makes the problem that much more difficult. In

order for an influence-diagram-based approach to software tuning to be truly

automated, we need a general, systematic method for learning the appropriate

discretizations from training data. Otherwise, we will simply replace one tuning
6

problem (tuning the knobs) with another (tuning the discretizations). Fortunately,

Friedman and Goldschmidt [Fri96] have addressed the problem of learning

discretizations in the context of another type of graphical, probabilistic model, and

Chapter 5 presents a discretization method that builds on this prior work.

As discussed in the previous section, if a node in an influence diagram has one

or more parents, it will also have parameters associated with each assignment of

values to those parents. When a given assignment of values to a node’s parents does

not appear in the training data, it becomes more difficult to learn accurate estimates

of the associated parameters. To address this problem, Chapter 5 presents an

algorithm for estimating these parameters that exploits the nature of the

relationships that typically exist between a node and its chance-node parents in an

influence diagram developed for software tuning. Because these relationships are

typically monotonic—i.e., increasing the value of a node’s parent either never

decreases or never increases the value of the node itself—it is often possible to use

the values of parameters associated with parent-value assignments that are seen in

the training data (seen parameters) to devise constraints on the values of parameters

associated with parent-value assignments that are not seen (unseen parameters). The

algorithm uses these constraints to augment a nearest-neighbor approach to

parameter estimation, in which an unseen parameter is estimated by averaging the

values of the seen parameters whose parent-value assignments are determined to be

“nearest” to the unseen parent-value assignment.

Chapter 6 addresses another challenge involved in using an influence

diagram—or any type of model, for that matter—for software tuning. Although the

data needed to train the model can be collected online as the system being tuned

handles actual workloads, doing so can degrade the system’s performance as non-

optimal knob settings are tried. Therefore, it can be preferable to collect the data

offline—for example, by running the same system on a separate but similar hardware

platform. To perform this type of offline training, a workload generator may be

needed to create synthetic workloads that simulate the workloads for which the
7

system is being tuned. Chapter 6 discusses the design of workload generators for

software tuning, including a technique for ensuring that a generator captures the

steady-state performance of the system for the workloads being simulated. It also

presents db_perf, a workload generator for use with Berkeley DB.

Chapter 7 presents experimental results that demonstrate the ability of the

methodology presented in the thesis to determine optimal or near-optimal knob

settings for Berkeley DB for a wide range of workloads—including previously unseen

combinations of workload characteristics. The data gathered for these experiments is

also used to explore additional issues, including the efficacy of the method proposed

in Chapter 5 for estimating unseen parameters.

Finally, Chapter 8 concludes the thesis by assessing the methodology,

discussing possible future directions, and summarizing the lessons learned.

1.2 Contributions

This dissertation makes the following contributions:

• It presents a methodology for automated software tuning that employs

a graphical, probabilistic model known as an influence diagram and

related learning and inference algorithms. The methodology offers

step-by-step guidance on how to use these probabilistic reasoning and

decision-making techniques to tune an actual software system.

• It provides an example of using this methodology to simultaneously

tune four knobs from the Berkeley DB embedded database system. The

influence diagram developed for this system recommends knob settings

that offer considerable performance improvements over the default

knob settings on a varied set of workloads, and it outperforms an

alternative approach that uses regression models to determine the

optimal knob settings. In addition, the influence diagram is able to

effectively generalize from experience, predicting optimal or near-
8

optimal knob settings for previously unseen combinations of workload

characteristics.

• It explains how a workload generator can be used to facilitate the

software-tuning process. It presents an example workload generator

for Berkeley DB and addresses issues involved in designing and using

such a generator. It also proposes a technique for ensuring that the

workload generator captures the steady-state performance of the

system.

• It addresses several challenges involved with using an influence

diagram for software tuning and proposes novel methods for meeting

these challenges. These methods include: a regression-based approach

for incorporating performance measures in an influence diagram in a

tractable manner; an algorithm (based on the work of Friedman and

Goldschmidt [Fri96]) for learning effective discretizations of

continuous variables in an influence diagram; and an algorithm for

estimating influence-diagram parameters for which no training data is

available.

In summary, this thesis demonstrates that probabilistic reasoning and

decision-making techniques can be used as the basis of an effective, automated

approach to the tuning of complex software systems, and it provides practical advice

on how to apply these techniques to tune an actual system.
9

Chapter 2

Automated Software Tuning

To automate the process of tuning a complex software system, we need to construct a

software module that is capable of determining the optimal knob settings for a given

state of the system. This chapter begins by positioning this module within a high-

level architecture for automated software tuning and delineating the criteria that it

should meet. The chapter continues with an overview of three possible approaches to

automated software tuning and a discussion of the role that a workload generator can

play in two of these approaches. It then presents a justification of the approach that I

have selected for the work in this thesis, and it concludes with a survey of related

work.

2.1 High-Level Architecture

There can be a variety of methods for incorporating self-tuning capabilities into a

software system. I will assume for the sake of argument that there is a distinct mod-

ule known as the tuner that is responsible for determining the appropriate knob set-

tings for the system. The tuner takes as input a description of the relevant aspects of

the current state of the system, and, in light of that description, makes the necessary

adjustments to each of the knobs being tuned.

As the system runs, a separate module known as the monitor periodically

gathers statistics about the state of the system. Depending on the design of the tuner,

these statistics may be used to update the tuner’s internals over time (e.g., by

improving the models that it uses to determine the optimal knob settings). When the

monitor detects a significant change in the state of the system, it feeds a description
10

of the new state to the tuner, which determines if the system should be retuned and

alters the knob settings accordingly. The tuner may also request additional samples

of the statistics from the monitor as part of the process of determining what knob

adjustments are needed.

There are a number of issues that need to be addressed in order to implement

the monitor, such as determining an appropriate interval between samples of the

statistics and distinguishing substantial changes in the state of the system from

natural statistical fluctuations. For the most part, these issues have already been

successfully addressed by others (e.g., by Brown [Bro95]). In this thesis, I focus

exclusively on the design of the tuner.

In the sections that follow, I refer frequently to the environment in which the

tuner runs. This term encompasses all of the factors that can affect the accuracy of

the tuner’s decisions. Examples of such factors include aspects of the software system

that are not under the control of the tuner and features of the hardware platform on

which the system runs. One crucial aspect of the environment is the types of

workloads experienced by the system, or, more specifically, the distributions of

possible values for the variables used to characterize the workloads. A tuner is

typically calibrated to work in a particular environment, and it may need to be

recalibrated as aspects of the environment change over time.

2.2 Criteria

There are a number of criteria that an effective tuner should meet. They include

accuracy and reasonable time costs, as well as the ability to handle previously unseen

workloads, tune multiple knobs simultaneously, respond to changes in the environ-

ment, and run with little or no human intervention. This section describes each of

these criteria in turn.

An accurate tuner should recommend knob settings that optimize the system’s

performance most, if not all, of the time. Although perfect accuracy may not be

possible, any deviations from the optimal level of performance should be small.
11

Accuracy can be assessed by trying all possible combinations of knob settings for a

given workload and seeing whether the tuner’s recommended settings actually

produce the best performance. Ideally, multiple measurements would be gathered for

each knob setting, so that it would be possible to determine whether the observed

differences in performance are statistically significant. However, it is often

impractical to obtain more than one measurement per setting. As a result, the

following methodology will be used to assess the accuracy of a tuner’s recommended

knob settings for a given workload. The workload will be run once using each possible

combination of knob settings to produce a single performance value for each setting.

The slowdown of a given combination of knob settings will be computed by taking the

percent difference between the performance achieved using those settings and the

best performance seen during the entire set of runs for the workload, as shown in

Table 2.1. Knob settings will be considered near-optimal if their slowdown is greater

than zero but less than five percent, and a tuner’s recommendations for a given

workload will be considered accurate if they are either optimal or near-optimal.

In addition to being accurate, a tuner should have reasonable time costs.

Depending on the nature of the tuner, there can be as many as two different time

costs to consider: time spent training the tuner before it is deployed, and time spent

Table 2.1. Assessing a tuner’s accuracy. To assess the accuracy of a tuner’s recommended knob
settings for a given workload, the workload is run once using each possible combination of knob settings.
The results of one such set of runs are shown in the table below for eight knob settings labelled S1
through S8. The slowdown of a combination of knob settings is the percent difference between the
performance obtained using those settings and the best performance seen during the set of runs. For
example, the slowdown associated with the S6 settings is (21.22 - 19.71)/21.22 = 7.12 %. A tuner’s
recommended knob settings are considered accurate if their slowdown is less than five percent.

settings throughput
(txns/s) slowdown

S1 19.66 7.35 %

S2 18.71 11.83 %

S3 21.13 0.42 %

S4 21.22 0

S5 21.21 0.05 %

S6 19.71 7.12 %

S7 19.40 8.58 %

S8 19.97 5.89 %
12

determining the optimal knob settings for a given workload once the tuner is

deployed. Generally, the former time costs are less problematic because they are

amortized over the life of the tuner.

In order for a tuner to be both accurate and timely, it needs to be able to make

accurate tuning recommendations for previously unseen workloads—i.e., workloads

for which it has no prior performance measurements. Otherwise, the tuner would

need to try a large number of different knob settings for each new workload, and

doing so would result in unreasonable time costs. There may be environments in

which the number of possible workloads is small enough that a tuner does not need to

handle previously unseen workloads, but a general methodology for automated

tuning needs to construct tuners that are capable of doing so.

An effective tuner should also be able to tune multiple knobs simultaneously.

Much of the prior work on automated software tuning has focused on individual

knobs in isolation, but because the optimal setting for a given knob can depend on the

settings of other knobs in the system, it is important to be able to tune groups of

knobs together. There is almost certainly a limit to the number of knobs that a single

tuner can reasonably handle. In the context of database tuning, for example,

Chaudhuri and Weikum [Cha00] argue that it is impossible for a single tuner to

handle all of the knobs present in today’s database management systems, and they

propose a new paradigm in which such systems are composed of simple components

that are easier to model and tune. However, even simple components may have

several knobs, and high-level tuners will also be needed to tune the interactions

among the components. Therefore, effective software tuners will still need to be

capable of adjusting multiple knob at the same time.

A tuner should also be responsive to changes in the environment, revising its

recommended knob settings as necessary in light of these changes. For example, if a

tuner uses one or more models to determine the optimal knob settings for a given

workload, these models should be updated over time to ensure that the tuning

recommendations remain accurate. Even if no significant changes occur in the
13

environment, the tuner should still revise its recommendations as needed to reflect

the additional experience that it acquires over time.

Lastly, the tuner should be truly automated, meaning that it should require

little or no effort on the part of users of the software system. The input of domain

experts may be needed during the initial development of the tuner, but it should be

possible to ship the tuner with the software system and have it work “out of the box.”

This criterion does not rule out the possibility of human intervention. For example, it

may make sense to allow a user to provide input that improves the tuner’s

performance (e.g., by instructing it to gather extra training data after a hardware

upgrade). However, the tuner should function reasonably without this input.

2.3 Possible Approaches

There are a number of approaches that can be used to automate the tuning of a soft-

ware system. This section describes three classes of techniques: ones based on empir-

ical comparisons, feedback mechanisms, and analytical models, respectively.

2.3.1 Empirical Comparisons

One way of determining the optimal knob settings for a given workload is to empiri-

cally compare the performance of some or all of the possible knob settings. In other

words, the tuner can vary the knob settings according to some search technique, mea-

sure the performance of the system for each of the settings visited by the search, and

compare the resulting performance measurements to determine the settings that are

optimal for that workload. The measurements needed for the comparisons can be

made on the software system itself, or they can be obtained through the use of simu-

lations.

In its simplest form, a tuning approach based on empirical comparisons

involves trying all possible knob settings to see which ones work best. However, for

tuning problems with a large number of possible settings, an exhaustive comparison

may require an unreasonable amount of time, and some method of pruning the space
14

of possible settings is typically employed. Various search techniques can be used for

this purpose. Section 2.6.1 provides examples of some of them.

If the workloads faced by the system are easily characterized and known in

advance, it may be possible to carry out the necessary empirical comparisons before

the tuner is installed, allowing it to predetermine the optimal settings for each

workload faced by the system. If the workloads are not known in advance or are

likely to change over time, or if it is not possible to easily reproduce the workloads

ahead of time, the tuner will need to perform empirical comparisons whenever a new

workload arises. It may also be necessary to periodically conduct new comparisons for

previously seen workloads so that the tuner can adapt to changes in the

environment.

A key limitation of tuning approaches based on empirical comparisons is that

it can be difficult to find accurate knob settings in a reasonable amount of time. This

is especially problematic if the empirical comparisons must be performed

dynamically as new workloads appear. In addition, an approach based on empirical

comparisons is unable to generalize from experience, because the results of a given

round of comparisons are only applicable to one particular workload.

2.3.2 Feedback Mechanisms

In a feedback-driven approach to software tuning, the tuner iteratively adjusts the

knobs based on the values of one or more performance metrics; typically, what mat-

ters is how the current value of each metric compares to some critical value. For

example, if a tuner were attempting to maintain a particular response time for a

database system, its knob adjustments would be based on how the system’s current

response time compares to some response-time goal. After making a given set of knob

adjustments, the tuner observes the new values of the performance metrics and uses

them to determine whether any additional adjustments are needed. This repeated

cycle of observations and adjustments is often referred to as a feedback loop, because

the effects of one set of adjustments on the performance metrics are fed back into the

tuner and used to determine the next set of adjustments. The mathematical methods
15

of classical control theory [Fra01] can be used to determine the magnitudes of a given

set of knob adjustments, but simpler approaches—including ones based on heuristics

and estimation techniques—have typically been used in applications of feedback to

software tuning.

Like tuning methods based on empirical comparisons, feedback-based tuning

methods also involve measuring the performance obtained using various knob

settings. However, empirical-comparison-based tuning methods compare the

performance of various knob settings on a particular workload and use these

comparisons to determine the optimal knob settings for that workload. Feedback-

based methods, on the other hand, simply map the current values of the guiding

performance metrics to a set of knob adjustments and repeat this process until no

further adjustments are needed. Such methods never explicitly compare the

performance of the possible knob settings or consider the workload for which the

system is being tuned.

Although feedback mechanisms have been used effectively to create self-

tuning systems, they have a number of disadvantages. First, it is often difficult to use

feedback to tune multiple knobs simultaneously. With a single knob, the tuner only

needs to decide whether to increase or decrease the current knob setting, whereas

adjustments to multiple knobs require an understanding of how the knobs interact

and how they jointly affect the performance of the system. Second, a large number of

knob adjustments may be needed before the optimal knob settings are reached, and

this may lead to unreasonable runtime costs for the tuner.1 Third, it is difficult to

apply feedback mechanisms to tuning problems whose performance metrics do not

have obvious critical values. For example, if we are attempting to maximize the

throughput of a database system, the critical (i.e., maximal) throughput value is not

known ahead of time, and the impact of the knobs on throughput may be complicated

1. In addition, some knobs may be expensive enough to adjust that it would be impractical to iteratively
adjust them in a search for the optimal settings, even if only a small number of adjustments are needed.
For example, in my work with Berkeley DB, I consider adjustments to knobs that involve reconfiguring
the layout of a database (Sections 4.2.1 and 4.2.2). Such reconfigurations are extremely costly, so it is
important to minimize the number of adjustments to these knobs.
16

enough that the feedback mechanism would have no way of knowing when the

optimal settings had been reached.

Provided that a tuning problem is amenable to the use of feedback and that

the optimal knob settings can be reached in a reasonable amount of time, feedback-

based tuning methods have the advantage of being able to adapt easily to changes in

the environment. In addition, such methods are able to perform well without any

training (and thus can handle previously unseen workloads), although

experimentation may be needed to determine the critical values of the performance

metrics or to devise the heuristics used to guide the knob adjustments. Feedback

mechanisms are also well-suited to tuning problems that involve rapidly fluctuating

workloads. In such cases, we can eliminate the monitor process entirely and simply

allow the feedback-based tuner to continuously make knob adjustments based on the

changing values of its guiding performance metrics.

2.3.3 Analytical Models

Analytical models form the basis of a third approach to automated software tuning.

In particular, we can construct a tuner using models that predict the system’s perfor-

mance for any combination of workload characteristics and knob settings. When con-

fronted with a particular workload, the tuner can use these models to determine the

knob settings that maximize the expected performance of the system for that work-

load and tune the knobs accordingly. Like tuners based on empirical comparisons,

model-based tuners compare the performance of various knob settings on a given

workload, but the comparisons are based on the models’ predictions, not on measure-

ments of the actual or simulated performance of the system. And like any tuner

based on comparisons, a model-based tuner may need to employ special search tech-

niques when the space of possible knob settings is large enough that exhaustive com-

parisons are impractical.

There are a number of types of models that can be used to construct this type

of tuner, including statistical models based on regression and the graphical,

probabilistic models that I employ in this thesis. Each type of model has an
17

associated set of parameters, and the values of these parameters are typically

learned from a collection of training examples—each of which consists of statistics

capturing the workload characteristics, knob settings, and performance of the system

over some interval of time. As the system runs, the model’s parameters can be

updated to reflect newly collected statistics, allowing the tuner to make better

predictions and to adapt to changes in the environment.

Provided that its analytical models reflect the current enviroment, a model-

based tuner can determine the optimal knob settings for a given workload after a

single set of computations, avoiding the series of iterative knob adjustments that a

feedback-based tuner often requires. In addition, a model-based tuner is able to

generalize from experience, using its models to predict the performance of previously

unseen workloads and to thereby determine the optimal knob settings for those

workloads. A tuner based on empirical comparisons, by contrast, must actually test a

series of knob settings when confronted with a previously unseen workload—either

by performing a series of simulations or by actually configuring the system to use

each of the knob settings being tested. Therefore, a model-based tuner should

typically have lower runtime costs than either of the other types of tuner.

However, there are potential drawbacks of model-based approaches to tuning.

First, they typically require an initial expenditure of time to train the model; in such

cases, the model’s predictions are not accurate until sufficient training data has been

collected. Moreover, the process of collecting training examples from an already

deployed software system will often degrade the system’s performance, because the

need to see many different combinations of workload characteristics and knob

settings means that some of the knob settings chosen during training will necessarily

be non-optimal, and they may lead to significantly poorer performance than the

system’s default settings. Second, it can be difficult to devise an accurate performance

model for a complex software system. As the number of variables relevant to the

tuning problem increases—and, in particular, as we attempt to tune an increasing

number of interacting knobs—the challenge of developing an accurate model also
18

increases. Although these potential drawbacks of model-based approaches are

significant, the next two sections explain how they can be overcome to a certain

degree.

2.4 Using a Workload Generator for Tuning

Tuners based on both empirical comparisons and analytical models need to see vari-

ous combinations of knob settings and workload characteristics before they can deter-

mine accurate knob settings for a given workload. A tuner that performs empirical

comparisons needs to measure the performance of a single workload using different

knob settings, and a model-based tuner needs to be trained with statistics gathered

from examples involving various combinations of knob settings and workload charac-

teristics. Both the comparison and training processes can be conducted online as a

deployed system handles workloads, but doing so can have a negative impact on the

system’s performance as non-optimal settings are tried. Therefore, it may be prefera-

ble to conduct the comparisons or training offline—either on the system itself before

it is actually deployed, on a version of the system running on a separate but similar

hardware platform, or on the deployed system during periods of idleness.

To perform an offline evaluation of the effectiveness of one or more

combinations of knob settings on a given workload, the workload must be reproduced

in some way. For some software systems, it may be possible to replicate the workload

more or less exactly using traces or logs obtained from the running system. For other

systems, the process of reproducing the workload may be more difficult, either

because sufficiently detailed traces are not available or because traces alone are

insufficient for generating the workload in question. For example, when tuning a

database system or a Web server, it may be necessary to reproduce the behavior of

multiple, concurrent clients of the system, which cannot be accomplished by simply

rerunning the trace. Therefore, some sort of workload generator may be needed to

create synthetic workloads that simulate the workloads for which the system is being
19

tuned. Chapter 6 provides more detail about the use of workload generators for

tuning.

A workload generator can be used in conjunction with tuners that use either

empirical comparisons or models, but a model-based tuner is often a better fit. Using

a model-based approach means that the generated workloads do not need to precisely

match the actual workloads run on the system. The training examples obtained using

the workload generator may be seen as providing reasonable starting estimates of

the model’s parameters, and the parameters can be refined incrementally over time

as the system uses the model for tuning. Moreover, because a model-based tuner can

generalize from its training examples, the workload generator can simply sample

from a wide range of possible workloads, and thereby avoid the need for exact

characterizations of the workloads that run on the system. With a tuner that

performs empirical comparisons, on the other hand, the workloads produced by the

generator must correspond to actual workloads that the system will face.

2.5 Choosing an Approach to Automated Tuning

Given the three possible approaches to automated software tuning presented in Sec-

tion 2.3, the choice of which approach to take will depend in part on the nature of the

system being tuned and the goal of the tuning process. For example, if a system has a

small number of regularly recurring workloads, an approach based on empirical com-

parisons may make the most sense. If the goal of tuning is to enforce some type of

performance guarantee in the face of rapidly changing workloads, an approach based

on feedback may work best. But if the goal of tuning is to optimize a given measure of

the system’s performance, and if the workload or environment can vary substantially

over time in unpredictable ways, a model-based tuning approach has a number of

advantages. These include the ability to determine the optimal knob settings without

performing a series of iterative adjustments (unlike a feedback-based approach) and

the ability to generalize from experience to previously unseen workloads (unlike an

approach based on empirical comparisons).
20

As discussed in Section 2.3.3, there are two potential drawbacks of a model-

based approach. The first is the possibility of performance degradations during the

training of the model (a limitation shared by methods that employ empirical

comparisons). However, as discussed in Section 2.4, it may be possible to avoid this

problem by training the tuner offline, perhaps through the use of a workload

generator.

The second potential drawback of a model-based approach is the difficulty of

devising an accurate model. A feedback-based approach—which requires the

determination of critical values and of heuristics for adjusting the knobs—shares this

limitation, at least to a certain degree. Although this drawback is a significant one,

choosing the right type of model can reduce the difficulties involved in building a good

model. In particular, the influence diagram formalism presented in Chapter 3 has

features that facilitate the modeling of complex decision problems like the ones

involved in software tuning. In particular, the ability of influence diagrams to

explicitly model the interactions between the relevant variables in ways that take

advantage of an expert’s knowledge of the underlying system should allow these

models to handle more complex tuning problems than models that do not explicitly

encode such interactions. Similar graphical, probabilistic models have already been

used to model systems of significant complexity [e.g., Pra94], and there is active

research into further increasing the expressive power of these models [Pfe99, Pfe00].

Given the advantages of a model-based approach to software tuning and the

potential for workload generators and graphical, probabilistic models to overcome

this approach’s limitations, I have adopted a model-based approach using an

influence diagram for the work in this thesis. Chapter 3 provides more detail about

influence diagrams and the probability theory and decision theory on which they are

based, and Chapter 5 presents a methodology for using an influence diagram for

software tuning.
21

2.6 Related Work

A considerable amount of research has been devoted to automating the tuning of soft-

ware systems. This section presents some representative examples of this prior work,

concentrating primarily on research in database systems and operating systems. The

examples are grouped according to the type of tuning approach that they employ.

2.6.1 Work Based on Empirical Comparisons

Reiner and Pinkerton [Rei81] present an approach that uses empirical comparisons

to dynamically adapt the knob settings in an operating system. The comparisons are

performed online during a special experimental phase. Each time the state of the sys-

tem changes significantly, one of the candidate knob settings is chosen randomly

without replacement and used to configure the system, and the resulting perfor-

mance of the system is measured. If a given system state persists long enough, multi-

ple settings may be tried. Over time, the system acquires enough data to determine

the optimal settings for each possible state of the system, and it concludes the experi-

mental phase. Thereafter, the knobs are dynamically adjusted according to the opti-

mal settings for each system state, and additional experiments are occasionally

conducted to allow the system to adapt to changes in the environment. The authors

obtained a small performance improvement in experiments that used this methodol-

ogy to tune two scheduling parameters on a time-sharing system. They did not

attempt to assess the degree to which the the experimental phase degraded the sys-

tem’s performance.

Seltzer and Small [Sel97] propose a methodology for constructing an

operating system kernel that monitors its own performance and adapts to changing

workloads. Their approach includes the use of comparisons to determine the optimal

policies (e.g., the optimal buffer-cache replacement policy) for handling a particular

workload. Because their methodology was developed for an extensible operating

system that allows many of its modules to be replaced on a per-process basis [Sel96],

the comparisons can be performed by downloading a special simulation module into
22

the kernel for each of the possible policies and using these modules to process actual

workload traces. Simulation modules maintain their own separate state and do not

affect the global state of the system, and thus the kernel can continue to use the

current default policies while the simulations explore possible alternatives. This

significantly reduces the potential negative effects of tuning on the performance of

the system. However, most operating systems do not provide the extensibility needed

to conduct this type of simulation.

Feitelson and Naaman [Fei99] propose a methodology based on empirical

comparisons for constructing self-tuning operating systems. Instead of exhaustively

comparing all possible knob settings, their methodology uses genetic algorithms to

guide the search for good settings. In each round of comparisons, several candidate

settings are tested using simulations that are conducted when the system is idle.

Settings that perform well in a given round of simulations are more likely to persist

into the next round either in whole or in part, as various transformations combine

and modify the current group of candidate settings according to their relative

performance. By favoring the knob settings that perform best on the simulations, the

genetic algorithms should eventually converge on knob settings that improve the

performance of the system. The authors’ only validation of this approach involves

tuning a parameterized scheduling algorithm that can be evaluated in isolation from

the rest of the operating system, and thus they are able conduct the comparisons

offline. They acknowledge that it may be difficult to conduct good simulations of other

aspects of an operating system, and that the overhead imposed by running

simulations on the system as it is tuned would need to be assessed.

Vuduc et al. [Vud01] discuss methods for determining the best

implementation of a library subroutine for a particular platform and set of input

parameters. They note that such methods typically use empirical comparisons to find

the optimal implementation, and that application-specific heuristics are often used to

reduce the number of settings that are compared. To complement the use of such

heuristics, the authors propose using performance statistics gathered during the
23

search for the optimal settings to decide when the search should be stopped.

Specifically, they employ statistical methods to estimate the probability that the

performance of the best implementation seen thus far differs from the performance of

the optimal implementation by more than some user-specified value. When that

probability falls below a second user-specified value, the search is halted.

The tuning approaches discussed in this section—like all approaches that

base their tuning recommendations on empirical comparisons—are unable to

generalize from experience. As a result, additional training is needed when new

workloads arise—something that is not necessary in the model-based approach that I

propose. Seltzer and Small’s approach mitigates the impact of this additional

training on the system’s performance by using special simulation modules, but these

modules are not available on most systems. As a result, approaches based on

empirical comparisons can degrade the performance of the system when new

workloads arise, unless they defer the additional training to periods when the system

is idle or run the training offline. In any case, the need for additional training means

that these systems are unable to make timely tuning recommendations for previously

unseen workloads. The model-based approach presented in this thesis, on the other

hand, can recommend optimal or near-optimal tunings for new workloads in a

reasonable amount of time by generalizing from previously seen workloads.

2.6.2 Work Based on Feedback Mechanisms

Weikum et al. [Wei94] use a feedback-driven approach to tune a database system’s

multiprogramming level (MPL), a knob that limits the number of concurrent accesses

to the database. They base the adjustments to this knob on a measure of lock conten-

tion in the system: when this metric exceeds a critical value, the MPL is reduced, and

when it drops below the critical value, the MPL is increased. The authors determined

the critical value experimentally, and they claim that it does not need to be fine-

tuned; rather, they present the results of experiments demonstrating that there is a
24

range of critical values that perform well on a wide range of workloads. The authors

also present results showing that their approach allows the system to provide accept-

able response times under extremely high loads.

Kurt Brown et al. [Bro94, Bro95, Bro96] use mechanisms based on feedback to

tune knobs related to memory management and load control in a database system.

The objective of the tuning is to meet the response-time goals of individual workload

classes in a multiclass database workload, and the knobs are adjusted until either

these goals are met or until the tuner determines that they cannot be met. The

workload classes are tuned separately, and heuristics are used to address

interdependencies between classes. Depending on the nature of a given class’s

memory usage, either one or two knobs are adjusted, and estimates and heuristics

are used to guide the adjustments. Simulations used to validate the authors’

proposed mechanisms show that both the one-knob and two-knob tuners are able to

meet the goals of a variety of workloads, although the authors acknowledge that it

can take a long time to achieve the response-time goals of certain types of workloads.

The model-based approach presented in this thesis, on the other hand, is able to

avoid the potentially lengthy series of iterative adjustments that a feedback-based

approach may require.

Microsoft’s SQL Server employs feedback-based tuning to adjust the size of its

cache of database pages [Cha99]. The adjustments are based on the amount of free

physical memory in the system: when the number of free memory pages drops below

one threshold, the size of the database cache is reduced; when the number of free

pages exceed a second threshold, the cache size is increased. The authors of the paper

that mentions this use of feedback-based tuning do not explain how the threshold

values are chosen. The authors also outline plans to use feedback to adjust the

number of pages read into the cache when the system performs read-ahead (i.e.,

when it proactively reads in pages that it anticipates will be accessed soon).

In the SEDA framework for highly concurrent Internet applications [Wel01],

applications consist of a series of components called stages that are connected by
25

queues of events, and feedback-driven tuners called resource controllers are used to

dynamically adjust each stage’s resource usage. For example, a stage’s thread pool

controller tunes the number of threads associated with the stage, adding a thread

when the length of the stage’s queue rises above some threshold and removing a

thread when it sits idle for longer than a second threshold. SEDA’s resource

controllers operate at the application level, without needing to be aware of the

resource management policies of the underlying operating system. It is unclear how

sensitive these controllers are to the thresholds used to guide the knob adjustments,

but the authors present results that demonstrate the ability of the resource

controllers to effectively adapt to increasing load.

Feedback mechanisms have also been widely applied to resource management

problems in operating systems, including CPU scheduling [Cor62, Mas90, Ste99] and

network congestion and flow control [Jac88, Kes91]. To facilitate the use of feedback-

based tuners in this domain, Goel et al. [Goe99] have developed a toolkit of simple,

modular feedback components that can be combined and reused. However, all of their

example tuners adjust a single knob, and it is unclear whether their components can

effectively handle software-tuning problems that involve the simultaneous

adjustment of multiple knobs.

More generally, almost all of the examples presented in this section involve

tuning individual knobs in isolation. The one exception is the work of Brown et al.

[Bro94, Bro95, Bro96], who tune two knobs simultaneously for one class of workloads.

However, Brown himself explicitly mentions the difficulty of developing a feedback-

based tuner that controls more than one knob [Bro95, Section 5.2], and he is forced to

conduct extensive experimentation to devise the heuristics that his tuner uses to

adjust two knobs in concert. The model-based approach presented in this thesis is

capable of tuning multiple knobs simultaneously, as demonstrated by the

experiments in Chapter 7, which involve four knobs.

Although feedback-based methods can, in theory, avoid the need for training

and model building required by model-based methods, the examples presented above
26

demonstrate that experimentation and the development of heuristics are often

required to construct an effective feedback-based tuner. Even the examples that do

not mention the need for this type of preliminary work would need some means of

determining the threshold values that guide the tuner’s knob adjustments.

2.6.3 Work Based on Analytical Models

Brewer [Bre94, Bre95] uses regression models to tune library subroutines. He

employs linear regression but allows the independent variables to be nonlinear (e.g.,

an independent variable can represent the product of two or more of the parameters

of the subroutine being optimized). Although this approach works well for tuning

subroutines, it is unclear whether it would be possible to produce accurate regres-

sion-based performance models of large-scale software systems. The influence dia-

gram models employed in this thesis, on the other hand, are able to explicitly model

interactions between the relevant variables, and they should thus be able to provide

more accurate models of complex systems. Section 7.4.3 compares the tuning recom-

mendations of an influence diagram and with those of a set of regression models for

four knobs from the Berkeley DB embedded database system. This comparison shows

that an influence diagram outperforms regression models in this domain.

Matthews et al. [Mat97] use a model-based approach to tune a modified

version of the log-structured file system (LFS). For example, they enable LFS to

dynamically choose the better of two methods for performing garbage collection on

the log that the system maintains on disk. Their models consist of simple formulas

for estimating the cost or cost-benefit ratio of the possible knob settings; they are

based on an understanding of the operations performed by the system and their

associated costs. The models’ only parameters are measurements of the costs of

various operations on a particular disk. The authors assess the effectiveness of their

approach through simulations of both LFS and the disk on which it resides. It is

unclear how well such simple models would work on an actual system, or whether it

would even be possible to predict the performance of more complex systems using
27

such models. Here again, influence diagrams should be able to handle complex,

multi-knob systems more easily.

In a relational database system, indices and materialized views are

supplemental data structures that can be created in an attempt to speed up

frequently occurring database queries. The AutoAdmin project has developed model-

based techniques for automating the selection of which indices and materialized

views to create [Cha97, Agr00]. The authors use the cost estimates of the database

system’s query optimizer as the model, and they develop novel methods for selecting

which indices and materialized views to consider and for efficiently searching

through the space of possible combinations of indices and materialized views. The

internal models of the query optimizer are not discussed, and thus it would be

difficult to transfer their approach to an arbitrary software system.

In the Odyssey platform for remote computing [Nob97], applications adapt to

changes in resource availability and user goals by varying the fidelity with which

they operate (e.g., the frame rate used by a streaming video application). Narayanan

et al. [Nar00] augment Odyssey with a system that uses models to predict an

application’s resource usage as a function of the relevant input parameters and

fidelity metrics, and to thereby recommend appropriate fidelity levels for a given

operation. To avoid annoying the user, the initial training data is collected during a

special offline mode in which a given operation is repeatedly run using randomly

chosen fidelities and inputs, and the parameters of the models are refined as the

system runs. These features of Odyssey are also found in the methodology proposed

in this thesis, which advocates offline training (perhaps using a workload generator)

and which includes a process for refining the parameters of the influence diagram

over time. For their initial prototype, Narayanan et al. employ linear regression to

derive the models, and they use linear gradient descent [Mit97] to update the models’

coefficients over time. To determine the appropriate fidelities for a given set of inputs,

the tuning system employs a gradient-descent solver. The potential limitations of

regression-based models mentioned above also apply here.
28

Menascé et al. [Men01] use a tuner based on queueing network models

[Laz84] to optimize the quality of service (QoS) of an e-commerce site. When their

system detects that a QoS guarantee has been violated, it employs a hill-climbing

search guided by the models’ predictions to find the knob settings that yield the

locally maximal QoS. The authors present results showing that their tuner, which

adjusts four knobs, is able to maintain reasonable QoS values in the face of

increasing load. However, although queueing network models work well in this

domain—in which the knobs being tuned are directly connected to queues of requests

waiting to be processed by a Web server and an application server—it is unclear

whether they could form the basis of a general software tuning methodology.

Influence diagrams, on the other hand, do not require that the software system be

modeled as a series of queues.

Vuduc et al. [Vud01], after discussing how empirical comparisons can be used

to determine the optimal implementation of a library subroutine for a given platform

(see Section 2.6.1), note that the best implementation may depend on the input

parameters. Therefore, they propose taking a set of several “good” implementations

(possibly found using empirical comparisons) and using models derived from training

data to determine which of these implementations is best for a given set of inputs.

They experimentally compare the ability of three types of models—including the

regression models proposed by Brewer and a statistical classification algorithm

known as the support vector method [Vap95]—to choose between three candidate

algorithms for matrix multiplication. The latter method has the best performance of

the three, but it is unclear how well it would scale to tuning problems with more than

one knob or, more generally, to problems with larger numbers of possible knob

settings.
29

2.7 Conclusions

Section 2.3 outlined three possible approaches to automated software tuning. The

choice of which approach to take will depend in part on the nature of the system

being tuned and the goal of the tuning process. However, as argued in Section 2.5, a

model-based approach that uses an influence diagram for the model seems like a good

choice for situations in which the tuner needs to optimize a measure of the system’s

performance in the face of unpredictable workload variations and environmental

changes.

The remaining chapters of this thesis present a methodology for automated

software tuning that employs a tuner based on influence diagrams. Depending on the

nature of the system being tuned, the methodology may also use a workload

generator to obtain the data needed to train the influence diagram. Chapter 5

describes how influence diagrams can be used to construct an effective model-based

tuner, Chapter 6 provides more detail about the use of a workload generator to

produce the necessary training data, and Chapter 7 provides an example of using a

workload generator and an influence diagram to tune an actual software system.
30

Chapter 3

Probabilistic Reasoning
and Decision-Making

This chapter provides an overview of the probabilistic reasoning and decision-making

techniques that are at the heart of the automated approach to software tuning pre-

sented in this thesis. The chapter begins with a review of concepts from probability

theory and decision theory that are needed to understand the rest of the thesis. It

continues with an introduction to influence diagrams, including a description of the

structure and parameters of these probabilistic, graphical models and an explanation

of how they can be used to determine optimal decisions. Chapter 5 explains in detail

how to construct, train, and use a model of this type for software tuning.

3.1 Basics from Probability Theory and Decision Theory

Software tuning may be viewed as an example of decision-making under uncertainty.

We are trying to decide which knob settings to use to maximize the performance of a

software system for a given workload, and we need to make this decision in light of

potentially uncertain knowledge about the state of the system and how the system

will be affected by different settings of the knobs.1 By employing probability theory

and decision theory, we can represent our uncertainty about the relevant variables

and determine the knob settings that maximize the expected performance of the sys-

tem, given a particular set of workload characteristics.

1. Although this chapter refers to human decision-makers (“we”), the type of probabilitic reasoning and
decision-making that is described can also be performed by an automated tuner. Chapter 5 explains how
to construct such a tuner.
31

Consider, for example, a scenario in which we need to tune the frequency with

which checkpoints are taken in a database system—a parameter known as the

checkpoint interval. To determine the optimal checkpoint interval for a given

workload, we need to reason about aspects of the workload and the system that are

relevant to this decision. In addition to the checkpoint interval itself, the relevant

variables might include the following:

• checkpoint overhead: some measure of the overhead of taking checkpoints (e.g., the
average number of seconds that the system spends taking checkpoints in a given
one-hour period).

• time to recover: the average number of seconds needed to recover from a failure
such as a crash of the server machine on which the database system runs. Longer
checkpoint intervals increase the time needed to recover.

• log writes per sec: the average number of times per second that the system writes a
collection of log entries to the on-disk log file. The more log entries that are written
to the log between checkpoints, the more time it will take to perform a checkpoint
or to recover from failure.

• log entries per MB: the average number of log entries contained in one megabyte of
the log file.

• MB per checkpoint: the average number of megabytes written to the log file
between successive checkpoints.

• aborts per sec: the average number of database transactions that must be aborted
every second. Aborts tend to increase the number of log writes, and they also affect
the nature of the operations that must be performed during recovery.

When selecting a checkpoint interval for a given workload, we are uncertain about

how the possible values for this knob will affect the performance of the system—as

measured by some combination of the variables checkpoint overhead and time to

recover. In addition, we may also be uncertain about the values of variables like

aborts per sec that characterize the workload. Probability theory and decision theory

allow us to quantify our uncertainty and to determine the best possible decisions

given that uncertainty.

The following sections present an overview of the material from probability

theory and decision theory that is needed to understand the thesis. A more
32

comprehensive introduction to these topics can be found in a number of introductory

texts [Dra67, Ros01, inter alia].

3.1.1 Joint and Marginal Probability Distributions

To represent and reason about a software-tuning problem, we first need to define the

relevant variables. As part of this process, we need to specify, for each variable V, a

corresponding set of possible values Ω(V). A variable is either discrete, meaning that

its possible values can be counted, or continuous, meaning that it can take on any

real number from some interval (e.g., any real number between 0 and 100). The

remainder of this discussion will focus on discrete variables. A continuous variable

like the ones in our example can be converted to a discrete variable by dividing its

range of possible values into subranges, each of which is treated as a single value.

This process is known as discretization. For example, if log writes per sec can take on

any value from the interval [0, ∞), we can divide this interval into the subintervals [0,

10), [10, 100), and [100, ∞), and give all values in [0, 10) a value of 0, all values in [10,

100) a value of 1, and all values in [100, ∞) a value of 2 in the discretized version of

the variable. Section 5.3 discusses various approaches that can be taken to discretize

continuous variables.

Once we have determined the relevant variables V1, ..., Vn, we can use

probability theory to represent the likelihood of seeing various assignments of values

to these variables; I will refer to a particular assignment of values V1 = v1, ..., Vn = vn

as an instantiation of the variables. The probability of the instantiation V1 = v1, ..., Vn

= vn, written P(V1 = v1, ... , Vn = vn), is a real number from the interval [0, 1] that

represents the relative likelihood of seeing that instantiation. For the sake of

conciseness, the notation P(V = v) will typically be used to refer to the same

probability, where V is the set of variables (written as a vector) and v is the vector of

values assigned to those variables. Similarly, Ω(V) will be used to refer to all possible

vectors of values that can be assigned to the variables in set V. Probability values can

be based on experimental observations, subjective assessments, or a combination of
33

the two. Section 5.4 explains how the probabilities needed for software tuning can be

learned from data.

A collection of probabilities for all possible instantiations of a set of variables

is known as a joint probability distribution for the variables; the individual

probabilities in such a joint distribution must sum to 1. Table 3.1 shows a sample

joint probability distribution for two variables, A and B. For example, we can

determine that P(A = 1, B = 2) is 0.25 by finding the value at the intersection of the

column in which A = 1 and the row in which B = 2.

From the joint probability distribution for a set of variables, we can derive a

probability distribution for a subset of those variables using a process known as

marginalization. If V is the full set of variables, X is the subset of V whose values we

are interested in, and Y is the subset containing the remaining variables (i.e., Y = V -

X), then for any x ∈ Ω(X):

(EQ 1)

For example, given the joint probability distribution in Table 3.1, we can the compute

the probability that A = 0 as follows:

P(A = 0)= P(A = 0, B = 0) + P(A = 0, B = 1) + P(A = 0, B = 2) + P(A = 0, B = 3)

= 0.23 + 0.08 + 0.04 + 0.13 = 0.48

Marginalization effectively eliminates variables from a probability distribution by

summing over all possible instantiations of those variables. The resulting distribu-

tion is known as a marginal distribution.

Table 3.1. A sample joint probability distribution for the variables A and B

A = 0 A = 1

B = 0 0.23 0.11

B = 1 0.08 0.14

B = 2 0.04 0.25

B = 3 0.13 0.02

P X x=() P X x= Y y=,()
y Ω Y()∈

∑=
34

3.1.2 Conditional Probabilities

Learning the value of one or more of the variables in which we are interested can lead

us to change our probability assessments for the remaining variables. In our tuning

problem, for example, if we know that the value of log writes per sec is large, it

becomes more likely that the value of time to recover is also large. Probabilities that

are assessed in the light of information concerning one or more of the variables are

known as conditional or posterior probabilities, and we say that the resulting proba-

bilities are conditioned on the available information. The conditioning information

itself is often referred to as evidence.

I will use the notation P(X = x | Y = y) to refer to the conditional probability

that X = x given that Y = y and that there is no information about the values of the

variables that are not in Y. Probabilities that are assessed without any knowledge of

the values of the variables are sometimes called unconditional or prior probabilities

to distinguish them from conditional probabilities.

We can compute conditional probabilities from unconditional probabilities as

follows:

(EQ 2)

This equation holds provided that P(Y = y) > 0. When P(Y = y) = 0, conditional proba-

bilities that are conditioned on the instantiation Y = y are undefined. The collection of

conditional probabilities P(X = x | Y = y) for all possible instantiations of the variables

in X, given the instantiation Y = y of the variables in Y, is known as the conditional

probability distribution for the variables in X, given Y = y.

From equation 2, we can derive what is often referred to as the Product Rule:

(EQ 3)

This equation can be used to compute elements of a joint probability distribution,

given elements of the corresponding marginal and conditional distributions. More

generally, given the evidence Z = z:

(EQ 4)

P X x= Y y=() P X x Y y=,=()
P Y y=()

--=

P X x Y y=,=() P Y y=()P X x Y y==()=

P X x Y y Z z==,=() P Y y Z z==()P X x Y y Z z=,==(=
35

And repeated applications of the Product Rule can be used to derive another useful

equation known as the Chain Rule, which holds for any instantiation of the variables

{X1, ..., Xn}:

(EQ 5)

Finally, we can also perform two variants of marginalization using conditional

probabilities. As with marginalization using unconditional probabilities (equation 1),

both of these variants effectively eliminate one or more variables from a probability

distribution by summing over all instantiations of those variables. If we have

conditional probability distributions for the variables in V given the variables in W

(i.e., probabilities of the form P(V = v | W = w)), the first variant performs

marginalization over a subset of the variables in V, and the second performs

marginalization over a subset of the variables in W.

First variant. If V = X ∪ Y, then P(V = v | W = w) = P(X = x, Y = y | W = w) and we

can eliminate the variables in Y using a straightforward extension of equation 1 in

which the probabilities are conditioned on the evidence W = w:

(EQ 6)

Second variant.If W = T ∪ Z, then P(V = v | W = w) = P(V = v | T = t, Z = z) and we

can eliminate the variables in T from the distribution as follows. First, we note that if

we had probabilities of the form P(V = v, T = t | Z = z), we could use equation 6 to

obtain the desired probabilities:

To use the available probabilities, we apply the Product Rule to transform the right-

hand side of the above equation, which gives us the second variant:

(EQ 7)

P X1 x1 … Xn xn=, ,=() P Xi xi= Xi 1– xi 1–= … X1 x1=, ,()
i 1=

n

∏=

P X x W w==() P X x= Y y W w==,()
y Ω Y()∈

∑=

P V v Z z==() P V v T t Z z==,=()
t Ω T()∈

∑=

P V v Z z==() P
t Ω T()∈

∑ V v T t Z z=,==()P T t Z z==()=
36

3.1.3 Bayes’ Law

If we have conditional probabilities for one set of variables, X, given instantiations of

a second set of variables, Y, it is often useful to be able to determine conditional prob-

abilities for the variables in Y given instantiations of the variables in X. To do so, we

first use the Product Rule (equation 3) to show that

.

Then, by solving this equation for P(Y = y | X = x), we obtain an equation known as

Bayes’ Law that allows us to compute the conditional probabilities in which we are

interested:

(EQ 8)

To use Bayes’ Law, we need to know both the conditional probability P(Y = y | X = x)

and the marginal probability P(Y = y), but we can use marginalization to compute the

marginal probability P(X = x) that appears in the denominator of equation 8. This

yields an equivalent version of Bayes’ Law:

(EQ 9)

3.1.4 Independence and Conditional Independence

Knowing the value of one or more of the variables of interest will often affect our

probability assessments for the remaining variables, but there can be combinations of

variables for which this is not the case. In particular, we say that two sets of vari-

ables, X and Y, are independent if, for all x ∈ Ω(X) and all y ∈ Ω(Y),

P(X = x, Y = y) = P(X = x)P(Y = y).

We can use this definition and equation 3 to show that, if X and Y are independent,

then for all x ∈ Ω(X) and all y ∈ Ω(Y),

P(X = x | Y = y) = P(X = x) and

P(Y = y | X = x) = P(Y = y).

P X x=()P Y y X x==() P Y y=()P X x Y y==(=

P Y y X x==()
P Y y=()P X x Y y==()

P X x=()
---=

P Y y X x==()
P Y y=()P X x Y y==()

P X x Y y==()P Y y=()
y Ω Y()∈

∑
---=
37

In other words, if two sets of variables are independent, knowing the values of the

variables from one set does not affect our probability assessments for the variables in

the other set.

If two sets of variables are not independent in general, it may still be the case

that they are independent given the values of a third set of variables. We say that X

and Y are conditionally independent given Z if, for all x ∈ Ω(X), all y ∈ Ω(Y), and all z

∈ Ω(Z),

P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z).

We can use equation 3 to show that, if X and Y are conditionally independent given Z,

then for all x ∈ Ω(X), all y ∈ Ω(Y), and all z ∈ Ω(Z),

P(X = x | Y = y, Z = z) = P(X = x | Z = z) and

P(Y = y | X = x, Z = z) = P(Y = y | Z = z).

In other words, provided that we know the values of the variables in Z, knowing the

values of the variables in Y will not affect our probability assessments for the vari-

ables in X, and vice versa.

In our simple tuning example, MB per checkpoint captures the impact of both

log writes per sec and checkpoint interval on time to recover. Therefore, it seems

reasonable to conclude that once we know the value of MB per checkpoint, knowing

the value of either log writes per sec or checkpoint interval will not affect our

probability assessments for time to recover. We can thus say that time to recover is

conditionally independent of log writes per sec and checkpoint interval, given MB per

checkpoint. Section 3.2.3 explains how influence diagrams take advantage of

conditional independence relationships to reduce the number of parameters needed

to model a decision problem.

3.1.5 Expected Values

When dealing with a variable, X, we often summarize the distribution of its possible

values using a quantity known as the expected value of the variable, written E(X):

(EQ 10)E X() xP X x=()
x Ω X()∈

∑=
38

The expected value is essentially a weighted average of the possible values of the

variable, with the values’ probabilities serving as the weights. If the variable in ques-

tion is itself the sum of two or more variables, the overall expected value is simply the

sum of the expected values of the individual terms:

(EQ 11)

We can also compute the conditional expected value of a variable X given some

evidence Y = y. This quantity, which is written E(X | Y = y), is computed as follows:

(EQ 12)

And if we have a table of conditional expected values of the form E(X | Y = y, Z = z) for

all instantiations of the variables in the sets Y and Z, we can use marginalization

over the variables in Z to compute a corresponding table of expected values condi-

tioned on instantiations of only the variables in Y:

(EQ 13)

3.1.6 Making Optimal Decisions Under Uncertainty

Decision theory is based on the idea that individuals should attempt to maximize the

utility of the outcomes of their decisions, where utility is a measure of the relative

desirability of an outcome to an individual. When tuning a software system, utility is

typically based on one or more performance measures, such as throughput or

response time.

If the outcome of a particular decision is uncertain, decision theory stipulates

that the optimal decision is the one that maximizes the conditional expected value of

the utility, given the decision made and any other available evidence. More formally,

if the decision is represented by the variable X and the utility is represented by the

variable U, and if evidence is available for a set of variables Y, then the optimal

decision given the evidence Y = y is written d*(X | Y = y) and is determined as follows:

(EQ 14)

E X1 X2 … Xn+ + +() E X1() E X2() … E Xn()+ + +=

E X Y y=() x P X x Y y==()⋅
x Ω X()∈

∑=

E X Y y=() E X Y y Z z=,=()P Z z Y y==()
z Ω Z()∈

∑=

d* X Y y=()
arg max
x ΩX∈

E U X x Y, y= =()()=
39

The collection of optimal decisions for all possible instantiations of the evidence vari-

ables is known as the optimal policy for the decision.

3.1.7 Conclusions

When tuning a software system, probability theory and decision theory allow us to

represent our uncertainty about the relevant variables and to choose the knob set-

tings that maximize the expected performance of the system. However, if the number

of variables involved is large—as will typically be the case for a complex system—it

can be difficult to specify and manipulate the full joint probability distribution. Influ-

ence diagrams are graphical, probabilistic models that provide one method of dealing

with this problem. The next section explains what these models are and how they are

used.

3.2 Influence Diagrams

Influence diagrams were developed by decision analysts to provide an intuitive yet

powerful tool for representing and reasoning about difficult decision problems

[How84]. The following paragraphs provide an overview of the structure and parame-

ters of these graphical models and how they can be used to infer optimal decisions.

For more information, readers are encouraged to consult related work from decision

analysis and artificial intelligence [How84, Jen01, Sha86].

3.2.1 Structure of the Model

In structure, an influence diagram is a graph, a data structure that consists of a set of

nodes, N, and a set of arcs of the form (ni, nj), where ni and nj are elements of N. It is a

directed graph because each arc has an associated direction: arc (ni, nj) goes from

node ni (the initial node of the arc) to node nj (the terminating node of the arc), and it

is typically depicted as an arrow with its tail at node ni and its head at node nj. Fig-

ure 3.1 displays a simple directed graph.
40

A directed path is a sequence of arcs of the form {(n1, n2), (n2, n3), (n3, n4), ...}

in which the terminating node of a given arc is the initial node of the next arc in the

sequence. If there is an arc from node ni to node nj, ni is referred to as a parent of nj

and nj is referred to as a child of ni. In addition, ni is said to inherit from nj. More

generally, if there is a directed path involving one or more arcs from ni to nj, ni is

considered an ancestor of nj and nj is considered a descendant of ni. If there is no

directed path from ni to nj, nj is referred to as a nondescendant of ni. A cycle is a path

that begins and ends at the same node; adding the arc (C, A) to the graph in Figure

3.1 would create a cycle. Influence diagrams are not allowed to have any cycles, and

thus they are referred to as acyclic graphs.

Influence diagrams contain three types of nodes: rectangular decision nodes

that represent the choices being made, diamond-shaped value nodes that represent

components of the decision-maker’s utility, and oval chance nodes that represent the

other variables relevant to the decision problem. Value nodes cannot have any

descendants. Figure 3.2 shows an influence diagram that captures the relationships

between the variables in the simple tuning example from Section 3.1. This influence

diagram could be used to determine the optimal checkpoint interval based on a utility

function that is a weighted sum of the time needed to recover and the overhead of

taking checkpoints.

The arcs in an influence diagram convey two different types of information.

Arcs into chance or value nodes represent a possible probabilistic dependence

relationship. If there is an arc from A to B, knowing the value of A may affect our

probability assessments for B, and vice versa. These arcs are known as conditional

Figure 3.1. An example of a directed acyclic graph.

E

C

D

B

A

41

arcs, and they are typically added on the basis of intuitive notions of causality. In

Figure 3.2, for example, increasing the checkpoint interval typically leads to an

increase in the amount of data logged between checkpoints, and thus there is a

conditional arc from checkpoint int to MB per checkpt.

Arcs into decision nodes represent known information. If there is an arc from

C to D, the value of C is known when decision D is made. In Figure 3.2, for example,

the arc from log writes per sec to checkpoint int indicates that the value of the former

variable is available when the checkpoint interval is chosen. These arcs are referred

to as informational arcs.

If an influence diagram has multiple decision nodes, it must have at least one

directed path that includes all of these nodes. This restriction effectively requires

that the decisions be made sequentially, in the order in which they are encountered

on one of these directed paths.2 However, as noted by Nielsen and Jensen [Nie99],

there are cases in which a full temporal ordering of the decision nodes is not strictly

necessary. In particular, if Ci is the set of chance nodes whose values are known when

decision Di is made, two decision nodes D1 and D2 can be commuted whenever C1 =

C2. In such cases, either ordering of the decision nodes will produce the same optimal

policies.

2. Note that because an influence diagram cannot have any cycles, any directed path containing all of
the decision nodes must encounter them in the same order.

checkpoint int

log entr/MB aborts/s MB/checkpt time to rec
1000-5000 0-10 0-5 1.0 min

log entries

MB per

time to

checkpoint int
MB per checkpt 1 min 10 min 30 min ...
0-5 0.60 0.10 0.05 ...
5-10 0.15 0.17 0.15 ...
10-50 0.10 0.65 0.33 ...

P(MB per checkpt | 50 log writes/s, checkpt int)

1000-5000 0-10 5-10 2.5 min

...

E(time to rec | log entr/MB, aborts/s MB/checkpt)

1000-5000 0-10 10-50 8.3 min

Figure 3.2. An example of an influence diagram and its associated parameters. The structure
of the model is shown on the left-hand side of the figure. Also shown is an example of a portion of a
conditional probability table for one of the chance nodes (upper right) and a portion of the table of
expected values for a value node (lower right).

log writes
per sec

checkpt

recover

per MB

checkpt
overhead

...

aborts
per sec

.........
42

The algorithm for evaluating an influence diagram (Section 3.2.4) makes the

reasonable assumption that all information known when a decision is made is

available for all subsequent decisions. As a result, if the value of a node, N, is known

in advance of one or more of the decisions, we only need to include an informational

arc from N to the first of these decisions. The algorithm will add so-called no-

forgetting arcs from N to any subsequent decisions.

3.2.2 Parameters of the Model

Each node in an influence diagram has an associated set of parameters. For a deci-

sion node, there is the set of possible alternatives for the corresponding decision. For

a chance node, there is the set of possible values of the node and the parameters

needed to specify one or more probability distributions. A chance node without par-

ents (a root chance node) has a marginal distribution over its values. A chance node

with parents (an intermediate chance node) has a collection of conditional distribu-

tions, one for each instantiation of its parents (Figure 3.2, upper right). Similarly, a

value node has one expected value for each instantiation of its parents (Figure 3.2,

bottom right). In Section 5.4, I discuss how to learn these parameters from data.

3.2.3 Conditional Independencies in Influence Diagrams

A key feature of influence diagrams and related graphical models is the conditional

independence relationships that they encode. In particular, given the values of its

parents, any chance or value node is conditionally independent of its nondescen-

dants.3

As a result of these conditional independencies, fewer parameters are needed

to specify the model. To see that this is the case, consider an influence diagram that

contains only chance nodes4, and let the labels of the nodes, {V1, ..., Vn}, be assigned

3. More generally, conditional independencies can be deduced from the structure of an influence diagram
using a criterion known as d-separation [Pea88].
4. I limit the influence diagram to chance nodes so that the parameters of the model will encode a single
joint probability distribution for the nodes in the model. This simplifies the illustration of how
conditional independencies can reduce the number of parameters in the model. Similar reductions are
also seen in the general case.
43

in such a way that every node’s descendants have indices that are larger than the

index of the node itself. Given this labelling, it follows that, for any index i, the nodes

Vi - 1, ..., V1 are nondescendants of the node Vi. Therefore, because each node is

conditionally independent of its nondescendants given its parents, we can take the

factorization of the joint probability distribution provided by the Chain Rule

(equation 5), i.e.,

and rewrite it as

where Parents(Vi) represents the assignment of values to Vi’s parents in the instanti-

ation V1 = v1, ..., Vn = vn. In other words, we can represent a node Vi’s contribution to

the full joint distribution by specifying one probability distribution for each instantia-

tion of its parents, rather than one distribution for each instantiation of all nodes

with indices less than i, as would be required in the standard factorization. This can

significantly reduce the number of parameters in the model. Similarly, when specify-

ing the parameters for a value node, we need one expected value for each combination

of the values of its parents, rather than one value for each instantiation of all the

chance and decision nodes in the model. And because fewer parameters are needed to

specify the model, it becomes easier to learn these parameters and to use the influ-

ence diagram to determine optimal decisions.

3.2.4 Evaluating an Influence Diagram

Evaluating an influence diagram involves determining the decisions that maximize

the total expected value of the value nodes (which, by equation 11, is simply the sum

of the expected values of the individual value nodes) given the probability

distributions over the chance variables and any observed values of these variables. If

P V1 v1 … Vn vn=, ,=() P Vi vi= Vi 1– vi 1–= … V1 v1=, ,()
i 1=

n

∏=

P V1 v1= … Vn vn=, ,() P Vi vi= Parents Vi()()
i 1=

n

∏=
44

the value nodes represent costs, we can multiply the expected costs by - 1 and thereby

minimize the total expected cost using the same algorithm. For instance, in our

simple tuning example, we would observe the value of log writes per sec for a given

workload (because the informational arc from log writes per sec to checkpoint int

indicates that the log writes value is known at the time of the decision), and solve the

influence diagram to determine the value of checkpoint int that leads to the smallest

expected cost for that workload.

The standard algorithm for evaluating an influence diagram [Sha86]

repeatedly transforms the diagram by removing a node or reversing the direction of

an arc. At the conclusion of the algorithm, we are left with the optimal policy (Section

3.1.6) for each decision node D, i.e., a mapping from instantiations of D’s parents to

the alternative or alternatives that maximize the total expected value of the value

nodes, given the instantiation of D’s parents.5 We can also apply the algorithm in

light of evidence concerning the chance nodes, in which case we can skip

computations of parameters that are inconsistent with the evidence. For example, if

we know the value of log writes per sec, we need never revise its table of parameters

or compute parameters that are conditioned on other values of this variable. In the

discussion that follows, I will present the version of the algorithm that computes the

full optimal policy. For more details, readers are encouraged to consult the original

paper by Shachter. Other evaluation algorithms can also be used [e.g., Jen94]. All

exact algorithms for evaluating influence diagrams have a worst-case complexity that

is exponential in the number of nodes in the model, but the runtime costs are

typically reasonable in practice.

There are four types of transformations that the standard evaluation

algorithm can apply. Three of them involve removing a node from the diagram, in

5. In his classic paper on evaluating influence diagrams [Sha86], Shachter assumes that there is a single
value node. The algorithm that I present here is a straightforward extension that can handle influence
diagrams with multiple value nodes, where the objective is to maximize the expected value of the sum of
the values of these nodes.
45

which case all arcs that begin at that node are also removed. The four

transformations are as follows:

• barren node removal: if a chance or decision node has no children, it can simply be
removed from the influence diagram because it cannot affect the value nodes. If a
decision node is barren, any of the alternatives associated with it can be added to
the optimal policy for that decision.

• chance node removal: if chance node C is a parent of one or more value nodes and it
is not a parent of a chance or decision node, it can be removed from the diagram.
The value nodes of which C is a parent inherit all of C’s parents, and the expected-
value tables for these value nodes are revised using marginalization over C.

• decision node removal: if a decision node D is a parent of one or more of the value
nodes, and if all other parents of those value nodes are nodes whose values are
known when decision D is made (i.e., the nodes in question are parents of D), D can
be removed from the diagram. For each possible instantiation of D’s parents, the
alternative or alternatives that maximize the total expected value of the value
nodes (given the values of D’s parents) are added to the optimal policy. In addition,
the expected-value tables of the value nodes in question are modified to reflect the
optimal policy.

Figure 3.3. Pseudocode for evaluating an influence diagram. The algorithm takes an influence
diagram, I, and transforms it to determine the optimal policy for each decision node, D, in the model.
The optimal policy for a decision, D, is constructed during the process of removing D from the model.
See Section 3.2.4 for the criteria for removing a chance or decision node and for more details about
reversing arcs and removing barren, chance, and decision nodes.

id_eval(I) {
add no-forgetting arcs as needed (see Section 3.2.1);
remove all barren nodes;
while (one or more value nodes still have parents) {

if (∃ a chance node C that can be removed) {
remove chance node C;

} else if (∃ a decision node D that can be removed) {
remove decision node D;
remove barren nodes;

} else {
find a chance node X that is a parent of a value node

and is not the parent of any decision node;
while (X has children) {

find a child Y of X such that there is no other
directed path from X to Y besides arc (X,Y);

reverse arc (X,Y);
}
remove chance node X;

}
}

}

46

• arc reversal: if chance nodes C1 and C2 are connected by the arc (C1, C2) and there
is no other directed path from C1 to C2, arc (C1, C2) can be replaced by arc (C2, C1).
The two nodes inherit each other’s parents, and two sets of computations are
performed to determine the nodes’ new parameters. Marginalization over C1 is
used to revise the conditional probabilities for C2, and Bayes’ Law is used to revise
the conditional probabilities for C1.

Pseudocode for the algorithm is presented in Figure 3.3. To give a sense of how it

works, I will sketch out its application to the influence diagram in Figure 3.2. For the

sake of conciseness, I will use abbreviations for the variables in the diagram, as

shown in Figure 3.4.

The algorithm would begin by removing the two chance nodes L and M, both

of which have the value nodes as their only children. The order in which these nodes

are removed is arbitrary. Beginning with L yields the diagram shown on the left-hand

side of Figure 3.5. Note that R already had L’s parent, A, as a parent, so it simply

loses L as a parent, whereas O loses L and inherits A. The conditional expected

values of the value nodes are revised using marginalization over L (equation 13):

Figure 3.4. The checkpoint-interval influence diagram. This is a version of the influence
diagram from Figure 3.2 in which the variable names have been abbreviated for the sake of
conciseness. The remaining figures in this chapter will demonstrate how the standard algorithm for
evaluating an influence diagram transforms this diagram to determine the optimal policy for C.

C

L

M

R

W

O

A

E R A a M, m= =() E R A a L, l M, m= ==()P L l A a==()
l ΩL∈
∑=

E O A a C, c M, m= = =() E O A a C, c L, l M m=,= = =()P L l A a==()
l ΩL∈
∑=

E O C c L l M m=,=,=()P L l A a==()
l ΩL∈
∑=
47

Note that all of the probabilities and expected values needed by these computations—

and, more generally, by all of the transformations—can be found in the tables of

parameters associated with the relevant nodes at the time of the transformation. It is

also worth noting that the computations that revise O’s expected values take advan-

tage of the conditional independence of O and A, given the values of C, L, and M, to

substitute E(O | C = c, L = l, M = m) for E(O | A = a, C = c, L = l, M = m). Similar sub-

stitutions will be performed implicitly in the remainder of this section.

In the next step, M is removed. The value nodes inherit its parents (Figure

3.5, right), and their conditional expected values are updated using marginalization

over M:

At this point in the evaluation of the influence diagram, no nodes can be

removed directly. Chance nodes A and W are parents of the values nodes, but they are

also parents of other, non-value nodes, so they cannot be removed. Decision node C is

a parent of the value nodes, but the value of A is not known when this decision is

made, so C cannot be removed. Therefore, the algorithm is forced to perform an arc

reversal. Specifically, it selects some chance node, N, whose children include a value

E R A a C c W w=,=,=() E R A a M, m= =()P M m C c W w=,==()
m ΩM∈

∑=

E O A a C, c W w=,= =() E O A a C, c M, m= = =()P M m C c W w=,==()
m ΩM∈

∑=

Figure 3.5. Evaluating the checkpoint-interval influence diagram, part I. Shown are the
results of the first two steps of evaluating the checkpoint-interval influence diagram: the removal of
chance node L (left), and the removal of chance node M (right).

C

M

R

W

O

A

C

R

W

O

A

48

node and one or more other chance nodes but whose value is not known prior to the

decisions, and it reverses all arcs from N to its chance-node children. In our example,

the algorithm selects node A and reverses the arc (A,W) (Figure 3.6, left).

Marginalization (equation 7) is used to convert the conditional probabilities for W to

marginal probabilities, and Bayes’ Law (equation 8) is used to convert the marginal

probabilities for A into conditional probabilities:

Note that the Bayes’ Law computation makes use of both the previous parameters

associated with the two nodes and the just computed marginal probabilities for W.

Upon completion of the arc reversal, A becomes eligible for removal; doing so

yields the diagram on the right-hand side of Figure 3.6, and the conditional expected

values of the value nodes are revised using marginalization over A:

Figure 3.6. Evaluating the checkpoint-interval influence diagram, part II. Shown are the
results of the third and fourth steps of evaluating the checkpoint-interval influence diagram: the
reversal of arc (A, W) (left), and the removal of chance node A (right).

C

R

W

O

C

R

W

O

A

P W w=() P W w= A a=()P A a=()
a ΩA∈
∑=

P A a W w==()
P A a=()P W w A a==()

P W w=()
--=

E R C c W w=,=() E R A a C c W,=, w= =()P A a W w==()
a ΩA∈
∑=

E O C c W w=,=() E O A a C, c W, w= = =()P A a W w==()
a ΩA∈
∑=
49

The algorithm still cannot remove chance node W, because it is the parent of

decision node C. However, the algorithm can remove C, because the only other parent

of the value nodes is W, and its value is known when the value of C is selected.

Removing C produces the diagram on the left-hand side of Figure 3.7. For each

possible value of W, the optimal alternative for C given that value of w is determined

using equation 11 and equation 14:

In addition, the conditional expected values of the value nodes are revised to reflect

the optimal policy:

Finally, the algorithm concludes by removing chance node W, which leaves

only the value nodes (Figure 3.7, right), each of which has a single parameter

corresponding to the expected value of the node in the absence of any evidence:

Figure 3.7. Evaluating the checkpoint-interval influence diagram, part III. Shown are the
results of the final two steps of evaluating the checkpoint-interval influence diagram: the removal of
decision node C (left), and the removal of chance node W (right).

R OR

W

O

d* C W w=() arg max
c ΩC∈

E R C c W, w= =() E O C c W w=,=()+()=

E R W w=() E R C d* C W w=() W, w= =()=

E O W w=() E O C d* C W w=() W, w= =()=

E R() E R W w=()P W w=()
w ΩW∈

∑=

E O() E O W w=()P W w=()
w ΩW∈

∑=
50

Figure 3.8. Evaluating the checkpoint-interval influence diagram, a summary.

C

M

R

W

O

A

C

R

W

O

A

C

L

M

R

W

O

A

C

R

W

O

C

R

W

O

A

R OR

W

O

Original influence diagram

1. Removal of chance node L: 2. Removal of chance node M:

3. Reversal of arc (A, W): 4. Removal of chance node A:

5. Removal of decision node C: 6. Removal of chance node W:
51

To allow the process of evaluating this influence diagram to be visualized in its

entirety, Figure 3.8 consolidates the steps previously shown in Figures 3.5 through

3.7.

Once an influence diagram is evaluated, we can use the optimal policies for

the decisions in the model to determine the optimal sequence of decisions given a

particular set of observations. In our tuning example, we can observe the value of log

writes per sec (W) and use the optimal policy to determine the optimal checkpoint

interval, d*(C | W = w).

There are a number of software toolkits that can be used to evaluate influence

diagrams. I have used the Netica inference engine [Nor03], but others are also

available [Coz01, Hug01, inter alia].

3.2.5 Conclusions

An influence diagram is a probabilistic, graphical model that can be used as the foun-

dation of an effective, model-based software tuner. By taking advantage of condi-

tional independence relationships, influence diagrams allow us to simplify the

specification of both the joint probability distribution for the relevant variables and

the expected performance of the system under various combinations of workload

characteristics and knob settings. They thus make it easier to learn the relevant

probabilities and expected values from training data, and they speed up the process

of determining the optimal knob settings for a given workload. Chapter 4 presents an

influence diagram for tuning the Berkeley DB embedded database system. Chapter 5

explains how to construct, train, and use a model of this type for software tuning.
52

Chapter 4

Test System: Berkeley DB

To illustrate and validate the approach to automated software tuning presented in

this thesis, I have used it to tune the Berkeley DB embedded database system. This

chapter provides the necessary background material on this software system.

Although the validation itself is not presented until Chapter 7, references to Berkeley

DB occur throughout the intervening chapters, and thus it helps to cover this mate-

rial at this point in the thesis. The chapter begins with an overview of Berkeley DB,

and it continues with a discussion of the knobs that I tune—including the underlying

performance issues associated with each knob—and of the variables used to charac-

terize the workloads that run on the system. It concludes by presenting the influence

diagram model developed for Berkeley DB.

4.1 Overview

Berkeley DB [Ols99, Sle01] is a programmatic database toolkit that applications can

use to manage data that is stored as collections of (key, value) pairs; I will refer to

these pairs as data items. The key serves as an identifier that can be used to retrieve

one or more data items, and the value is the other information associated with a par-

ticular data item. For example, in a student registration database, the key might be

the student’s identification number, and the value a string containing all of the other

information stored in the database for that student.

Berkeley DB is referred to as an embedded database system because it is

linked directly into the address space of an application that uses it. This is in

contrast to traditional database engines, which typically run as a stand-alone server
53

application that other applications must connect to using some form of inter-process

communication. Berkeley DB provides full support for features that are ordinarily

found only in high-end database systems, including concurrent access to databases by

multiple threads of control1; transactions, which allow a set of operations to be

grouped together and treated as a unit; and recovery from hardware or software

failures. In addition, its small memory footprint means that it can be used for

applications running on embedded systems such as those found in

telecommunications switches and information appliances—applications for which

manual tuning is often impractical and which could thus benefit from automated

tuning.

Berkeley DB supports several methods for storing and accessing data,

including the Btree access method that I have used for the experiments in this thesis.

In addition to these access methods, Berkeley DB consists of four major subsystems:

a shared memory cache that stores recently accessed portions of a database, and

subsystems that support locking, transactions, and logging. In the sections below, I

briefly touch on each of these components of the system and define the relevant

terminology. More information is available in the Berkeley DB documentation

[Sle01].

4.1.1 Btree Access Method

Berkeley DB’s Btree access method stores and accesses data in a tree data structure

that is sorted and balanced. The tree is composed of nodes, each of which contains

some data and zero or more pointers to other nodes that are referred to as its chil-

dren. If a node, N, is a child of another node, P, then P is known as N’s parent. Nodes

with children are known as internal nodes; nodes without children are termed leaf

nodes. One node in the tree (the root node or root) has no parents; it can be thought of

as the “top” of the tree. The depth of a node is equal to the number of pointers that

1. The term thread of control refers either to a process with its own address space or to a lightweight
thread running within the address space of a process. I will use the word thread to represent either a
thread or a process.
54

must be followed to reach the node, starting from the root node. The Btree access

method implements a variant of the standard Btree known as a B+link tree [Com79],

which differs from a standard Btree in two ways. First, the data items are stored only

in the leaf nodes and the internal nodes contain key prefixes with enough characters

to determine which pointer to follow when searching for a particular key. For exam-

ple, in Figure 4.1, the second key in the root node, mou, contains just enough charac-

ters to distinguish between the node containing the string moose and the node

containing the string mouse. Second, the leaf nodes are linked together to facilitate

sequential accesses that span multiple leaf nodes.

The keys or key prefixes on a given page are sorted according to some

comparison function; the default ordering is lexicographic. A search for a particular

key k starts at the root node and recursively descends the tree by comparing k with

the key prefixes in the current node and following the appropriate pointer to one of

the node’s children. More specifically, the pointer followed when searching for key k is

the one that precedes key prefix ki, where ki is the first prefix that is greater than or

equal to k; if all prefixes are less than k, the rightmost pointer is followed. This

process continues until the search reaches a leaf node. If the key exists in the

database, it will be found on that leaf node.

Like all Btree data structures, a B+link tree is maintained in such a way that

the tree is balanced, which means that all leaf nodes have the same depth; the depth

of the leaf nodes is known as the height of the tree. Because the tree is balanced, the

number of nodes that must be visited to determine if a key is in the database is

O(logbN), where b is the average number of keys per page and N is the total number

h mou

bat cat dog horse moose mouse yak

Figure 4.1. An example of a B+link tree.
55

of keys in the database. Btree databases can also be accessed sequentially using a

database cursor, which essentially maintains a pointer to one of the data items in the

database. Once the cursor is positioned on a given item, it can be used to update that

item, or it can be advanced to the next or previous item in the database.

4.1.2 Memory Pool Subsystem

The Berkeley DB memory pool is a shared memory cache that can be accessed by

multiple threads or processes. Berkeley DB organizes its databases in units called

pages, and each internal node or leaf node in a Btree database corresponds to a single

page. When Berkeley DB needs a particular page, it searches for it in the memory

pool; a successful search is referred to as a hit, and an unsuccessful search is referred

to as a miss. When a miss occurs, Berkeley DB reads the page into the memory pool

from the on-disk database file. Ideally, the entire database will fit in the memory pool

so that accesses can be satisfied without the overhead of going to disk. If the database

is larger than the memory pool, pages are evicted as needed using an approximation

of the least-recently-used (LRU) algorithm [Tan92]. Pages that have been modified

(dirty pages) are written to the backing file before they are evicted.

In addition to the memory pool, the operating system maintains its own buffer

cache of recently accessed file blocks. (To avoid confusion between these two caches, I

will limit my use of the term “cache” to refer to the operating system’s buffer cache

and use the term “memory pool” for Berkeley DB’s own cache.) When a miss occurs

and Berkeley DB asks the operating system to read a page from the database file, the

operating system first checks in the buffer cache for the corresponding block or blocks

from the file. If the necessary blocks are not found, it reads them into the buffer cache

and returns the contents of the requested page to Berkeley DB. On many operating

systems—including the one that I have used for my experiments—the buffer cache is

integrated with the virtual memory system. As a result, the failure to find a file block

in the buffer cache is recorded as a page fault [Tan92], and the page-fault statistics

maintained by the operating system can be used to determine the number of times

that a Berkeley DB application performs a disk read.
56

The buffer cache provides some of the same functionality as the memory

pool—storing file blocks in memory in an attempt to reduce the amount of disk I/O

generated by file accesses—but it does not provide the degree of control that Berkeley

DB needs to provide the transaction-related guarantees discussed in Section 4.1.4.

Therefore, Berkeley DB must provide its own cache, and this can lead to the

unfortunate side-effect of double buffering, in which database pages are stored in

both the memory pool and the buffer cache. This effectively reduces the number of

database pages that can fit in a given amount of physical memory.

4.1.3 Locking Subsystem

Berkeley DB’s locking subsystem synchronizes concurrent accesses to a database,

allowing multiple threads of control to read and modify a database at the same time

without interfering with each other. Locking is performed automatically by the access

methods. For example, when a thread modifies a data item by invoking the appropri-

ate Berkeley DB function, that function obtains the locks needed to read and write

the requisite pages of the database. Locks are acquired on a per-page basis. A read

lock is acquired before a page is read, and a write lock is acquired before a page is

modified. If a thread holds a read lock for a page and it then acquires a write lock for

the same page, it is said to perform a lock upgrade.

Berkeley DB enforces multiple-reader, one-writer semantics: multiple threads

performing read-only operations can access the same pages in the database

simultaneously, but a thread that wishes to update the database must obtain

exclusive access to the pages that it wishes to modify. To ensure these semantics, a

thread is forced to wait when it: (1) attempts to acquire a read lock for a page, and

another thread already holds a write lock for that page; or (2) attempts to acquire a

write lock for a page, and another thread already holds a read or write lock for that

page.

In Btree databases, a technique known as lock coupling is used to improve

concurrency: as the tree is descended, the lock on the current page is released once

the next page to be searched has been locked. When modifying a data item, a write
57

lock is only needed for the leaf page that contains the item; the internal pages are

locked using read locks.2

When locking is used, it is possible for two or more threads of control to

deadlock if they each hold a lock that prevents one of the other threads from making

forward progress. For example, consider a situation in which thread A and thread B

each hold a read lock for page P. Before either thread can upgrade its read lock by

acquiring a write lock for P, the other thread must relinquish its read lock for P.

Therefore, if both A and B try to perform a lock upgrade for P, neither will be able to

make forward progress. Berkeley DB can detect when two or more operations are

deadlocked, and it forces one of the offending operations to surrender its locks and

return an error; this continues until one of the operations is able to proceed.

4.1.4 Transaction Subsystem

The transaction subsystem allows a set of operations to be grouped together and

treated as a unit known as a transaction. For example, an application may want to

apply a set of changes to a database in such a way that they all occur at once. In Ber-

keley DB, this is achieved by surrounding the relevant operations with function calls

signaling the begin and end of a transaction, and by instructing the relevant opera-

tions to operate as part of the transaction.

Berkeley DB guarantees the four ACID properties of transactions: atomicity,

consistency, isolation, and durability [Gra93]. Atomicity means that the changes

made in the context of a transaction are applied to the database all at once or not at

all. If the transaction is committed, all of the changes are applied together. If the

transaction is aborted, none of the changes are applied. Consistency involves the

integrity of the database. For example, it may be the case that one entry of a database

must always store the sum of several other entries. Provided that an application

performs the operations needed to maintain such an invariant within the context of a

2. The one exception is if the modification results in the leaf page being split or merged, in which case
one or more internal pages will also be write-locked because they, too, will be modified as part of the split
or merge.
58

transaction, the other three transaction properties will ensure that users always see

a consistent picture of the data. Isolation means that a transaction is free from the

interference of other threads of control. For example, if a thread of control accesses a

particular page as part of a transaction, no other thread can modify that page for the

duration of the transaction. Durability means once a transaction is committed, the

changes made during the course of the transaction will survive any subsequent

application or system failure.

One technique that Berkeley DB uses to ensure the four ACID properties is

called rigorous two-phase locking. This means that locks acquired during the course

of a transaction are held until the end of the transaction, at which point they are all

released. The one exception to this rule stems from the practice of lock coupling

(Section 4.1.3), which leads locks on internal pages to be released as a Btree is

descended. As a result of this practice, it is typically the case that only leaf pages

remain locked for the duration of a transaction.3 This fact—coupled with the fact that

almost all write locks are acquired for leaf pages (Section 4.1.3)—means that leaf

pages are the primary source of lock contention.

When a set of operations is performed in the context of a transaction, all locks

acquired as part of those operations are acquired on behalf of the transaction. If one

of the operations returns an error because of deadlock, the application must abort the

transaction so the deadlock can be resolved.

4.1.5 Logging Subsystem

The logging subsystem maintains a log file that records all changes to the database

and all commits of transactions that made changes to the database. Berkeley DB

employs a policy called write-ahead logging, which requires that before a change is

written to the database file (e.g., before a dirty page is evicted from the memory pool),

the log entry describing that change must be written to stable storage. This policy

allows the system to restore the database file to a consistent state after a system or

3. If a Btree node is split or merged—which involves modifying one or more internal nodes—then
internal pages can also remain locked until the transaction is committed or aborted.
59

application failure. To recover from a failure, Berkeley DB reads the log file and

ensures that any changes that were part of a committed transaction are reflected in

the database file, and that any changes that were part of an aborted or incomplete

transaction are undone.

Log information is stored in an in-memory log buffer until either a transaction

commits or the log buffer overflows, and then it is written to stable storage. Recent

versions of Berkeley DB also support group commit, which allows multiple

transaction commits to be logged using a single filesystem write. The version of

Berkeley DB used in the experiments—version 4.0.14—included this feature.

4.2 The Knobs

Berkeley DB provides a number of knobs that can be adjusted in an attempt to

improve performance. The experiments in Chapter 7 focus on four of them, and the

sections below consider each knob in turn, discussing the ways in which it can affect

the system’s performance.

4.2.1 Page Size

The first knob, page_size, governs the size of pages used for a database; it can take on

any power of two between 512 bytes and 64 kilobytes (KB). This knob affects the

physical layout of the database, and thus it can affect both the amount of I/O and the

amount of lock contention that a given workload will produce.

The impact of the page_size knob on I/O performance stems from at least two

different mechanisms. First, items that are too large to fit on a regular page are

forced into special overflow pages. Overflow pages exist outside of the ordinary Btree

structure, and thus they tend to be more costly to access. In particular, because an

overflow page contains data for only one item, it is less likely to be found in the

memory pool than a leaf or internal page that contains data for multiple items

(unless the item stored on the overflow page is accessed more frequently than all of

the leaf or internal page’s items combined). Moreover, when overflow pages are
60

brought into the memory pool, they tend to reduce its overall efficiency by reducing

the total number of items stored in the memory pool. The smaller the page size, the

more likely it is that overflow pages will be created and I/O performance will suffer.

The page_size knob can also reduce I/O performance if the size chosen is

smaller or larger than the block size of the filesystem on which the database resides.

If the page size is smaller than the block size, then the eviction of a dirty page from

the memory pool can lead to an extra disk read. More specifically, if the block

containing the dirty page is not in the buffer cache, the operating system will need to

read it in before modifying it, so that the unmodified portions of the block (the ones

that do not contain the page) can be maintained. These extra reads can also make the

buffer cache less efficient, since they tend to consume more memory than would

otherwise be needed. On the other hand, if the page size is larger than the block size,

the system may end up reading more data than is necessary. In particular, some

operating systems are configured to recognize when an application is accessing a file

sequentially and to respond by prefetching some number of the blocks that follow the

ones requested by the application. Choosing a page size that is large enough to

trigger prefetching can lead to unnecessary I/O. Because of these potential effects,

Berkeley DB’s default policy is to use a page size equal to the filesystem’s block size,

but other considerations may outweigh the benefits of using pages of this size.

The page_size knob can also affect the amount of lock contention in the system

and thus the degree of concurrency that the system can sustain. Because Berkeley

DB uses page-level locking, smaller page sizes tend to reduce lock contention by

decreasing the probability that more than one thread of control will attempt to access

the same page at the same time. However, smaller page sizes can also increase lock

contention if they lead to more overflow pages. Modifying an item in an overflow page

involves freeing the page containing the old version of the item and allocating a page

for the new version; to do this, a special metadata page must be locked. If there are

enough updates of overflow items, this metadata page can become a significant

source of contention.
61

4.2.2 Minimum Keys Per Page

The second knob that I consider is the minimum keys per page setting (min_keys),

which indicates the smallest number of keys that can exist on a single page in a Btree

database. In combination with the page_size knob, this knob governs the maximum

size of an entry (either key or value) that can be stored in a regular database page

(max_onpage), according to the following formula:

(EQ 15)

All entries larger than this maximum size are forced into overflow pages. Although

overflow pages are ordinarily undesirable for the reasons discussed in the previous

section, there are situations in which it makes sense to decrease max_onpage by

increasing min_keys. In particular, if a database has infrequently accessed large

items, increasing min_keys in order to force these items into overflow pages can allow

more of the smaller, frequently accessed items to fit in the memory pool.

4.2.3 DB_RMW

As discussed in Section 4.1.3, threads may end up waiting—and may even become

involved in a deadlock—when they attempt to perform a lock upgrade for pages that

are already locked by other threads. To avoid waits and deadlocks that result from

attempted lock upgrades, Berkeley DB allows a thread to acquire a write lock when

reading an item, which eliminates the need to perform a lock upgrade if the thread

subsequently decides to modify the item. A thread specifies this option by using the

DB_RMW flag when performing a read (where RMW stands for read-modify-write).

In the experiments reported in Chapter 7, I consider a binary db_rmw knob that indi-

cates whether threads should use the DB_RMW flag when reading items that they

will consider modifying.

Although using the DB_RMW flag may reduce the number of aborts due to

attempted lock upgrades, it can also lead to increased lock contention and to more

aborts due to lock requests that do not involve upgrades. The potential negative

effects of this flag stem from the fact that it causes threads to hold write locks for

max_onpage page_size 2 min_keys⋅()⁄=
62

longer than they otherwise would. In fact, if a thread needs to read an item before it

can decide whether to modify it, using the DB_RMW flag can lead it to acquire write

locks unnecessarily. In such cases, the probability that an item will be subsequently

updated can be a key factor in determining whether the DB_RMW flag should be

used.

4.2.4 Deadlock-Resolution Policy

When Berkeley DB detects that a deadlock has occurred, it rejects one of the offend-

ing lock requests in an attempt to allow the remaining requests to proceed. A number

of different policies can be used to determine which request to deny. They include:

• maxlocks: reject the lock request made by the locker holding the most locks

• minlocks: reject the lock request made by the locker holding the fewest locks

• minwrite: reject the lock request made by the locker holding the fewest write locks

• oldest: reject the lock request made by the locker with the oldest locker ID

• random: reject a random lock request

• youngest: reject the lock request made by the locker with the newest locker ID

I will refer to the knob that governs the choice of deadlock-resolution policy as the

deadlock_policy knob. DB uses the random policy by default.

When operations are performed in the context of a transaction, the

transaction is the locker and the ID of the transaction serves as the locker ID. When

a transaction is chosen to resolve a deadlock, the application typically aborts the

transaction and retries it. All updates that were performed as part of the original

transaction must be undone during the abort and then reapplied; read-only

operations are simply redone. In general, update operations are more costly to redo,

because: (1) the original, provisional changes must be undone when the transaction is

aborted; and (2) reapplying the changes involves both acquiring new write locks

(which tend to be more difficult to acquire than read locks) and producing additional

log entries.
63

Because several of the above policies are based on the number and type of

locks held by a transaction, and because the locks that a transaction holds typically

reflect the types of operations that it has performed, the choice of deadlock-resolution

policy can affect the number and types of operations that must be redone when

aborted transactions are retried. For example, transactions selected to resolve a

deadlock under the minwrite policy tend to hold fewer write locks on average than

transactions chosen using one of the other policies, and thus applications may end up

redoing fewer update operations under this policy. However, the number of redone

read-only operations also matters, and thus the minwrite policy will not always be

optimal.

4.3 Workload Characteristics

Tuning the knobs of a software system like Berkeley DB involves determining the

optimal knob settings for a given workload. This section describes the variables that I

use to characterize workloads that run on Berkeley DB.

4.3.1 Transaction Characteristics

The transactions run on the system are characterized by five workload characteris-

tics: the percentage of transactions that use a cursor to perform sequential accesses

(pct_cursors), the average numbers of items accessed by transactions that use a cur-

sor (items_curs) and those that do not (items_non_curs), and two variables

(pct_updates and pct_writes/upd) that specify the degree to which transactions mod-

ify items in the database. I define an update transaction to be any transaction that

considers modifying a set of data items. It reads each of the items in the set, but it

may not modify all of them, perhaps because it needs to see the contents of an item

before it can determine whether it should be modified. The pct_updates variable rep-

resents the percentage of transactions that are update transactions, and the

pct_writes/upd variable represents the average percentage of the items accessed by

an update transaction that are actually modified.
64

The values of these five variables can be measured by instrumenting either

the application performing the transactions or Berkeley DB itself. All that is required

is to maintain a series of counts of the relevant events—e.g., accessing items with a

cursor—and to periodically compute the values of the workload characteristics from

these counts.

4.3.2 Access Locality

Most database access patterns exhibit some degree of locality, accessing certain items

or pages in the database more often than others. The degree of access locality that a

workload displays has at least two potential impacts on performance:

• It affects the likelihood of finding a given page in the memory pool or

buffer cache, and thus can affect the rates at which misses and page

faults occur (see Section 4.1.2).

• It affects the degree of contention over locks, and thus can affect the

number of lock waits and deadlocks per transaction (see Section 4.1.3).

In tuning Berkeley DB, I have focused on two aspects of locality: locality based on the

location of the accessed items in the database (page locality) and locality based on the

size of the accessed items (size locality).

To capture page locality, I make use of an abstraction known as the locality

set, which I define as the collection of leaf pages that receive “most” of the accesses. I

do not include internal pages in the locality set because the number of such pages is

so much smaller than the number of leaf and overflow pages, and the internal pages

tend to fit in the memory pool, regardless of the settings chosen for the page_size and

min_keys knobs. I also omit overflow pages from consideration because they are

unlikely to be accessed frequently enough to be included in the set of most frequently

accessed pages. The reason for this stems from the fact that accessing an overflow-

page item involves first accessing the leaf page containing the key for that item, and

thus the associated leaf pages—which each contain keys for multiple items—are

almost always accessed much more frequently than the overflow pages themselves,

which each contain only a single item.
65

Leaf pages can be chosen for inclusion in the locality set based on observations

of accesses to the database. For example, if a database application uses the date field

of its records as the key, and if an application-maintained trace of accesses to the

database shows that 95% of them go to records from the past year, leaf pages

containing those dates could be characterized as the locality set. More generally, the

locality set could be estimated in an application-independent manner from

information about page accesses in the Berkeley DB log files. To take into account

read-only accesses (which are not logged by write-ahead logging), Berkeley DB could

be modified to maintain a per-page access count that is incremented whenever the

page is accessed, and to log the value of a page’s access count before evicting it from

the cache. (Note that evictions of unmodified pages would still not require any

synchronous writes to disk, because log records containing the counts could be

buffered until the next log write was needed.) At any point in time, these logged

counts—along with the access counts of pages currently in the memory pool—could

be used to determine the current contents of the locality set.

Given a particular locality set, I define page locality (page_loc) as the

percentage of leaf pages that are included in the locality set, and leaf_loc_rate as the

percentage of leaf-page accesses that go to pages in the locality set. For a given value

of leaf_loc_rate, smaller page_loc values correspond to higher degrees of locality.

When page_loc equals leaf_loc_rate, the leaf pages are accessed uniformly.

Both page_loc and leaf_loc_rate may depend on the knob settings chosen to

configure the database. For example, if the locality-set pages contain most of the

large items in the database, the value of page_loc will decrease when these large

items are forced into overflow pages, because fewer leaf pages will be needed to hold

the smaller items. Therefore, it is necessary to specify the associated workload

characteristics with respect to one of the possible combinations of knob settings. I

define def_page_loc as the percentage of leaf pages in the locality set when the

database is configured using the default knob settings for page_size and min_keys,

and def_leaf_loc as the percentage of leaf-page accesses that go to the locality set
66

under those same settings. When the database is configured with non-default

page_size or min_keys settings, it may not be possible to determine the current values

of these workload characteristics. However, measurements of page_loc, leaf_loc_rate,

and other aspects of the current state of the system can be used to determine the

probabilities associated with the possible values of these variables. Section 5.5.1

describes how probabilistic-reasoning techniques can be used to handle situations in

which a workload characteristic is unobservable.

The second aspect of access locality that I consider is size locality, which

measures the degree to which accesses are based on the size of the data items. Size

locality can affect performance because large items may be forced into overflow pages

under one or more of the knob combinations, and accessing these items could thus

lead to additional misses and disk reads (Section 4.2.1). Therefore, I define size_loc as

the percentage of accesses made to items that are large enough to be forced into

overflow pages in one or more of the database configurations being considered. This

value of this variable could be estimated from information in the log files about the

lengths of the items that are modified, but instrumenting the application would

probably be an easier and more thorough way to measure this workload

characteristic.

4.3.3 Concurrency

The final workload characteristic that I consider is concurrency—the number of

transactions that simultaneously access the database. Higher values of concurrency

tend to lead to more lock contention—and thus to more lock waits and more dead-

locks. The value of this variable could be measured by instrumenting either the appli-

cation or Berkeley DB itself. Berkeley DB already keeps track of the maximum

number of concurrent lockers (entities, including transactions, that hold locks), and it

could be modified to maintain some measure of the average of the number of concur-

rent lockers in the recent past—perhaps using exponential smoothing [Mak98, Chap-

ter 4].
67

4.4 An Influence Diagram for Berkeley DB

Figure 4.2 shows the influence diagram that I have designed to tune Berkeley DB,

with the goal of maximizing the throughput of the system (i.e., the average number of

transactions committed per second). To increase readability, I have omitted the infor-

mational arcs that indicate that all of the workload characteristics are observed

before the decisions are made.

The influence diagram was created using information from the Berkeley DB

documentation [Sle01] and input from one of the system’s designers. Brief

descriptions of the nodes in the influence diagram are given in Table 4.1, and

additional detail about both the nodes and arcs is provided below. Chapter 5 explains

how to construct a model of this type for an arbitrary software system.

4.4.1 Decision Nodes

The knobs being tuned—page_size, min_keys, db_rmw, and deadlock_policy, as

described in Section 4.2—are represented by the four rectangular decision nodes in

Figure 4.2. As mentioned in Section 3.2.1, it is necessary to use informational arcs to

impose an ordering on the decisions in an influence diagram. I selected the following

ordering: page_size, min_keys, db_rmw, deadlock_policy. As a result, informational

arcs are shown from page_size to min_keys, from min_keys to db_rmw, and from

db_rmw to deadlock_policy. Section 5.1.2 discusses the impact of a given knob order-

ing on the accuracy and efficiency of influence diagrams developed for software tun-

ing.

4.4.2 Value Nodes

Although I am attempting to maximize throughput, a single value node correspond-

ing to throughput would have a large number of parents, and it would require too

much training data to learn an expected value for each combination of the value of its

parents. As a result, I have chosen to use the two diamond-shaped value nodes shown
68

pc
t_

lo
c/

tx
n

le
av

es
/tx

n
ite

m
s_

cu
rs

lo
c_

ra
te

w
ai

ts
/tx

n

fa
ul

ts
/tx

n

pc
t_

w
rit

es

m
is

se
s/

tx
n

pc
t_

w
rit

es
/u

pd

pc
t_

up
da

te
s

co
nc

ur
re

nc
y

si
ze

_l
oc

de
ad

lo
ck

_p
ol

ic
y

db
_r

m
w

de
f_

le
af

_l
oc

de
f_

pa
ge

_l
oc

m
in

_k
ey

s
pa

ge
_s

iz
e

le
af

_l
oc

_r
at

e
pa

ge
_l

oc
le

av
es

ov
er

flo
w

s
db

_s
iz

e

pc
t_

cu
rs

or
s

ite
m

s_
no

n_
cu

rs

pc
t_

w
lo

ck
s

lo
c_

si
ze

pa
ge

s/
tx

n
of

lw
/tx

n

Figure 4.2. An influence diagram for tuning the Berkeley DB database system. The shaded
nodes are the root chance nodes, which represent characteristics of the workloads faced by the system.
Most if not all of these characteristics would be observed before a tuning decision is made, but the
informational arcs that would make this fact explicit have been omitted for the sake of readability.
Brief descriptions of the nodes are given in Table 4.1, and additional detail about both the nodes and
arcs is provided in Section 4.4.
69

Table 4.1. Overview of the nodes in the influence diagram in Figure 4.2. See Sections 4.4.1,
4.4.2, and 4.4.3 for more detail. Update transactions are defined in Section 4.3.1, and the locality set is
defined in Section 4.3.2. Per-transaction statistics are obtained by dividing by the number of committed
transactions.

Node name Description

concurrency number of concurrent threads performing transactions

deadlock_policy the policy used to select the transaction that will be aborted to resolve a
deadlock

def_page_loc percent of leaf pages in the locality set under the default page_size and
min_keys settings

def_leaf_loc percent of leaf-page accesses that go to the locality set under the default
page_size and min_keys settings

db_rmw indicates whether the DB_RMW flag is used to acquire write locks when
reading an item in the database

db_size size of the database

faults/txn mean number of page faults in the OS buffer cache per transaction

items_curs mean number of items accessed by transactions that use a cursor

items_non_curs mean number of items accessed by transactions that do not use a cursor

leaf_loc_rate percent of leaf-page accesses that go to the locality set

leaves total number of leaf pages

leaves/txn mean number of leaf pages accessed per transaction

loc_rate percent of the leaf- and overflow-page accesses that go to the locality set

loc_size size of the locality set

min_keys minimum number of keys per page

misses/txn mean number of misses in the memory pool per transaction

overflows total number of overflow pages

oflw/txn mean number of overflow pages accessed per transaction

page_loc percent of leaf pages in the locality set

page_size size of each page in the database

pages/txn mean number of leaf and overflow pages accessed per transaction

pct_cursors percent of transactions that use a cursor

pct_loc/txn mean percentage of the locality set accessed per transaction

pct_wlocks percent of accesses that involve acquiring a write lock

pct_writes percent of accesses that involve modifying an item

pct_writes/upd percent of items accessed as part of update transactions that are actually
modified

pct_updates percent of transactions that are update transactions

size_loc percent of accesses made to items large enough to be forced into
overflow pages under one or more knob settings

waits/txn mean number of lock waits per transaction
70

in Figure 4.2. They correspond to per-transaction averages4 of the number of page

faults (faults/txn) and the number of times that a thread waits to acquire a lock

(waits/txn). These two quantities reflect the types of performance losses that can be

affected by the knobs I am tuning. The faults/txn node captures the impact of the

knobs on I/O performance because of the connection between disk reads and page

faults discussed in Section 4.1.2. The waits/txn node captures the impact of the

knobs on lock contention. The values of these nodes will be weighted so that minimiz-

ing their sum is equivalent to maximizing throughput. Section 7.2.1 explains the pro-

cess used to learn the weights from training data.

For databases that fit in the operating system’s buffer cache, page faults may

seldom or never occur. In this case, it would probably be necessary to replace the

faults/txn value node with a value node representing the number of misses in the

memory pool, converting the existing misses/txn chance node to a value node. In my

experiments, the databases are too large to fit in memory, and therefore page faults

are a better predictor of performance because, as discussed in Section 4.2.1, the

number of disk reads (and thus page faults) per memory-pool miss depends on the

page_size value used to configure the database.

4.4.3 Chance Nodes and the Structure of the Model

The oval chance nodes in the diagram are of two types. The root chance nodes (the

ones without parents) represent the characteristics of the workloads, and the inter-

mediate chance nodes represent random variables that mediate the impact of the

knob settings and workload characteristics on the value nodes. Information about the

workload characteristics was already presented in Section 4.3. The following sections

describe the intermediate chance nodes and explain the arcs into both the intermedi-

ate chance nodes and the value nodes.

4. More specifically, I compute these averages by dividing the total number of times that an event occurs
by the total number of committed transactions. Computed in this way, the averages reflect the amount of
time wasted during the course of an average transaction, and larger averages thus tend to mean smaller
throughputs.
71

4.4.3.1 Intermediate Chance Nodes and Their Parents

The settings selected for the page_size and min_keys knobs govern the number of leaf

pages (leaves) and the number of overflow pages (overflows) in the database; see Sec-

tions 4.2.1 and 4.2.2 for more details. As a result, these knob settings also determine

the size of the database (db_size). The arcs connecting the page_size and min_keys

nodes to the above-mentioned chance nodes (Figure 4.3) reflect the causal relation-

ship between those knobs and the layout of the database.

There are three intermediate chance nodes that represent the rates at which

different types of Btree pages are accessed; the portion of the influence diagram that

includes these nodes is highlighted in Figure 4.4. The leaves/txn node represents the

expected number of leaf pages accessed per committed transaction, which can affect

both the I/O performance and the level of lock contention in the system. The value of

this node depends on the numbers of items accessed with and without a cursor

(items_curs and items_non_curs, respectively), the percentage of transactions that

use a cursor (pct_cursors), and the mean number of data items per leaf, the last of

which is fully captured for a particular collection of data items by the number of

leaves (leaves). Therefore, leaves/txn inherits from these four nodes. Similarly, oflw/

txn—the average number of overflow pages accessed per committed transaction—

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.3. The leaves, overflows, and db_size nodes and their parents. The figure on the right
focuses on a portion of the influence diagram for Berkeley DB; the relevant portion of the diagram is
indicated by the box in the figure on the left. The three chance nodes shown all inherit from the
min_keys and page_size decision nodes, as discussed in Section 4.4.3.1.

min_keys page_size

leaves overflows db_size
72

inherits from items_curs, items_non_curs, and pct_cursors, and it also inherits from

size_loc, which indicates the percentage of accesses going to items that could be in

overflow pages, and from overflows, which indicates how many overflow pages are

actually present in a given configuration. I also include a variable called pages/txn

that represents the mean number of leaf and overflow pages accessed per committed

transaction—a variable that is relevant to the performance of the memory pool;

pages/txn naturally inherits from leaves/txn and oflw/txn.

Several of the intermediate chance nodes are related to the concept of page

locality discussed in Section 4.3.2. The portion of the influence diagram that includes

these nodes is highlighted in Figure 4.5. The value of the page_loc variable is based

on the page locality under the default page_size and min_keys settings (def_page_loc)

and on the current settings for those knobs, and thus it inherits from def_page_loc,

page_size, and min_keys. Similarly, leaf_loc_rate inherits from def_leaf_loc, page_size,

and min_keys. The size of the locality set (loc_size) is computed from the values of

page_loc and leaves—which together determine the number of leaves in the locality

set—and from the setting for page_size—which determines the size of each leaf—

according to the following equation:

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.4. The leaves/txn, oflw/txn, and pages/txn nodes and their parents. The figure on the
right focuses on a portion of the influence diagram for Berkeley DB; the relevant portion of the
diagram is indicated by the box in the figure on the left. An explanation of the arcs into the leaves/txn,
oflw/txn, and pages/txn nodes is provided in Section 4.4.3.1.

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txnsize_loc

leaf_loc_rate page_loc leaves overflows

pct_cursors loc_size

items_non_curs oflw/txn
73

(EQ 16)

It thus inherits from page_loc, leaves, and page_size. .

In assessing the likelihood of a miss in the memory pool, one relevant factor is

the percentage of page accesses that involve pages in the locality set, because such

pages are more likely to reside in the cache. The leaf_loc_rate variable represents the

percentage of leaf-page accesses that go to the locality set. However, when estimating

memory-pool misses, overflow-page accesses also matter. To take this into account, I

define the loc_rate variable, which represents the percentage of the accesses to either

leaf or overflow pages that go to the locality set. (I ignore internal-page accesses

loc_size page_loc
100

-------------------------- 
  leaves page_size⋅ ⋅=

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.5. The page_loc, leaf_loc_rate, loc_rate, and loc_size nodes and their parents. The
figure at the bottom focuses on a portion of the influence diagram for Berkeley DB; the relevant portion
of the diagram is indicated by the box in the figure at the top. An explanation of the arcs into the
page_loc, leaf_loc_rate, loc_rate, and loc_size nodes is provided in Section 4.4.3.1.

pages_txn

leaves/txnitems_curs loc_rate pct_writes

misses/txn

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn
74

under the assumption that they almost never miss.) If the settings for page_size and

min_keys produce no overflow pages, loc_rate will equal leaf_loc_rate. If overflow

pages are produced, the value of loc_rate will decrease as the number of overflow-

page accesses increases, because overflow pages are never in the locality set. More

specifically, the value of loc_rate can be computed as follows:

(EQ 17)

Thus, loc_rate inherits from leaf_loc_rate, leaves/txn, and oflw/txn (Figure 4.5).

One factor that influences the level of lock contention in the system is the

degree to which accesses are concentrated on a small number of leaf pages. I capture

this aspect of a workload using the variable pct_loc/txn, which represents the

percentage of the locality-set leaves that are accessed—and thus locked—per

committed transaction. This variable depends on the number of leaves per

transaction (leaves/txn), the number of leaves in the locality set (which is simply the

product of page_loc and leaves), and leaf_loc_rate, which measures the percentage of

leaf-page accesses that go the locality set; pct_loc/txn thus inherits from these four

nodes (Figure 4.6).

loc_rate leaf _loc_rate leaves/txn
leaves/txn oflw/txn+
---⋅=

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.6. The pct_loc/txn node and its parents. The figure on the right focuses on a portion of
the influence diagram for Berkeley DB; the relevant portion of the diagram is indicated by the box in
the figure on the left. An explanation of the arcs into the pct_loc/txn node is provided in Section

leaves/txnitems_curs

pct_loc_txnsize_loc

leaf_loc_rate page_loc leaves

pct_cursors

items_non_curs oflw/txn
75

The expected number of misses per committed transaction (misses/txn)

depends on the expected number of leaf and overflow pages accessed per transaction

(pages/txn), and the degree to which these pages are present in the cache. This latter

factor depends on what percentage of the accessed pages are in the locality set

(loc_rate as described above) and on the sizes of both the locality set (loc_size) and the

database as a whole (db_size). I therefore draw arcs from these three nodes and from

pages/txn to misses/txn (Figure 4.7).

Update transactions can affect both I/O performance and the degree of lock

contention in the system. Two intermediate chance nodes that are related to update

transactions are highlighted in Figure 4.8. As described in Section 4.2.1, one impact

of update transactions on I/O performance stems from the fact that evicting dirty

pages from the memory pool can produce extra page faults. I thus include a node

representing the percentage of accessed items that are modified (pct_writes), because

this variable gives an indication of the likelihood that an evicted page is dirty. The

value of this node is proportional to the product of pct_updates and pct_writes/upd,

and thus it inherits from these two nodes.

Update transactions also increase the likelihood of lock contention because

they acquire write locks, which can be held by only one thread at a time. The

pct_wlocks node represents the percentage of accesses to data items that involve

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.7. The misses/txn node and its parents. The figure on the right focuses on a portion of the
influence diagram for Berkeley DB; the relevant portion of the diagram is indicated by the box in the
figure on the left. An explanation of the arcs into the misses/txn node is provided in Section 4.4.3.1.

pages_txn

loc_rate pct_writes

misses/txn

overflows db_size

loc_size
76

acquiring a write lock. If the DB_RMW flag is not being used, pct_wlocks is computed

by multiplying pct_updates and pct_writes/upd; if the DB_RMW flag is being used, a

write lock is acquired for every leaf page accessed by an update transaction, and thus

pct_wlocks is equal to pct_updates. Given these methods of determining the value of

pct_wlocks, it naturally inherits from pct_updates, pct_writes/upd, and db_rmw.

4.4.3.2 Parents of the Value Nodes

To conclude the presentation of the influence diagram, this section explains the arcs

into the value nodes by considering how each value node is affected by its parents.

The faults/txn value node has four parents, as shown in Figure 4.9. The

variable with the most obvious relevance is the number of misses in DB’s memory-

pool cache (misses/txn); it is naturally one of its parents. However, it is possible to

miss in the memory pool and still avoid a page fault by finding the corresponding file

block or blocks in the operating system buffer cache; the overall size of the database

file (db_size) influences the likelihood of this happening, and thus it is also a parent of

faults/txn. Finally, if the database page size is less than the filesystem block size, the

eviction of a dirty page from the memory pool may require a page fault in order to

update the contents of the block containing the page. Therefore, pct_writes (which

affects the likelihood of a dirty evict) and page_size are also parents of faults/txn.

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.8. The pct_writes and pct_wlocks nodes and their parents. The figure on the right
focuses on a portion of the influence diagram for Berkeley DB; the relevant portion of the diagram is
indicated by the box in the figure on the left. An explanation of the arcs into the pct_writes and
pct_wlocks nodes is provided in Section 4.4.3.1.

loc_rate

n

pct_writes pct_writes/upd

pct_updates

concurrency

pct_wlocks

db_rmw
77

The parents of the waits/txn value node, which are shown in Figure 4.10,

reflect the two main reasons for lock waits: (1) a thread attempts to acquire or

upgrade a lock for a page for which another thread already holds a lock; and (2) a

thread attempts to update an item in an overflow page and thus needs to access the

DB metadata page, but another thread already holds a write lock on the metadata

page (see Section 4.2.1). In the first case, only leaf pages are locked for the duration of

a transaction and most of the leaves accessed are in the locality set. Therefore, larger

values of pct_loc/txn make locks waits more likely, and this node is a parent of waits/

txn. In the second case, what matters is the number of overflow pages accessed per

transaction, and thus oflow/txn is also a parent of contention. Both types of lock

waits only occur when some of the threads are acquiring write locks, and both are

more likely under higher degrees of concurrency. Therefore, waits/txn inherits from

pct_wlocks and leaves/txn—which together give an indication of the number of write

locks acquired per transaction—and from concurrency. When combined with db_rmw

(which is also a parent of waits/txn), the leaves/txn and pct_wlocks nodes also give

an indication of the total number of locks—both read and write locks—acquired per

transaction. As more locks are acquired, there are more opportunities for waits to

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.9. The faults/txn value node and its parents. The figure on the right focuses on a portion
of the influence diagram for Berkeley DB; the relevant portion of the diagram is indicated by the box in
the figure on the left. An explanation of the arcs into the diamond-shaped faults/txn node is provided
in Section 4.4.3.2.

faults/txn

pct_writes

misses/txn

pct_writes/upd

page_size

db_size
78

occur. Finally, waits/txn will increase when deadlocks occur and transactions are

aborted, because the locks held by an aborted transaction are reacquired when the

transaction is retried. For a given level of lock contention, both the number of aborted

transactions and the average number of leaves locked per aborted transaction can

depend on the settings for the db_rmw and deadlock_policy knobs. Therefore, these

knobs are also parents of waits/txn.

4.5 Conclusions

The Berkeley DB embedded database system is one example of a software system

that could benefit from an automated approach to software tuning. The influence dia-

gram presented in the previous section can serve as the foundation of a model-based

software tuner for Berkeley DB, allowing such a tuner to determine the optimal knob

settings for an arbitrary combination of workload characteristics. The next chapter

explains how to construct and use this type of model to tune an arbitrary software

system; it draws on lessons learned in designing and applying the influence diagram

for Berkeley DB. Chapter 7 presents the results of experiments that use this influ-

ence diagram to tune Berkeley DB.

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 4.10. The waits/txn value node and its parents. The figure on the right focuses on a
portion of the influence diagram for Berkeley DB; the relevant portion of the diagram is indicated by
the box in the figure on the left. An explanation of the arcs into the diamond-shaped waits/txn node is
provided in Section 4.4.3.2.

pages_txn

leaves/txn loc_rate

pct_loc_txn

waits/txn

pct_writes

misses/txn

concurrency

pct_wlocks

deadlock_policy db_rmw

oflw/txn
79

Chapter 5

Using an Influence Diagram
for Software Tuning

This chapter presents a methodology for applying the probabilistic reasoning tech-

niques described in Chapter 3 to software tuning. More specifically, it explains how

an influence diagram and related learning and inference techniques can be used as

the basis of an effective, model-based software tuner that satisfies the criteria

described in Chapter 2.

The methodology consists of six steps: (1) designing the structure of the

influence diagram model used by the tuner, (2) gathering the necessary training data,

(3) discretizing the continuous variables in the model, (4) learning the model’s

parameters, (5) using the model to dynamically adjust the knob settings as the

system runs, and (6) updating the parameters of the model over time. The following

sections address each of them in turn.

5.1 Designing the Structure of the Model

Designing the structure of an influence diagram is a challenging task. It requires the

knowledge of a domain expert—in this case, someone familiar with the design and

inner workings of the software system being tuned—to determine which variables

and arcs to include in the model. However, the design process only needs to be per-

formed once for a given software system. The resulting model structure can be hard-

coded into the tuner associated with the software system and shipped as part of the
80

product, and the tuner itself can run without human intervention. The following sec-

tions offer some guidance about how to design an influence diagram for software tun-

ing.

5.1.1 Choosing Variables for the Model

As discussed in Section 3.2.1, there are three types of nodes in an influence dia-

gram—decision nodes, value nodes, and chance nodes. The chance nodes can be fur-

ther subdivided into those with parents (intermediate chance nodes) and those

without parents (root chance nodes). In an influence diagram for software tuning, the

decision nodes are the knobs to be tuned, the value nodes are the performance mea-

sures to be optimized, and the root chance nodes are the relevant characteristics of

workloads experienced by the software system. When choosing the variables to

include in the model, it is helpful to begin with these three types of variables. This

section first discusses each of these variable types in turn, and it then covers other

guidelines for selecting variables.

5.1.1.1 Decision Nodes

The decision nodes—the knobs—will typically be well-defined, although it may be

necessary to conduct preliminary experiments to determine whether it makes sense

to tune a particular knob. For example, in my work with Berkeley DB, I performed a

series of experiments to determine if the db_rmw and deadlock_policy knobs (Sec-

tions 4.2.3 and 4.2.4, respectively) have enough of an impact on performance to jus-

tify the effort needed to tune them. I used the workload generator described in

Chapter 6 to simulate workloads with varying degrees of lock contention and I ran

the workloads using different settings for these two knobs. These experiments dem-

onstrated that different knob settings were optimal for different workloads, and that

the performance of the system could be improved significantly by tuning these knobs.
81

5.1.1.2 Value Nodes

The variables chosen for the value node or nodes should reflect the goal of the tuning

process—for example, to maximize the throughput of the system or to minimize its

response time. However, even if the tuning goal involves a single variable such as

throughput, it may not be feasible to design the model with a single value node. The

reason for this stems from the need to limit the number of parameters for each node

in the model, so that the model can be trained and reasoned with efficiently. The

number of parameters associated with a node is exponential in the number of its par-

ents, and a value node that corresponds to a single, overarching performance metric

will typically have too many parents to be practical.

The potential problems associated with a single value node can be avoided by

using multiple value nodes, each of which reflects one aspect of the system’s

performance. In particular, it can be helpful to consider variables that reflect

different types of performance losses that the system can incur, as I have done with

the faults/txn and waits/txn value nodes in the influence diagram for Berkeley DB

(Figure 4.2). The advantage of this approach is that a given type of performance loss

is typically affected by only a subset of the knobs and workload characteristics, which

makes it easier to limit the number of its parents. This approach assumes that

minimizing some linear combination of the performance-loss variables is equivalent

to maximizing the overall performance of the system. Section 5.4 discusses the

process of determining the coefficients of this linear combination.

In selecting variables to reflect performance losses, one possible approach is to

use variables that measure the time wasted on activities that degrade performance.

For example, a measure of the time spent waiting to acquire locks could be used to

assess the impact of lock contention on performance. Ideally, minimizing an

unweighted sum of these wasted-time measurements would maximize the

performance of the system—i.e., the coefficients of the linear combination of the value

nodes would all have a value of 1.0. I considered this approach in my work with

Berkeley DB, but I concluded that it was impractical for at least two reasons. First, it
82

can be difficult to accurately measure the times involved. For example, the operating

system provides no record of the time spent resolving page faults, only a count of the

number of times that page faults occur. Second, even when accurate time

measurements are possible, they typically cannot be translated directly into

performance. This is especially true in the case of multithreaded software systems,

because the time that one thread spends waiting can be used by another thread to

perform useful work. Thus, it would still be necessary to learn a set of coefficients for

the linear combination of these nodes.

As a result of the difficulties involved in using time-based value nodes, I opted

instead to use count-based statistics that reflect the relevant performance losses.

Such counts are often provided by the operating system or by the software system

being tuned. For example, I was able to obtain a count of the number of page faults

from the Solaris operating system and a count of the number of lock waits from

Berkeley DB. Indeed, the statistics provided by the software system being tuned and

by the operating systems on which the software system runs can be a good source of

ideas for value nodes to include in the model. If the necessary statistics are not

available, it may be possible to instrument the software system to maintain the

necessary counts. Typically, adding a counter to a system can be done easily and with

minimal overhead. Adding a time-based statistic, on the other hand, is usually much

more costly, because each time measurement incurs the overhead of making a system

call into the operating system.

5.1.1.3 Root Chance Nodes

The root chance nodes are used to represent the relevant characteristics of workloads

experienced by the software system. Workload characteristics are relevant if they

affect the performance metrics that the tuner is attempting to optimize. In choosing

these variables, it can be helpful to consider the workload characteristics that a

human expert would need to consider in order to tune the knobs. For example, as dis-

cussed in Section 4.2.3, the db_rmw knob specifies whether a Berkeley DB applica-

tion should use a special flag to acquire write locks when reading items that may
83

later be modified; doing so eliminates the need to upgrade read locks to write locks

and can thus reduce the number of deadlocks that occur. If a thread needs to read an

item before it can decide whether to modify it, the desirability of using this flag

depends on the probability that an item will be modified after it is read. Thus, one of

the workload characteristics included in Figure 4.2 is pct_writes/upd, the percentage

of items accessed by update transactions that are written after they are read. The

other variables discussed in Section 4.3 provide additional examples of the types of

workload characteristics that can be included in an influence diagram for software

tuning.

When defining a workload characteristic, it is important to do so in a way that

does not depend on the knob settings that are currently in use by the system; this

ensures that the workload characteristic will have a unique value for a given

workload. Otherwise, the corresponding chance node will not be a root chance node

(because it will need one or more of the decision nodes as parents), and it will not be

possible to enter its value as evidence before the influence diagram is evaluated. For

example, in the influence diagram for Berkeley DB (Figure 4.2, page 69), the values

of the page_loc and page_loc_rate variables—which measure the degree of access

locality that a workload exhibits (Section 4.3.2)—do depend on the current knob

settings, and thus they cannot be root chance nodes. To obtain workload

characteristics with unique values for a given workload, I defined additional

variables (def_page_loc and def_loc_rate) that represent the values of page_loc and

page_loc_rate that would be measured under the default knob settings.

5.1.1.4 Unnecessary Variables

An influence diagram for automated software tuning does not need to include vari-

ables whose values are fixed or slowly changing. In particular, we can omit variables

that describe either the platform on which the system runs (e.g., the amount of phys-

ical memory) or configurable aspects of the system that are not being tuned dynami-

cally (e.g., the size of Berkeley DB’s memory pool; see Section 4.1.2). Examples of

slowly changing variables include ones that describe the data stored in a database
84

(e.g., the mean item length). We can exclude such variables because they are implic-

itly captured by the parameters of the model, which are learned for a specific environ-

ment (Section 2.1). If any of the excluded variables change (e.g., if the contents of a

database change over time), the process of updating the parameters over time should

capture these changes. Section 5.6 describes how these parameter updates are per-

formed.

5.1.1.5 Using Normalized Variables

When gathering training data for the model or observing the characteristics of a

workload for which the system needs to be tuned, the relevant statistics are often

measured over some interval. This interval can be either time-based (e.g., measure

the number of page faults that occur during a two-minute interval) or work-based

(e.g., measure the number of page faults that occur during the time needed to com-

plete 1000 transactions). In either case, it is helpful to normalize these measure-

ments so that the values of the variables in the model do not depend on the exact

interval used for the measurements. I have used two types of normalization in my

work with Berkeley DB: expressing a statistic as a percentage, and creating a per-

transaction average by dividing a statistic by the number of transactions completed

during the measurement interval. Examples of the former normalization method

include pct_updates and pct_wlocks. Examples of the latter include faults/txn and

waits/txn. See Section 4.4 for more detail about these nodes.

Using normalized variables takes on an added importance when the

measurement interval is time-based rather than work-based. In such cases,

normalization eliminates non-essential dependencies between the variables that can

arise as a result of using a time-based interval. For example, the number of page

faults that occur in a Berkeley DB application over a two-minute interval depends on

the number of transactions that are completed during that interval, which in turn

depends on the number of lock waits that occur during the interval. Normalizing the

number of page faults (e.g., by dividing by the number of completed transactions)

allows us to avoid including this dependency in the model.
85

5.1.1.6 Avoiding Unnecessary Dependencies

In general, care should be taken to avoid defining variables in a way that introduces

unnecessary dependencies. The use of normalization described in the previous sec-

tion is one example of this general rule. For example, to measure the degree to which

Berkeley DB is able to find database pages in its memory pool (Section 4.1.2), one

variable that could be used is miss rate, the percentage of page accesses that incur a

miss in the memory pool. However, the miss rate depends on the height of the Btree,

because taller trees lead to more internal-page accesses and thus have more page

accesses overall. More specifically, if tree T1 and tree T2 each produce the same num-

ber of misses but T1 is taller than T2, then T1’s miss rate will be lower than T2’s miss

rate because of the larger total number of page accesses that T1 requires. And

because the settings of the page_size and min_keys knobs affect the height of the

Btree, a miss rate chance node would need to have the corresponding decision nodes

as parents, whereas the misses/txn variable that I have used in the influence dia-

gram for Berkeley DB does not need those nodes as parents (Figure 5.1).

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 5.1. The misses/txn node and surrounding nodes. The figure on the right provides a
closeup of a portion of the influence diagram for Berkeley DB; the relevant portion of the diagram is
indicated by the box in the figure on the left. The misses/txn variable does not need the min_keys and
page_size knobs as parents. A node representing the miss rate, on the other hand, would need to
inherit from those knobs for the reasons discussed in Section 5.1.1.6.

pct_writes/updloc_rate

faults/txn

pct_writes

misses/txn

min_keys page_size

overflows db_size

loc_size

pages/txn
86

5.1.2 Adding Arcs to the Model

As discussed in Section 3.2.1, there are two types of arcs in an influence diagram—

conditional arcs and informational arcs. The conditional arcs—arcs into chance or

value nodes that indicate probabilistic relevance—can typically be added on the basis

of intuitive notions of causality. For example, the lock waits in a Berkeley DB applica-

tion are “caused” by multiple threads attempting to acquire locks for the same data-

base pages at the same time. As the number of threads accessing the database

increases, it becomes increasingly likely that lock waits will occur. Therefore, it

makes sense to include an arc from concurrency—which measures the number of

threads accessing the database—to waits/txn, as shown in Figure 5.2.

If the influence of one node on another is purely indirect, a conditional arc

between the two nodes is not needed. For example, in Figure 5.2, the percentage of

update transactions (pct_updates) also affects the likelihood of lock waits, but its

influence stems from the fact that increasing pct_updates can increase the percentage

of database accesses that involve write locks (pct_wlocks). Therefore, the fact that

pct_wlocks is already a parent of waits/txn means that no conditional arc is needed

from pct_updates to waits/txn. On the other hand, the setting chosen for db_rmw

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 5.2. The waits/txn value node and some of the chance and decision nodes that affect
it. The figure on the right focuses on a portion of the influence diagram for Berkeley DB; the relevant
portion of the diagram is indicated by the box in the figure on the left. The nodes shown include
variables like concurrency that directly affect waits/txn, as shown by the conditional arcs from those
nodes to waits/txn, as well as variables like pct_updates that affect waits/txn only indirectly and for
which no conditional arc to waits/txn has been drawn.

pct_loc_txn

waits/txn

pct_updates

concurrency

pct_wlocks

icy db_rmw
87

affects waits/txn both indirectly—through its impact on pct_wlocks—and directly—

through the ways in which it and the setting chosen for deadlock_policy influence

both the likelihood that deadlocks will occur and the types of transactions that are

chosen to resolve them—and thus the influence diagram includes two directed paths

from db_rmw to waits/txn.

As discussed in Section 3.2.1, informational arcs—arcs into decision nodes

that indicate the information known when a decision is made—must be used to

impose an ordering on the decisions. For example, in the influence diagram for

Berkeley DB (Figure 4.2), the decision nodes are ordered as follows: page_size,

min_keys, db_rmw, deadlock_policy. However, because we assume that the tuner

knows the values of the observable workload characteristics before tuning the knobs,

any ordering of the decision nodes will produce the same optimal policies. This is a

special case of the rule for reordering decisions discussed in Section 3.2.1: because the

set of known chance-node values is the same for each of the decisions, the decisions

can be arbitrarily reordered.

Although the ordering of the decision nodes will not affect the recommended

knob settings, it can affect the efficiency of the model. In particular, if the optimal

policy for a given decision node depends on only a subset of the observed chance

nodes or the other decision nodes, it can be more efficient to order the decisions in a

way that takes advantage of this fact. Both Shachter [Sha98] and Nielsen and Jensen

[Nie99] present methods for determining the nodes that are relevant to a given

decision.

To indicate the observations that are made before the knobs are tuned,

informational arcs can also be drawn from the observable workload characteristics to

the decision node that comes first in the imposed ordering. However, provided that

the nodes in question will always be observed and entered as evidence before the

influence diagram is evaluated (i.e., provided that we are only evaluating the model

for a particular set of observations, rather than determining the full optimal policies

for the knobs), these arcs are not strictly necessary.
88

As mentioned in Section 3.2.1, the algorithm for evaluating an influence

diagram (Section 3.2.4) makes the reasonable assumption that all information known

when a decision is made is available for all subsequent decisions. Thus, it is never

necessary to include more than one informational arc that begins at a given chance or

decision node, N; rather, it suffices to include a single informational arc from N to the

first decision made after N’s value is known.

5.1.3 Limiting the Number of Parents of a Node

As discussed in Section 5.1.1.2, the number of parameters associated with a value

node or intermediate chance node is exponential in the number of its parents. More

precisely, the number of parameters associated with a node is linear in the number of

instantiations of its parents, which is in turn exponential in the number of its par-

ents. As the number of parameters associated with a node increases, so does the

amount of data needed to train the model and the cost of evaluating the model.

Therefore, it is important to limit the number of parent instantiations associated

with each node by limiting the number of its parents.

One technique for reducing the number of parents of a node, N, is to introduce

an intermediate chance node between N and two or more of its parents, as shown in

Figure 5.2. This technique assumes that the node in question is conditionally

independent of its original parents given the intermediate node. In the influence

diagram for Berkeley DB, for example, the pct_writes node captures the impact of

both the pct_writes/upd and pct_updates nodes on our beliefs about the faults/txn

Figure 5.3. Adding an intermediate chance node. This figure shows a fragment of an influence
diagram before (left) and after (right) the addition of an intermediate node, D, between node N and two
of its original parents, A and B.

N

BA

N

C

BA

D

C

89

node (Figure 5.4) and thereby reduces the number of parents of this node. And

provided that there are fewer possible values for pct_writes than there are

instantiations of pct_writes/upd and pct_updates, the number of parameters

associated with faults/txn will also be reduced. Moreover, introducing an

intermediate chance node in this way typically reduces the total number of

parameters in the model.

However, adding an intermediate chance node can also reduce both the

accuracy and efficiency of the model. One of the main reasons for a potential

reduction in accuracy stems from the assumption of conditional independence that is

made when an intermediate node is introduced. This assumption is often only

approximately correct, especially in domains like software tuning that require the

discretization of continuous variables. For example, although the undiscretized value

of pct_writes may provide as much information about the value of faults/txn as the

undiscretized values of pct_writes/upd and pct_updates, the discretized value of

pct_writes may not provide as much information as the discretized values of

pct_writes/upd and pct_updates. As a result, adding intermediate nodes can reduce

the accuracy of the model’s predictions about the impact of the knobs and workload

characteristics on the performance of the system. In addition, adding an intermediate

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 5.4. Using an intermediate node to limit the number of a node’s parents. The figure on
the right provides a closeup of a portion of the influence diagram for Berkeley DB; the relevant portion
of the diagram is indicated by the box in the figure on the left. The intermediate chance node pct_writes
captures the influence of pct_writes_upd and pct_updates on faults/txn, and thus takes the place of the
latter nodes as parents of faults/txn, reducing the total number of parents of this node.

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updatespct_wlocks
90

node may increase the cost of performing inference in some cases. Therefore, before

adding an intermediate chance node to an influence diagram, it is necessary to weigh

the potential costs and benefits of doing so. The method of model refinement

discussed in the next section provides one method of assessing the impact of adding a

given intermediate node.

5.1.4 Checking and Refining the Model

It is important to verify that an influence diagram is regular as defined by Shachter

[Sha86]. This involves confirming that the graph has no directed cycles, that the

value nodes have no children, and that there is a directed path that passes through

all of the decision nodes. In addition, the accuracy of the conditional independence

statements that the model encodes should also be checked. In particular, for each

value node and intermediate chance node, the designer of the model should ensure

that it is reasonable to assert that the node is conditionally independent of its nonde-

scendants given the values of its parents. If such an assertion is not valid, the struc-

ture of the model should be reconsidered. Provided that the conditional arcs are

added on the basis of intuitive notions of causality as described in Section 5.1.2, the

conditional independence assertions of the model should typically pass this test, but

there may still be problematic cases.

Examples of invalid conditional-independence assertions can be found in an

earlier version of the influence diagram for Berkeley DB; the relevant portion of the

model is shown in Figure 5.5. This model differs from the final model in its inclusion

of an extra intermediate chance node, prob(wait), that represents the probability that

a given lock request will cause a thread to wait. The value of this variable is simply

the ratio of the number of lock waits to the number of lock requests. Although this

node reduces the number of parents of waits/txn, it also leads to at least two invalid

assertions of conditional independence. Because taller Btrees require more internal-

page accesses, the number of lock requests that are produced by a given workload is

larger in taller Btrees. Therefore, settings of page_size and min_keys that produce
91

taller Btrees will tend to produce smaller values of prob(wait), which means that

prob(wait) is not conditionally independent of page_size and min_keys given the

values of its parents, as the model suggests. Moreover, the impact of a given value of

prob(wait) on the value of waits/txn also depends on the height of the Btree, and thus

waits/txn is not conditionally independent of page_size and min_keys. Therefore, I

revised the model to remove the prob(wait) node.

In addition to performing qualitative checks of the model’s soundness, the

designer of the model should attempt to perform quantitative checks as well.

Measurements of the variables in the model for a range of different workloads and

knob settings can be used to assess the quality of the model’s recommendations—and

to guide possible refinements—before the model is actually deployed as part of an

automated tuner. If the designer is uncertain about one or more design choices (e.g.,

whether to add a particular intermediate chance node to the model), data can be used

to compare the performance of different candidate models. Measurements of the

variables in the model can also allow the designer to quantitatively verify the

assertions of conditional independence encoded in the model’s structure.

Figure 5.5. Invalid conditional-independence assertions. The figure above highlights a portion
of an earlier version of the influence diagram for Berkeley DB. The model includes an intermediate
chance node, prob(wait), that was added to reduce the number of parents of waits/txn. However,
adding this node also leads the model to make invalid assertions of conditional independence, as
described in Section 5.1.4.

loc_rate

pct_wlocks

pages/txn

pct_loc/txn

leaves/txn

waits/txn

pct_writes

misses/txn

prob(wait)

concurrency

deadlock_policy db_rmw

oflw/txn
92

The data needed to evaluate one or more models should consist of two sets of

measurements that are gathered using the process described in Section 5.2. The first

set is used to train the model or models being assessed, as described in Sections 5.3

and 5.4.1 The second set—the validation set—is used to evaluate the performance of

the models on a variety of workloads. When gathering this validation data, a large

number of different knob settings (all of them, if possible) should be tried for each

workload; this provides empirical evidence of which knob settings are optimal for

each workload in the set. By comparing the system’s maximal measured performance

for a given workload with the performance it achieves using the knob settings

recommended by the models, the quality of the models’ recommendations can be

assessed.

5.2 Gathering the Training Data

The parameters of the influence diagram used by the tuner are learned from a collec-

tion of training data. The process of gathering the training data can vary depending

on the system being tuned. In all cases, this process involves measuring the perfor-

mance of the system for various combinations of knob settings and workload charac-

teristics. More specifically, it involves measuring the values of the intermediate

chance nodes and value nodes that result from different combinations of values for

the decision nodes and root chance nodes. Each tuple of measurements of the vari-

ables in the model is referred to as a training example or training instance. The per-

formance metric that the tuner will attempt to optimize (which may or may not be

explicitly represented in the model) should also be measured as part of each training

example.

As discussed in Section 2.4, it may be impractical to gather training data on a

deployed software system as it runs, because a randomly selected knob combination

could lead to a significant performance loss. Therefore, it may be preferable to gather

1. It is worth noting that the discretizations and parameters learned during the validation process
would not be retained in most cases. The actual training data for a given installation of the tuner must
ordinarily be gathered on a per-platform basis, as described in Section 5.2.
93

training examples offline using simulated workloads run on a separate version of the

system, perhaps using a workload generator. This is the approach that I have taken

in my work with Berkeley DB; Chapter 6 discusses the design of workload generators

for software tuning. Developing a workload generator is a non-trivial task, but the

work involved—like the work involved in designing an influence diagram for

tuning—need only be performed once, by the developers of the software system. No

effort by end-users is required.

When using a workload generator, the training workloads are drawn from

distributions over the workload characteristics. These distributions can be estimated

or anticipated by someone familiar with the system, or they can simply be uniform

distributions over the ranges of possible values. Each of the selected workloads is run

under one or more of the possible knob configurations. Once the system reaches a

steady state for a given run, the values of the variables in the influence diagram are

measured over some interval and together constitute a training example. Neither the

estimates of the workload distributions from which the simulated workloads are

drawn nor the simulated workloads themselves need to precisely match the actual

workloads run on the system. The training examples can be seen as providing

reasonable starting estimates of the model’s parameters, and the parameters can be

refined over time as the system uses the influence diagram for tuning. Section 5.6

explains how this process of parameter refinement is performed.

It is worth noting that the training examples do not need to include instances

of all possible combinations of workload characteristics and knob settings. The

conditional independence relationships encoded in the influence diagram make it

unnecessary to see all combinations, and they give the model its ability to generalize.

Provided that the training instances include examples of most of the possible

instantiations of the parents of each intermediate chance node and value node in the

model, the model should be able to recommend optimal or near optimal knob settings

for combinations of workload characteristics that are not present in the training
94

data—as well as combinations of workload characteristics for which only some of the

knob settings have been tried.

Because the parameters of the model may depend upon the hardware

platform on which the software system runs, the process of gathering the training

data will typically need to be performed on a platform-specific basis. One possible

approach would be for the software developer to gather training data for a wide range

of hardware platforms and precompute the initial parameters of the model for each of

these platforms. Alternately, the workload generator and a script for driving it could

be included with the software system and run by the end-user on the appropriate

platform. Here again, no expertise would be needed by the end-user. The workload

generator—like the tuner itself—would run “out of the box.”

Other variations on the process of gathering the training data are also

possible. For example, the manufacturer of an information appliance that runs an

embedded software system could obtain the tuner and workload generator from the

software developer, configure the workload generator to produce workloads that the

appliance is likely to face, and run the workload generator on the appliance to gather

the training data needed by the tuner. In all cases, the work involved is amortized

over the number of installations of the software system, each of which is able to tune

itself without human intervention.

5.3 Discretizing the Continuous Variables

Researchers have developed methods for incorporating continuous variables in influ-

ence diagrams in ways that involve explicitly representing and reasoning with con-

tinuous probability distributions [e.g., Sha89]. However, there are at least two

problems associated with these methods. First, they are limited to certain families of

distributions—typically Gaussians—which means using them makes potentially

incorrect assumptions about the nature of the data [Fri98]. Second, existing tools for

working with influence diagrams are limited in their ability to handle continuous dis-

tributions.
95

An alternative method for dealing with continuous variables—or discrete

variables with enough possible values that they are effectively continuous—is to

convert each continuous variable into a discrete variable. This process of

discretization involves specifying a sequence of cutoff values that divide the range of

possible values for the variable into subranges referred to as bins. Values of the

continuous variable that fall into the same bin are given the same value in the

discretized version of the variable. For example, a cutoff-value sequence of 2, 4, and

10 creates four bins: one for values in (- ∞, 2), one for values in [2, 4), one for values in

[4, 10), and one for values in [10, ∞).

More formally, a sequence of cutoff values, s = (c1, c2, ..., ck), where c1< c2 < ...

< ck, defines a function fs that maps real numbers to elements of the set {0, ..., k} as

follows:

(EQ 18)

When using a sequence of cutoff values to discretize a variable, each value x of the

undiscretized variable is given the value fs(x) in the discretized version of the vari-

able.

Determining an effective discretization for a variable is a challenging task.

The need to discretize multiple variables simultaneously in a way that captures the

interactions between them makes the problem that much more difficult. The

paragraphs that follow begin by presenting two simple approaches to discretization

and discussing their limitations. The section continues with an introduction to a

method developed by Friedman and Goldszmidt [Fri96] for learning the

discretization of continuous variables in a related probabilistic model known as a

Bayesian network, and it concludes with a description of how I have adapted their

approach to learn the discretization of continuous variables in an influence diagram.

f s x()

0 if x c1<

i if ci x ci 1+< and 1 i k<≤≤

k if x ck≥





=

96

5.3.1 Simple Discretization Methods

5.3.1.1 Equal-width Bins

One simple approach to discretization is equal-width bins, in which the distance

between any two adjacent cutoff values is the same. More specifically, if s is the

smallest value observed in the training data (or the smallest possible value for the

variable, if that value is known a priori), l is the largest observed (or largest possible)

value, and n is the desired number of bins, the cutoffs are spaced w units apart,

where w is computed as follows:

(EQ 19)

The resulting cutoff-value sequence is s + w, s + 2⋅w, ... , s + (n- 1)⋅w.

A significant limitation of an equal-width approach is that outliers in the

training data can skew the range of values of the variable and produce bins that

contain either too many or too few training instances. When a bin contains too many

training instances, important distinctions between values can be lost. When a bin

contains too few training instances, it becomes likely that the children of the node in

question will have parameters for which no training data is available.

One example of the skewing effect of outliers is found in the training data

from my experiments with Berkeley DB, which includes the distribution of values for

misses/txn shown in Figure 5.6. Using equal-width bins with s = 0, l = 25, and n = 5

produces cutoffs spaced w = 5 units apart, as shown by the vertical lines on the

graph. This discretization puts over 68% of the values in the first bin, which means

that all distinctions between two-thirds of the training data for this variable would be

lost. In addition, there are only 20 training instances in the fifth bin.

w l s–
n

----------=
97

5.3.1.2 Equal-height Bins

Another common discretization approach is equal-height bins, in which the cutoffs

are chosen so that each bin ends up with approximately the same number of training

instances. The number of instances in a given bin is referred to as the height of the

bin. One reason that the heights of the bins may be only approximately equal is that

a given value may appear multiple times, and all instances of a given value are

placed in the same bin. Figure 5.7 presents the pseudocode for the algorithm that I

have used to determine equal-height cutoffs. It adjusts the target value for the bin

height as needed to handle situations in which repeated values cause one or more of

the bins to receive extra training instances. For example, if we were dividing 100 val-

ues into five equal-height bins and 40 of the values were identical, the identical val-

ues would be placed in one bin and the remaining 60 values would be divided equally

among the remaining four bins. If some of the bins end up with too few values, the

user can reduce the desired number of bins and rerun the algorithm.

An equal-height approach tends to avoid creating bins that contain too many

or too few training instances. Figure 5.8 shows the same distribution of values for

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

fr
eq

ue
nc

y

misses/txn

Figure 5.6. Example of an equal-width discretization. This graph shows the distribution of
values of the misses/txn variable in the training data for the influence diagram for Berkeley DB. Using
five equal-width bins produces the cutoff values shown by the vertical lines. The counts of the number
of training instances in the individual bins are, from left to right: 12797, 2581, 2585, 734, and 20. In
determining the frequencies, the misses/txn values were rounded to one decimal place.
98

Figure 5.7. Pseudocode for an algorithm to perform equal-height discretization. The
algorithm takes a collection V of real numbers and a desired number of bins, nbins , and determines
cutoffs that partition V into nbins equal-height bins, where nbins ≥ 2. It adjusts for cases in which one
or more bins receive extra values because of repeated values.

equal_height_discretize(V, nbins) {
nvals = 0;
count = a hashtable
for each unique value v in V {

count{v} = the number of times that v appears in V;
nvals = nvals + count{v};

}
orig_target = nvals/nbins; // original target height

// adjust for values that get their own bin
for each unique value v in V {

if (count{v} > orig_target) {
nvals = nvals - count[v];
nbins = nbins - 1;

}
}
target = nvals/nbins;

// consider the values in ascending order
total = total_in_bins = ncutoffs = 0;
A = an array containing the values in V (without repeats),

sorted in ascending order;
for (i = 0; i < size(A); i++) {

total = total + count{A[i]};
height = total - total_in_bins;
new_cutoff = false;
if (count{A[i]} > orig_target || i = size(A) - 1) {

cutoffs[ncutoffs] = A[i]; // A[i] gets its own bin
new_cutoff = true;

} else {
next_height = height + count{A[i+1]};
if (|height - target| < |next_height - target|) {

cutoffs[ncutoffs] = (A[i] + A[i+1])/2;
new_cutoff = true;

// adjust the target height
nvals = nvals - height;
nbins = nbins - 1;
if (nbins == 1) {

return cutoffs;
}
target = nvals/nbins;

}
}
if (new_cutoff) {

total_in_bins = total;
ncutoffs = ncutoffs + 1;

}
}

}

99

misses/txn as the one shown in Figure 5.6, but partitioned into five equal-height

bins. The training instances are distributed in a fairly uniform fashion among the

five bins.

In addition, equal-height discretizations tend to draw distinctions between

the values—or the narrow subranges of values—that occur most frequently in the

training data, because the equal-height criterion makes it less likely that frequently

occurring values will be grouped together. And because frequently occurring values

tend to be associated with the most common workloads, the ability to distinguish

these values may allow the influence diagram to make more accurate tuning

recommendations for those workloads.

5.3.1.3 Limitations

Both equal-width and equal-height discretizations suffer from two significant limita-

tions. First, both of these methods employ a set of parameters—the desired numbers

of bins for the variables—and it can be difficult to predetermine appropriate values

for these parameters. Second, and more important, both methods discretize individ-

 0

 100

 200

 300

 400

 500

 600

 700

 1
.0

5
 2

.0
5

 3
.5

5

 9
.2

5

 2
5

fr
eq

ue
nc

y

misses/txn

Figure 5.8. Example of an equal-height discretization. This graph shows the distribution of
values for the misses/txn variable in the training data for the influence diagram for Berkeley DB.
Using five equal-height bins produces the cutoff values shown by the vertical lines. The counts of the
number of training instances in the individual bins are 3926, 3555, 3668, 3789, and 3779. The counts
are not exactly equal because all instances of a given value are placed in the same bin. In determining
the frequencies, the misses/txn values were rounded to one decimal place.
100

ual variables in isolation, without regard to how the resulting discretizations affect

the influence diagram as a whole. It is thus likely that the discretizations will fail to

capture distinctions that are relevant to the interactions between neighboring vari-

ables in the model. For example, in the influence diagram for Berkeley DB, it may be

the case that lock waits become much more likely when the value of concurrency

exceeds some threshold. Neither an equal-width nor an equal-height approach would

have any way of detecting this, and thus the resulting discretization may end up

grouping values from above and below the threshold into the same bin.

If a human being determines the discretizations, it may be possible to employ

an approach in which either an equal-width or equal-height approach provides an

initial set of discretizations that are then tweaked by hand—perhaps on the basis of a

process that tests the accuracy of the model (Section 5.1.4). However, determining the

necessary modifications to a set of discretizations is non-trivial, and this process

would need to be performed separately for each installation of the software system.

As a result, hand-tweaking the discretizations violates the goal of creating a fully

automated tuner. Without an automated means of discretizing the continuous

variables in the model, we end up replacing one tuning process (the tuning of the

knobs) with another (the tuning of the discretizations). Clearly, what is needed is an

automated method of learning the appropriate discretizations from the training data.

The remainder of this section presents one such method.

5.3.2 Learning Discretizations of Variables in a Bayesian Network

A Bayesian network [Pea88] is a probabilistic graphical model that is closely related

to an influence diagram. In a Bayesian network, there are no decision or value nodes

and there are only conditional arcs, but the syntax and semantics are otherwise the

same as the syntax and semantics of an influence diagram. Bayesian networks can be

used to perform various types of probabilistic inference—such as determining the

most probable explanation for a set of observations—and they have been applied to

problems in a variety of domains.
101

Friedman and Goldszmidt [Fri96] have developed a method based on the

Minimal Description Length (MDL) principle for learning the discretizations of

continuous variables in a Bayesian network. This section begins by explaining the

MDL principle and how it can be used to define a metric that balances the complexity

of a graphical model with the degree to which it captures interactions among related

variables in the network, and it continues with a presentation of Friedman and

Goldszmidt’s algorithm for using this metric to learn the discretizations of variables

in a Bayesian network. Section 5.3.3 presents an extended and modified version of

this algorithm that can be used to discretize continuous variables in an influence

diagram.

5.3.2.1 The MDL Principle

The MDL principle is used to distinguish between different methods for encoding a

collection of data. Encoding data involves replacing each unit of data with a corre-

sponding code; the goal is to compress the data, producing a representation that is

more compact than the original one. A Bayesian network or influence diagram can be

seen as a mechanism for encoding the data used to train the model. More specifically,

the joint probability distribution stored in the model can be used to guide Huffman

encoding [Cor90], which assigns codes to units of data on the basis of the frequencies

with which they appear. Because we want to be able to recover the original data from

the encoded version, we need to store a representation of the model along with the

encoded data. If the continuous variables are being discretized, we also need to store

enough information to recover the undiscretized values from the discretized ones.

The description length of the encoding is thus the sum of the number of bits used to

represent the model (including the discretization) and the number of bits used to rep-

resent the encoded, discretized data. For a given collection of training data, different

models produce different description lengths. The MDL principle states that the opti-

mal model is the one that minimizes the description length.

Although the MDL principle makes sense when the goal is to compress a

collection of data, its relevance to the process of learning discretizations in a
102

Bayesian network or influence diagram is less obvious. However, as shown in the

next section, an argument can be made that the discretizations that minimize the

description length of the encoded training data are also the discretizations that best

capture the interactions between the variables in the model.

5.3.2.2 Computing the Description Length

The argument for using the MDL principle to learn the discretizations of the continu-

ous variables in the model becomes more compelling when we examine the formula

for the description length of a Bayesian network, which Friedman and Goldszmidt

derive in their work [Fri96]. The total description length is the sum of the description

lengths of the four elements of the encoding: the model (including the parameters);

the sequences of cutoff values that are used to discretize the continuous variables;

the discretized training data; and the information needed to recover the undis-

cretized data from the discretized data. The paragraphs below consider each of these

elements in turn.

In the discussion that follows, U = { X1, ..., Xn } will refer to the set of variables

in the model, and Uc will denote the subset of them that are continuous. U* = { X1
*, ...,

Xn
* } will represent a set containing both the discrete variables in U and the

discretized versions of the continuous variables in U. More specifically, if Xi is

discrete, Xi
* = Xi; if Xi is continuous, Xi

* is the discretized version of Xi. Πi will refer

to the parents of Xi in the model, and Πi
* to the discretized versions of these parents.

N will represent the number of training instances. will refer to the number of

values in the set A; Ω(X) will refer to the set of all possible instantiations of the

variables in X; and will refer to the number of values in Ω(X). Finally, the

notation established in Chapter 3 for probabilities will also be used below.

The component of the description length that deals with the encoding of the

model itself can be computed as follows:

(EQ 20)

A

X

DLM log2 Xi∗
log2N

2
---------------- Πi∗ Xi∗ 1–()

i
∑+

i
∑=
103

The first element of this expression computes the number of bits needed to encode the

number of values of each of the variables in U*. The second element computes the

number of bits needed to encode the parameters of the model; each variable Xi needs

parameters to specify each of its associated probability distributions, of

which there are —one for each instantiation of its parents. Additional bits

would also be needed to encode the number of variables in the model and a descrip-

tion of the parents of each variable, but these values can be omitted from consider-

ation because they do not depend on the discretizations.

The second element of the total description length is the number of bits

needed to encode the cutoff-value sequences used to discretize the continuous

variables. Friedman and Goldszmidt show that this value can be computed as

follows:

(EQ 21)

where Ni is the number of unique, undiscretized values of Xi in the training set, ki is

the number of bins in the discretized version of Xi, and H is the function defined as

follows: H(p) = . The intuition here is that we need to

store a cutoff-value sequence for each variable Xi. The possible cutoff values for Xi are

the Ni - 1 midpoints between successive values in its set of Ni unique values, and

there are ways of selecting a sequence of ki - 1 of these values. The expres-

sion to the right of the summation in equation 21 provides an upper bound on the

number of bits needed to describe which of these sequences has been chosen.

The third and fourth elements of the total description length are DLD, the

number of bits needed to encode the discretized training data, and DLR, the number

of bits needed to encode the values used to recover the undiscretized data from the

discretized data. Friedman and Goldszmidt show that the relevant elements of the

sum of these two description lengths can be expressed compactly using an

information-theoretic metric known as mutual information [Cov91]. The mutual

information between two sets of random variables, X and Y, is defined as follows:2

Xi
∗ 1–

Πi
∗

DLC Ni 1–()H
ki 1–

Ni 1–
---------------- 

 
Xi Uc∈
∑=

plog2 p– 1 p–()log2 1 p–()–

Ni 1–

ki 1–
---------------- 

 
104

(EQ 22)

Mutual information is a measure of the degree to which knowing the values of one set

of variables decreases our uncertainty about (“gives us information about”) the values

of a second set of variables. If X and Y are independent—i.e., if knowing the values of

the variables in Y gives us no information about the value of X, and vice versa—then

. The larger the mutual information is between a node and its neighbors

in a Bayesian network or influence diagram, the more likely it is that the model accu-

rately captures the interactions between those variables.

In their derivation of the description length of a Bayesian network, Friedman

and Goldszmidt use basic properties of the mutual information metric and other

related measures to show the following:

(EQ 23)

where terms that are not affected by the process of learning the model have been

omitted, and the probabilities used to perform the mutual information computations

are based on the frequencies with which values appear in the training data (Section

5.4.1.1). The total description length can thus be computed as follows:

(EQ 24)

When the description length is expressed in the form above, it becomes

evident that this metric balances the complexity of the model—which is represented

by the first three terms of the sum—with the mutual information between each node

and its parents—which is represented by the final term. This characteristic of the

description length is the reason why the MDL principle is a useful guide to the

process of learning the optimal discretizations. Because increasing

2. If either X or Y is the empty set, is defined to be zero.I X Y;[]

X Y;[] P
x Ω X(),∈
y Ω Y()∈

∑ X x= Y y=,()log2
P X x Y y=,=()

P X x=()P Y y=(
---–=

I X Y;[] 0=

DLD DLR+ N I Xi∗ Πi∗;[]
i

∑–=

DL log2 Xi∗
log2N

2
---------------- Πi∗ Xi∗ 1–()

i
∑+

i
∑=

+ Ni 1–()H
ki 1–

Ni 1–
---------------- 

 
Xi Uc∈
∑ N I Xi∗ Πi∗;[]

i
∑–

I Xi∗ Πi∗;[]
i

∑

105

decreases the description length, the MDL principle leads us to favor cutoff values

that increase the mutual information between a node and its parents and children.

However, adding additional cutoff values also increases the description length

(through the first three terms of the sum), and thus the MDL principle leads us to

avoid discretizations that are overly complex. This balancing of mutual information

with complexity guards against overfitting the model to the training data, and it

should also help to limit the number of parameters for which no training data is

available—a problem that becomes more likely as the complexity of the model

increases.

5.3.2.3 Friedman and Goldszmidt’s Algorithm

To learn the discretizations of variables in a Bayesian network, Friedman and Gold-

szmidt employ a greedy, iterative approach in which they repeatedly attempt to

improve the discretization of one of the continuous variables while holding fixed the

discretizations of the other variables. When attempting to improve a variable’s dis-

cretization, their algorithm begins by removing all of the variable’s cutoff values and

resetting its discretization to a single bin [Fri03]. It then considers all possible cutoff

values, adding the one that leads to the largest decrease in description length. It con-

tinues adding cutoff values in this way until there are no remaining cutoff values

that can reduce the description length. The algorithm then compares the description

length produced by this new discretization to the description length produced by the

previous discretization for that variable. If the new description length is smaller, it

adopts the new discretization.

When using the MDL principle to improve the discretization of a single

variable, Xi, Friedman and Goldszmidt note that we can restrict our attention to the

elements of the description length that are affected by Xi’s discretization. More

specifically, we can minimize the local description length for Xi, which is defined as

follows:
106

(EQ 25)

Here again, the probabilities used to perform the mutual information computations

are derived from the frequencies with which values appear in the training data. Note

that the above expression, like the one for the total description length (equation 24),

has four components, the first three of which measure model complexity and the last

of which measures mutual information between neighboring variables. However, in

computing the local description length for Xi, we only consider quantities related to

Xi and the variables in what is known as Xi’s Markov blanket—its parents, its chil-

dren, and the parents of its children.

As discussed above, after the algorithm resets a variable’s discretization to a

single bin, it only considers changes to the discretization that involve adding a new

cutoff value to the existing cutoff values for that variable. And because any new cutoff

value has the same effect on the complexity of the model (the first three components

of DL(Xi)), the algorithm can determine the optimal candidate for a new cutoff value

by finding the value that leads to the largest increase in mutual information (the

fourth component of DL(Xi)). More precisely, it chooses the cutoff value, c, that

maximizes the following expression:

(EQ 26)

where the notation [c] indicates that the cutoff values used to discretize Xi include

the value c. Then, once the optimal candidate value is found, the algorithm deter-

mines whether it should be added to the discretization by seeing if it reduces DL(Xi),

which is equivalent to determining whether the increase in mutual information from

adding the cutoff value is greater than the corresponding increase in the model’s com-

plexity.

DL Xi() log2 Xi∗
log2N

2
---------------- Πi∗ Xi∗ 1–() Π j∗ X j∗ 1–()

j X i Π j∈,
∑+ 

 +=

+ Ni 1–()H
ki 1–

Ni 1–
---------------- 

  N I Xi∗ Πi∗;[] I X j∗ Π j∗;[]
j Xi Π j∈,

∑+ 
 –

ain Xi c,() I Xi∗ c[] Πi∗;[] I X j∗ Π j∗ c[];[]
j X i Π j∈,

∑+ 
  I Xi∗ Πi∗;[] I X j∗ Π j∗;[

j Xi Π j∈,
∑+

–=
107

To fully define the algorithm, two additional features need to be specified. The

first is the choice of the initial discretizations for the continuous variables. These

initial cutoff values are needed to ensure that it is possible to assess the impact of

adding new cutoff values during the initial stages of the algorithm. Friedman and

Goldszmidt use a method called least square quantization [Cov91] that they describe

as essentially attempting to fit k Gaussians to the distribution of values. The second

feature of the algorithm that needs to be specified is the order in which variables are

considered. The approach taken by Friedman and Goldszmidt is shown in the

pseudocode for their algorithm in Figure 5.9. It guarantees that the changes made to

Figure 5.9. Pseudocode for Friedman and Goldszmidt’s algorithm. The algorithm takes a
Bayesian network, B, and a collection of training data, D, and determines the discretizations of the
continuous variables in B. DL(X,disc) is the local description length for the variable X when it is
discretized using the cutoff values in disc ; it is computed using equation 25. disc(X) + c refers to
the sequence of cutoff values formed when c is added to the cutoff values in disc(X) . Gain(X,c) is
the gain in mutual information from adding cutoff value c to the discretization of variable X; it is
computed using equation 26. See Section 5.3.2 for more details of the algorithm.

l earn_ di sc_FG(B,D) {
assign initial cutoff values to the continuous variables;
push the continuous variables onto a queue Q;
while (Q is not empty) {

remove the first element from Q and store it in X;

// try to improve X’s discretization, starting from scratch
old_disc = disc(X);
reset disc(X) to a single bin;
do {

determine the cutoff c that maximizes Gain(X,c);
delta = DL(X,disc(X) + c) - DL(disc(X));
if (delta < 0) {

disc(X) = disc(X) + c;
}

} while (delta < 0)

// if we succeed, make sure X’s Markov blanket is in Q
if (DL(X,disc(X)) < DL(X,old_disc) {

for (all Y in X’s Markov blanket) {
if (Y is not in Q) {

add Y to Q
}

}
} else {

disc(X) = old_disc;
}

}
}

108

the discretization of variable Xi in one pass of the algorithm have a chance to affect

the discretizations of the variables in Xi’s Markov blanket before Xi’s discretization is

reconsidered. Friedman and Goldszmidt do not specify the order in which nodes are

initially added to the queue used by the algorithm; I assume that they use a random

ordering.

Because the algorithm outlined in Figure 5.9 takes a greedy approach, it is

only guaranteed to converge to a local minimum of the description length. Thus, it

may not actually find the optimal discretizations. An exhaustive search for the

optimal discretizations is typically infeasible, but other, non-exhaustive search

strategies could be used in place of greedy search.

5.3.3 Learning Discretizations of Variables in an Influence Diagram

Friedman and Goldszmidt’s algorithm cannot be applied directly to an influence dia-

gram, because the algorithm does not take into account the decision and value nodes

that are found in such models. This section describes an extended and modified ver-

sion of their algorithm (hereafter referred to as the modified algorithm) that is able to

handle influence diagrams. It also explains how the presence of value nodes in an

influence diagram can simplify the process of specifying initial cutoff values for the

variables being discretized, and it describes an additional modification that I have

made to their algorithm.

5.3.3.1 Dealing with Decision Nodes

The modified algorithm ignores the informational arcs in an influence diagram. It

treats decision nodes as if they were root chance nodes (i.e., chance nodes without

parents) that have only chance and value nodes as their children.

Typically, a decision node will already be a discrete variable, and thus it will

only be considered by the algorithm when it is the parent of a continuous chance node

or a value node. However, if a decision node represents a continuous variable, it could

also be discretized by the algorithm. In the context of software tuning, this could be

useful when dealing with numerical-valued knobs that have a large range of possible
109

settings. By discretizing such a knob, the influence diagram could be used to

recommend an interval of possible settings that corresponds to one of the bins in the

discretized version of the knob, and then other criteria—possibly including feedback

from attempts to adjust the knob within the recommended interval—could be used to

select a setting from that interval.

5.3.3.2 Dealing with Value Nodes

In and of itself, a value node never needs to be discretized, because such a node is rep-

resented and manipulated in the same way whether it is continuous or discrete. How-

ever, in order to capture the relevant interactions between a value node and its

parents, the modified algorithm begins by assigning a temporary fixed discretization

to each value node, basing the cutoff values on the values of the node that appear in

the training data. Doing so allows the algorithm to treat a value node as a chance

node so that it can measure the mutual information between a value node and its

parents and thereby discretize the parents more effectively.

A number of methods could be used to determine the fixed discretizations

assigned to the value nodes; I have chosen to use an equal-height approach (Section

5.3.1.2). The limitations of this approach, as described in Section 5.3.1.3, should be

less of an issue in this context. In particular, the need to choose the number of bins

for these nodes should be less problematic. Ordinarily, we need to avoid specifying too

many bins for a node, because doing so can lead to situations in which there is

insufficient training data to learn some of the node’s parameters. But because the

discretizations of the value nodes are not used as part of the final model, this concern

does not apply here. Instead, we can afford to give each value node a large number of

bins—and doing so makes it more likely that the discretizations will capture the

interactions between the value nodes and their parents. The experiments presented

in Section 7.5.3 explore the impact of varying the number of equal-height bins used

for this purpose.

Because the discretizations added to the value nodes do not affect the

complexity of the final model, the modified algorithm does not consider these
110

discretizations when it computes the complexity-related components of the

description length. More specifically, the modified algorithm uses the following

modified expression for the local description length:

(EQ 27)

where V represents the set of value nodes in the model. Note that the second compo-

nent of this expression—the one that measures the length of the encoded parameters

of the discretized versions of a node Xi and its children—now has three terms instead

of two. If a child of Xi is not a value node, we compute the number of its parameters as

before—multiplying the number of instantiations of its parents by one less than the

number of values of the node. If a child of Xi is a value node, we count only the num-

ber of instantiations of its parents, ignoring the number of values of the node itself.

This reflects the fact that a value node will ultimately have one expected-value

parameter—rather than multiple probability parameters—for each instantiation of

its parents.

5.3.3.3 Simplifying the Specification of Initial Cutoff Values

As discussed in Section 5.3.2.3, Friedman and Goldszmidt’s algorithm requires that

initial cutoff-value sequences be assigned to the nodes being discretized. These pre-

liminary cutoff values are needed to ensure that the algorithm can assess the impact

of adding new cutoff values to nodes considered at the start of the algorithm.3 How-

3. Without initial cutoff values, we could end up with a situation in which all of the nodes in the Markov
blanket of a given node, X, have only one value (because they all have the trivial discretization of a
single bin). When this is the case, Gain(X, c) = 0 for every candidate cutoff value c, and thus the
algorithm cannot distinguish between candidate cutoff values.

DL′ Xi() log2 Xi∗
log2N

2
---------------- Πi∗ Xi∗ 1–() Π j∗ X j∗ 1–() Π j∗

j Xi Π j,∈,

X j V∈

∑+
j Xi Π j,∈,

X j V∉

∑+







+=

+ Ni 1–()H
ki 1–

Ni 1–
---------------- 

  N I Xi∗ Πi∗;[] I X j∗ Π j∗;[]
j Xi Π j∈,

∑+ 
 –
111

ever, because these initial cutoff values are not chosen on the basis of mutual infor-

mation, they may prevent the algorithm from discovering the most effective

discretizations for the nodes.

The modified algorithm takes advantage of the fixed discretizations specified

for the value nodes (see Section 5.3.3.2) to avoid specifying initial cutoff values for the

nodes being discretized. Because these value-node discretizations are in place at the

start of the algorithm, the algorithm is able to capture interactions between the value

nodes and their parents, even if the parents begin with no cutoff values. Then, once

the algorithm begins to learn cutoff values for the parents of the value nodes, it is

able to learn cutoff values for other neighbors of those nodes, and so on. Therefore,

there is no need to specify initial discretizations for the nodes being discretized.

The modified algorithm begins by initializing the discretizations of the

continuous chance nodes to a single bin (i.e., an empty cutoff-value sequence). Then,

during the initial pass of the algorithm, nodes are visited according to their distance

from the value nodes. More specifically, let l(Xi) be the length of the shortest directed

path from node Xi to a value node. When initializing the queue of nodes to be

discretized, the algorithm orders the nodes according to their l values so that all

nodes with l = 1 (i.e., the parents of the value nodes) are visited first, then all nodes

with l = 2, and so on. After the initial pass, nodes are visited according to the order in

which they are added back to the queue by the algorithm. The full, modified

algorithm is shown in Figure 5.10.

Because the fixed discretizations specified for the value nodes are not based on

mutual-information considerations, they, like the initial discretizations specified in

the original algorithm, can also degrade the quality of the learned discretizations.

However, the potential negative impact of the value-node discretizations should

typically be less than that of the discretizations required by the original algorithm,

for two reasons. First, the cutoff values added to the value nodes do not affect the

complexity-related components of the description length, and thus they should not

reduce the number of cutoff values that the algorithm is able to learn for the
112

continuous chance and decision nodes. Second, we can afford to give the

discretizations of the value nodes a large number of bins, and this should reduce the

risk that these discretizations will prevent the algorithm from capturing significant

interactions between the variables. Even if the initialization procedure from the

original algorithm were used, initial discretizations of the value nodes would still

need to be specified. The modified algorithm simply takes advantage of these

Figure 5.10. Pseudocode for an algorithm to learn the discretizations of continuous
variables in an influence diagram. The algorithm—which is based on the algorithm of Friedman
and Goldszmidt (Figure 5.9)—takes an influence diagram, I , and a collection of training data, D, and
determines the discretizations of the continuous variables in I . DL’(X,disc) is the modified local
description length for the variable X when it is discretized using the cutoff values in disc ; it is
computed using equation 27. disc(X) + c refers to the sequence of cutoff values formed when c is
added to the cutoff values in disc(X) . Gain(X,c) is the gain in mutual information from adding
cutoff value c to the discretization of variable X; it is computed using equation 26. See Section 5.3.3 for
more details of the algorithm.

learn_disc_ID(I,D) {
assign initial cutoff values to the value nodes;
for each continuous chance or decision node n {

let l(n) = the length of shortest path from n to
a value node;

assign the trivial discretization to n;
}
add the continuous chance and decision nodes to a queue Q;
sort Q according to the nodes’ l values, smaller values first;

while (Q is not empty) {
remove the first element from Q and store it in X;

// try to improve X’s discretization
determine the cutoff value c that maximizes Gain(X,c);
delta = DL’(X,disc(X) + c) - DL’(X,disc(X));
if (delta < 0) {

disc(X) = disc(X) + c;
}

// if we succeed, add X’s Markov blanket--and X--to Q
if (delta < 0) {

for (all Y in X’s Markov blanket) {
if (Y is not in Q) {

add Y to Q;
}

}
add X to Q;

}
}

}

113

discretizations to avoid specifying initial discretizations for the continuous chance

and decision nodes.

5.3.3.4 An Additional Modification

To improve the discretization of a node, Friedman and Goldszmidt’s algorithm

removes the node’s current discretization and repeatedly adds cutoff values until

there are no remaining values that reduce the description length of the model. The

modified algorithm takes a different approach to improving a node’s discretization. It

uses a node’s current discretization as the starting point for possible improvements

rather than starting over from scratch, and it adds at most one new cutoff value to a

node per iteration. Because this approach never reconsiders cutoff values added in

earlier rounds of the algorithm, it may produce models with larger description

lengths and less accuracy than the models produced using Friedman and Gold-

szmidt’s approach. However, their approach often takes considerably more time,

because it tends to produces large cutoff-value sequences at the start of the algo-

rithm—when the increase in description length from adding a cutoff value is small—

only to scale them back in later iterations of the algorithm. Section 7.5.3 compares

the performance of models produced using these two approaches.

If the modified algorithm is able to add a cutoff value to a node, it adds the

node itself back to the queue along with the node’s Markov blanket, so that it can

subsequently determine if additional cutoff values should be added. In Friedman and

Goldszmidt’s algorithm, a node is only reconsidered after the discretization of one of

its neighbors is changed, because their algorithm always adds as many cutoff values

as possible given the current discretizations of the neighbors.

5.4 Learning the Parameters of the Model

Once the training data has been collected and the continuous variables have been

discretized, we can learn the parameters of the model from the training data. This

section first explains how to estimate parameters for which training data is available.

It then presents methods for estimating parameters for which no training data exists.
114

Finally, it explains how regression can be used to learn appropriate weights for the

value nodes so that optimizing their sum is equivalent to optimizing the overall per-

formance measure that the tuner is attempting to optimize.

5.4.1 Estimating Probabilities

As discussed in Section 3.2.2, each chance node in an influence diagram has an asso-

ciated set of parameters that specify one or more probability distributions. For a root

chance node, these parameters specify a marginal distribution over the possible val-

ues of the node. For an intermediate chance node, these parameters specify a collec-

tion of conditional distributions, one for each instantiation of its parents. If we

assume that the continuous variables in the model have all been discretized, these

distributions are all simple, multinomial distributions, and each parameter repre-

sents the probability that a variable will take on a particular value. The notation θijk

will refer to the probability that chance node Xi takes on its kth value given the jth

instantiation of its parents (if any), θij will represent the vector of parameters

describing the probability distribution for Xi given the jth instantiation of its par-

ents4, and Θ will refer to the entire collection of parameters.

5.4.1.1 Maximum Likelihood Estimation

One of the most common methods of estimating probability parameters is maximum

likelihood estimation, which selects the parameters that maximize the probability of

observing the training data. If we assume that the individual training instances are

independent of each other and that the vectors of parameters θij are also mutually

independent, then determining the maximum-likelihood estimates simply involves

maintaining counts and using them to compute ratios of the following form:

(EQ 28)

4. If Xi has no parents, j will always be 0.

θijk
Nijk

Nij
-----------=
115

where Nijk is the number of training examples in which Xi takes on its kth value and

Xi’s parents take on the jth combination of their values, and Nij is the total number of

training examples in which Xi’s parents take on the jth combination of their values

(i.e.,). For root chance nodes, Nij = N, the total number of training

instances.

One drawback of maximum likelihood estimation is its tendency to overfit the

training data. In particular, if a given instantiation of a node’s parents is seldom seen

in the training data (i.e., if Nij is small), the associated parameter estimates are often

unreliable. In addition, if a particular parent instantiation is never seen, maximum

likelihood estimation cannot be performed for the parameters associated with that

instantiation. Section 5.4.3 presents a method for estimating probability parameters

in such cases.

5.4.1.2 Incorporating Prior Estimates

One way to avoid overfitting is to take a Bayesian approach to learning the probabili-

ties, in which we treat Θ as a (vector-valued) random variable with a prior distribu-

tion. A full treatment of this approach is beyond the scope of this thesis; readers are

encouraged to consult Heckerman’s tutorial on learning in Bayesian networks

[Hec95] for more detail. In the context of learning parameters for multinomial distri-

butions in an influence diagram, this approach can be reduced to what Mitchell refers

to as computing an m-estimate of a probability [Mit97]. Such an estimate is computed

as follows:

(EQ 29)

where is a prior estimate of the value of and mijk is a value that specifies

how much weight to give to that estimate. mijk is often referred to as the equivalent

sample size, because if we use the same mijk value for all of the prior probabilities

associated with a given instantiation of a node’s parents (i.e., for all of the probabili-

Nij Nijk
k
∑=

θijk
Nijk mijkθijk°+

Nij mijk+
---=

θijk° θijk
116

ties in the vector), it is as if we had observed mijk additional training examples

for that instantiation that were distributed according to the probabilities in .

Typically, a single equivalent sample size is chosen for the entire model.

To choose the prior probabilities associated with a given parent

instantiation, it is often assumed that the values of the variable are either uniformly

distributed or distributed according to the marginal distribution of the variable in the

training data [Fri97]. In the former approach, we set , where ri is the

number of possible values of the variable Xi. In the latter approach, we set

, where Mik is the number of the N training examples in which Xi takes on

its kth value.

Maximum a posteriori (MAP) estimation is another method of estimating

probabilities that begins with a prior distribution for the parameters. It selects the

most probable parameter values in light of the training data—i.e., the values of the

parameters that have the maximum posterior probability given the training data. For

many types of probability distributions, MAP estimation is significantly simpler than

a full Bayesian approach.

5.4.1.3 Dealing with Incomplete Data

All of the estimation methods described above assume that the training data is com-

plete, which means that each training example includes a value for each of the vari-

ables in the model. In the context of software tuning, this is typically a reasonable

assumption, especially if a workload generator is used to produce the training exam-

ples. Even if a particular variable cannot be observed during training, it is often pos-

sible to estimate its value.

When the training data is incomplete, other methods for estimating the

probabilities are needed. One such method is the expectation maximization (EM)

algorithm [Dem77]. Heckerman [Hec95] explains how to use this and other

techniques to estimate probability parameters in a Bayesian network, and the same

techniques could be applied to an influence diagram as well.

θij°

θij°

θij°

θijk° 1
ri
----=

θijk°
Mik

N
------------=
117

5.4.2 Estimating Expected Values

As discussed in Section 3.2.2, each value node in an influence diagram has an associ-

ated set of parameters that specify the conditional expected value of the node for each

possible instantiation of its parents. The notation Eij will refer to the conditional

expected value of value-node variable Xi given the jth instantiation of its parents.

5.4.2.1 Using Simple Averages

The simplest method of estimating the conditional expected values of a value node

involves computing averages of the following form:

(EQ 30)

where Vijk is the value of Xi in the kth training example in which Xi’s parents take on

the jth combination of their values, and Nij is again the total number of training

examples in which Xi’s parents take on the jth combination of their values.

Like the maximum-likelihood method of estimating probabilities (Section

5.4.1.2), this method of using averages to estimate expected values also risks

overfitting the training data. If a given instantiation of a value node’s parents is

seldom seen, the corresponding average may underpredict or overpredict the true

conditional expected value of the node for that instantiation. If a particular parent

instantiation is never seen, this method cannot be used for the expected value

associated with that instantiation. Section 5.4.3 presents methods for estimating

expected values in such cases.

5.4.2.2 Incorporating Prior Estimates

If reasonable prior estimates can be determined for the expected-value parameters,

the risk of overfitting can be reduced by adopting an approach similar to the m-esti-

mate method of estimating probabilities (Section 5.4.1.2). Using this approach, the

expected values would be computed as follows:

Eij

Vijk
k
∑

Nij
-----------------=
118

(EQ 31)

where is a prior estimate of the value of and mij is the equivalent sample

size for that estimate.

One limitation of this method is that can be difficult to devise reasonable prior

estimates of the expected values. One possibility would be to average all of the values

of the node that appear in the training set (i.e.,). Another possibility

would be to average values from training examples that include one or more

components of the parent instantiation associated with the parameter. For example,

if the jth parent instantiation of the waits/txn node in Figure 4.2 included db_rmw =

1 and deadlock_policy = random, then the prior estimate associated with that

instantiation could be computed as the average of all training examples that include

those two knob settings.

5.4.2.3 Dealing with Incomplete Data

Both of the methods described above for estimating expected-value parameters

assume that all of the training examples include values for the value nodes and their

parents. As mentioned in Section 5.4.1.3, we should ordinarily be able to measure or

estimate the values of variables in an influence diagram for software tuning, so this

assumption is not an unreasonable one.

If the training data for the parents of a value node is incomplete, it should be

possible to adapt the methods described in Section 5.4.1.3 to determine the expected-

value parameters associated with the value node. However, these methods are not

useful if data is lacking for a value node itself. Fortunately, this is not a significant

limitation, because it is unlikely that a tuner would lack measurements for the

performance metrics that it is attempting to optimize.

Eij

Vijk
k
∑ mijEij°+

Nij mij+
---=

Eij° Eij

Eij°
Σ j k, Vijk()

N
-------------------------------------=

Eij°
119

5.4.3 Estimating Unseen Parameters

When a given instantiation of a node’s parents is never seen in the training data, it

becomes difficult to accurately estimate the parameters associated with that instanti-

ation. In the discussion that follows, parameters that are associated with unseen par-

ent instantiations will be referred to as unseen parameters. Neither maximum-

likelihood estimation (Section 5.4.1.1) nor the method of using simple averages to

estimate expected values (Section 5.4.2) can be used to compute unseen parameters.

The m-estimate methods (Sections 5.4.1.2 and 5.4.2.2) can be used; they assign an

unseen parameter the value of its prior estimate. However, these prior estimates tend

to be extremely imprecise.

This section presents a method of estimating unseen parameters that bases

its estimates on small subsets of the parameters for which training data is

available—parameters that will be referred to as seen parameters. This method takes

a nearest-neighbor approach to parameter estimation, in which an estimate of an

unseen parameter is computed by averaging the values of the seen parameters

associated with the parent instantiations are determined to be “nearest” to the

unseen parent instantiation. The distance metric used to determine the nearest

neighbors is learned from the training data. The proposed method also takes

advantage of the monotonic relationship that tends to exist between a node and its

chance-node parents in an influence diagram developed for software tuning, using

this monotonicity to determine constraints on the values of unseen parameters.

These constraints are used to validate the nearest-neighbor estimate and possibly to

modify it. The resulting estimates should typically be more accurate than estimates

that ignore the training data entirely (e.g., by using a uniform distribution for one of

the conditional distributions of a chance node) or that employ coarser-grained

summaries of the training data (e.g., by using a node’s marginal distribution for one

of its conditional distributions).
120

To understand the material that follows, it is important to recall that an

instantiation of a node’s parents is a vector of value assignments to the parents. For

example, the faults/txn value node in the influence diagram for Berkeley DB has the

vector of parents (page_size, misses/txn, pct_writes, db_size), as shown in Figure 5.11.

One possible instantiation of these parents is the vector (8192, 0, 0, 0), where all of

the nodes except page_size have been discretized.

5.4.3.1 Determining Nearest-Neighbor Estimates for Expected Values

If an instantiation π of the parents of a node is never seen in the training data, the

estimates of the parameters associated with π can be based on the parameters associ-

ated with the seen parent instantiations that are most similar to the π. This type of

approach to estimation is often referred to as a nearest-neighbor approach [Mit97].

The degree to which two instantiations are similar to each other is measured using

some sort of distance metric, d(π1, π2); smaller values for d indicate higher degrees of

similarity. For a given instantiation π1, the instantiation π2 that minimizes d(π1, π2)

is referred to as π1’s nearest neighbor.

pages_txn

leaves/txnitems_curs loc_rate

pct_loc_txn

waits/txn

faults/txn

pct_writes

misses/txn

pct_writes/upd

pct_updates

concurrency

pct_wlockssize_loc

deadlock_policy db_rmw

def_leaf_loc def_page_loc min_keys page_size

leaf_loc_rate page_loc leaves overflows db_size

pct_cursors loc_size

items_non_curs oflw/txn

Figure 5.11. The faults/txn value node and its parents. The figure on the right provides a closeup
of a portion of the influence diagram for Berkeley DB; the relevant portion of the diagram is indicated
by the box on the figure on the left. The four parents of faults/txn are the nodes that are connected to it
by a directed arc.

faults/txn

pct_writes

misses/txn

pct_writes/upd

page_size

db_size
121

If an unseen parent instantiation π for the variable Xi has a unique nearest

neighbor, πn, in the set of seen instantiations of Xi’s parents, the expected value

associated with πn (i.e.,) is used as the nearest-neighbor estimate. If π

has multiple nearest neighbors (i.e., if there are multiple seen instantiations that

produce the same minimal value for d), the average of their associated expected

values is used as the estimate. If Xi is a value node, the expected value associated

with a seen parent instantiation is simply the parameter associated with that

instantiation, as computed by one of the methods described in Section 5.4.2. If Xi is a

chance node, the expected value associated with a seen parent instantiation is

computed as follows:

(EQ 32)

where Vik is the average of the undiscretized values of Xi that fall into the kth bin

when Xi is discretized, and is the probability that Xi takes on a value from that

kth bin given the jth instantiation of its parents, as computed by one of the methods

described in Section 5.4.1.

One challenge involved in employing a nearest-neighbor approach is

determining a suitable distance metric. In some domains, it is appropriate to use the

Euclidean distance—or its square:

(EQ 33)

where π[i] denotes the ith component of the vector π. However, this metric assumes

that a displacement in one of the vector’s components has approximately the same

effect as the same displacement in another component. This assumption will often be

violated in the context of estimating unseen parameters. For example, in Figure 5.11,

a one-unit increase in the discretized value of misses/txn may have a very different

effect on the value of faults/txn than a one-unit increase in the value of pct_writes.

Therefore, an alternative distance metric is needed.

E Xi Πi πn=()

Eij Vikθijk
k
∑=

θijk

d π1 π2,() π1 i[] π2 i[]–()2

i
∑=
122

The proposed estimation algorithm learns the distance metric from the

training data. It does so by determining, for each chance-node parent of a node N, the

average effect of each possible displacement in the value of that parent on the

expected value of N.5 The algorithm does not attempt to learn the impact of

modifications to a decision-node parent (i.e., a parent that represents a knob),

because the tuner needs to distinguish the effects of different knob settings on

performance, and thus we do not want the algorithm to base its estimates for

parameters associated with one knob setting on data gathered for another knob

setting. If two parent instantiations have different values for a decision-node parent,

they are given an infinite distance. In the unlikely case that there are no seen parent

instantiations with decision-node values that match the values in the unseen

instantiation, the algorithm uses a special value (e.g., ∞) as the nearest-neighbor

estimate, and the remainder of the estimation algorithm handles this value

appropriately.

Given a variable Xi with parents Πi, the algorithm learns a distance metric by

considering all pairs (π1, π2) of seen instantiations of Πi that differ only in the value of

a single chance-node parent. For example, the instantiation (8192, 0, 0, 0) of the

parents of misses/txn (Figure 5.11) would be considered together with the

instantiations (8192, 1, 0, 0), (8192, 0, 1, 0), and (8192, 0, 0, 1); because 8192 is the

value of a decision node, it is not varied. As it considers the relevant pairs of

instantiations, the algorithm maintains a collection of running sums, one for each

possible displacement of each chance-node parent; Sijk denotes the running sum for

displacements of in the value of Xi’s jth parent. Given a pair of instantiations, (π1,

π2), that differ in only the value of the jth parent, the algorithm increments the

appropriate running sum as follows:

(EQ 34)

5. Only the magnitude of the displacements is considered.

k±

Sij π1 j[] π2 j[]–() Sij π1 j[] π2 j[]–() E Xi Πi π1=() E Xi Πi π2=()–+=
123

The algorithm also maintains a count cijk of the number of times that each running

sum is updated. After considering all relevant pairs of instantiations, the ratio

provides an estimate of the change in the expected value of Xi that results from a dis-

placement of in the value of Xi’s jth parent. These estimates are imprecise: they

do not consider the direction of the displacements, and they ignore both the initial

and final values of the parent in question, as well as the values of the other parents.

However, they should be precise enough to allow us to compute a reasonable distance

metric.

Given a pair (πi1, πi2) of instantiations of the parents of node Xi, the algorithm

computes the distance between πi1 and πi2 as follows:

(EQ 35)

where the summation iterates over Xi’s chance-node parents. In other words, the dis-

tance of a multi-dimensional displacement is the sum of the distances associated with

the corresponding single-dimensional displacements. Although adding distances in

this way may not always be accurate—e.g., the effects of the individual displacements

may actually cancel each other out and produce a parent instantiation that is closer

to the original instantiation than instantiations that involve a single displacement—

it avoids the extra overhead that would be needed to actually learn the distance val-

ues for multi-dimensional displacements.

5.4.3.2 Testing for Monotonic Parent-Child Relationships

In an influence diagram developed for software tuning, a chance or value node typi-

cally has a monotonic relationship with each of its chance-node parents.6 This means

that when the value of a parent increases, the value of the node either: (a) increases

or stays the same, but never decreases; or (b) decreases or stays the same, but never

increases. The influence diagram for Berkeley DB (Figure 4.2) provides a number of

6. This claim obviously does not hold if the nodes involved take on nominal—as opposed to numeric—
values. However, because the chance nodes in an influence diagram for software tuning typically
represent variables that are measured or computed, they should ordinarily have numeric values.

Sijk
cijk

k±

d πi1 πi2,()

Sij π1 j[] π2 j[]–()

cij π1 j[] π2 j[]–()
--------------------------------------j∑ if πi1 and πi2 have the same decision-node values

∞ otherwise





=

124

examples of this phenomenon. Indeed, all of the value nodes and intermediate chance

nodes in that model have monotonic—or nearly monotonic—relationships with their

chance-node parents. For example, increasing the average number of pages accessed

per transaction (pages/txn) tends to increase the average number of memory-pool

misses per transaction (misses/txn), unless the locality set fits in the memory pool, in

which case misses/txn stays the same as pages/txn increases. On the other hand,

increasing the percentage of accesses that go to items in the locality set (loc_rate)

tends to decrease misses/txn, unless the locality set fits in the memory pool or is

large enough that almost all accesses result in a miss, in which case misses/txn stays

the same as loc_rate increases.

Although there is no guarantee that a monotonic relationship will exist

between a chance or value node and its chance-node parents, this type of relationship

occurs frequently enough that it makes sense to attempt to exploit it. The algorithm

for estimating unseen parameters learns from the training data whether a monotonic

relationship exists. When such a relationship does exist, the algorithm attempts to

devise constraints on the unseen parameters, as described in the following section,

and it uses these constraints to supplement the nearest-neighbor estimates.

Like the procedure for determining the nearest-neighbor distance metric, the

procedure for testing the relationships between a node and its parents does not

consider parents that are decision nodes. As stated earlier, we do not want the

algorithm to base its estimates for parameters associated with one knob setting on

data gathered for another knob setting, and thus there is no reason to attempt to

learn whether a node has a monotonic relationship with its decision-node parents.

For a variable Xi with parents Πi, the algorithm tests for monotonic

relationships between Xi and the chance nodes in Πi by considering all pairs of seen

instantiations of Πi that differ only in the value of one chance-node parent. Given a

pair of instantiations, (π1, π2), that differ in only their kth component, the algorithm

computes the following ratio:7

7. See Section 5.4.3.1 for an explanation of how the expected value associated with a given parent
instantiation is determined.
125

(EQ 36)

where π[k] denotes the kth component of the vector π. If this ratio is positive, the pair

of instantiations (π1, π2) can be considered a piece of evidence that the relationship

between Xi and its kth parent is monotone increasing, meaning that the value of Xi

either increases or stays the same when the value of the parent increases. If this ratio

is negative, this pair of instantiations can be considered a piece of evidence that the

relationship between Xi and its kth parent is monotone decreasing, meaning that the

value of Xi either decreases or stays the same when the value of the parent increases.

To weigh the evidence provided by all of the relevant pairs of instantiations,

the algorithm increments the value of a counter variable Cik when the ratio in

equation 36 is positive for instantiations of Πi that differ in their kth component, and

it decrements the same counter when the ratio is negative. If the ratio is 0, the

algorithm does nothing. After all of the instantiations have been compared, the

algorithm determines the nature of the relationship between Xi and its kth parent

according to the following decision rule:

if (Cik > t, a positive threshold)

Xi is monotone increasing with respect to its kth parent

else if (Cik < -t)

Xi is monotone decreasing with respect to its kth parent

else

the relationship between Xi and its kth parent is not monotonic.

By learning the nature of the relationships between a node and its parents, the algo-

rithm is able to devise constraints on the conditional expected value of the node given

an unseen instantiation of its parents.

5.4.3.3 Determining Constraints on Expected Values

If an instantiation πunseen of the parents of node Xi is never seen in the training data,

the algorithm searches for constraints on the conditional expected value of the vari-

able given that instantiation (i.e., on the value of) by considering

E Xi Πi π2=() E Xi Πi π1=()–

π2 k[] π1 k[]–
--

E Xi Πi πunseen=()
126

all seen parent instantiations that differ from the unseen instantiation in only the

value of one chance-node parent.8 If the relationship between Xi and that parent is

monotonic, the expected values associated with these instantiations can be used to

determine constraints on . The portion of the estimation algorithm

that is responsible for determining these constraints is shown in Figure 5.12. It

attempts to determine the tightest possible lower and upper bounds on the value of

, but there will be cases in which it cannot determine nontrivial

values for one or both of these bounds.9 In particular, if the parent values in the

unseen instantiation are all equal to the lowest possible values of their respective

parents or all equal to the highest possible values of those parents, the algorithm will

be able to determine at most one bound. Other factors that can limit the number of

constraints include the absence of a monotonic relationship between Xi and one or

more of its parents and the presence of additional unseen parent instantiations.

Even parameters associated with seen parent instantiations have limited

accuracy. Therefore, it is possible for the constraints learned by the algorithm to be

inconsistent, with the upper bound being smaller than the lower bound. If this

occurs, the algorithm uses the constraint that was obtained from the parent

instantiation that is deemed closest to the unseen instantiation by the distance

metric described in the Section 5.4.3.1, and it discards the other constraint.

5.4.3.4 Finalizing Estimates for Unseen Expected Values

When estimating the conditional expected value of a node given an unseen parent

instantiation, the estimation algorithm combines the nearest-neighbor estimate (Sec-

tion 5.4.3.1) and the constraints on the expected value (Section 5.4.3.3) to compute a

final estimate. Let l be the lower bound (possibly - ∞) and u be the upper bound (pos-

sibly ∞) determined by the algorithm in Figure 5.12, and let πl and πu be the parent

8. The algorithm does not consider parent instantiations that differ from the unseen instantiation in
multiple dimensions. It is often not possible to determine constraints from the parameters associated
with such instantiations, because the node in question may be monotone increasing with respect to one
parent and monotone decreasing with respect to another.
9. The trivial constraints are a lower bound of - ∞ and an upper bound of ∞.

E Xi Πi πunseen=()

E Xi Πi πunseen=()
127

Figure 5.12. Pseudocode for an algorithm to learn constraints on the expected value of a
chance or value node in an influence diagram. The algorithm—which is based on the algorithm
of Friedman and Goldszmidt (Figure 5.9)—takes the node in question, X_i , and an unseen
instantiation of its parents, p_unseen , and attempts to determine a lower bound, lower , and an
upper bound, upper , on the conditional expected value of X_i given p_unseen . p[k] denotes the kth
component of the vector p. C_ik is the counter variable for X_i and its kth parent; it is computed
using the procedure described in Section 5.4.3.2. E(X_i|p) refers to the the conditional expected
value of X_i given the instantiation p of its parents. See Section 5.4.3.3 for more details of the

find_constraints(X_i, p_unseen) {
lower = - ∞;
upper = ∞;
for each seen instantiation, p_seen, of X_i’s parents that
differs from p_unseen in only the value of one chance-node parent

{
k = the index of the component in which

p_seen and p_unseen differ;
if (p_seen[k] < p_unseen[k]) {

if (C_ik > t) {
//
// Monotone increasing and below,
// so E(X_i|p_seen) <= E(X_i|p_unseen)
//
if (E(X_i|p_seen) > lower)

lower = E(X_i|p_seen);
} else if (C_ik < -t) {

//
// Monotone decreasing and below,
// so E(X_i|p_seen) >= E(X_i|p_unseen)
//
if (E(X_i|p_seen) < upper)

upper = E(X_i|p_seen);
}

} else {
// p_seen[k] > p_unseen[k]
if (C_ik > t) {

//
// Monotone increasing and above,
// so E(X_i|p_seen) >= E(X_i|p_unseen)
//
if (E(X_i|p_seen) < upper)

upper = E(X_i|p_seen);
} else if (C_ik < -t) {

//
// Monotone decreasing and above,
// so E(X_i|p_seen) <= E(X_i|p_unseen)
//
if (E(X_i|p_seen) > lower)

lower = E(X_i|p_seen);
}

}
}

}

128

instantiations associated with l and u, respectively. Let n be the nearest-neighbor

estimate, and let πn be its corresponding parent instantiation. The estimation algo-

rithm determines if the nearest-neighbor estimate is consistent with the constraints

(i.e., if). If it is consistent, the algorithm uses n as the final estimate.

If the nearest-neighbor estimate is not consistent, the algorithm computes the

final estimate from the constraints. If only one of the constraints is non-trivial (i.e., if

l = - ∞ or u = ∞), the algorithm uses the value of that constraint as the final estimate.

Otherwise, it uses a weighted average of the constraints as the final estimate, with

the distance values of the corresponding parent instantiations serving as the weights.

Thus, the final estimate for an unseen expected value is determined as follows:10

(EQ 37)

5.4.3.5 Estimating Unseen Probability Parameters

The estimation algorithm also uses a nearest-neighbor approach supplemented by

constraints to estimate unseen probability parameters. Given a chance node Xi with

an unseen parent instantiation π, the algorithm first uses the process described in

the preceding sections to estimate the expected value, e, of Xi given π. As before, this

process involves determining a nearest-neighbor estimate n, a lower bound l, and an

upper bound u, and using these values to compute e. The algorithm then constructs a

probability distribution that has an expected value equal to e, and it uses the param-

eters of this distribution as the estimates of the unseen probability parameters. In

the unlikely case that the estimation algorithm is unable to determine a reasonable

10. Note that no special case is needed for situations in which both constraints are trivial, because it will
always be the case that .

l n u≤ ≤

∞– n ∞≤ ≤

E Xi Πi πunseen=()

n if n l u,[]∈
l if n l u,[] and u∉ ∞=

u if n l u,[] and l∉ ∞–=

l
d πunseen πl,()

d πunseen πl,() d πunseen πh,()+
--- u l–() otherwise⋅+











=

129

estimate for e from the training data (e.g., if the only seen parent instantiations have

different decision-node values than the unseen instantiation), the algorithm assigns

parameters that constitute a uniform distribution.

If the value of e was derived from the probability distribution associated with

a single, seen parent instantiation, the algorithm can simply reuse the vector of

probability parameters for that distribution. More specifically, if e equals the lower

bound l, it can simply use θl, the vector of probability parameters used to compute l.

Similarly, if e equals the upper bound u, it can simply use θu, the vector of probability

parameters used to compute u. Finally, if e equals the nearest-neighbor estimate n

and n was computed from a single nearest neighbor, the algorithm can simply use θn,

the probability parameters associated with that neighbor.

If the estimate of the expected value, e, was derived from multiple probability

distributions, the algorithm creates a new probability distribution with an expected

value equal to e. In such cases, the algorithm essentially “averages” the probability

distributions by computing the average of their associated expected values and

creating a distribution whose expected value is equal to the average.

The new distribution is constructed in two steps. First, the algorithm finds the

bin in the discretized version of Xi that contains the estimated expected value, e. In

other words, it uses equation 18 to determine the discretized value, e_disc, that

corresponds to e. The algorithm gives at least some of the probability mass for the

new distribution to the probability parameter associated with that bin. To ensure

that the new distribution has the desired expected value, the algorithm may also give

some probability mass to one of the neighboring parameters. The other parameters

are all given a value of 0. The actual algorithm for assigning probability mass to the

components of the distribution (a function that I have named assign_probs) is shown

in Figure 5.13.

In summary, given a nearest-neighbor estimate n, a lower bound l, an upper

bound u, and a final estimate e for the expected value of chance node Xi given the

(unseen) jth instantiation of its parents—as well as the probability vectors associated
130

with n, l, and u—the vector of parameters θij describing the probability distribution

associated with the unseen instantiation is determined as follows:

(EQ 38)

where Vi is an array of real values such that Vi[k] is the average of the undiscretized

values of Xi that fall into the kth bin when Xi is discretized, and e_disc is the dis-

cretized value that corresponds to e under Xi’s discretization.

Figure 5.13. Pseudocode for an algorithm to construct a discrete probability distribution
with a desired expected value for a chance node in an influence diagram. The algorithm takes
a chance node, X_i ; an array of real values, V_i , where V_i[k] is the average of the undiscretized
values of X_i that fall into the kth bin when X_i is discretized; the desired expected value, e, of the
probability distribution; and the discretized value, e_disc , that corresponds to e under X_i ’s
discretization. It produces an array of probability parameters, probs , where probs[j] is the
probability mass assigned to the j th bin of X_i . is the number of possible values of X_i . See
Section 5.4.3.5 for more details of the algorithm.

X_i

assign_probs(X_i, V_i, e, e_disc) {
initialize the probs array to all 0s;
if (e < V_i[e_disc] && e_disc > 0) {

//
// Reduce the expected value by assigning some
// probability mass to the bin before e_disc.
//
probs[e_disc] = (e - V_i[e_disc]) /

(V_i[e_disc] - V_i[e_disc-1]);
probs[e_disc - 1] = 1.0 - probs[e_disc];

} else if (e > V_i[e_disc] && e_disc < - 1) {
//
// Increase the expected value by assigning some
// probability mass to the bin after e_disc.
//
probs[e_disc] = (V_i[e_disc + 1] - e) /

(V_i[e_disc + 1] - V_i[e_disc]);
probs[e_disc + 1] = 1.0 - probs[e_disc];

} else
probs[e_disc] = 1.0;

return (probs);
}

X_i

θij

θn if e n and there is one nearest neighbor=

θl if e l=

θu if e u=

θuniform if an estimate for e could not be determined

the vector returned by assign_ probs Xi Vi e e_disc, , ,() otherwise









=

131

5.4.4 Learning Weights for the Value Nodes

As discussed in Section 5.1.1.2, it is often impractical to use a single value node to

represent the performance metric that the tuner is attempting to optimize. Therefore,

it may be necessary to employ multiple value nodes—each of which reflects one

aspect of the system’s performance—and to learn appropriate weights for these nodes

so that optimizing their sum is equivalent to optimizing the overall performance met-

ric. For example, in the influence diagram for Berkeley DB (Figure 4.2), the misses/

txn and faults/txn value nodes are used in place of a single value node for the

throughput of the system, and the tuner needs to learn weights for these nodes so

that minimizing their sum (i.e., maximizing the opposite of their sum) is equivalent

to maximizing throughput.

Regression techniques provide one means of learning the appropriate weights

for the value nodes from the training data. More formally, the tuner can use

multivariate linear regression [Net96] to learn the coefficients c1, c2, ..., cn of a

function of the following form11

(EQ 39)

where x1, x2, ..., xn are the n value nodes and y is either the performance metric that

the tuner is attempting to optimize or some transformed version of that metric. y is

known as the dependent variable in the regression function, and the xs are known as

the independent variables.

Using the overall performance metric, M, as the dependent variable in

equation 39 assumes that M can be expressed as a linear combination of the value

nodes. However, this assumption may often be unrealistic, especially in cases in

which the value nodes represent performance losses that the system experiences. In

such cases, the coefficients learned will be negative—reflecting the fact that

increasing the performance losses reduces the performance of the system—and thus

the resulting function will produce negative y values for large values of the xs.

11. The value of c0 will also be determined by the regression techniques, but it is not needed by the
tuner.

y c0 c+ 1x1 c2x2 … cnxn+ + +=
132

However, performance metrics such as throughput can never be negative, regardless

of the performance losses incurred. In the Berkeley DB influence diagram, for

example, the throughput of the system can never be negative, no matter how large

the values of misses/txn and faults/txn become.

To handle cases in which the overall performance metric cannot be expressed

as a linear combination of the value nodes, the tuner can employ one of several

remedial measures that have been developed by statisticians [Net96, Section 3.8].

Some of these measures involve abandoning equation 39 in favor of a nonlinear

regression model; others transform one or more of the variables so that linear

regression can still be used.

To determine the appropriate remedial measure for my work with Berkeley

DB, I considered a subset S of training examples that all had a particular pair of

discretized values for pages/txn and pct_writes; focusing on examples with similar

values for these variables made it easier to isolate the impact of faults/txn and

waits/txn on throughput. To consider the impact of each type of performance loss

separately, I first selected the examples in S with discretized faults/txn values from a

particular bin and plotted throughput as a function of waits/txn for those examples. I

then selected those examples in S with discretized waits/txn values from a particular

bin and plotted throughput as a function of faults/txn for those examples.

The resulting scatterplots (Figure 5.14) show that throughput appears to

decay exponentially in response to increases in faults/txn and waits/txn. Thus, it

seems reasonable to assume that the relationship between throughput (t) and the

value nodes (w and f) could be captured by a function of the following form:

where α0, α1, and α2 are constants. Taking the natural logarithm of both sides of this

equation restores a linear combination of the value nodes:

t α0e
α1w– α2 f–

=

lnt lnα0 α1w– α2f–=
133

Therefore, I used the natural logarithms of the throughput values as the y values in

equation 39 and applied simple linear regression to learn the weights of the value

nodes.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

th
ro

ug
hp

ut
 (

tr
an

sa
ct

io
ns

/s
ec

)

waits/txn

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

th
ro

ug
hp

ut
 (

tr
an

sa
ct

io
ns

/s
ec

)

faults/txn

Figure 5.14. Throughput as a function of waits/txn and faults/txn. These graphs show the
relationship between throughput and waits/txn (top) and the relationship between throughput and
faults/txn (bottom) in subsets of the training data for the influence diagram for Berkeley DB. The
training examples used to construct both graphs were selected to have comparable values for the
pages/txn and pct_writes variables in the model. More specifically, they all had pages/txn values in
[19, 37] and pct_writes values in [0, 4]. In the top graph, the training examples were further restricted
to have faults/txn values in [0.64, 1.24]. In the bottom graph, the training examples were further
restricted to have waits/txn values in [0.09, 0.23]. The ranges of values for pages/txn and pct_writes
correspond to bins from discretizations learned by the algorithm presented in Section 5.3.3. The ranges
of values for faults/txn and waits/txn correspond to bins from equal-height discretizations (Section
5.3.1.2), where each variable was given eight bins.
134

More generally, the domain expert who designs the influence diagram for a

given automated tuner should determine which transformations of the variables (if

any) should be performed before the tuner uses regression to learn the value nodes’

weights. When the value nodes represent performance losses, taking the natural

logarithm of the dependent variable will often be an appropriate transformation to

employ.

Another phenomenon that can prevent linear regression from capturing the

relationship between the independent variables and the dependent variable is the

presence of outliers in the training data—points that are clearly separated from the

rest of the data. Not all outliers have a significant effect on the coefficients

determined for the regression equation. Those that do are referred to as influential

cases, and statisticians have developed remedial measures for dealing with such

cases [Net96, Section 10.3]. One approach is to simply discard the outliers, as I have

done in my work with Berkeley DB (Section 7.2.1). Other methods known as robust

regression procedures have also been developed; these methods reduce the impact of

outlying cases without removing them from the training data. Significantly, Neter et

al. [Net96] point out that robust regression procedures are especially useful in

situations in which the regression process must be automated, as is the case for an

automated tuner.

Once the training data has been appropriately transformed by the necessary

remedial measures, the tuner uses linear regression to learn the weights associated

with the value nodes. These weights can be applied to the model in one of two ways.

In the first approach, the tuner uses the weights to scale the value-node values in the

training data before it estimates the expected-value parameters associated with the

value nodes. In the second approach, the tuner first estimates the expected-value

parameters from the unweighted training data and then uses the weights to scale the

parameters. Because the weights do not depend on the discretization of the

continuous nodes, the regression itself can be performed at any point after the

training data has been gathered.
135

It is important to note that the regression equation does not need to

accurately predict the value of the overall performance metric for a given

instantiation of the value nodes. Rather, the regression process need only produce

weights that accurately reflect the relative impacts of the value nodes on

performance. The results presented in Chapter 7 demonstrate that regression

techniques are able to learn weights that fulfill this criterion.

5.5 Using the Model

Once the influence diagram has been constructed and trained, it can be used by the

tuner to recommend appropriate knob settings for each workload faced by the sys-

tem, dynamically adjusting the knobs as the characteristics of the workload change

over time. This section first explains how the model can be extended to handle situa-

tions in which one or more of the workload characteristics cannot be observed, and it

then considers the process of using the model to recommend knob settings for a given

workload.

5.5.1 Dealing with Unobservable Workload Characteristics

As outlined in Section 2.1, the tuner periodically receives a summary of the current

state of the system from a separate monitor process. This summary should include

the current knob settings and the values of whatever chance and value nodes that the

monitor is able to measure. The observable chance nodes will typically include all or

most of the workload characteristics (the root chance nodes). However, it may be diffi-

cult or even impossible to measure the values of some of these workload characteris-

tics. This section explains how to deal with this problem.

The influence diagram for Berkeley DB (Figure 4.2, page 69) provides two

examples of workload characteristics that cannot always be measured directly:

def_page_loc and def_leaf_loc (Section 4.3.2). These variables describe the access

locality of a workload by specifying the locality that would be measured if the default

knob settings for the page_size and min_keys knobs were used.12 Given the
136

definitions of these variables, it is not always possible to determine their current

values. However, it is possible to measure the values of two related variables that

describe the workload’s locality under the current knob settings: page_loc, which

corresponds to def_page_loc; and leaf_loc_rate, which corresponds to def_leaf_loc. And

the current values of these variables, along with the current settings for page_size

and min_keys, provide information about the possible current values of def_page_loc

and def_leaf_loc.

To reflect the information gained from the current values of page_loc,

leaf_loc_rate, page_size and min_keys, we can extend the influence diagram for

Berkeley DB, as shown in Figure 5.15. The extended diagram has new root chance

nodes that represent the current values of these four variables—i.e., the values that

hold before the next tuning decisions are made. To distinguish these nodes from the

ones that represent the values of the variables after the next set of knob adjustments,

the superscript 0 has been appended to the name of each variable. In addition, the

new page_size0 and min_keys0 nodes are chance nodes rather than decision nodes to

reflect the fact that they are decisions that have already been made. Each of the

unobservable workload characteristics has three of the new nodes as parents—the

node that corresponds to the current value of its child, and the nodes representing

the current values of page_size and min_keys.

More generally, if an influence diagram developed for software tuning has a

root chance node, N, that represents an unobservable workload characteristic, and if

there are other observed nodes in the model that provide information about the value

of N, the influence diagram can be extended to reflect this fact. If N’s children are all

observable, then the new influence diagram is derived from the old one by adding a

set of root chance nodes that represent the current values of N’s children and of all

observable parents of those children. Conditional arcs are drawn from each of the

new nodes to N, and informational arcs can also be drawn from these nodes to the

12. As discussed in Section 4.3.2, defining def_page_loc and def_leaf_loc in this manner allows these
variable to describe locality in a way that does not depend on the current knob settings.
137

le
af

_l
oc

_r
at

e
pa

ge
_l

oc

pc
t_

w
rit

es
/u

pd
le

av
es

/tx
n

ite
m

s_
cu

rs
lo

c_
ra

te

w
ai

ts
/tx

n

fa
ul

ts
/tx

n

pc
t_

w
rit

es

m
is

se
s/

tx
n

pc
t_

up
da

te
s

co
nc

ur
re

nc
y

si
ze

_l
oc

de
ad

lo
ck

_p
ol

ic
y

db
_r

m
w

m
in

_k
ey

s
pa

ge
_s

iz
e

le
av

es
ov

er
flo

w
s

db
_s

iz
e

ite
m

s_
no

n_
cu

rs

pc
t_

w
lo

ck
s

lo
c_

si
ze

pa
ge

s/
tx

n

pc
t_

lo
c/

tx
n

pc
t_

cu
rs

or
s

de
f_

le
af

_l
oc

de
f_

pa
ge

_l
oc

 0

 0

 0

 0

le
af

_l
oc

_r
at

e
pa

ge
_l

oc
m

in
_k

ey
s

pa
ge

_s
iz

e

of
lw

/tx
n

Figure 5.15. An extended influence diagram for Berkeley DB. The figure shows a version of the
influence diagram for Berkeley DB that includes four additional nodes. The new nodes are found at the
top of the diagram and are shown with bold outlines. These nodes represent the values of the
leaf_loc_rate, page_loc, min_keys, and page_size nodes before the next set of tuning decisions are made.
The values of these variables can be used to provide information about the current values of the
def_leaf_loc and def_page_loc workload characteristics when they cannot be measured directly.
138

first decision node to indicate that their values are known before the next set of

decisions is made. If one or more of N’s children are not observable, the process of

extending the model is somewhat more complicated, but it still involves adding root

chance nodes that represent the current values of all of the observable nodes that

provide information about the current value of N.

The parameters of the new root chance nodes—as well as the parameters of

the unobservable workload characteristics, given their new parents—can be derived

from the training data using one of the methods described in Section 5.4.1. Although

the workload characteristics in question cannot be measured consistently on a

running system, it may be possible to measure their values during training,

especially if the training workloads are produced by a workload generator that

selects the values of the workload characteristics. If this is the case, one of the

methods of learning parameters from complete data (Sections 5.4.1.1 and 5.4.1.2) can

be used to estimate the parameters associated with these characteristics. If an

unobservable workload characteristic cannot be measured during training, it may be

possible to use an estimation method designed for incomplete data (Section 5.4.1.3).

5.5.2 Tuning the Knobs for a Given Workload

Given the observed characteristics of the current workload—and, if the influence dia-

gram has been extended, the observed values of the additional root chance nodes

(Section 5.5.1)—the tuner evaluates the influence diagram to determine the optimal

knob settings for that workload (Section 3.2.4). Because the observed values are

available as evidence, the evaluation algorithm does not need to determine the full

optimal policies for the decision nodes; rather, it can simply determine the optimal

decisions given the observed values.

In general, only the values of root chance nodes should be entered as evidence

in influence diagrams designed for software tuning. The monitor may be able to

provide the tuner with the current values of other variables in the model, but the

nodes in the model represent the values of these variables after the tuning decisions

have been made.
139

If the influence diagram recommends knob settings that differ from the

settings currently in use, the tuner must decide whether the knobs should be

retuned. If there is a cost associated with adjusting the knobs, the tuner should

weigh the expected gain in performance from retuning—which can be estimated by

using the influence diagram to determine the expected utility of both the current

settings and the recommended ones—against an estimate of the cost of adjusting the

knobs. If the tuner decides that the benefits of retuning outweigh the costs, it

modifies the knobs accordingly.

5.6 Updating the Model Over Time

The monitor’s measurements of the variables in the model can also be used to update

the model over time, allowing the tuner to improve its predictions and to adapt to

changes in the environment. Each set of measurements effectively constitutes a new

training example. When the tuner decides to adjust the knobs, an additional training

example is also be obtained for the combination of the current workload and the new

knob settings.

To update the parameters of the model, the tuner needs to maintain the

counts and value totals that appear in the equations in Section 5.4. In a simplistic

approach, new training data would simply be used to increment these variables, and

the probabilities and expected values would be recomputed accordingly. However, if

aspects of the system or the environment change over time (e.g., if the size of a

database file grows), this simple approach can prevent the tuner from adapting to the

changes. To avoid this problem, a real-valued fading factor from the interval (0,1) can

be used to reduce the impact of prior training examples over time [Jen01]. If f is the

value of this factor, then for each count or value-node total v that is associated with

the values in a new training example, we perform the following update:

(EQ 40)v f v 1+⋅←
140

For example, if the monitor observed a value from the kth bin of chance node Xi in

conjunction with the jth instantiation of Xi’s parents, the count Nijk of the number of

times that these values are seen together would be updated as follows:

In addition to updating the model’s parameters, it may also make sense to

periodically reconsider the discretizations of the continuous variables. Doing so

requires access to the undiscretized training data, and it may thus be necessary for

the tuner or monitor to log the undiscretized training examples—including the

measurements gathered as the system runs. Given this data, the tuner could

periodically run the discretization algorithm offline, allowing it to determine new

discretizations from some number of the most recent training examples. These

discretizations could then be used to determine new parameters for the model and

new values for the counts and value totals maintained by the tuner.

To improve the performance of the model and to fully capture the impact of

environmental changes, it may also be necessary to periodically gather additional

training data. This can be done offline as described in Section 5.2. During this

supplemental training, special focus could be given to workload characteristics that

have been encountered most frequently, allowing the tuner to improve its

performance on the most common workloads. In addition to this offline training, it

may also make sense to occasionally try non-optimal knob settings—i.e., settings that

the tuner does not recommend—on the system itself as it runs, because the resulting

measurements may enable the tuner to make more accurate tuning

recommendations overall.

5.7 Related Work

Little has been written about the process of designing good probabilistic, graphical

models. Jensen presents an overview of this process in his introductory text on Baye-

sian networks and influence diagrams [Jen01], and he includes a number of useful

examples and exercises. However, some of his advice—such as the suggestion that

Nijk f Nijk 1+⋅←
141

variables be classified as hypothesis variables and information variables—seems bet-

ter suited to other problem domains, such as medical diagnosis. Another useful refer-

ence is the collection of papers edited by Oliver and Smith [Oli90], which includes a

paper by Howard on the design and use of influence diagrams [How90] and example

applications of influence diagrams by Agogino and Ramamurthi [Ago90] and

Shachter et al. [Sha90].

A large body of research has been devoted to learning the structure of a

probabilistic model from training data. For example, Friedman and Goldszmidt’s

algorithm for using the MDL principle to learn discretizations is part of a larger

MDL-based approach that includes learning the structure of a Bayesian network

[Fri96]. Heckerman’s tutorial [Hec95] provides an overview of several methods for

learning the structure of these models. And although Jensen claims that these

techniques can rarely be applied to real-world problems [Jen01], it may be feasible to

use them to improve upon a baseline model that has been constructed by a domain

expert.

A number of methods have been developed for discretizing continous variables

in the context of supervised machine learning. Dougherty et al. [Dou95] and Kohavi

and Sahami [Koh96] together provide an overview of many of these methods.

However, because these techniques were not designed for use in the context of

probabilistic reasoning and decision-making, they are not able to capture the

interactions between neighboring variables in an arbitrary Bayesian network or

influence diagram. The method that comes closest to doing so is one developed by

Fayyad and Irani [Fay93], who attempt to increase the mutual information between

each of the variables being discretized and the class variable (i.e., the variable that

the machine-learning algorithm is attempting to predict). Smith [Smi93] discusses

the process of discretizing variables in the context of decision analysis, but the

method that he presents—which involves constructing a discrete distribution that

matches the moments (mean, variance, etc.) of the underlying continuous

distribution—also does not take into account interactions between variables.
142

In addition to determining optimal knob settings, an influence diagram for

software tuning can also be used to pose value-of-information questions. This would

allow the tuner to determine which workload characteristics should be continuously

measured and which can be left unobserved—or observed infrequently—after the

initial training runs. Matheson [Mat90] explains how to use an influence diagram for

this purpose.

To the best of my knowledge, the methodology presented in this chapter

represents the first application of probabilistic reasoning techniques to the problem

of software tuning. The closest related applications that I am aware of are those of

Horvitz et al., who apply graphical, probabilistic models to a variety of applications

that involve software systems, including software debugging [Bur95] and intelligent

user interfaces [Hec98, Hor98]. Jameson et al. [Jam99, Jam00] have also used these

models to design intelligent, adaptive user interfaces.

The FAST expert system developed by Irgon et al. [Irg88] also employs

techniques from artificial intelligence to tune the performance of a complex software

system. However, FAST uses frame-based knowledge representation [Rus95, Section

10.6] and heuristic problem-solving techniques rather than an approach based on

probabilistic reasoning. In addition, FAST is focused primarily on the diagnosis and

repair of performance problems (e.g., improving poor I/O performance by moving files

from one disk to another), rather than on the problem of finding the optimal knob

settings for a given workload.

5.8 Conclusions

The methodology presented in this chapter provides a step-by-step approach to using

an influence diagram and related learning and inference techniques as the basis of an

effective, automated software tuner. The methodology includes solutions to three

challenges associated with using an influence diagram for tuning: incorporating per-

formance measures in the model (Sections 5.1.1.2 and 5.4.4), dealing with continuous

variables in the model (Section 5.3.3), and estimating parameters for which no train-
143

ing data is available (Section 5.4.3). Chapter 6 discusses the design of workload gen-

erators that can be used to gather the training data for an influence diagram offline,

and Chapter 7 presents experiments that assess the ability of the methodology to

tune an actual software system.
144

Chapter 6

Designing a Workload Generator
for Use in Software Tuning

As discussed in Sections 2.4 and 5.2, it may often be preferable to use a workload gen-

erator to produce the training data needed by an automated software tuner. This

chapter discusses some of the issues involved in creating an effective workload gener-

ator for software tuning, including the importance of ensuring that it captures the

steady-state performance of the system. It also presents db_perf, a workload genera-

tor for Berkeley DB.

6.1 Architecture

A workload generator for software tuning needs to perform two distinct functions.

First, it needs to produce workloads that simulate potential real-life workloads faced

by the system being tuned. Second, it needs to measure the performance of the sys-

tem as it responds to the generated workload. Depending on the nature of the system

being tuned, these two functions may be performed by a single module or divided

among two or more modules. For example, if the system employs a client-server

architecture, it may be necessary to produce the workloads on one or more client

machines and to measure the performance of the system on a separate server

machine. If the system is embedded—like Berkeley DB—then the workload genera-

tor can simply be an application that links the system into its address space. In such

cases, the same module can both generate the workloads and measure the relevant
145

values. In the discussion that follows, I will simply refer to a single workload genera-

tor, without specifying whether its functions are concentrated in a single application

or divided among multiple modules.

6.2 Criteria

To be effective, a workload generator for software tuning should meet several criteria.

First, it should be capable of producing a wide range of workloads for the software

system being tuned. Ideally, it should be dynamically configurable, so that an arbi-

trary workload can be specified at runtime. The actual workload specification can

take different forms, such as a trace of the operations that constitute the workload or

a configuration file that specifies the values of the relevant workload characteristics.

Second, the workload generator should ensure that it measures the steady-

state performance of the system. When a system confronts a new workload, it often

enters a transition period in which its performance gradually changes. For example,

when a workload is generated for Berkeley DB, it can take time for the pages

containing the most frequently accessed items to be brought into memory, and the

performance of the system gradually changes as more and more accesses are satisfied

without the overhead of going to disk. Once this transition period is complete, the

system enters a steady state in which its performance remains at a relatively stable

level over time.1 The workload generator should wait for the system to stabilize

before measuring its performance. Otherwise, the performance statistics that it

produces may lead to non-optimal tuning recommendations. In the extreme case, the

optimal knob settings may only be evident once a steady state has been reached, and

a non-optimal combination of knob settings may appear to be optimal if

measurements are made before the system stabilizes. Section 6.3 provides more

detail about the process of determining a steady state.

Lastly, the workload generator should have reasonable time costs. Because a

large number of training examples are typically needed, every effort should be made

1. The performance statistics may still undergo minor fluctuations during a steady state, but time
averages of the statistics should be relatively stable.
146

to minimize the time taken to generate each example. However, there is a tension

between the desire for short running times and the need to ensure that the system

has stabilized. Moreover, some techniques for speeding up the process of gathering

training data can actually prevent the workload generator from capturing the true

steady-state performance of the system; Section 6.4.3 provides one example of this

phenomenon. Care must be taken to ensure that steps taken to reduce the workload

generator’s time costs do not sacrifice the accuracy of its measurements.

6.3 Determining a Steady State

To obtain an accurate assessment of the impact of different knob settings on the sys-

tem’s performance, it is essential that the workload generator capture the system’s

steady-state performance. If the relevant variables are measured before a steady

state is reached, the measurements may suggest that one combination of knob set-

tings, s1, outperforms another combination, s2, on a particular workload, when in fact

the steady-state performance of s2 is equal to or better than that of s1. Different tech-

niques can be used to test for a steady state. The paragraphs that follow first discuss

a type of technique that often fails to capture the steady-state performance, and they

then present a more accurate approach that explicitly measures the variance of the

relevant variables.

6.3.1 Focusing on the Requisite Conditions

One approach to determining a steady state is to focus on conditions that must be

met before a steady state can be achieved. Typically, this involves associating thresh-

old values with variables that are indicators of the requisite conditions. For example,

in my work with Berkeley DB, I originally focused on the need to warm the memory

pool in order to reach a steady state. I thus configured the workload generator to

declare a steady state when either the rate of evictions from the memory pool rose

above 0 (i.e., when the memory pool was filled), or when the memory-pool miss rate
147

dropped below a certain value. The problem with techniques of this type is that they

do not explicitly test if the performance of the system has truly stabilized, and they

can thus lead to faulty measurements.

One illustration of the inadequacy of focusing on requisite conditions is shown

in the graph in Figure 6.1. Both curves in this graph trace the throughput of the

same Berkeley DB workload as it evolves over time, starting from a state in which

the memory pool is empty and none of the database is in the operating system’s

buffer cache. In one run, the system used 2K pages, and in the other it used 8K pages.

The symbol plotted on each curve indicates the point at which the first memory-pool

evictions occurred and a steady state was falsely declared; the statistics recorded by

the workload generator were measured from that point to the end of the run.

Although the two page-size settings produce comparable steady-state throughputs

for this workload, the measured throughputs falsely suggest that 2K pages

outperform 8K pages, because the 2K configuration is closer to a true steady state

when the first evictions occur.

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

tx
ns

/s
ec

)

time (sec)

2K pages
8K pages

2K first evicts
8K first evicts

Figure 6.1. A faulty method of capturing steady-state performance. This graph traces the
evolution of the throughput of a particular Berkeley DB workload on two different database
configurations, one with 2K pages and one with 8K pages. The symbol plotted on each curve indicates
the point at which the first memory-pool evictions occurred and a steady state was falsely declared.
Because the 2K configuration is closer to a steady state when the first evictions occur, its measured
throughput is higher, even though the steady-state throughputs of the two configurations are actually
comparable.
148

More generally, using evictions as the sole indicator of a steady state favors

page sizes that are smaller than the filesystem’s block size. Each memory-pool miss

brings only a single new page into the memory pool, and thus the use of smaller

pages tends to lengthen the time that it takes for the memory pool to fill and the first

evictions to occur. However, reading a page from disk that is smaller than the block

size still causes a full block to be read into the operating system’s buffer cache; as a

result, using a smaller page size does not typically increase the time needed to reach

a true steady state. Thus, databases with smaller page sizes tend to be closer to a

steady state when the first evictions occur, and measurements of throughput that

begin with the first evictions tend to larger for these databases. This phenomenon is

evident in Figure 6.1. In general, focusing solely on the conditions required for a

steady state is often insufficient. Instead, the workload generator should explicitly

measure the values of the relevant variables and wait for them to stabilize.

6.3.2 Testing for Stability Over Time

One method of testing for stability in the value of a variable is to compute the vari-

ance in its recent values; if the variance is below some threshold, the variable is con-

sidered stable. This type of stability test can be implemented by having the workload

generator store a collection of n equally spaced samples from the past t seconds for

each of the relevant variables. Conceptually, it can be helpful to picture a sliding, t-

second measurement window for each variable, as shown in Figure 6.2. For a given

variable si, the samples { si1, si2, ..., sin } measure the value of si over each of the -

second subintervals in the window. As time advances, the measurement window

slides forward: a new sample is measured and stored, and the oldest sample is dis-

carded.

Given a collection of samples for a particular variable, the workload generator

computes the variance of the samples and determines if the value of the variable has

been sufficiently stable over the past t seconds. Once the variance in each collection of

t
n

149

samples is sufficiently small, the workload generator stops the run and outputs the

averages of the variables of interest over the current measurement window.

It is worth noting that the proposed method determines a steady state after

the fact. In other words, rather than beginning to measure the necessary values after

determining that a steady state has been reached—as is the case for methods that

focus on requisite conditions—the proposed method constantly maintains the

measurements needed to compute the values of the variables of interest, and it

outputs the current version of those values when it determines that they reflect a

steady state. This after-the-fact approach guarantees that the values in the training

examples provide accurate measurements of the system’s steady-state performance,

and it can also reduce the time needed to collect the examples.

The workload generator need not test the stability of all of the variables that

it measures, but the performance metric being optimized should typically be

included. When implementing the stability test, the values of the following

parameters must be specified: the size of the measurement window, t; the number of

samples to maintain, n; and the variance threshold used to determine if the value of a

variable has stabilized. The appropriate values of these parameters will depend in

part on the nature of the system being tuned. For example, if the performance

Figure 6.2. Maintaining a sliding measurement window. To test for a steady state, the workload
generator can store a collection of n samples of each of the relevant variables over the past t seconds
and compute the variance of each set of samples. The values collected form a sliding t-second
measurement window, as visualized in the diagram above for a window that includes five samples of
the variable s1. As time advances, the window slides forward, adding a new sample and discarding the
oldest one.

s11 s12 s13 s14 s15

s1

time

current time
s11 s12 s13 s14 s15

s1

time

current time

t sec
150

variables tend to experience frequent statistical fluctuations, the values of t and n

should be such that the presence of these fluctuations will not prevent the workload

generator from detecting a steady state. In addition, the value of t should be large

enough to ensure that no further transitions in the performance of the system will

occur, yet small enough to produce reasonable running times.

6.4 db_perf: A Workload Generator for Berkeley DB

To obtain training data for Berkeley DB, I developed db_perf, a workload generator

that accepts detailed specifications of both the database and the workloads to be mod-

eled, and that accurately captures the steady-state performance of the system on the

resulting workloads. This section begins with an overview of db_perf, and it then pro-

vides more detail about various aspects of this tool.

6.4.1 Overview

db_perf is a dynamically configurable workload generator. It reads configuration files

that are written using a simple yet powerful language that can be used to specify the

relevant aspects of the database and workload, including such things as the types of

access locality described in Section 4.3.2. db_perf supports the random selection of

workload parameters at run time, and its configuration files can include variables,

switch statements, and simple arithmetic expressions. Each configuration file is

divided into four sections that specify: (1) the configuration of the Berkeley DB envi-

ronment (including any initialization that should be performed) and the values of

various miscellaneous parameters; (2) the contents of the database file or files to be

used during the run; (3) the types of transactions to be performed; and (4) the number

of threads that should access the database and the types of transactions to be per-

formed by each thread.

To capture the steady-state performance of the system, db_perf uses a

separate stat-check thread that tests the relevant variables for stability using the

method described in Section 6.3.2. After the relevant variables have stabilized,
151

db_perf outputs statistics that describe the performance of the system during the

final measurement window. Many of these measurements come from the statistics

that Berkeley DB maintains for each of its modules. In addition to testing for

stability, the stat-check thread can also be configured to output a trace file that

records the values of various variables at regular intervals. These trace files can be

converted to graphs to confirm that a steady state has been reached and to gain

insight into the performance of the system for a given workload.

6.4.2 Specifying the Database and Workload

Specifying a database in db_perf involves describing both the keys of the data items

and one or more distributions over the sizes of the corresponding values. Keys must

be specified and subsequently created in a way that allows the benchmark to gener-

ate successful queries. For example, although it might be desirable to use a scheme in

which the mean and standard deviation of the key sizes could be specified, such a

scheme would make it difficult to generate queries for keys that are known to be in

the database. db_perf solves the problem of key specification by allowing users to cre-

ate one or more keygroups, each of which consists of keys of the same length.

Users can define a keygroup by specifying either: (1) the number of distinct

characters for each position in the key (e.g., “key_chars_per_slot 1 2 10 10 10” creates

five-character keys that begin with the same first character and have two possible

second characters, ten possible third characters, etc., for a total of 1·2·10·10·10 = 2000

keys); or (b) the total number of keys. Users can also specify the first key in the

keygroup, from which all of the remaining keys are derived. For example, if the first

key is “aaaa,” subsequent keys would be “baaa,” “caaa,” and so on. Given the first key

of a keygroup and n, the number of keys that the keygroup contains, a random key

from the keygroup can be selected by choosing a value from 0 to n- 1 and converting it

to the appropriate string through a process akin to converting the base of a number

(Figure 6.3).
152

Keygroups can also be used to specify the types of access locality described in

Section 4.3.2. To create a workload with a particular value for page locality, one or

more keygroups can be designated as the locality set, and the majority of accesses can

be directed to items in those keygroups. To create a workload with a particular value

for size locality, one or more keygroups can be created with items that are large

enough to be forced into overflow pages, and the appropriate percentage of accesses

can be directed to those keygroups. Section 7.1.4 explains how keygroups were used

to control access locality in the workloads generated for the experiments.

A db_perf configuration file also includes some number of user-defined

transaction types and thread types. Each transaction type specifies a sequence of one

or more operations, including such actions as reading, updating, or adding a

Figure 6.3. Pseudocode for converting a number to a key string. The algorithm takes a
keygroup, keygrp , and a number, num, and converts the number to the corresponding key from the
keygroup using a process similar to converting the base of a number. keygrp.start_key is an array
of characters corresponding to the smallest key in the keygroup according to a lexicographic
comparison function. keygrp.chars_per_slot[n] is the number of possible characters for the nth
position in the key (i.e., the nth element of the array of characters). keygrp.key_size is the length of
the keys in the keygroup. In this version of the function, the leftmost character of the key is the least
significant digit of the corresponding number. A similar function can be written to produce keys in
which the rightmost character is the least significant digit.

num_to_ key (k eygrp, num) {
keystr = copy(keygrp.start_key);
place = 0;
place_val = 1;

// Determine the largest place value with a non-zero value--i.e.,
// the largest element of the key that will differ from
// keygrp.start_key.
while ((place_val * keygrp.chars_per_slot[place]) <= num) {

place_val = place_val * keygrp.chars_per_slot[place];
place++;

}

// Convert the number to the equivalent key.
for (i = place; i < keygrp.key_size; i--) {

keystr[i] = keygrp.start_key[i] + floor(num / place_val);
num = num % place_val;
if (i - 1 < keygrp.key_size)

place_val /= keygrp.chars_per_slot[i - 1];
}

return keystr;
}

153

collection of items. For each operation, probability distributions can be specified over

the number of items to be accessed and the keygroups from which the items should be

selected. Each thread type includes a number of threads to be created and a

probability distribution over the types of transactions that each thread of that type

should perform.

6.4.3 Using Initial Scans to Reduce Running Times

Because some workloads take a long time to reach a steady state, db_perf allows a

user to specify preliminary scans of all or part of the database in an attempt to

quickly warm Berkeley DB’s memory pool and the operating system’s buffer cache.

These initial scans—which are not included in the measurements that db_perf

reports—can significantly reduce the average time needed for a db_perf run. How-

ever, care must be taken to ensure that these initial scans do not prevent db_perf

from capturing the true steady-state performance of the system. In fact, if initial

scans are not configured properly, they can actually create a false steady state—i.e.,

an interval in which the statistics measured by db_perf are stable but do not accu-

rately reflect the long-term behavior of the system for the specified workload.

One way that an initial scan can create a false steady state is to dirty the

pages that it accesses at a rate that is substantially different than the rate at which

the actual workload dirties them. For example, consider a workload that includes

some percentage of update transactions (Section 4.3.1). If the initial scan for this

workload dirties none of the pages that it brings into memory (i.e., if it only performs

reads), none of the pages evicted at the start of the workload will be dirty.2 However,

once the system begins to evict the pages accessed by the actual workload, the dirty-

evict rate will begin to rise and the throughout of the system will typically decrease.

If db_perf declares a steady state before the dirty-evict rate begins to increase, the

2. This results from the fact that the memory pool evicts pages using an approximation of the LRU
algorithm (Section 4.1.2), and thus all pages evicted at the start of the cache will be pages accessed
solely by the initial scan.
154

resulting measurements will be inaccurate. Therefore, db_perf allows the user to

specify the rate at which items are modified by an initial scan.

Another, more subtle way that an initial scan can create a false steady state is

to employ a substantially different access pattern than the one used by the actual

workload. For example, I initially used a sequential scan of the database to warm the

memory pool and buffer cache. However, an analysis of results like the ones displayed

in Figure 6.4 led me to question the wisdom of this approach. The run portrayed in

these graphs used a database with 2K pages, and the initial scan dirtied

approximately 70% of the pages that it accessed. Because of the size of the database

used and the amount of memory available for the buffer cache, pages evicted from the

memory pool by this workload are often not present in the buffer cache. Therefore,

when a dirty page is evicted, it should often be necessary to read the file block

containing the page into the buffer cache so that the contents of the unmodified

portions of the block can be preserved. As discussed in Section 4.1.2, reading a file

block translates into a page fault on the operating system used in the experiments;

therefore, there should often be two page faults per memory-pool miss for this

workload—one to fault in the block containing the evicted page and one to fault in the

block containing the page being read into the memory pool.

At the start of the run displayed in Figure 6.4, the expected ratio of faults to

misses does not materialize: the value of faults/txn is only slightly higher than the

value of misses/txn. Then, after a significant amount of time has elapsed, the faults/

txn value jumps to the expected level and throughput decreases accordingly. The false

steady state at the start of the run is a result of the initial scan. Because the scan is

sequential, the leaf pages evicted at the start of the run are also sequential. And

because four 2K pages fit on each 8K file block, one page fault is able to satisfy as

many as four dirty evicts. In other words, we see event sequences like the following:

evict dirty page 100, which faults in the block containing pages 100-103
evict dirty page 101; no page fault—the block is already in the buffer cache
evict clean page 102; no page fault—the block is already in the buffer cache
evict dirty page 103; no page fault—the block is already in the buffer cache
evict dirty page 104, which faults in the block containing pages 104-107 ...
155

Once the system starts to evict pages that were accessed by the actual workload, this

pattern no longer holds, and the value of faults/txn increases. However, before this

can happen, db_perf is likely to conclude that the initial performance of the system

represents a steady state. As a result, the statistics that it reports can end up falsely

suggesting that a page size of 2K performs best for this workload.

To prevent the creation of a false steady state, I modified db_perf to support

nonsequential initial scans. More specifically, these scans start at the mth item in a

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800

time (sec)

throughput (txns/sec)
faults/txn

misses/txn

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800

time (sec)

faults/txn
misses/txn

Figure 6.4. A false steady state. The above graphs trace three statistics—throughput, faults/txn,
and misses/txn—for a Berkeley DB workload generated by db_perf. The top graph shows all three
statistics. The bottom graph reduces the range of the vertical axis so that the evolution of faults/txn
and misses/txn can be seen more clearly. Before the workload began, a sequential scan of the database
was performed. This scan created a false steady state at the start of the run for reasons described in
Section 6.4.3.
156

keygroup and access every nth subsequent item in that keygroup, where the values of

m and n are specified in the definition of the scan. Through experimentation, I

determined that the optimal values for n are ones that cause a scan to access every

eighth leaf page. Skipping eight pages between accesses eliminates the phenomenon

seen in the above example, because pages are no longer accessed sequentially. In

addition, accessing every eighth page ensures that the file blocks read to satisfy the

dirty evicts are also not accessed sequentially. Sequential file-block reads can cause

the filesystem to read the blocks that come next in the sequence before they are

requested by the application, and this can also result in a temporary decrease in the

value of faults/txn.

The examples presented in this section illustrate the care that must be taken

in devising methods to reduce the time needed to generate and measure a given

workload. Although such methods may allow training data to be collected more

efficiently, it is crucial that they do not prevent the workload generator from

capturing the steady-state performance of the system.

6.5 Related Work

A number of prior research efforts on automated software tuning have employed one

or more simulators to evaluate the performance of their proposed techniques [e.g.,

Bro95 and Mat97]. Simulators have also been used to obtain training data for soft-

ware tuning [Fei99]. Many of these prior efforts have used simulators to simulate

aspects of the software system itself, and occasionally even the hardware platform on

which the system runs. By contrast, workload generators produce workloads that

employ the actual software system being tuned and that run on a real hardware plat-

form. Therefore, I have chosen to refer to them as workload generators rather than

workload simulators.

The fact that a workload generator uses the actual software system makes

capturing the system’s steady-state performance that much more challenging. The

frequent use of simulated systems by prior research efforts may explain why little
157

attention has been given to the problem of ensuring that the measured statistics are

stable. Kurt Brown raises this issue in his work [Bro95], but he proposes an approach

that focuses on the criteria needed to reach a steady state (e.g., waiting until the

buffer cache has filled or some number of database files or indices have been opened),

rather than on the stability of the actual statistics. The example presented in Section

6.3.1 demonstrates that such an approach is often inadequate.

Workload generators are similar in spirit to macrobenchmarks, programs that

run a workload on a system and measure its performance. Macrobenchmarks have

been developed for a number of types of software systems, including database

systems [Tra90] and Web servers [Sta00]. However, these benchmarks typically have

a limited degree of configurability, and thus it is difficult to use them to obtain

meaningful performance comparisons. Research in application-specific benchmarking

has begun to address this limitation by developing benchmarks that combine a

characterization of the performance of the underlying system with a characterization

of the workload of interest [Bro97, Sel99b, Smi01]. Among the application-specific

benchmarks that have been developed to date, HBench-Web [Man98] is most similar

to db_perf. It generates stochastic workloads that simulate the workloads

experienced by a particular Web server. HBench-Web derives the characteristics of

the generated workloads from an analysis of Web server logs. A similar approach

could be taken to derive the characteristics of at least some of the workloads that

db_perf generates for a particular Berkeley DB application. However, to enable an

automated software tuner to determine appropriate knob settings for previously

unseen workloads, the workload characteristics derived from logs of previous usage

would need to be supplemented by other, randomly selected workload characteristics.

6.6 Conclusions

A workload generator allows the training data needed by an automated software

tuner to be collected offline, without disrupting the performance of the system to be

tuned. This chapter outlined the criteria that a workload generator for software tun-
158

ing should meet, and it presented db_perf, a workload generator for Berkeley DB. It

also discussed possible techniques for measuring the steady-state performance of a

software system, illustrating the limitations of one class of techniques and advocat-

ing an approach that explicitly tests the variance of the relevant statistics. The next

chapter presents the results of experiments that employ data collected using db_perf,

and it explains how db_perf was configured to generate the workloads used in these

experiments.
159

Chapter 7

Evaluation

This chapter presents the results of experiments that evaluate various aspects of the

proposed methodology for automated software tuning. In particular, the experiments

assess the ability of an influence diagram to make accurate tuning recommendations

for Berkeley DB after being trained using the algorithms for variable discretization

and parameter estimation presented in Chapter 5. They also evaluate the impact of

various aspects of these algorithms on the performance of the model, and they com-

pare the influence diagram’s tuning recommendations to ones based solely on regres-

sion.

7.1 Gathering the Data

The collection of data used in the experiments was gathered using db_perf, the work-

load generator presented in Chapter 6. The results of one set of db_perf runs were

used for training, and the results of a second set of runs were used to assess the tun-

ing recommendations of the models considered in the experiments. This section pre-

sents the relevant details of the procedure used to generate and collect the data.

7.1.1 Test Platform

db_perf was run on five 333-MHz Sun UltraSPARC IIi machines that used the

Solaris 7 operating system (also known as SunOS 5.7) and that were configured more

or less identically. Each machine had a single Seagate ST39140A Ultra ATA hard
160

drive and 128 MB of RAM. Preliminary tests confirmed that Berkeley DB performed

comparably on all five machines: running the same series of workloads on each of the

machines produced comparable sets of performance statistics.

db_perf used the 4.0.14 release of Berkeley DB with a 64-MB memory pool

(Section 4.1.2). The memory-mapped files used by Berkeley DB’s subsystems

(including the memory-pool file) were locked into memory to prevent them from being

evicted by the operating system. To accommodate a large number of concurrent

transactions, Berkeley DB was also configured to use a non-default value of 4000 for

both the maximum number of locks and the maximum number of lock objects in the

lock subsystem. A small number of workloads with extremely high levels of lock

contention needed an even larger number of locks; these workloads were rerun with

8000 locks and 8000 lock objects. With the exception of the knobs being tuned and the

settings mentioned above, all configurable aspects of Berkeley DB were run using the

default values.

7.1.2 Test Database

The database used by db_perf consisted of 490,000 randomly-generated data items,

all of which had small (six- or seven-byte) keys. One-seventh of the items had values

with lengths drawn from a normal distribution with a mean of 450 and a standard

deviation of 10 (the large items), and the remaining items had values with lengths

drawn from a normal distribution with a mean of 100 and a standard deviation of 5

(the small items). The large items were uniformly distributed across the pages of the

database—every seventh item was a large item. The method used to achieve this pat-

tern of small and large items is described in Section 7.1.4.

The database was created once at the start of the experiments and the data

items were stored in a flat file using DB’s db_dump utility. Then, at the start of each

run, the db_load utility loaded the data into a Btree using the values chosen for the

page_size and min_keys knobs.
161

7.1.3 Knob Settings

As described in Sections 4.2.1 and 4.2.2, the page_size and min_keys knobs govern the

physical layout of the database. The experiments considered two possible values for

each of these knobs: page_size values of 2K and 8K, and min_keys values of 2 (for

both 2K and 8K pages) and either 4 (for 2K pages) or 16 (for 8K pages). The database

layouts that result from the (2K, 2) and (8K, 2) knob combinations fit all of the items

on leaf pages. The (2K, 4) and (8K, 16) layouts force the large items into overflow

pages, which may improve the performance of workloads that primarily access the

small items. The experiments did not consider a (2K, 16) knob combination because it

forces both the small and large items into overflow pages, and they did not consider

an (8K, 4) knob combination because it leads to the same layout as the (8K, 2) combi-

nation. Therefore, min_keys values greater than 2 were grouped together in a single

“4/16” option in the model, because otherwise the algorithm for evaluating the influ-

ence diagram would attempt to consider (2K, 16) and (8K, 4) knob combinations, for

which there is no data.

As described in Sections 4.2.3 and 4.2.4, the db_rmw and deadlock_policy

knobs are designed to reduce the degree of lock contention in the system. The

experiments considered both of the possible values of db_rmw: 0, which indicates

that the DB_RMW flag should not be used when reading an object that may later be

written; and 1, which indicates that the DB_RMW flag should be used in such cases.

For the deadlock_policy knob, which determines the policy used when selecting a

transaction to resolve a deadlock, the experiments tried four different values: random

(reject a random lock request), minlocks (reject the lock request made by the

transaction holding the fewest locks), minwrite (reject the lock request made by the

transaction holding the fewest write locks), and youngest (reject the lock request

made by the transaction with the newest locker ID).

There are 32 possible combinations of the knob settings discussed above. A

given combination of knob settings will be written as a tuple of values of the form
162

(page_size, min_keys, db_rmw, deadlock_policy). For example, the default settings

used by Berkeley DB would be written as (8K, 2, 0, random).

7.1.4 Workload Characteristics

The workload characteristics were drawn from the distributions shown in Table 7.1,

which were designed to generate a wide range of workloads. In particular, an effort

was made to include workloads that benefit from non-default knob settings. For

example, to ensure that the non-default settings of the page_size, db_rmw, and

deadlock_policy knobs would be optimal for some of the generated workloads, I

included distributions that tend to produce workloads with large amounts of lock con-

tention (e.g., the N(100,10) distribution for concurrency and the N(75,5) distribution

for pct_updates). After an initial set of distributions had been selected, refinements

were made on the basis of preliminary experiments to ensure that the distributions

produced, for each of the four knobs being tuned, examples of workloads that benefit

from non-default settings of that knob. Constructing workload distributions in this

way ensured that the generated workloads would provide a good test of the model’s

ability to make accurate tuning recommendations.

Table 7.1. Distributions of the workload characteristics used in the experiments. N(µ,σ)
represents a normal distribution with mean µ and standard deviation σ. The numbers on the right side
of each column represent the probability with which a given distribution was chosen. See Section 4.3
for more information about the workload characteristics.

concurrency
N(10,2) 1/3
N(40,5) 1/3
N(100,10) 1/3

pct_updates
N(30,5) 1/2
N(75,5) 1/2

def_page_loc
N(10,2) 1/4
N(50,5) 1/4
N(90,1) 1/2

size_loc
N(3,1) 2/3
N(20,3) 1/3

pct_cursors
0 2/3
N(20,3) 1/3

items_non_curs
N(10,2) 1/3
N(40,5) 2/3

items_curs
N(50,5) 1/2
N(100,10) 1/2

pct_writes/upd
N(10,2) 1/3
N(50,5) 1/3
100 1/3
163

To prepare for a given db_perf run, a driver script selected a distribution for

each workload variable from among the possible distributions for that variable and

encoded these distributions in a db_perf configuration file. db_perf then chose the

values of the workload variables according to the distributions. The value of the

def_leaf_loc workload characteristic (Section 4.3.2) was fixed at 90% for the

experiments; different degrees of page locality were considered by varying the value

of the def_page_loc variable. In addition, because the small and large items were

evenly distributed throughout the database, the leaf_loc_rate variable also had a

fixed value of 90%. Therefore, the def_leaf_loc and leaf_loc_rate nodes were not able

to affect the recommendations of the model for these workloads, and they were

removed from the model for the purposes of the experiments.

db_perf was configured to run up to four different types of transactions in each

workload: (1) non-sequential read-only transactions, which read a non-sequential

collection of items; (2) sequential read-only transactions, which use a cursor to read a

sequential collection of items; (3) non-sequential update transactions, which read a

non-sequential collection of items and modify some percentage of them; and (4)

sequential update transactions, which use a cursor to read a sequential collection of

items and modify some percentage of them. For a given workload, db_perf determined

the percentage of each type of transaction from the values of the pct_cursors and

pct_updates workload characteristics. It determined the number of items accessed

per transaction from the items_curs and items_non_curs workload characteristics,

which specify the means of normal distributions over the numbers of items accessed

by sequential and non-sequential transactions, respectively. The standard deviations

of these distributions were fixed at 20% of the mean. When executing an update

transaction, db_perf modified items with a frequency specified by the pct_writes/upd

workload variable. More information about all of the transaction characteristics

mentioned above can be found in Section 4.3.1.

The locality of accesses to the database was controlled using db_perf ’s

keygroup abstraction (Section 6.4.2). For each workload, the items were divided into
164

four keygroups: (1) small items from pages in the locality set (Section 4.3.2), (2) large

items from pages in the locality set, (3) small items from pages not in the locality set,

and (4) large items from pages not in the locality set. The exact division of the items

was governed by the value of the def_page_loc variable, which specifies the

percentage of leaf pages in the locality set. Table 7.2 illustrates how the keygroups

were defined for a given value of this variable. Because the small and large items

were evenly distributed throughout the database, assigning a given percentage of

both the small and large items to the first two keygroups is equivalent to selecting

that same percentage of leaf pages for the locality set. 90% of the accesses were then

directed to the items in those keygroups.

When specifying which items would be included in the locality set, the second

character of the keys was used as the distinguishing character, as shown in the

example in Table 7.2. Using the second character rather than the first spreads the

locality-set leaf pages throughout the database, which reduces the degree of

contention for the internal pages of the Btree. When there is too much contention for

internal pages, it becomes difficult to find workloads that are positively affected by

the non-default setting of the db_rmw knob—which is used to prevent deadlocks due

to lock upgrades (Section 4.2.3). This difficulty stems from the fact that lock upgrades

only occur on locks for leaf pages, and lock conflicts on the internal pages reduce the

Table 7.2. Using keygroups to control locality in the generated workloads. db_perf ’s keygroup
abstraction was used to control access locality in the workloads generated for the experiments. Shown
below are regular expressions that provide a partial specification of the keygroups for a workload in
which the locality set consists of 10% of the leaf pages. The leaf pages in the locality set contain keys
whose second character is a letter from the set [A-E] —10% of the 50 possible characters for that
position in the key—and they thus constitute approximately 10% of the leaf pages. See Figure 7.1 for a
explanation of how keygroups were also used to produce the desired interleaving of large and small
items on a page. The actual method used to specify the keygroups differed in minor ways from the one
shown here.

Keygroup Regular expression for its keys

small items on pages in a 10% locality set ?[A-E]???[a-f]

large items on pages in a 10% locality set ?[A-E]???aa

small items on pages not in the locality set ?[F-r]???[a-f]

large items on pages not in the locality set ?[F-r]???aa
165

probability that two threads will both attempt to upgrade a lock for the same leaf

page.

The keygroups were also used to provide the desired interleaving of small and

large items in the database; Figure 7.1 provides an example of the items that might

appear on a given leaf page. The value of the size_loc workload variable governed the

frequency with which the keygroups containing the large items were accessed. Given

that 90% of the accesses went to pages in the locality set, the four keygroups were

accessed with the following frequencies, where s is the value of size_loc:

small items from locality-set pages: 90(100 - s)/100 %
large items from locality-set pages: 90s/100 %
small items from non-locality-set pages: 10(100 - s)/100 %
large items from non-locality-set pages: 10s/100 %

Because the db_perf runs were conducted on a uniprocessor, transactions were

also configured to yield the processor after every operation that reads an item.1 Doing

so increases the likelihood that a given page will already be locked when a thread

attempts to lock it. Similar levels of contention would be possible on multiprocessor

machines, which enable multiple threads to be active at the same time.

1. More specifically, the transactions yielded the processor after every call to the DB->get() and
DBcursor->get() methods from the Berkeley DB C API.

Figure 7.1. Interleaving small and large items on a page. The keygroups were specified so that
every seventh item is a large item, as shown in the above example of items from a particular leaf page.
The small items have keys that end in one of the six characters [a-f] , and the large items have keys
that are one character longer and always end with the substring aa . This produces the desired
interleaving of large and small items.

key: gbncef value: gfrwoipwla... (length = 101)
key: gbncfa value: okuyqhajsm... (length = 104)
key: gbncfaa value: dnujqertsafdgzkklwlhdgwgss... (length = 453)
key: gbncfb value: uitrfgeamb... (length = 97)
key: gbncfc value: lorewqmfva... (length = 100)
key: gbncfd value: qznhyfasjt... (length = 107)
key: gbncfe value: pyteqwngha... (length = 95)
key: gbncff value: rndwzkcbgw... (length = 102)
key: gbncga value: ouwbnfdsqa... (length = 99)
key: gbncgaa value: ytewjsmaskhwypowkawjadxwls... (length = 445)
...
166

7.1.5 Running the Workloads

Two sets of db_perf runs were conducted. The training runs generated the data used

to train the models considered in the experiments, and the test runs generated the

data used to assess the accuracy of the models’ tuning recommendations. For each of

the randomly selected workloads in the training runs, db_perf was run using a single,

randomly selected combination of knob settings. For each of the randomly selected

workloads in the test runs, db_perf was run 32 times, once for each possible combina-

tion of knob settings.

In both sets of runs, db_perf generated each workload until the values of the

following variables had stabilized: (1) throughput, the overall performance metric

that the tuner is attempting to optimize; (2) misses/txn and (3) faults/txn, two I/O-

related variables from the influence diagram that often take a long time to stabilize;

and (4) dirty_evicts/txn, a variable that measures the number of dirty pages evicted

from the memory pool per transaction. Although dirty_evicts/txn is not explicitly

included in the influence diagram, its value must stabilize before the values of

faults/txn and throughput can be fully stable. To test the stability of these variables,

db_perf used a five-minute measurement window (Section 6.3.2) with five samples

per variable, and it considered a variable to be stable if the standard deviation of its

samples was either less than 0.01 in absolute magnitude or less than five percent of

the mean.

In an attempt to pre-warm the memory pool and buffer cache, db_perf also

performed a series of initial scans of portions of the database before the start of each

workload (Section 6.4.3). Each of these initial scans read a set of items and modified

some percentage of them. The probability of modifying an item i during an initial

scan was computed as follows:

(EQ 41)P i()
u w if i is on an overflow page⋅

1 1 u w⋅–()2 if i is on a leaf page–



=

167

where u is the value of the pct_updates workload characteristic expressed as a deci-

mal, and w is the value of the pct_writes_upd workload characteristic expressed as a

decimal. These probabilities were designed to produce an initial dirty-evict rate that

would be comparable to the rate seen once a steady state is reached, as discussed in

Section 6.4.3. They are based on two assumptions: (1) that an overflow page will typi-

cally be accessed once before it is evicted (and thus the probability of modifying an

overflow-page item during an initial scan is the same as the probability that the

workload will modify an item); and (2) that a leaf page will typically be accessed twice

before it is evicted (and thus the probability of modifying a leaf-page item during an

initial scan is the same as the probability that a leaf page will be dirty after being

accessed twice by the workload). Although these assumptions may not always hold,

the initial dirty-evict rate should typically be fairly close to the steady-state dirty-

evict rate, and which should allow a steady state to be reached more quickly.

Scans involving leaf pages were configured to access one item from every

eighth leaf page to avoid the potential effects of sequential scans on performance

discussed in Section 6.4.3, and the collection of pages accessed was configured to take

up approximately 128 MB—the size of the test machines’ physical memories. A bug

in the script used to drive the runs in the test set caused the initial scans for test runs

that used (page_size, min_keys) combinations of (2K, 4), (8K, 2) and (8K, 16) to skip

fewer than eight pages between accesses. As a result, these scans read some pages

multiple times and fewer pages overall; this means that smaller portions of the

database were read into memory and that the accessed pages were dirtied at a higher

rate. Although this bug lengthened the time needed to reach a steady state in some of

the test runs, an analysis of a random sample of these runs showed that the bug did

not prevent db_perf from accurately capturing the steady-state performance of the

system.

db_perf executed 18717 training runs and 14176 test runs (443 test

workloads, with 32 runs per workload). Of the 443 test workloads, 92 of them were

used to refine the model (the validation set), and the remaining 351 workloads (the
168

Table 7.3. Summary of the variables included in the data files. This table explains how the values
of the variables were obtained and it lists the precision used to represent them. Most values were
rounded to the nearest integer; this is indicated by a precision value of 0. If more precision was needed,
two places after the decimal were retained; this is indicated by a precision value of 2. More information
about the individual variables can be found in Chapter 4. See Section 7.1.4 for information about the
distributions of the variables that were chosen at random by the driver script.

Variable How obtained Precision

concurrency chosen at random by the driver script 0

deadlock_policy chosen at random by the driver script N/A

def_page_loc chosen at random by the driver script 0

db_rmw chosen at random by the driver script 0

db_size size of file (in MB) measured by the filesystem 0

faults/txn measured by db_perf using the getrusage system call 2

items_curs chosen at random by the driver script 0

items_non_curs chosen at random by the driver script 0

leaves counted the number of headers for leaf pages in a file of page headers
produced using Berkeley DB’s db_dump utility 0

leaves/txn instrumented Berkeley DB to count the number of leaf pages locked by
transactions at the point at which they are committed 0

loc_rate computed using equation 17 on page 75, with leaf_loc_rate = 90 0

loc_size computed using equation 16 on page 74 0

min_keys chosen at random by the driver script 0

misses/txn measured by db_perf from Berkeley DB’s mpool statistics 2

overflows counted the number of headers for overflow pages in a file of page
headers produced using Berkeley DB’s db_dump utility 0

oflw/txn

estimated as follows:

where n is the value of overflows, c is pct_cursors expressed as a decimal,
γ is the value of items_curs, i is the value of items_non_curs, and s is the
value of size_loc expressed as a decimal. n / 70000 is the percentage of
large items in overflow pages, and the quantity in parentheses estimates
the number of large items accessed per transaction.

2

page_loc equal to def_page_loc for the test database 0

page_size chosen at random by the driver script 0

pages/txn pages/txn = leaves/txn + oflw/txn 0

pct_cursors chosen at random by the driver script 0

pct_loc/txn estimated as follows: 2

pct_wlocks if db_rmw = 0, pct_wlocks = pct_writes;
if db_rmw = 1, pct_wlocks = pct_updates. 0

pct_writes estimated as follows: 0

pct_writes/upd chosen at random by the driver script 0

pct_updates chosen at random by the driver script 0

size_loc chosen at random by the driver script 0

throughput measured by db_perf 2

waits/txn measured by db_perf from Berkeley DB’s lock statistics 2

oflow /txn n
70000
---------------- c γ⋅

7
---------- 1 c–() i s⋅ ⋅+ 

 =

pct _loc/txn leaves/txn
page_loc

100
--------------------------- leaves⋅
---=

pct _writes
pct _updates pct _writes/upd⋅

100
--=
169

test set) were used to assess the performance of the final model and the other models

considered in the experiments. Perl scripts were used to process the output of the

db_perf runs and to create a data file for each set of runs. Table 7.3 summarizes the

variables included in the data files and the methods used to measure or estimate

them.

The training runs executed for an average of just over 14 minutes per run;

gathering the entire training set took five machines an average of 37 days per

machine. Spending this much time collecting training data is clearly undesirable.

However, Section 7.5.1 will show that only a fraction of the training data is needed to

achieve a reasonable level of performance on the test-set workloads.

The test set includes a wide range of different workloads. As shown in Table

7.4, many of these workloads benefit from non-default knob settings. 23.6% of them

did best with 2K pages, 33% did best with min_keys values greater than 2, 36.2% did

best when the DB_RMW flag was used in conjunction with update transactions, and

80% did best with a deadlock policy other than the default, random policy. Almost all

of the 32 possible combinations of knob settings were optimal for at least one of the

these workloads. In addition to the optimal knob settings for a given workload, there

are often a handful of near-optimal settings—settings that produce throughputs that

are within 5% of the optimal throughput for that workload.2

Table 7.4. Optimal knob settings for the test-set workloads. For each combination of knob
settings, the number shown is the number of test-set workloads for which those settings produced the
maximal measured throughput. There are 351 test-set workloads in total.

(page_size , min_keys)

db_rmw deadlock
policy (2K,2) (2K,4) (8K,2) (8K,16)

0 random 10 2 29 11

0 minlocks 17 4 17 25

0 minwrite 11 2 33 19

0 youngest 6 3 13 22

1 random 0 0 15 3

1 minlocks 4 0 15 4

1 minwrite 19 0 30 18

1 youngest 5 0 11 3
170

7.2 Creating the Models

A number of different influence diagrams were created in the course of preparing for

and conducting the experiments. To determine the final model—the one used to

assess the overall effectiveness of the methodology—a number of candidate models

were compared using the data in the validation set; see Section 7.3 below for more

detail. Once the final model was selected and evaluated, subsequent experiments

were conducted to test the impact of various aspects of the training procedures; these

experiments required that additional models be constructed with the same structure

as the final model but with different parameters. This section describes the procedure

used to create each of the models.

7.2.1 Learning the Weights of the Value Nodes

The weights of the value nodes were determined using linear regression. As dis-

cussed in Section 5.4.4, analyzing a subset of the training data led me to use the nat-

ural logarithm of throughput as the dependent variable rather than throughput

itself. The value-node variables (faults/txn and waits/txn) served as the independent

variables.

Further analysis of the training data revealed that there were outliers with

extremely high values for the waits/txn value node. As shown in Figure 7.2, the vast

majority (98.5%) of the training instances have waits/txn values of less than 100, but

there are a small number of instances with values that are much larger. Most of these

outliers used the random setting of the deadlock_policy knob, and I suspect that the

high waits/txn values stem from situations in which transactions became trapped in

cycles of repeated deadlocks. Because the random deadlock-resolution policy does not

distinguish between transactions on the basis of their age or the number of locks that

they hold, it is possible for a group of conflicting transactions to remain deadlocked

2. For the 351 test-set workloads, the average number of near-optimal knob settings for a given workload
is 3.95. This average includes 23 workloads for which there are no near-optimal settings.
171

for an extended period of time as they effectively take turns getting aborted. This

type of scenario produces high waits/txn values as transactions repeatedly redo

operations and attempt to reacquire the necessary locks. However, the same scenario

does not affect the value of faults/txn, because the pages needed to redo an operation

are typically in the memory pool from the last time that the operation was performed.

When regression is performed on the full training set (including the outliers),

the following equation is produced:

(EQ 42)

where t is throughput, w is waits/txn, and f is faults/txn. The regression produces an

extremely small coefficient for waits/txn in an attempt to accommodate the large

waits/txn values of the outliers, and the equation thus underestimates the impact of

waits/txn on throughput. To obtain a more realistic coefficient, I eliminated the

training examples with waits/txn values of 100 or more before performing the regres-

sion. Doing so produced the following equation:

(EQ 43)

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000 100000

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

waits/txn

Figure 7.2. Outliers in the training data. This graph shows the cumulative distribution of the
waits/txn variable in the training data. The x-axis has a log scale. The vast majority of the training
instances (98.5%) have waits/txn values of less than 100, but there are a small number of outliers with
much higher values.

lnt 3.56749 0.00084w– 0.15148f–=

lnt 3.74601 0.02778w– 0.15851f–=
172

The coefficients of w and f in this equation were used as the final weights of the value

nodes: the waits/txn values in the training data were multiplied by - 0.02778, and

the faults/txn values were multiplied by - 0.15851.

Several of the candidate models included an additional value node

representing the number of bytes written to the database log per transaction. The

same procedure was used to learn the weights of the value nodes in these models,

including the use of the natural logarithm of throughput as the dependent variable

and the exclusion of outliers with waits/txn values of 100 or more. The following

weights were produced: - 0.00003206 for the number of bytes written to the log per

transaction, - 0.01609 for waits/txn, and - 0.14888 for faults/txn.

7.2.2 Discretizing the Continuous Variables

The algorithm presented in Section 5.3.3 was used to learn the discretizations of the

continuous variables in the models. I wrote a Perl script, learn_disc, that operates on

three files: a model-structure file that specifies the arcs in the model; an initial dis-

cretization file that provides an initial cutoff-value sequence for each node in the

model and indicates which nodes should be discretized; and a file containing the

training data. The script runs the algorithm on the data and produces a final discret-

ization file that contains the learned cutoff-value sequences.

learn_disc could be made to determine the order in which the variables are

considered by the algorithm, as described in Section 5.3.3.3, but the current version

requires that a (possibly partial) ordering be specified in the initial discretization file.

In all of the specified orderings, nodes were sorted according to their distance from

the value nodes, as required by the algorithm. In particular, the following ordering

was used to discretize the variables in the final model: pct_loc/txn, misses/txn,

leaves/txn, pct_writes, oflw/txn, pct_wlocks, concurrency, page_loc, loc_rate, loc_size,

pages/txn, pct_updates, pct_writes/upd, items_non_curs, items_curs, size_loc,

pct_cursors, and def_page_loc.3

3. The leaves, overflows, and db_size variables all had a small enough number of values that they did not
need to be discretized.
173

Because the algorithm considers all possible cutoffs for a node on each

iteration, the running time of the algorithm depends on the number of unique values

that appear in the training data for each variable. To reduce the number of values, I

used a version of the training data that uses less precision to represent non-integral

values. More specifically, the values of variables that ordinarily have a precision of

two places after the decimal (see Table 7.3) were rounded to one place after the

decimal for the purpose of discretization. The learned discretizations are coarse

enough that reducing the precision in this way should not significantly affect the

quality of the resulting cutoff-value sequences.

7.2.3 Constructing and Manipulating the Models Using the Netica Toolkit

The Netica toolkit (version 2.15 for Solaris) [Nor03] was used to construct and manip-

ulate the influence diagrams used in the experiments. I wrote a C program, build_id,

that uses the Netica API to construct an influence diagram from the information con-

tained in three files: the model-structure file described in the previous section; the

final discretization file produced by learn_disc; and the file containing the training

data. The program learns the parameters of the model and stores the influence dia-

gram in a file using Netica’s DNET format.

By default, Netica computes m-estimates (Section 5.4.1.2) for the probability

parameters in the model; it uses uniform prior distributions and equivalent sample

sizes equal to the number of possible values of the variable.4 Preliminary

experiments indicated that the prior distributions were having too much influence on

the estimated parameters of certain chance nodes in the model—in particular, on

nodes with a large number of possible values. To avoid this problem, I set the value of

Netica’s BaseExperience_bn variable to 1/2, which is equivalent to setting the

equivalent sample size for all of the priors to 0. Doing so causes Netica to perform

maximum likelihood estimation (Section 5.4.1.1).

4. The reference manual for the Netica API states that Netica uses an equivalent sample size equal to
the value of the BaseExperience_bn variable, which by default is 1 ([Nor97], page 40). In practice,
however, Netica uses an equivalent sample size equal to the number of possible values of the variable.
174

build_id computes the expected-value parameters associated with the value

nodes using simple averages (Section 5.4.2.1), and it uses the method outlined in

Section 5.4.3 to estimate the unseen parameters associated with both the chance and

value nodes. Variants of build_id that use alternate methods of estimating unseen

parameters were also used to assess the impact of these methods on the accuracy of

the models.

I also used the Netica API to create two programs that manipulate the

influence diagrams created using build_id. The first program, best_settings, uses an

influence diagram to recommend knob settings for one or more workloads. More

specifically, it reads a combination of workload characteristics (i.e., the values of the

root chance nodes) from the keyboard or a file, enters those characteristics as

evidence, and evaluates the influence diagram in light of those characteristics. The

second program, enter_evidence, allows the user to enter values for both the workload

characteristics and knob settings, and it outputs the posterior probabilities of the

intermediate chance nodes and the conditional expected values of the value nodes

given the specified evidence. This program can be used to determine why a given

model ends up recommending a particular combination of knob settings for a given

workload.

7.3 Determining the Final Model

To select the model used to assess the overall effectiveness of the methodology, a

number of candidate models were compared using the process of model refinement

described in Section 5.1.4. The candidate models differed in either their structure,

their parameters (i.e., in the process used for training), or both. Figure 7.3 shows two

of the alternate model structures that were considered. Other model variants were

produced by changing the number of initial bins given to the value nodes for the pur-

pose of discretization, and by considering alternate methods of discretizing the con-

tinuous variables and estimating the unseen parameters.
175

The candidate models were compared on the basis of the knob settings that

they recommended for the workloads in the validation set. Each model was assessed

using the metrics described in Section 2.2: accuracy, the percentage of workloads for

which the model recommends optimal or near-optimal knob settings; and average

slowdown, the average percent difference between the performance achieved using

the model’s non-optimal knob recommendations and the maximal measured

performance for the corresponding workloads. The final model performed best on

both of these metrics. It used the basic model structure presented in Chapter 4, but

the def_leaf_loc and leaf_loc_rate nodes were removed from the model for the reasons

discussed in Section 7.1.4. The resulting model structure is presented in Figure 7.4.5

The final model was trained using the process outlined in Section 7.2. It also used the

discretizations shown in Table 7.5, which were determined by learn_disc from the

training data using initial discretizations that gave ten equal-height bins to the value

nodes.

It is worth noting that there is minimal overlap between the validation and

test sets. None of the workloads in the test set have combinations of undiscretized

workload characteristics that also appear in the validation set. Even when the

workloads’ discretized characteristics are used as the basis of comparison, the vast

majority of the test-set workloads (313 of the 351 workloads, or 89%) do not appear in

the validation set, and the remaining 11% of the workloads were not singled out in

any way when determining the final model.

7.4 Evaluating the Final Model

7.4.1 Performance of the Recommended Knob Settings

The final model recommends optimal or near-optimal knob settings for 270 of the 351

test workloads (76.9%); 90 of the recommended settings are optimal, and 180 produce

non-optimal throughputs that are within 5% of the maximal measured throughput

5. It was not necessary to extend the model as discussed in Section 5.5.1 because the test-set data
included the values of all of the characteristics of the workload.
176

concurrency

items_non_curs

pct_cursors

items_curs loc_rate

pct_loc_txn

waits/txn

overflows

faults/txn

db_sizeleaves

pct_writes

misses/txnpages_txn

page_loc

def_page_locdef_leaf_loc

leaf_loc_rate

size_loc

leaves/txn

pct_writes/upd

wlocks/txn pct_wlocks pct_updates

db_rmwdeadlock_policy

min_keys page_size

loc_size

oflw/txn

leaf_loc_rate

items_non_curs

leaves/txnitems_curs loc_rate

pct_loc_txn

overflows

faults/txn

db_sizeleaves

misses/txnpages_txn

page_loc

def_page_loc

pct_cursors

pct_wlocks

writes/txn

def_leaf_loc

db_rmw

loc_size

size_loc items/txn

log_bytes/txn

deadlock_policy

waits/txn concurrency

pct_updates

pct_writes

page_sizemin_keys

pct_writes/upd

oflw/txn

Figure 7.3. Other candidate model structures. The top model adds an intermediate chance node
(wlocks/txn) to the final model (Figure 7.4) to reduce the number of parents of waits/txn. The bottom
model adds an additional value node (log_bytes/txn) and two associated chance nodes (items/txn and
writes/txn) in an attempt to better capture one impact of the deadlock_policy and db_rmw knobs on
performance, and it removes the arc from oflw/txn to waits/txn. These models did not perform as well
as the final model on the workloads in the validation set.
177

pc
t_

w
rit

es
/u

pd
le

av
es

/tx
n

ite
m

s_
cu

rs
lo

c_
ra

te

w
ai

ts
/tx

n

fa
ul

ts
/tx

n

pc
t_

w
rit

es

m
is

se
s/

tx
n

pc
t_

up
da

te
s

co
nc

ur
re

nc
y

si
ze

_l
oc

de
ad

lo
ck

_p
ol

ic
y

db
_r

m
w

de
f_

pa
ge

_l
oc

m
in

_k
ey

s
pa

ge
_s

iz
e

pa
ge

_l
oc

le
av

es
ov

er
flo

w
s

db
_s

iz
e

pc
t_

cu
rs

or
s

ite
m

s_
no

n_
cu

rs

pc
t_

w
lo

ck
s

lo
c_

si
ze

pa
ge

s/
tx

n

pc
t_

lo
c/

tx
n

of
lw

/tx
n

Figure 7.4. The final model. The shaded nodes are the root chance nodes, which represent
characteristics of the workloads encountered by the system. All of these characteristics are observed
before a tuning decision is made, but the informational arcs that would make this fact explicit have
been omitted for the sake of readability. Brief descriptions of the nodes in the influence diagram are
given in Table 4.1, and additional detail about both the nodes and arcs is provided in Section 4.4.
178

for the corresponding workloads. The throughputs achieved by the influence dia-

gram’s non-optimal knob recommendations (including the near-optimal cases) are

5.04% slower than optimal on average.

By contrast, the default (8K, 2, 0, random) knob settings achieve optimal or

near-optimal throughputs on only 33.9% of the test workloads (119 workloads, with

29 optimal recommendations and 90 near-optimal ones). When the default settings

are non-optimal, they lead to throughputs that are an average of 37.1% slower than

optimal. Figure 7.5 compares the overall performance of the influence diagram’s

recommendations with the performance of the default knob settings. Only 7.7% of the

model’s recommendations have slowdowns of 10% or more—with the largest

slowdown being 50.2%. The default settings, on the other hand, have slowdowns of

Table 7.5. Discretizations of variables in the final model. This table presents the discretizations of
the continuous chance nodes in the influence diagram used to evaluate the overall effectiveness of the
methodology. The discretizations were learned from the training data using the algorithm presented in
Section 5.3.3; the initial discretizations used by the algorithm gave the value nodes 10 equal-height bins
and the continuous chance nodes a single bin.

Variable Number
of bins Cutoff-value sequence

concurrency 3 (27.5, 57.5)

def_page_loc 6 (38.5, 48.5, 53.5, 58.5, 66.5)

items_curs 1 ()

items_non_curs 5 (10.5, 11.5, 23.5, 30.5)

leaves/txn 3 (11.5, 24.5)

loc_rate 5 (68.5, 78.5, 84.5, 89.5)

loc_size 7 (19.5, 32.5, 44.5, 48.5, 53.5, 78.5)

misses/txn 7 (0.55, 0.95, 1.55, 2.85, 6.25, 9.75)

oflw/txn 4 (0.05, 0.65, 2.55)

page_loc 6 (38.5, 48.5, 53.5, 58.5, 66.5)

pages/txn 3 (11.5, 24.5)

pct_cursors 2 (10.5)

pct_loc/txn 4 (1.15, 2.85, 11.35)

pct_wlocks 3 (19.5, 43.5)

pct_writes 11 (2.5, 5.5, 11.5, 17.5, 24.5, 34.5, 39.5, 56.5, 70.5, 77.5)

pct_writes/upd 6 (7.5, 32.5, 44.5, 51.5, 66.5)

pct_updates 8 (19.5, 24.5, 34.5, 39.5, 43.5, 70.5, 77.5)

size_loc 3 (1.5, 6.5)
179

10% or more on over half of the test workloads, including slowdowns of over 50% on

120 of the 351 workloads.

7.4.2 Ability of the Model to Generalize

Of the 351 test workloads, none have exactly the same combination of workload char-

acteristics as the workloads in the training set. However, in assessing the ability of

the influence diagram to generalize, it is perhaps more meaningful to consider only

the test workloads that involve previously unseen combinations of the values of the

discretized workload variables. Using this criterion for whether a workload is seen in

the training set, 41 of the 351 test workloads are previously unseen. The influence

diagram recommends optimal or near-optimal knob settings for 33 of these workloads

(80.5%), and its non-optimal recommendations have an average slowdown of 6.94%.

By comparison, the model recommends optimal or near-optimal settings for 237 of

310 test workloads that are seen in the training data (76.5%), with non-optimal rec-

ommendations that are an average 4.76% slower. Figure 7.6 compares the overall

performance of the influence diagram’s recommendations for the seen and unseen

test workloads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

slowdown (%)

influence diagram
default settings

Figure 7.5. Performance of the final model on the test workloads. The above graph shows the
cumulative distribution of slowdown values associated with the influence diagram’s recommended
knob settings for the test-set workloads, and it compares the performance of the influence diagram’s
recommendations to the performance obtained using the default knob settings. 76.9% of the influence
diagram’s recommendations are optimal or near-optimal, meaning that they have slowdowns of less
than 5%. 92.3% of the recommendations have slowdowns of less than 10%.
180

Although the knob settings that the influence diagram recommends for the

unseen workloads have somewhat poorer performance than the settings that it

recommends for the seen workloads, the model’s overall performance on the unseen

workloads still demonstrates that it is able to generalize from training data to

previously unseen workloads. Moreover, most of the seen test workloads are seen in

the training set in conjunction with only a fraction of the 32 possible knob settings;

the average number of knob settings that appear together with a given combination

of discretized workload characteristics in the training set is 9.72. Thus, the model

also needs to generalize to a certain degree to obtain knob recommendations for these

workloads.

7.4.3 Comparison with a Regression-Only Approach

One possible alternative to using an influence diagram for tuning is to employ models

based solely on regression. This type of approach was taken by Brewer in his work on

tuning library subroutines [Bre94, Bre95]. To compare the two approaches, 32 equa-

tions were derived from the training data using multiple linear regression; each

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

slowdown (%)

test workloads seen in training set
test workloads not seen in training set

Figure 7.6. Ability of the model to generalize. The above graph shows the cumulative
distributions of slowdown values associated with the influence diagram’s recommended knob settings
for two subsets of the test workloads: the workloads that are seen in the training set, and the
previously unseen workloads. A workload is considered seen or unseen on the basis of its discretized
workload characteristics. Most of the seen workloads are seen in conjunction with only a fraction of the
possible knob settings.
181

equation maps workload characteristics to throughput for one of the 32 possible con-

figurations of the knobs. These equations were then used to determine the optimal

knob settings for the workloads in the test set. For a given combination of workload

characteristics, w, the recommended knob settings are the ones associated with the

regression equation that predicts the largest throughput value for the values in w.

To learn the regression equation for a given combination of knob settings,

multiple linear regression was performed on the subset of the training examples that

used those settings. The regression process began with a set of possible independent

variables and iteratively removed any variable that was deemed irrelevant because

the 95% confidence interval for its coefficient included zero. If there were multiple

irrelevant variables after a given round of regression, the one with the highest P-

value was discarded.6 The regression was then rerun on the remaining variables.

This process continued until all of the remaining variables were relevant.

The list of possible independent variables included all of the workload

variables, as well as combinations of these variables that seemed relevant to the

6. The P-value associated with a variable is a measure of the likelihood that the variable does not
explain any of the variation observed in the independent variable beyond the variation that is already
explained by the other variables.

Table 7.6. Terms considered as possible independent variables in the regression equations.
The list includes both the workload characteristics that were varied in the experiments and potentially
relevant combinations of those characteristics. For each regression, terms that were deemed
irrelevant—because their coefficients had confidence intervals that included zero—were discarded.

workload characteristics
concurrency (c)
def_page_loc (p)
items_non_cursor (i)
items_cursor (I)
pct_cursors (c)
pct_updates (u)
pct_writes/upd (w)
size_loc (s)

combinations of workload characteristics

ci
i
p

ci
p
----- uw iuw ciuw si, , , , , ,
182

throughput of the system (Table 7.6). For example, the percentage of items that are

modified by a given workload can be estimated as the product of the values of the

pct_updates and pct_writes_upd variables for that workload, and thus this product

was included as a possible independent variable. For the reasons discussed in Section

5.4.4, the natural logarithm of throughput was used as the dependent variable rather

than throughput itself.

The resulting regression equations have R2 values that range from 0.701 to

0.966.7 They recommend optimal or near-optimal knob settings for 219 of the 351 test

workloads (62.4%); 61 of the recommended settings are optimal, and 158 have non-

optimal throughputs that are within 5% of the maximal measured throughput for the

corresponding workload. The throughputs achieved by the regression equations’ non-

optimal knob recommendations (including the near-optimal cases) are 11.38% slower

than optimal on average. Figure 7.7 compares the overall performance of the

regression equations’ recommendations with the performance of the influence

7. The R2 value associated with a regression equation provides a measure of how well the equation fits
the training data. It can take on any real value in the interval [0.0, 1.0]. Higher values indicate a better
fit.

Figure 7.7. Comparing with a regression-only approach. The above graph shows cumulative
distributions for the slowdown values associated with the knob settings recommended by both the final
influence diagram for Berkeley DB and a set of regression equations derived from the training data.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

slowdown (%)

influence diagram
regression equations
183

diagram’s recommendations on the same workloads. The influence diagram clearly

outperforms the regression equations on these workloads.

It might be possible to improve the performance of the regression equations by

starting with a different set of terms for the independent variables. However, it is

important to note that the process of determining appropriate terms to consider

during regression is a difficult one. Indeed, this process involves challenges that are

similar to the ones encountered in designing the structure of an influence diagram,

and it must be performed without the advantages provided by the graphical structure

of influence diagrams and their ability to exploit intuitive notions of causality. And

unlike influence diagrams, regression equations fail to take advantage of the

conditional independencies that exist between variables, and they may thus require

more training data to achieve comparable levels of accuracy.

7.5 Additional Experiments

This section presents the results of experiments that evaluate specific aspects of the

proposed methodology. These experiments were run on a set of samples of the train-

ing data that will be referred to as the training samples. These samples had ten dif-

ferent sizes—ranging from 10 to 100 percent of the total training set—and there were

a total of 91 samples: ten random samples of each size less than 100%, and a single

sample containing the entire training set.

All of the models derived from the training samples used the same model

structure as the final model (Figure 7.4). In addition, the training algorithms used to

create the final model were also used to create the models derived from the samples

unless the description of a particular experiment states otherwise. New

discretizations were learned for each sample, and—unless otherwise stated—the

initial discretizations used ten equal-height bins for the value nodes. The only step in

the training process that was not performed on a per-sample basis was the learning

of weights for the value nodes; instead, the weights learned from the entire training

set were reused. This should not affect the results appreciably; separate experiments
184

showed that performing regression on even 10 percent of the training data yields

value-node weights that are almost identical to the ones obtained from the full

training set.

7.5.1 Evaluating the Impact of Training-Set Size

The process of gathering training data is one of the costlier aspects of any model-

based approach to software tuning. Therefore, we would like the model to be useful

after a limited amount of training. To evaluate the impact of the number of training

examples on the quality of the final model’s recommendations, variants of the model

were derived from each of the training samples and used to recommend knob settings

for the workloads in the test set.

Figure 7.8 summarizes the performance of the influence diagrams derived

from the samples. The mean performance of the models increases as the sample size

increases from 10% to 60%, at which point it levels off. Some of the models derived

from the 30%, 40%, and 50% samples perform comparably to models derived from the

larger samples, but others do much more poorly. The models derived from 60 to 90%

of the training data have much smaller variances in performance: they consistently

make optimal or near-optimal recommendations for approximately 70 to 80% of the

workloads, and they have average slowdowns of approximately 4 to 7%. The 90%

samples produce models with the highest mean accuracy and lowest mean slowdown;

one-tailed t-tests indicate that there are statistically significant differences between

the mean results for these models and the corresponding mean results for models

derived from the 60%, 70%, and 80% samples. However, the resulting differences in

the performance of the system are small enough that any sample size from 60 to

100% could be used.

The time needed to gather 60% of the training data is still quite substantial: it

would take the five machines used in the experiments roughly 22 days, rather than

the 37 days needed to gather the entire training set. However, all of the influence

diagrams derived from the samples exceed the performance of the default settings,
185

which is indicated by the dotted lines on the graphs in Figure 7.8. Therefore, it would

be possible to deploy the tuner after gathering only a small amount of training data

(e.g., after the four days needed to gather 10% of the data) and to have it begin tuning

the system while additional training data is collected offline. The tuner would begin

improving the overall performance of the system when it is first deployed, and the

quality of its recommendations would increase as additional training data became

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

 (
%

)

percentage of the training data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

sl
ow

do
w

n
(%

)

percentage of the training data

Figure 7.8. Varying the number of training examples. The top graph shows how the accuracy of
the models is affected by the size of the training set, and the bottom graph shows how the average
slowdown of the models—which does not include workloads for which the slowdown is 0—is affected.
For sample sizes less than 100%, the points plotted are the average performance of ten models derived
from training sets of that size, and the error bars show the minimum and maximum values for that
sample size. The dotted line in each graph indicates the performance of the default knob settings.
186

available, both from offline training and from the training examples that the tuner

collects as the system runs.

The influence diagram does significantly better than the default settings after

seeing only 10% of the training data, which corresponds to 1871 training examples.

To represent this as a percentage of the number of possible combinations of workload

characteristics and knob settings, we need to discretize the workload characteristics

in some way. When the discretizations learned from the entire training set (Table 7.5)

are used, there are 829,440 possible combinations of workload characteristics and

knob settings; 10% of the training set thus corresponds to 0.23% of the possible

combinations, if we assume that there are no repeated workloads in the set. Another

method of counting the number of workload/knob-setting combinations is to

discretize the workload characteristics according to the distributions from which they

are drawn (Table 7.1). Although this approach ignores the possibility that two values

from the same distribution can have different effects on the performance of the

system, it has the advantage of not depending on the learned discretizations. When

the workload characteristics are discretized in this way, there are 20,736 possible

workload/knob-setting combinations; 1871 examples constitute just over 9% of this

value. It is impossible to say how much training data is needed for an arbitrary

influence diagram to achieve a reasonable level of performance, but these values

show that it is possible for an influence diagram to improve the performance of a

software system after seeing only a small percentage of the possible combinations of

workload characteristics and knob settings.

7.5.2 Evaluating the Procedure for Estimating Unseen Parameters

To assess the effectiveness of the proposed procedure for estimating unseen parame-

ters (Section 5.4.3), variants of the final model were created using different methods

of estimating these parameters. Four methods of estimating unseen expected-value

parameters were compared: (1) the proposed method, which uses both a nearest-

neighbor estimate and one or two constraints to derive its final estimate; (2) a method

that always uses a nearest-neighbor estimate as the final estimate; (3) a method that
187

uses only the constraints to derive the final estimate, averaging them as needed as

described in Section 5.4.3.4; and (4) a method that sets all unseen expected values to

0.8 In addition, two methods of estimating unseen probability parameters were com-

pared: (1) the proposed method, which derives an unseen probability distribution

from an estimate of the distribution’s expected value (computed using one of the

three methods above) and from the distributions associated with the nearest-neigh-

bor estimate and with the constraints; and (2) a method that uses a uniform distribu-

tion for all unseen probability distributions. The latter method of estimating unseen

probability parameters was always used in conjunction with the fourth method of

estimating unseen expected values. Estimation methods that use either nearest-

neighbor estimates or constraints or both to derive their estimates will be referred to

as informed methods because they base their estimates on the training data, and

methods that do not used the training data will be referred to as uninformed meth-

ods.

Combining the methods for estimating unseen expected values with the

methods for estimating unseen probability distributions gives seven different

procedures for estimating unseen parameters, as shown in Table 7.7. Each of these

procedures was used to derive an influence diagram for each of the training samples,

and the resulting models were used to recommend knob settings for the test-set

8. The fourth method (setting unseen expected values to 0) is what happens to unseen expected values
by default when the expected values are estimated using simple averages.

Table 7.7. Procedures for estimating unseen parameters. The methods listed below were
compared on different sized samples of the training data.

Method of estimating
an unseen expected value

Method of estimating
an unseen probability distribution

nearest-neighbor estimate and constraints derive from an estimate of its expected value

nearest-neighbor estimate and constraints use a uniform distribution

nearest-neighbor estimate only derive from an estimate of its expected value

nearest-neighbor estimate only use a uniform distribution

constraints only derive from an estimate of its expected value

constraints only use a uniform distribution

unseen expected values = 0 use a uniform distribution
188

workloads. I anticipated that the informed estimation methods would do better than

the uniformed methods, and that the method proposed in Section 5.4.3 (which uses

both a nearest-neighbor estimate and a set of constraints) would do better than the

methods that use either the nearest-neighbor estimate or the set of constraints but

not both. I also expected that the differences between the methods would be greater

for smaller sample sizes, because it seemed likely that smaller samples would have a

larger number of unseen parameters.

The average accuracies of the influence diagrams for the various combinations

of estimation procedures and sample sizes are presented in Table 7.8. These results

suggest that an informed method of estimating unseen probability parameters may

not be necessary. This can be seen by comparing the results in the pairs of columns

labeled “nearest neighbor,” “constraints,” and “NN + constraints” in the table. For a

given method of estimating unseen expected values (i.e., a given pair of columns), the

models produced using uniform distributions for unseen probability distributions

(“uniform”) have almost identical accuracies to the models produced by deriving

unseen distributions from estimates of their expected values (“derive Ps”). The

average slowdowns (not shown in the table) are also nearly the same. One reason for

Table 7.8. Accuracies of different procedures for estimating unseen parameters. Shown are
the accuracies of influence diagrams trained using different procedures for estimating unseen
parameters and different sized samples of the training data. For sample sizes less than 100%, each
value is the average accuracy of ten models derived from training sets of that size.

Accuracy (%)

Sample
size (%)

nearest neighbor constraints NN + constraints E = 0

derive Ps uniform derive Ps uniform derive Ps uniform uniform

10 48.58 48.55 49.17 49.14 49.15 49.09 44.07

20 52.99 52.99 52.91 52.91 52.85 52.85 50.34

30 60.43 60.42 60.51 60.51 60.51 60.51 57.35

40 65.70 65.70 65.44 65.41 65.53 65.50 62.08

50 70.88 70.88 71.42 71.42 71.11 71.11 68.77

60 76.35 76.38 76.38 76.41 76.38 76.41 74.76

70 76.15 76.18 76.21 76.18 76.18 76.15 74.18

80 76.29 76.24 76.38 76.38 76.35 76.35 75.24

90 78.80 78.80 79.00 79.00 78.95 78.95 77.21

100 76.64 76.64 76.90 76.90 76.90 76.90 74.90
189

the similar results is that none of models have a significant number of nontrivial

unseen distributions.9 Later in this section, I explain why the number of unseen

probability distributions remains relatively small for all of the sample sizes.

Given the lack of significant differences between the two methods for

estimating unseen probabilities, the rest of this section compares only the methods

for estimating unseen expected values. It does so by focusing on four of the seven

estimation procedures: the three procedures that use informed methods to estimate

both unseen expected values and unseen probabilities, and the procedure that uses

uniformed methods to estimate both types of unseen parameters.

The average accuracy and slowdown results of the models produced using

each of the four procedures are graphed in Figure 7.9. The three informed procedures

consistently produce better average results than the uninformed procedure. Because

the results can vary widely for models derived from different samples of the same

size, not all of the observed differences pass one-tailed t-tests for statistical

significance. However, the results for the individual samples suggest that the

informed procedures are clearly preferable to the uninformed procedure: for all but

three of the 91 samples, the models produced using the informed procedures have

higher accuracies than the model produced using the uniformed procedure, and the

slowdown results are similarly skewed. Therefore, it seems worthwhile to employ one

of the informed procedures to estimate unseen expected values. The choice of which

informed procedure to use does not seem to matter. The differences between the

average results for these procedures are not statistically significant, and the results

for the individual samples are not dominated by any one procedure.

My hypothesis that the informed methods would outperform the uniformed

methods is borne out by the results for the methods of estimating unseen expected

values, but not for the methods of estimating unseen probabilities. My other two

hypotheses are not supported by the results. The proposed method of using both

9. A trivial unseen parameter is one associated with an impossible instantiation of the parents of a node.
For example, both page_size and db_size are parents of faults/txn, but it impossible for a page size of 2K
to be seen together with the size of one of the 8K database configuations, and vice versa.
190

nearest-neighbor estimates and constraints does not outperform the methods that

use one or the other. And it is not the case that the differences between the informed

and uninformed methods increase significantly as the amount of training data

decreases, because the number of unseen parameters does not increase as the sample

size decreases. In fact, smaller samples tend to produce fewer unseen parameters

than larger samples. This is because the discretization algorithm learns fewer bins

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

sl
ow

do
w

n
(%

)

percentage of the training data

uninformed (E = 0, P = uniform)
nearest neighbor

constraints
nearest neighbor and constraints

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

 (
%

)

percentage of the training data

nearest neighbor
constraints

nearest neighbor and constraints
uninformed (E = 0, P = uniform)

Figure 7.9. Comparing four methods of estimating unseen parameters. The top graph shows
the accuracies of models produced using four different procedures for estimating unseen parameters,
and the bottom graph shows the average slowdown values of the same models. For sample sizes less
than 100%, the points plotted are the average performance of ten models derived from training sets of
that size. The uniformed procedure sets unseen expected values to 0 and uses a uniform distribution
for unseen probability distributions. The other three procedures estimate unseen expected values from
a nearest-neighbor estimate, a set of constraints, or both, and they derive unseen probability
distributions from estimates of their expected values.
191

per variable for smaller training sets, which prevents the number of unseen

parameters from growing too large.

For this model, informed methods of estimating unseen expected values have

an impact on performance, but informed methods of estimating unseen probability

distributions do not. This difference may stem in part from the particular nodes

involved. For example, the waits/txn value node, which has the most parents of any

node in the model, also has the largest number of parent instantiations and the

largest number of unseen parameters. Because it is a value node, the methods for

estimating unseen expected values are used to estimate its parameters, and this may

explain why the informed methods of estimating unseen expected values have a

larger impact on the performance of the models than the informed methods of

estimating unseen probabilities. In models for which more of the unseen parameters

are probability parameters, the informed methods of estimating probabilities might

have more of an effect on the performance of the models.

However, it may also be the case that it is generally more important to make

informed estimates of unseen expected values than it is to make informed estimates

of unseen probabilities, especially when the seen expected values are negative (i.e.,

when the value nodes represent performance losses or other quantities that we are

trying to minimize). Using a value of 0 for unseen expected values in such models can

lead the model to compute artificially high expected values for one or more of the

knob settings, and to thus recommend non-optimal knob settings. Other possible

uninformed methods (e.g., using a negative value with a large magnitude for unseen

expected values) can cause the model to artificially reduce the expected values of one

or more knob settings, and to thus fail to recommend the optimal settings. By

comparison, uninformed estimates of probability distributions are not likely to have

as large of an effect on the model’s recommendations.
192

7.5.3 Evaluating Aspects of the Discretization Algorithm

Two sets of experiments were conducted to evaluate aspects of the proposed algo-

rithm for discretizing continuous variables in an influence diagram (Section 5.3.3).

The first set of experiments assessed the impact of the number of equal-height bins,

k, given to the value nodes in the initial discretizations. Models were created from the

training samples for initial discretizations that used k = 5, 10, 20, 30, and 40. The

performance of these models on the test-set workloads is summarized in Figure 7.10.

No single value of k consistently outperforms the other values. The five values

produce models with comparable accuracies and slowdowns from both the 10%

samples and those that include 70% or more of the training data. For the

intermediate-sized samples (20-60%), the differences in the mean accuracies and

slowdowns are more pronounced, although some of these differences do not pass one-

tailed t-tests for statistical significance. k = 40 performs significantly better than the

other k values on the 30% samples, and k = 20 does significantly better than the other

values on the 40% samples. k = 5 does significantly worse than the other values on

the 50% samples, and k = 30 and k = 40 do significantly worse than the other values

on the 60% samples. In addition, k values of 5, 30, and 40 also perform poorly on the

40% samples. It is possible that using only five bins for the value nodes may at times

prevent the discretization algorithm from capturing relevant interactions between

the value nodes and their parents, whereas using 30 or 40 bins may increase the risk

of overfitting the training data. Additional experiments would be needed to verify

these hypotheses.

The final model was produced using k = 10. As shown by the curves in Figure

7.10, this value of k does reasonably well across the full range of sample sizes. There

are sample sizes for which other values have better average performance, but k = 10

is usually competitive and never substantially worse. Using k = 20 also produces

competitive results for most of the sample sizes. The fact that both k = 10 and k = 20

generally perform well—and that all five values perform comparably on the larger
193

training samples—suggests that it should be possible for the developer of an

automated software tuner to select an appropriate k value during the process of

refining the model and to hard-code that value into the tuner.

The second set of experiments compared two methods of improving a

variable’s discretization on a given iteration of the algorithm: the method used by

Friedman and Goldszmidt [Fri96], in which a variable’s current discretization is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

 (
%

)

percentage of the training data

40 bins
30 bins
20 bins
10 bins
5 bins

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

sl
ow

do
w

n
(%

)

percentage of the training data

40 bins
30 bins
20 bins
10 bins
5 bins

Figure 7.10. Comparing different initial discretizations for the value nodes. The above
graphs compare the performance of models produced using initial discretizations that give different
numbers of bins to the value nodes. The top graph displays the accuracies of the models, and the
bottom graph displays their average slowdown values. For sample sizes less than 100%, the points
plotted are the average performance of ten models derived from training sets of that size. The curves
shown connect the results for models that were produced using 10 bins—the number used in producing
the final model. For the sake of readability, only points are plotted for the other options.
194

removed and cutoff values are added from scratch until there are no remaining

values that reduce the description length of the model; and the proposed method,

which starts with the variable’s current discretization and adds at most one cutoff

value per iteration. These methods are discussed more fully in Section 5.3.3.4.

Models were created from the training samples using each of these methods. Figure

7.11 summarizes the performance of these models on the test-set workloads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

 (
%

)

percentage of the training data

proposed method
Friedman & Goldszmidt

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

sl
ow

do
w

n
(%

)

percentage of the training data

proposed method
Friedman & Goldszmidt

Figure 7.11. Comparing two methods of improving a node’s discretization. The above graphs
compare the performance of models produced using two methods of improving the discretization of a
node on a given iteration of the algorithm presented in Section 5.3.3. The top graph displays the
accuracies of the models, and the bottom graph displays their average slowdown values. For sample
sizes less than 100%, the points plotted are the average performance of ten models derived from
training sets of that size, and the error bars show the minimum and maximum values for that size.
195

Friedman and Goldszmidt’s method outperforms the proposed method for a

majority of the 10% and 20% samples; it leads to higher accuracies for eight of ten

samples in each case and smaller slowdowns for eight of the ten 10% samples and all

of the 20% samples. The proposed method leads to higher accuracies for the majority

of the 30%, 40%, and 50% samples and to smaller slowdowns for most of the 50%

samples, but the slowdown results for the 30% and 40% samples are comparable, and

the variance in the results for all of these sample sizes is large. For the larger sample

sizes—60% to 100%—the proposed method consistently outperforms the method of

Friedman and Goldszmidt on both measures, although the differences become less

pronounced as the sample size increases from 60% to 100%. The results produced by

the proposed method also have smaller variances for the larger samples.

Further experiments are needed to determine why the two methods perform

differently for different sample sizes. However, these results suggest that the

proposed method is at least competitive with Friedman and Goldszmidt’s method in

terms of the quality of the models that are produced. And because the proposed

method typically takes significantly less time to learn the discretizations, using it

should allow the tuner to save time without sacrificing performance.

7.6 Conclusions

The experiments presented in this chapter demonstrate that the proposed methodol-

ogy for software tuning can be used to construct a tuner that makes effective tuning

recommendations for a wide range of workloads. The final influence diagram for tun-

ing Berkeley DB—designed according to the guidelines presented in Section 5.1 and

trained using the algorithms presented in Sections 5.3 and 5.4—makes optimal or

near-optimal recommendations for over three quarters of the test workloads. Its rec-

ommendations are within 10% of optimal for over 90% of the test workloads, and its

non-optimal recommendations lead to an average slowdown of just over 5%. The

influence diagram is also able to generalize from experience, as shown by the results

presented in Section 7.4.2. Although the performance of the influence diagram is not
196

perfect, it outperforms both the default knob settings and an alternative approach

based solely on regression, and it leads to improved performance after seeing only a

small percentage of the possible combinations of workload characteristics and knob

settings.

The results presented in Section 7.5.2 show that it can be beneficial to make

informed estimates of the unseen parameters associated with the value nodes of an

influence diagram used for tuning. The three informed methods considered in the

experiments—using a nearest-neighbor estimate, a set of constraints on the value of

a parameter, or both—perform comparably on training sets of different sizes, and

they all outperform an uninformed method that sets an unseen expected value to

zero. However, the experiments do not demonstrate any benefit to using an informed

method of estimating unseen probability parameters; using a uniform distribution for

unseen distributions works as well as the informed methods.

The experiments also demonstrate that the discretization algorithm

presented in Section 5.3.3—including the modified method of improving the

discretization of a given variable—is able to learn effective discretizations of the

continuous variables in an influence diagram. Moreover, the results show that the

algorithm performs well for a range of possible values for the parameter that governs

the number of bins given to the value nodes. This suggests that this parameter can be

hard-coded into the tuner and that the discretization algorithm—and the tuner that

uses it—can run without human intervention.
197

Chapter 8

Conclusions

This chapter provides an overall assessment of the proposed methodology for auto-

mated software tuning—an assessment that is informed by my experience of using

the methodology to tune Berkeley DB. The chapter then discusses possible directions

for future work and summarizes the thesis.

8.1 Assessment of the Proposed Methodology

Section 2.2 outlines a list of criteria that an effective automated software tuner

should meet. One way to assess the proposed methodology is to consider the degree to

which a tuner constructed using the methodology satisfies these criteria.

The first criterion, accuracy, can be addressed by considering the performance

of the final influence diagram for Berkeley DB, as presented in Section 7.4. The final

model recommends optimal or near-optimal knob settings for 76.9% of the test-set

workloads, and knob settings that are within ten percent of optimal for 92.3% of

those workloads. Even when its recommendations are non-optimal, the average

slowdown is just over five percent. Ideally, the model would have provided optimal or

near-optimal recommendations for all of the test-set workloads. The fact that it fails

to do so is disappointing, and the existence of workloads for which its

recommendations have substantial slowdowns is particularly troubling. However,

models of complex systems are seldom perfect, and the fact that the final influence

diagram outperforms an alternative approach based on linear regression suggests

that influence diagrams can produce tuning recommendations of reasonable

accuracy.
198

The proposed methodology also allows a tuner to satisfy another criterion

mentioned in Section 2.2: the ability to respond to changes in the environment. The

parameters of an influence diagram for software tuning are derived from training

data, and they are continually updated using data gathered from the software system

as it runs—and possibly from additional offline training. This continual updating of

the parameters—in particular, the use of a fading factor to reduce the impact of older

examples—should allow a tuner to respond to environmental changes as they occur.

However, this thesis has not evaluated the ability of an influence diagram to adapt

over time, and refinements to the procedure outlined in Section 5.6 for updating the

model may still be needed.

The results presented in Section 7.4.2 demonstrate the ability of the

methodology to produce a tuner that can generalize from experience. The final

influence diagram for Berkeley DB produces tuning recommendations for previously

unseen workloads that are of comparable quality to its recommendations for

workloads that do appear in the training data, although the average slowdown for

these workloads is somewhat larger. In addition, it is worth noting that the definition

of an unseen workload used to compute these results is fairly restrictive: it only

considers a workload to be unseen if its discretized workload characteristics never

appear in the training data. The influence diagram also has to generalize to a certain

degree on the remaining test-set workloads, since none of them have undiscretized

combinations of workload characteristics that appear in the training data, and most

of them appear in the training data in conjunction with only a fraction of the possible

knob settings.

The results also show that an influence diagram is able to tune multiple knobs

simultaneously. By contrast, most prior work in automated software tuning has

tuned at most one or two knobs in isolation. In general, the ability of influence

diagrams to explicitly model the interactions between the relevant variables and to

exploit conditional independencies between them should enable influence diagrams

to tune more knobs than models that lack these abilities. For example, in the
199

regression-only approach considered in Section 7.4.3, separate sets of training

examples are needed for each combination of knob settings, which limits the number

of combinations that can reasonably be considered.1 This limitation does not apply to

an influence diagram, because a single training example can provide information

that is relevant to multiple combinations of knob settings.

Another criterion listed in Section 2.2 is the need for an effective tuner to have

reasonable time costs. The runtime costs of using a trained influence diagram to

recommend knob settings are potentially large in theory, but in practice they are

typically quite small—at most one or two seconds per workload for the model used in

the experiments. However, as discussed in Section 2.3.3, there can be substantial

time costs associated with the process of collecting the training data needed by this

and other model-based approaches. This was the case in my work with Berkeley DB:

over a month was needed to collect the full training set used in the experiments.

However, as shown in Section 7.5.1, it would have been possible to begin obtaining

performance improvements from this model after only a small percentage of the

training data had been collected. In addition, the bulk of the training time was

devoted to warming Berkeley DB’s memory pool and the operating system’s buffer

cache. In situations in which cache-related effects are less significant, it should be

possible to collect training data much more efficiently. In any case, the use of a

workload generator allows training data to be collected offline without disrupting the

performance of the software system, and the time costs associated with training are

amortized over the life of the tuner.

Finally, Section 2.2 requires that an effective tuner be fully automated, and

the proposed methodology satisfies this requirement. Although there is a

considerable amount of up-front work that must performed to design the model used

by the tuner and, when one is needed, the workload generator used to produce

1. It may be possible in some domains to construct regression equations that include the knob settings as
independent variables, in which case this limitation would not hold. However, it seems unlikely that this
approach would work well in general, especially given the fact that knobs often have nomimal values
rather than numeric ones. The deadlock_policy knob considered in the experiments is one example of a
knob with nominal values.
200

training data, this work only needs to be performed once for a given software

system—either by a system or application developer or someone else who is familiar

with the workings of the system. Once the tuner and workload generator are

designed, they can run unattended. The discretization algorithm presented in Section

5.3.3, which builds on the work of Friedman and Goldszmidt [Fri96], overcomes one

potential barrier to complete automation by ensuring that the continuous variables

in the model can be discretized automatically.

As discussed in Section 2.3.3, another potential limitation of model-based

approaches to software tuning is the difficulty of devising a good model. I experienced

this difficulty firsthand in designing the influence diagram for Berkeley DB, which

involved many months of refinement. However, the design process became easier

with time. I originally constructed an influence diagram for tuning just the page_size

and min_keys knobs, and it took over a year to come up with a model that made

reasonable predictions. However, I started with only limited knowledge of the system,

and the failure of my initial workload generator to capture the steady-state

performance of the system also impeded my attempts to refine the model. Once I had

improved the measurements made by the workload generator and completed the two-

knob model, I was able to extend it to incorporate two additional knobs in only a few

weeks’ time. This is not to say that designing a good model of this type will ever be

easy; all approaches to software tuning that can accommodate unseen workloads—

i.e., all approaches based on feedback techniques or analytical models—require both

expertise and experimentation during the design process. But my hope is that the

guidelines presented in Section 5.1 will facilitate the design of influence diagrams for

software tuning and other related applications.

In summary, the proposed methodology has the potential to create effective,

automated software tuners. It will be necessary to actually deploy a tuner based on

this methodology to fully confirm its effectiveness, but the work presented in this

thesis suggests that it is worth taking that next step.
201

8.2 Future Work

One aspect of the proposed methodology that remains to be tested is the process of

updating the parameters of the model over time (Section 5.6). Experiments are

needed to determine appropriate values for the fading factor used to reduce the

impact of older training examples over time, as well as to assess whether multiple

sources of new training data are needed to maintain the tuner’s accuracy. As men-

tioned in Section 5.6, training examples obtained from the software system as it

runs—which I will refer to as runtime examples—may not be sufficient. The primary

reason for this is that all runtime examples involve the tuner’s recommended knob

settings. If the optimal knob settings for a particular workload change over time

because of changes in the environment, it may be impossible to detect this fact from

the runtime examples alone. As a result, it may be necessary to supplement the run-

time examples with periodic offline training, or to occasionally experiment with non-

optimal settings on the system itself.

Important insights could also be gained by applying the proposed methodology

to other software systems. For example, both of the value nodes in the final influence

diagram for Berkeley DB (Figure 7.4) have at least one decision node as a parent. The

waits/txn node inherits from both the db_rmw and deadlock_policy nodes, and the

faults/txn node inherits from the page_size node, which together with the db_size

node also provides information about the value of the min_keys node. Giving the

value nodes decision-node parents may enable an influence diagram to more

accurately predict the performance of different knob settings, because it allows the

model to learn a different expected value for each combination of a value node’s

decision-node parents. However, this type of design may also lead to overfitting by

reducing the number of training examples that contribute to each expected value.

Having the value nodes inherit from one or more decision nodes seems to work well in

the influence diagram for Berkeley DB; applying the methodology to other systems

could help to determine whether this type of design is generally preferable.
202

There are at least two possible extensions to the methodology that I believe

would be worth pursuing. One is to extend it to handle numerical-valued knobs with

many possible settings. To handle such knobs efficiently, it may be necessary to

discretize them along with the continuous chance nodes, as discussed in Section

5.3.3.1. The influence diagram would then be used to recommend an interval of

possible settings rather than a precise value. The challenge is to devise a procedure

for selecting a particular setting from the recommended interval. This may

necessitate supplementing the influence diagram with an additional model of some

sort, or empirically exploring possible values within the recommended interval using

a feedback-based approach.

A second worthwhile extension would be to enable the methodology to handle

asymmetric tuning problems. Standard influence diagrams assume that a decision

problem is symmetric: that the set of possible values for each chance or decision node

in the model does not depend on the instantiation of the node’s parents. Among other

things, this means that all possible combinations of knob settings must be

considered, even though some combinations may never make sense. The need to treat

an asymmetric decision problem as if it were symmetric can lead to both unnecessary

time devoted to training (as data is collected for combinations of knob settings that

are never worth considering) and to unnecessary computation when the influence

diagram is evaluated. Methods have been proposed for dealing with asymmetric

decision problems within the framework of an influence diagram [Qi94, Nie00], and it

might make sense to use of one of these methods in the context of software tuning.

It may also be worth considering modifications to the methods used to train

the influence diagram. For example, it may be beneficial to use the proposed

procedure for estimating unseen parameters (Section 5.4.3) to improve the estimates

of seen parameters for which only a small number of training examples are available.

Doing so might reduce the likelihood of overfitting. Other modifications to the

proposed training methods could also be explored.
203

Finally, it would be interesting to explore the ability of the proposed

methodology to tune other types of complex systems. Examples of such systems

include server applications that need to determine appropriate modifications to their

default resource allocations [Sul00a] and teams of rational software agents that need

to balance their individual interests with the needs of the group [Sul00b, Gro02].

8.3 Summary

The need for an automated approach to software tuning has existed for some time

because of the difficulties involved in manually tuning complex software systems.

Current trends, including the growing complexity of software systems and the

increasing deployment of software systems in settings where manual tuning is either

impractical or overly costly, only exacerbate this need. Prior efforts at automated tun-

ing have primarily focused on tuning one or two of the many knobs that systems

expose for tuning. In addition, these efforts have been closely tied to particular sys-

tems, which makes it difficult to transfer this earlier work to other systems.

To facilitate the construction of self-tuning software systems, this thesis has

proposed a methodology for automated software tuning that provides step-by-step

guidance for building an automated tuner for an arbitrary software system. The

resulting tuners employ a model known as an influence diagram and related learning

and inference algorithms to determine the optimal knob settings for each workload

encountered by the system. The methodology includes guidelines for designing the

structure of an influence diagram for software tuning, as well as procedures for

learning the initial parameters of the model from training data and updating the

values of these parameters over time.

This thesis has also addressed several challenges associated with using an

influence diagram for tuning. First, it has explained that it is often necessary, for

reasons of efficiency, to replace a single overarching performance measure with

multiple metrics that each reflect one aspect of the system’s performance, and it has

shown that regression techniques can be used to learn weights for these metrics so
204

that optimizing their sum is equivalent to optimizing the overall performance of the

system. Second, it has presented an algorithm, based on prior work by Friedman and

Goldszmidt [Fri96], for discretizing continuous variables in an influence diagram.

The proposed algorithm learns the discretizations from training data, and it balances

the complexity of the model with the degree to which the discretizations capture the

interactions between related variables. Third, the thesis has proposed a method for

estimating unseen parameters in an influence diagram—probabilities and expected

values for which no training data is available. The proposed method supplements a

nearest-neighbor approach with constraints that are derived from the monotonic

relationship that typically exists between related variables in an influence diagram

for software tuning. Fourth, the thesis has shown how to design a workload generator

that can be used to produce training data for software tuning, and it has presented a

technique for ensuring that a workload generator captures the steady-state

performance of the system being tuned.

By addressing these challenges and presenting the proposed methodology, this

thesis has made it possible for probabilistic reasoning and decision-making

techniques to serve as the foundation of an effective, automated approach to software

tuning. Moreover, the thesis has shown that an influence diagram created using the

proposed methodology is able to produce considerable performance improvements for

a varied set of workloads for the Berkeley DB embedded database system, including

workloads that are not encountered during training. Although there are still issues

that must be addressed before a tuner based on the proposed methodology can be

deployed, the results demonstrate that this methodology has the potential to meet

the need for a fully automated approach to software tuning.
205

References

[Ago90] Alice M. Agogino and K. Ramamurthi. Real time influence diagrams for monitoring
and controlling mechanical systems. In Robert M. Oliver and James Q. Smith, eds.,
Influence Diagrams, Belief Nets and Decision Analysis. John Wiley & Sons, New
York, NY, 1990.

[Agr00] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated selection of
materialized views and indexes for SQL databases. In Proceedings of the 26th
International Conference on Very Large Databases (VLDB ‘00), Cairo, Egypt,
September 2000.

[Bad75] Marc Badel, Erol Gelenbe, Jacques Leroudier, and Dominique Potier. Adaptive
optimization of a time-sharing system’s performance. Proceedings of the IEEE
63(6):958-956, June 1975.

[Bar93] Joseph S. Barrera III. Self-tuning systems software. In Proceedings of the Fourth
Workshop on Workstation Operating Systems, IEEE Computer Society, Napa, CA,
October 1993.

[Ber98] Philip A. Bernstein, Michael L. Brodie, Stefano Ceri, David J. DeWitt, Michael J.
Franklin, Hector Garcia-Molina, Jim Gray, Gerald Held, Joseph M. Hellerstein, H.
V. Jagadish, Michael Lesk, David Maier, Jeffrey F. Naughton, Hamid Pirahesh,
Michael Stonebraker, and Jeffrey D. Ullman. The Asilomar report on database
research. SIGMOD Record 27(4):74-80, 1998.

[Ble76] Parker R. Blevins and C.V. Ramamoorthy. Aspects of a dynamically adaptive
operating system. IEEE Transactions on Computers C-25(7):713-725, July 1976.

[Bre94] Eric A. Brewer. Portable high-performance supercomputing: high-level platform-
dependent optimization. Ph.D. thesis, Massachusetts Institute of Technology,
September 1994.

[Bre95] Eric A. Brewer. High-level optimization via automated statistical modeling. In
Proceedings of the Fifth Symposium on Principles and Practice of Parallel
Programming (PPoPP ‘95), Santa Barbara, CA, July 1995.

[Bro93] Kurt P. Brown, Michael J. Carey, and Miron Livny. Towards an autopilot in the
DBMS performance cockpit. In Proceedings of the Fifth International High
Performance Transaction Systems Workshop (HPTS ‘93), Asilomar, CA, September
1993.

[Bro94] Kurt P. Brown, Manish Mehta, Michael J. Carey, and Miron Livny. Towards
automated performance tuning for complex workloads. In Proceedings of the 20th
International Conference on Very Large Databases (VLDB ‘94), Santiago, Chile,
September 1994.
206

[Bro95] Kurt P. Brown. Goal-oriented memory allocation in database management systems.
Ph.D. thesis, University of Wisconsin, Madison, 1995 (available as technical report
CS-TR-1995-1288).

[Bro96] Kurt P. Brown, Michael J. Carey, and Miron Livny. Goal-oriented buffer
management revisited. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Madison, WI, June 1996.

[Bro97] Aaron Brown. A decompositional approach to performance evaluation. Harvard
University Computer Science Technical Report TR-03-97, April 1997.

[Bur95] Lisa Burnell and Eric Horvitz. Structure and chance: melding logic and probability
for software debugging. Communications of the ACM 38(3):31-41, 1995.

[Cha97] Surajit Chaudhuri and Vivek Narasayya. An efficient cost-driven index selection
tool for Microsoft SQL Server. In Proceedings of the 23rd International Conference on
Very Large Databases (VLDB ‘97), Athens, Greece, August 1997.

[Cha99] Surajit Chaudhuri, Eric Christensen, Goetz Graefe, Vivek R. Narasayya, and
Michael J. Zwilling. Self-tuning technology in Microsoft SQL server. Data
Engineering Journal 22(2):20-26, June 1999.

[Cha00] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architecture:
towards a self-tuning, RISC-style database system. In Proceedings of the 26th
International Conference on Very Large Databases (VLDB ‘00), Cairo, Egypt,
September 2000.

[Com79] Douglas Comer. The ubiquitous B-tree. ACM Computing Surveys 11(2):121-137,
June 1979.

[Cor62] Fernando J. Corbato, Marjorie Merwin-Daggett, and Robert C. Daley. An
experimental time-sharing system. In Proceedings of the AFIPS Fall Joint Computer
Conference, 1962.

[Cor90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

[Cov91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, New York, NY, 1991.

[Coz01] Fabio G. Cozman. JavaBayes toolkit.
http://www-2.cs.cmu.edu/~javabayes/Home/index.html.

[Dem77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-
38, 1977.

[Dou95] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised
discretization of continuous features. In Armand Prieditis and Stuart Russell, eds.,
Machine Learning: Proceedings of the Twelfth International Conference, Morgan
Kaufmann, San Francisco, CA, 1995.

[Dra67] Alvin W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill, New
York, NY, 1967.
207

[Fay93] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the 13th International
Joint Conference in Artificial Intelligence (IJCAI ‘93), Chambéry, France, August-
September 1993.

[Fei99] Dror G. Feitelson and Michael Naaman. Self-tuning systems. IEEE Software
16(2):52-60, March/April 1999.

[Fra01] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of
Dynamic Systems, fourth edition. Pearson Education, Upper Saddle River, NJ, 2001.

[Fri96] Nir Friedman and Moises Goldszmidt. Discretizing continuous attributes while
learning Bayesian networks. In Lorenza Saitta, ed., Machine Learning: Proceedings
of the Thirteenth International Conference. Morgan Kaufmann, San Francisco, CA,
1996.

[Fri97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers.
Machine Learning 29(2-3):131-163, 1997.

[Fri98] Nir Friedman, Moises Goldszmidt, and Thomas J. Lee. Bayesian network
classification with continuous attributes: Getting the best of both discretization and
parametric fitting. In Jude W. Shavlik, ed., Machine Learning: Proceedings of the
15th International Conference. Morgan Kaufmann, San Francisco, CA, 1998.

[Fri03] Nir Friedman, personal communication, April 15, 2003.

[Goe99] Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. Adaptive resource
management via modular feedback control. CSE Technical Report CSE-99-003,
Oregon Graduate Institute, January 1999.

[Gra93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, San Francisco, CA, 1993.

[Gro02] Barbara J. Grosz, Sarit Kraus, David G. Sullivan, and Sanmay Das. The influence of
social norms and social consciousness on intention reconciliation. Artificial
Intelligence 142(2002):147-177.

[Hec95] David Heckerman. A tutorial on learning with Bayesian networks. Technical report
TR-95-06, Microsoft Research, March 1995 (revised November 1996).

[Hec98] David Heckerman and Eric Horvitz. Inferring informational goals from free-text
queries. In Proceedings of 14th Conference on Uncertainty in Artificial Intelligence
(UAI ‘98), Madison, WI, July 1998.

[Hor98] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse. The
Lumiere project: Bayesian user modeling for inferring the goals and needs of
software users. In Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence (UAI ‘98), Madison, WI, July 1998.

[How84] Ronald A. Howard and James E. Matheson. Influence diagrams. In R. A. Howard
and J. E. Matheson, eds., The Principles and Applications of Decision Analysis, Vol.
II, Strategic Decisions Group, Menlo Park, CA, 1984.

[How90] Ronald A. Howard. From influence to relevance to knowledge. In Robert M. Oliver
and James Q. Smith, eds., Influence Diagrams, Belief Nets and Decision Analysis.
John Wiley & Sons, New York, NY, 1990.
208

[Hug01] Hugin Expert A/S. Hugin decision-engine toolkit. www.hugin.dk.

[Irg88] Adam E. Irgon, Anthony H. Dragoni, Jr., and Thomas O. Huleatt. FAST: A large
scale expert system for application and system software performance tuning. In
Proceedings of the 1998 ACM Conference on the Measurement and Modeling of
Computer Systems (SIGMETRICS ‘98), Sante Fe, New Mexico, June 1998.

[Jac88] Van Jacobson. Congestion avoidance and control. In Proceedings of the 1988 ACM
Symposium on Communications Architectures and Protocols (SIGCOMM ‘88),
Stanford, CA, August 1988.

[Jam99] Anthony Jameson, Ralph Schäfer, Thomas Weis, André Berthold, and Thomas
Weyrath. Making systems sensitive to the user’s time and working memory
constraints. In Proceedings of the 1999 International Conference on Intelligent User
Interfaces (IUI ‘99), Los Angeles, CA, January 1999.

[Jam00] Anthony Jameson, Barbara Großmann-Hutter, Leonie March, and Ralf Rummer.
Creating an empirical basis for adaptation decisions. In Proceedings of the 2001
International Conference on Intelligent User Interfaces (IUI 2000), New Orleans, LA,
January 2000.

[Jen94] Frank Jensen, Finn V. Jensen, and S.L. Dittmer. From influence diagrams to
junction trees. In Proceedings of the 10th Conference on Uncertainty in Artificial
Intelligence (UAI ‘94), Seattle, WA, July 1994.

[Jen01] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, 2001.

[Kan02] Michael Kanellos. IBM leads charge on holistic computing. CNET News.com, April,
11, 2002, http://news.com.com/2100-1001-881279.html.

[Kes91] Srinivasan Keshav. A control-theoretic approach to flow control. In Proceedings of
the 1991 ACM Symposium on Communications Architectures and Protocols
(SIGCOMM ‘91), Zurich, Switzerland, September 1991.

[Koh96] Ron Kohavi and Mehran Sahami. Error-based and entropy-based discretization of
continuous features. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD ‘96), Portland, OR, August 1996.

[Laz84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Upper Saddle River, NJ, 1984.

[Mak98] Spyros Makridakis, Steven C. Wheelwright, and Rob J. Hyndman. Forecasting:
Methods and Applications, third edition. John Wiley & Sons, New York, NY, 1998.

[Man98] Stephen Manley, Margo Seltzer, and Michael Courage. A self-scaling and self-
configuring benchmark for web servers. In Proceedings of the 1998 ACM Conference
on the Measurement and Modeling of Computer Systems (SIGMETRICS ‘98),
Madison, WI, June 1998.

[Mas90] Henry Massalin and Calton Pu. Fine-grain adaptive scheduling using feedback.
Computing Systems 3(1):139-173, Winter 1990.

[Mat90] James E. Matheson. Using influence diagrams to value information and control. In
R.M. Oliver and J.Q. Smith, eds., Influence Diagrams, Belief Nets and Decision
Analysis, John Wiley & Sons, New York, NY, 1990.
209

[Mat97] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randy Wang, and
Thomas Anderson. In Proceedings of the 16th ACM Symposium on Operating System
Principles (SOSP ‘97), Saint Malo, France, October 1997.

[Men01] Daniel A. Menascé, Daniel Barbará, and Ronald Dodge. Preserving QoS of e-
commerce sites through self-tuning: A performance model approach. In Proceedings
of the 2001 ACM Conference on Economic Commerce (EC ‘01), Tampa, FL, October
2001.

[Mit97] Tom M. Mitchell. Machine Learning. WCB McGraw-Hill, Boston, MA, 1997.

[Nar00] Dushyanth Narayanan, Jason Flinn, and M. Satyanarayanan. Using history to
improve mobile application adaptation. In Proceedings of the Third IEEE Workshop
on Mobile Computing Systems and Applications, Monterey, CA, December 2000.

[Net96] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William
Wasserman. Applied Linear Statistical Models, fourth edition. Richard D. Irwin,
Inc., Chicago, IL, 1996.

[Nie99] Thomas D. Nielsen and Finn V. Jensen. Welldefined decision scenarios. In
Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI ‘99),
Stockholm, Sweden, July 1999.

[Nie00] Thomas D. Nielsen and Finn V. Jensen. Representing and solving asymmetric
Bayesian decision problems. In Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence (UAI 2000), Stanford, CA, July 2000.

[Nob97] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, J. Eric Tilton, Jason
Flinn, and Kevin R. Walker. Agile application-aware adaptation for mobility. In
Proceedings of the 16th ACM Symposium on Operating System Principles (SOSP-
16), Saint-Malo, France, October 1997.

[Nor97] Norsys Software Corp. Netica API Programmer’s Library Reference Manual, version
1.06. June 14, 1997. http://www.norsys.com/dl/NeticaAPIMan.ps.

[Nor03] Norsys Software Corp. Netica API. http://www.norsys.com/netica.html.

[Oli90] Robert M. Oliver and James Q. Smith, eds. Influence Diagrams, Belief Nets and
Decision Analysis. John Wiley & Sons, New York, NY, 1990.

[Ols99] Michael Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proceedings of the
1999 USENIX Annual Technical Conference, Monterey, California, June 1999.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, revised second printing. Morgan Kaufmann, San Francisco, CA, 1988.

[Pfe99] Avi Pfeffer, Daphne Koller, Brian Milch, and Ken T. Takusagawa. SPOOK: a system
for probabilistic object-oriented knowledge representation. In Proceedings of the
15th Annual Conference on Uncertainty in AI (UAI ‘99), Stockholm, Sweden, July
1999.

[Pfe00] Avi Pfeffer and Daphne Koller. Semantics and inference for recursive probability
models. In Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI 2000), Austin, TX, July-August, 2000.
210

[Pra94] Malcolm Pradhan, Gregory Provan, Blackford Middleton, and Max Henrion.
Knowledge engineering for large belief networks. In Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence (UAI ‘94), Seattle, WA, July 1994.

[Qi94] Runping Qi, Nevin Lianwen Zhang, and David Poole. Solving asymmetric decision
problems with influence diagrams. In Proceedings of the 10th Annual Conference on
Uncertainty in AI (UAI ‘94), Seattle, WA, July 1994.

[Rei81] David Reiner and Tad Pinkerton. A method for adaptive performance improvement
of operating systems. In Proceedings of the 1981 ACM Conference on the
Measurement and Modeling of Computer Systems (SIGMETRICS ‘81), Las Vegas,
NV, September 1981.

[Ros01] Sheldon Ross. A First Course in Probability, sixth edition, Prentice-Hall, Upper
Saddle River, NJ, 2001.

[Rus95] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, NJ, 1995.

[Sch99] K. Bernhard Schiefer and Gary Valentin. DB2 universal database performance
tuning. Data Engineering Journal 22(2):12-19, June 1999.

[Sel96] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. Dealing
with disaster: surviving misbehaved kernel extensions. In Proceedings of the Second
Symposium on Operating System Design and Implementation (OSDI ‘96), Seattle,
WA, October 1996.

[Sel97] Margo I. Seltzer and Christopher Small. Self-monitoring and self-adapting
operating systems. In Proceedings of the Sixth Workshop on Hot Topics on Operating
Systems (HotOS-VI), Chatham, MA, May 1997.

[Sel99a] Margo Seltzer and Michael Olson. Challenges in embedded database system
administration. In Proceedings of the First Workshop on Embedded Systems,
Cambridge, MA, March 1999.

[Sel99b] Margo Seltzer, David Krinsky, Keith Smith, and Xiaolan Zhang. The case for
application-specific benchmarking. In Proceedings of the Seventh Workshop on Hot
Topics in Operating Systems (HOTOS-VII), Rio Rico, AZ, March 1999.

[Sha86] Ross D. Shachter. Evaluating influence diagrams, Operations Research 34:871-882,
November-December 1986.

[Sha89] Ross D. Shachter and C. Robert Kenley. Gaussian influence diagrams. Management
Science 35(5):527-550, May 1989.

[Sha90] Ross D. Shachter, David M. Eddy, and Vic Hasselbad. An influence diagram
approach to medical technology assessment. In Robert M. Oliver and James Q.
Smith, eds., Influence Diagrams, Belief Nets and Decision Analysis. John Wiley &
Sons, New York, NY, 1990.

[Sha98] Ross D. Shachter. Bayes-ball: the rational pastime (for determining irrelevance and
requisite information in belief networks and influence diagrams). In Proceedings of
the 14th Conference on Uncertainty in Artificial Intelligence (UAI ‘98), Madison, WI,
July 1998.
211

[Sle01] Sleepycat Software, Inc. Berkeley DB. New Riders Publishing, Indianapolis, IN,
2001. Also available online at www.sleepycat.com/docs.

[Smi93] James E. Smith. Moment methods for decision analysis. Management Science
39(3):340-358, March 1993.

[Smi01] Keith Arnold Smith. Workload-specific file system benchmarks. Ph.D. thesis,
Harvard University, January 2001.

[Spi98] Peter M. Spiro. Ubiquitous, self-tuning, scalable servers. In Proceedings of the 1998
ACM International Conference on the Management of Data (SIGMOD ‘98), Seattle,
WA, June 1998.

[Sta00] Standard Performance Evluation Council. SPECweb99 Release 1.02. On-line
whitepaper. http://www.spec.org/osg/web99/docs/whitepaper.html.

[Ste99] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu, and
Jonathan Walpole. A feedback-driven proportion allocator for real-rate scheduling.
In Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation (OSDI ‘99), New Orleans, LA, February 1999.

[Sul00a] David G. Sullivan and Margo I. Seltzer. Isolation with flexibility: a resource
management framework for central servers. In Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego, CA, June 2000.

[Sul00b] David G. Sullivan, Barbara J. Grosz, and Sarit Kraus. Intention reconciliation by
collaborative agents. In Proceedings of the Fourth International Conference on Multi-
Agent Systems (ICMAS 2000), Boston, MA, July 2000.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Upper Saddle
River, NJ, 1992.

[Tra90] Transaction Processing Performance Council. TPC Benchmark B Standard
Specification. Waterside Associates, Fremont, CA, 1990.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory, Springer-Verlag,
Heidelberg, Germany, 1995.

[Vud01] Richard Vuduc, James W. Demmel, and James Bilmes. Statistical models for
automatic performance tuning. In Proceedings of the 2001 International Conference
on Computational Science (ICCS 2001), San Francisco, CA, May 2001.

[Wei94] Gerhard Weikum, Christof Hasse, Axel Moenkeberg, and Peter Zabback. The
COMFORT automatic tuning project, Information Systems 19(5):381-432, 1994.

[Wel01] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Proceedings of the 18th ACM Symposium
on Operating System Principles (SOSP-18), Banff, Canada, October 2001.

[Zil01] Daniel C. Zilio, Sam Lightstone, Kelly A. Lyons, and Guy M. Lohman. Self-managing
technology in IBM DB2 universal database. In Proceedings of the 2001 ACM
International Conference on Information and Knowledge Management (CIKM ‘01),
Atlanta, GA, November 2001.
212

	Using Probabilistic Reasoning to Automate Software Tuning
	Abstract
	Contents
	List of Figures ix
	List of Tables xi
	Acknowledgments xii
	1.1 Overview of the Thesis 5
	1.2 Contributions 8
	2.1 High-Level Architecture 10
	2.2 Criteria 11
	2.3 Possible Approaches 14
	2.3.1 Empirical Comparisons 14
	2.3.2 Feedback Mechanisms 15
	2.3.3 Analytical Models 17
	2.4 Using a Workload Generator for Tuning 19
	2.5 Choosing an Approach to Automated Tuning 20
	2.6 Related Work 22
	2.6.1 Work Based on Empirical Comparisons 22
	2.6.2 Work Based on Feedback Mechanisms 24
	2.6.3 Work Based on Analytical Models 27
	2.7 Conclusions 30
	3.1 Basics from Probability Theory and Decision Theory 31
	3.1.1 Joint and Marginal Probability Distributions 33
	3.1.2 Conditional Probabilities 35
	3.1.3 Bayes’ Law 37
	3.1.4 Independence and Conditional Independence 37
	3.1.5 Expected Values 38
	3.1.6 Making Optimal Decisions Under Uncertainty 39
	3.1.7 Conclusions 40
	3.2 Influence Diagrams 40
	3.2.1 Structure of the Model 40
	3.2.2 Parameters of the Model 43
	3.2.3 Conditional Independencies in Influence Diagrams 43
	3.2.4 Evaluating an Influence Diagram 44
	3.2.5 Conclusions 52
	4.1 Overview 53
	4.1.1 Btree Access Method 54
	4.1.2 Memory Pool Subsystem 56
	4.1.3 Locking Subsystem 57
	4.1.4 Transaction Subsystem 58
	4.1.5 Logging Subsystem 59
	4.2 The Knobs 60
	4.2.1 Page Size 60
	4.2.2 Minimum Keys Per Page 62
	4.2.3 DB_RMW 62
	4.2.4 Deadlock-Resolution Policy 63
	4.3 Workload Characteristics 64
	4.3.1 Transaction Characteristics 64
	4.3.2 Access Locality 65
	4.3.3 Concurrency 67
	4.4 An Influence Diagram for Berkeley DB 68
	4.4.1 Decision Nodes 68
	4.4.2 Value Nodes 68
	4.4.3 Chance Nodes and the Structure of the Model 71
	4.4.3.1 Intermediate Chance Nodes and Their Parents 72
	4.4.3.2 Parents of the Value Nodes 77
	4.5 Conclusions 79
	5.1 Designing the Structure of the Model 80
	5.1.1 Choosing Variables for the Model 81
	5.1.1.1 Decision Nodes 81
	5.1.1.2 Value Nodes 82
	5.1.1.3 Root Chance Nodes 83
	5.1.1.4 Unnecessary Variables 84
	5.1.1.5 Using Normalized Variables 85
	5.1.1.6 Avoiding Unnecessary Dependencies 86
	5.1.2 Adding Arcs to the Model 87
	5.1.3 Limiting the Number of Parents of a Node 89
	5.1.4 Checking and Refining the Model 91
	5.2 Gathering the Training Data 93
	5.3 Discretizing the Continuous Variables 95
	5.3.1 Simple Discretization Methods 97
	5.3.1.1 Equal-width Bins 97
	5.3.1.2 Equal-height Bins 98
	5.3.1.3 Limitations 100
	5.3.2 Learning Discretizations of Variables in a Bayesian Network 101
	5.3.2.1 The MDL Principle 102
	5.3.2.2 Computing the Description Length 103
	5.3.2.3 Friedman and Goldszmidt’s Algorithm 106
	5.3.3 Learning Discretizations of Variables in an Influence Diagram 109
	5.3.3.1 Dealing with Decision Nodes 109
	5.3.3.2 Dealing with Value Nodes 110
	5.3.3.3 Simplifying the Specification of Initial Cutoff Values 111
	5.3.3.4 An Additional Modification 114
	5.4 Learning the Parameters of the Model 114
	5.4.1 Estimating Probabilities 115
	5.4.1.1 Maximum Likelihood Estimation 115
	5.4.1.2 Incorporating Prior Estimates 116
	5.4.1.3 Dealing with Incomplete Data 117
	5.4.2 Estimating Expected Values 118
	5.4.2.1 Using Simple Averages 118
	5.4.2.2 Incorporating Prior Estimates 118
	5.4.2.3 Dealing with Incomplete Data 119
	5.4.3 Estimating Unseen Parameters 120
	5.4.3.1 Determining Nearest-Neighbor Estimates 121
	5.4.3.2 Testing for Monotonic Parent-Child Relationships 124
	5.4.3.3 Determining Constraints on Expected Values 126
	5.4.3.4 Finalizing Estimates for Unseen Expected Values 127
	5.4.3.5 Estimating Unseen Probability Parameters 129
	5.4.4 Learning Weights for the Value Nodes 132
	5.5 Using the Model 136
	5.5.1 Dealing with Unobservable Workload Characteristics 136
	5.5.2 Tuning the Knobs for a Given Workload 139
	5.6 Updating the Model Over Time 140
	5.7 Related Work 141
	5.8 Conclusions 143
	6.1 Architecture 145
	6.2 Criteria 146
	6.3 Determining a Steady State 147
	6.3.1 Focusing on the Requisite Conditions 147
	6.3.2 Testing for Stability Over Time 149
	6.4 db_perf: A Workload Generator for Berkeley DB 151
	6.4.1 Overview 151
	6.4.2 Specifying the Database and Workload 152
	6.4.3 Using Initial Scans to Reduce Running Times 154
	6.5 Related Work 157
	6.6 Conclusions 158
	7.1 Gathering the Data 160
	7.1.1 Test Platform 160
	7.1.2 Test Database 161
	7.1.3 Knob Settings 162
	7.1.4 Workload Characteristics 163
	7.1.5 Running the Workloads 167
	7.2 Creating the Models 171
	7.2.1 Learning the Weights of the Value Nodes 171
	7.2.2 Discretizing the Continuous Variables 173
	7.2.3 Constructing and Manipulating the Models Using Netica 174
	7.3 Determining the Final Model 175
	7.4 Evaluating the Final Model 179
	7.4.1 Performance of the Recommended Knob Settings 179
	7.4.2 Ability of the Model to Generalize 180
	7.4.3 Comparison with a Regression-Only Approach 181
	7.5 Additional Experiments 184
	7.5.1 Evaluating the Impact of Training-Set Size 185
	7.5.2 Evaluating the Procedure for Estimating Unseen Parameters 187
	7.5.3 Evaluating Aspects of the Discretization Algorithm 193
	7.6 Conclusions 196
	8.1 Assessment of the Proposed Methodology 198
	8.2 Future Work 202
	8.3 Summary 204

	List of Figures
	List of Tables
	Acknowledgments

	Chapter 1
	Introduction
	Figure 1.1.� An example of an influence diagram.
	1.1�� Overview of the Thesis
	1.2�� Contributions

	Chapter 2
	Automated Software Tuning
	2.1�� High-Level Architecture
	2.2�� Criteria
	Table 2.1.� Assessing a tuner’s accuracy. To assess the accuracy of a tuner’s recommended knob se...

	2.3�� Possible Approaches
	2.3.1�� Empirical Comparisons
	2.3.2�� Feedback Mechanisms
	2.3.3�� Analytical Models

	2.4�� Using a Workload Generator for Tuning
	2.5�� Choosing an Approach to Automated Tuning
	2.6�� Related Work
	2.6.1�� Work Based on Empirical Comparisons
	2.6.2�� Work Based on Feedback Mechanisms
	2.6.3�� Work Based on Analytical Models

	2.7�� Conclusions

	Chapter 3
	Probabilistic Reasoning and Decision-Making
	3.1�� Basics from Probability Theory and Decision Theory
	3.1.1�� Joint and Marginal Probability Distributions
	Table 3.1.� A sample joint probability distribution for the variables A and B

	3.1.2�� Conditional Probabilities
	3.1.3�� Bayes’ Law
	3.1.4�� Independence and Conditional Independence
	3.1.5�� Expected Values
	3.1.6�� Making Optimal Decisions Under Uncertainty
	3.1.7�� Conclusions

	3.2�� Influence Diagrams
	3.2.1�� Structure of the Model
	Figure 3.1.� An example of a directed acyclic graph.
	Figure 3.2.� An example of an influence diagram and its associated parameters. The structure of t...

	3.2.2�� Parameters of the Model
	3.2.3�� Conditional Independencies in Influence Diagrams
	3.2.4�� Evaluating an Influence Diagram
	Figure 3.3.� Pseudocode for evaluating an influence diagram. The algorithm takes an influence dia...
	Figure 3.4.� The checkpoint-interval influence diagram. This is a version of the influence diagra...
	Figure 3.5.� Evaluating the checkpoint-interval influence diagram, part I. Shown are the results ...
	Figure 3.6.� Evaluating the checkpoint-interval influence diagram, part II. Shown are the results...
	Figure 3.7.� Evaluating the checkpoint-interval influence diagram, part III. Shown are the result...
	Figure 3.8.� Evaluating the checkpoint-interval influence diagram, a summary.

	3.2.5�� Conclusions

	Chapter 4
	Test System: Berkeley DB
	4.1�� Overview
	4.1.1�� Btree Access Method
	Figure 4.1.� An example of a B+link tree.

	4.1.2�� Memory Pool Subsystem
	4.1.3�� Locking Subsystem
	4.1.4�� Transaction Subsystem
	4.1.5�� Logging Subsystem

	4.2�� The Knobs
	4.2.1�� Page Size
	4.2.2�� Minimum Keys Per Page
	4.2.3�� DB_RMW
	4.2.4�� Deadlock-Resolution Policy

	4.3�� Workload Characteristics
	4.3.1�� Transaction Characteristics
	4.3.2�� Access Locality
	4.3.3�� Concurrency

	4.4�� An Influence Diagram for Berkeley DB
	Figure 4.2.� An influence diagram for tuning the Berkeley DB database system. The shaded nodes ar...
	Table 4.1.� Overview of the nodes in the influence diagram in Figure 4.2. See Sections 4.4.1, 4.4...
	4.4.1�� Decision Nodes
	4.4.2�� Value Nodes
	4.4.3�� Chance Nodes and the Structure of the Model
	4.4.3.1 Intermediate Chance Nodes and Their Parents
	Figure 4.3.� The leaves, overflows, and db_size nodes and their parents. The figure on the right ...
	Figure 4.4.� The leaves/txn, oflw/txn, and pages/txn nodes and their parents. The figure on the r...
	Figure 4.5.� The page_loc, leaf_loc_rate, loc_rate, and loc_size nodes and their parents. The fig...
	Figure 4.6.� The pct_loc/txn node and its parents. The figure on the right focuses on a portion o...
	Figure 4.7.� The misses/txn node and its parents. The figure on the right focuses on a portion of...
	Figure 4.8.� The pct_writes and pct_wlocks nodes and their parents. The figure on the right focus...

	4.4.3.2 Parents of the Value Nodes
	Figure 4.9.� The faults/txn value node and its parents. The figure on the right focuses on a port...
	Figure 4.10.� The waits/txn value node and its parents. The figure on the right focuses on a port...

	4.5�� Conclusions

	Chapter 5
	Using an Influence Diagram for Software Tuning
	5.1�� Designing the Structure of the Model
	5.1.1�� Choosing Variables for the Model
	5.1.1.1 Decision Nodes
	5.1.1.2 Value Nodes
	5.1.1.3 Root Chance Nodes
	5.1.1.4 Unnecessary Variables
	5.1.1.5 Using Normalized Variables
	5.1.1.6 Avoiding Unnecessary Dependencies
	Figure 5.1.� The misses/txn node and surrounding nodes. The figure on the right provides a closeu...

	5.1.2�� Adding Arcs to the Model
	Figure 5.2.� The waits/txn value node and some of the chance and decision nodes that affect it. T...

	5.1.3�� Limiting the Number of Parents of a Node
	Figure 5.3.� Adding an intermediate chance node. This figure shows a fragment of an influence dia...
	Figure 5.4.� Using an intermediate node to limit the number of a node’s parents. The figure on th...

	5.1.4�� Checking and Refining the Model
	Figure 5.5.� Invalid conditional-independence assertions. The figure above highlights a portion o...

	5.2�� Gathering the Training Data
	5.3�� Discretizing the Continuous Variables
	5.3.1�� Simple Discretization Methods
	5.3.1.1 Equal-width Bins
	Figure 5.6.� Example of an equal-width discretization. This graph shows the distribution of value...

	5.3.1.2 Equal-height Bins
	Figure 5.7.� Pseudocode for an algorithm to perform equal-height discretization. The algorithm ta...
	Figure 5.8.� Example of an equal-height discretization. This graph shows the distribution of valu...

	5.3.1.3 Limitations

	5.3.2�� Learning Discretizations of Variables in a Bayesian Network
	5.3.2.1 The MDL Principle
	5.3.2.2 Computing the Description Length
	5.3.2.3 Friedman and Goldszmidt’s Algorithm
	Figure 5.9.� Pseudocode for Friedman and Goldszmidt’s algorithm. The algorithm takes a Bayesian n...

	5.3.3�� Learning Discretizations of Variables in an Influence Diagram
	5.3.3.1 Dealing with Decision Nodes
	5.3.3.2 Dealing with Value Nodes
	5.3.3.3 Simplifying the Specification of Initial Cutoff Values
	Figure 5.10.� Pseudocode for an algorithm to learn the discretizations of continuous variables in...

	5.3.3.4 An Additional Modification

	5.4�� Learning the Parameters of the Model
	5.4.1�� Estimating Probabilities
	5.4.1.1 Maximum Likelihood Estimation
	5.4.1.2 Incorporating Prior Estimates
	5.4.1.3 Dealing with Incomplete Data

	5.4.2�� Estimating Expected Values
	5.4.2.1 Using Simple Averages
	5.4.2.2 Incorporating Prior Estimates
	5.4.2.3 Dealing with Incomplete Data

	5.4.3�� Estimating Unseen Parameters
	Figure 5.11.� The faults/txn value node and its parents. The figure on the right provides a close...
	5.4.3.1 Determining Nearest-Neighbor Estimates for Expected Values
	5.4.3.2 Testing for Monotonic Parent-Child Relationships
	5.4.3.3 Determining Constraints on Expected Values
	Figure 5.12.� Pseudocode for an algorithm to learn constraints on the expected value of a chance ...

	5.4.3.4 Finalizing Estimates for Unseen Expected Values
	5.4.3.5 Estimating Unseen Probability Parameters
	Figure 5.13.� Pseudocode for an algorithm to construct a discrete probability distribution with a...

	5.4.4�� Learning Weights for the Value Nodes
	Figure 5.14.� Throughput as a function of waits/txn and faults/txn. These graphs show the relatio...

	5.5�� Using the Model
	5.5.1�� Dealing with Unobservable Workload Characteristics
	Figure 5.15.� An extended influence diagram for Berkeley DB. The figure shows a version of the in...

	5.5.2�� Tuning the Knobs for a Given Workload

	5.6�� Updating the Model Over Time
	5.7�� Related Work
	5.8�� Conclusions

	Chapter 6
	Designing a Workload Generator for Use in Software Tuning
	6.1�� Architecture
	6.2�� Criteria
	6.3�� Determining a Steady State
	6.3.1�� Focusing on the Requisite Conditions
	Figure 6.1.� A faulty method of capturing steady-state performance. This graph traces the evoluti...

	6.3.2�� Testing for Stability Over Time
	Figure 6.2.� Maintaining a sliding measurement window. To test for a steady state, the workload g...

	6.4�� db_perf: A Workload Generator for Berkeley DB
	6.4.1�� Overview
	6.4.2�� Specifying the Database and Workload
	Figure 6.3.� Pseudocode for converting a number to a key string. The algorithm takes a keygroup, ...

	6.4.3�� Using Initial Scans to Reduce Running Times
	Figure 6.4.� A false steady state. The above graphs trace three statistics—throughput, faults/txn...

	6.5�� Related Work
	6.6�� Conclusions

	Chapter 7
	Evaluation
	7.1�� Gathering the Data
	7.1.1�� Test Platform
	7.1.2�� Test Database
	7.1.3�� Knob Settings
	7.1.4�� Workload Characteristics
	Table 7.1.� Distributions of the workload characteristics used in the experiments. N(m,s) represe...
	Table 7.2.� Using keygroups to control locality in the generated workloads. db_perf’s keygroup ab...
	Figure 7.1.� Interleaving small and large items on a page. The keygroups were specified so that e...

	7.1.5�� Running the Workloads
	Table 7.3.� Summary of the variables included in the data files. This table explains how the valu...
	Table 7.4.� Optimal knob settings for the test-set workloads. For each combination of knob settin...

	7.2�� Creating the Models
	7.2.1�� Learning the Weights of the Value Nodes
	Figure 7.2.� Outliers in the training data. This graph shows the cumulative distribution of the w...

	7.2.2�� Discretizing the Continuous Variables
	7.2.3�� Constructing and Manipulating the Models Using the Netica Toolkit

	7.3�� Determining the Final Model
	Figure 7.3.� Other candidate model structures. The top model adds an intermediate chance node (wl...
	Figure 7.4.� The final model. The shaded nodes are the root chance nodes, which represent charact...
	Table 7.5.� Discretizations of variables in the final model. This table presents the discretizati...

	7.4�� Evaluating the Final Model
	7.4.1�� Performance of the Recommended Knob Settings
	7.4.2�� Ability of the Model to Generalize
	Figure 7.5.� Performance of the final model on the test workloads. The above graph shows the cumu...
	Figure 7.6.� Ability of the model to generalize. The above graph shows the cumulative distributio...

	7.4.3�� Comparison with a Regression-Only Approach
	Table 7.6.� Terms considered as possible independent variables in the regression equations. The l...
	Figure 7.7.� Comparing with a regression-only approach. The above graph shows cumulative distribu...

	7.5�� Additional Experiments
	7.5.1�� Evaluating the Impact of Training-Set Size
	Figure 7.8.� Varying the number of training examples. The top graph shows how the accuracy of the...

	7.5.2�� Evaluating the Procedure for Estimating Unseen Parameters
	Table 7.7.� Procedures for estimating unseen parameters. The methods listed below were compared o...
	Table 7.8.� Accuracies of different procedures for estimating unseen parameters. Shown are the ac...
	Figure 7.9.� Comparing four methods of estimating unseen parameters. The top graph shows the accu...

	7.5.3�� Evaluating Aspects of the Discretization Algorithm
	Figure 7.10.� Comparing different initial discretizations for the value nodes. The above graphs c...
	Figure 7.11.� Comparing two methods of improving a node’s discretization. The above graphs compar...

	7.6�� Conclusions

	Chapter 8
	Conclusions
	8.1�� Assessment of the Proposed Methodology
	8.2�� Future Work
	8.3�� Summary

	References

