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Abstract
Modern streaming systems rely on persistent KV stores

to perform stateful processing on data streams. Although
the choice of the state store is crucial for the system’s per-
formance, there has been little research in designing state
stores tailored for streaming workloads. Streaming systems
use general-purpose KV stores, such as RocksDB, to manage
state. Being oblivious to workload characteristics of stream-
ing applications, such stores incur unnecessary overheads.
Our methodology to tackle this challenge consists of the fol-
lowing steps. First, we have been conducting a thorough study
of streaming state workloads to further the understanding of
their characteristics and differences from traditional work-
loads. Second, we are developing a new benchmark that can
faithfully mimic streaming state workloads and enables re-
searchers to easily evaluate alternative store designs. Our long-
term goal is to design and develop workload-aware streaming
state management to improve the latency and throughput of
streaming analytics.1

1 Introduction

A streaming system continuously ingests and processes data
streams and historical information to perform continuous ana-
lytics [9]. The long-running nature of streaming computations
often requires maintaining larger-than-memory state. There-
fore, streaming systems heavily rely on persistent internal
(i.e., embedded) or external stores (e.g., KV stores) to per-
form stateful processing. [9, 15].

State managers play a vital role in determining the perfor-
mance of streaming systems. Our preliminary results indicate
that streaming operators often access the state store multiple
times per incoming event. Thus, state stores need to handle
a higher request load than the streaming operators. Never-
theless, state management has received little attention when
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building modern stream processing systems. The current prac-
tice is to use general-purpose stores, such as RocksDB, for
maintaining streaming state [11]. However, relying on stores
which are oblivious to the streaming workloads characteristics
can significantly hamper performance [6, 11].

To evaluate alternative KV stores for a stream processor,
system designers currently have no choice but spending time
and effort to integrate the store with the reference streaming
engine in order to conduct evaluation. Existing streaming
benchmarks [1, 2, 5, 17] do not take state management into
account. On the other hand, request-driven KV benchmarks,
such as YCSB [8], cannot faithfully represent the charac-
teristics of real-world workloads, including streaming work-
loads [10, 11, 19].

Our goal is to improve the performance of stateful stream-
ing systems by investigating and designing novel methods
to store, manage, and query streaming state efficiently. To
achieve this goal, we have been working on developing a new
benchmarking tool that can generate representative streaming
workloads and can be used to evaluate state stores without the
need for integration into a streaming engine.

2 Overview of the proposed work

Similar to works in [4, 18, 19], we conduct a comprehensive
analysis to characterize streaming workloads. Our prelimi-
nary results demonstrate several interesting characters that
are overlooked in existing studies.

We will develop a benchmarking tool for streaming state
management that allows configuring a set of streaming-
specific parameters that capture streaming application be-
havior. To the best of our knowledge, this will be the first
benchmark for streaming state managers. We hope our tool
will provide a foundation for the evaluation of existing and
future state store designs and their suitability to streaming
workloads.

We will finally leverage our findings in the previous steps
to design and build novel methods for internal and external
state management in streaming systems. We hope our de-
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Figure 1: The two operators have the same read&write ra-
tio. However, unlike the continuous aggregation operator, the
tumbling widow operator has a high temporal locality.

sign awareness of state workload characteristics will notably
increase the performance of streaming systems running on
clouds and local clusters.

3 Preliminary Results

We have instrumented the Apache Flink streaming system
to monitor the workload it imposes on the state manager
(RocksDB). We used Google’s Borg cluster workload traces
[16] to design different Flink applications that showcase the
state access workload of different operators. We study several
standard streaming operators, such as windows, joins, and
continuous aggregations. Our analysis so far demonstrates
that streaming applications impose state access workloads
with unique characteristics.

We analyze the state workload of each operator based
on the access pattern, temporal locality, working set size,
hit rates for different cache sizes, key popularity distribu-
tion, and access amplification. Temporal locality shows how
closely a current key will be accessed in the future. Hit rate
demonstrates the ratio of hits if the keys are being cached
in caches with different sizes. The working set size shows
a cache size the achieves the highest possible hit rate. The
Key popularity shows the popularity of keys compared to
one another. We define access amplification as the number of
interactions an operator has with the state manager per each
incoming event.

Our fine-grained analysis uncovers several unique charac-
teristics. Most of the operators have high temporal locality. As
shown in Figure 1, tumbling windows operator merely access
one key until the key is deleted and then they processed with
a new key. Current benchmarks cannot capture the properties
of streaming state workloads. For example, when configur-
ing YCSB we can control the ratio of reads to writes but we
cannot control the temporal locality of keys. Operators in Fig-
ure 1 would be represented by the same workload type (50%
read & 50% write), even though they are drastically different
in terms of temporal locality and access sequence.

Moreover, we have identified unique characters that can
guide better store designs. As an example, RocksDB performs
significant computations and IO to optimize the read path [12].
We believe this overhead can be eliminated if the store is
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Figure 2: Tumbling window state machine

aware of the operator’s temporal locality, especially in cases
when keys will never be looked up.

4 Work to be Done

Our current plan for building the benchmarking tool is to
represent each operator as a temporal finite-state machine,
where states represent operations (e.g., get and put). Figure 2
shows the corresponding state machine of a tumbling window,
where L is the window’s length. The challenge we face here
is to design state machines for more complicated operators
such as session windows.

We will use the real-world traces collected in the first step
and our re-player to compare how closely our benchmark
can mimic the real-world traces. We will then evaluate exist-
ing KV stores using our benchmark to showcase current KV
stores’ capabilities supporting different streaming systems
operators. We will finally use the lessons learnt as guidance
to design and build novel stores, aware of the characteristics
of streaming workloads. A major challenge to achieve this
goal is that streaming operators have different requirements.

5 Related Work

Workload characterization. [18] and [4] perform compre-
hensive analyses to characterize in-memory KV stores used
as cache nodes in Twitter and Facebook, respectively. [19]
characterizes workloads of three typical RocksDB production
use-cases at Facebook. In similar spirit, we analyze RocksDB
workloads when used for stateful streaming.
Benchmarking. YCSB [8] is a widely used benchmark which
can be tuned to generate a variety of real-world workloads.
However, it has been shown that YCSB [19] cannot represent
important aspects, such key-space locality [10]. Our prelimi-
nary results indicate that YCSB cannot mimic the main char-
acters of streaming state workloads such as temporal locality.
Managing states in streaming systems. RocksDB [14] is
widely used by open-source systems such as Apache Spark
Structured Streaming [3], Apache Flink [7], and Apache
Samza [13]. Although RocksDB offers solid performance
and many capabilities such as incremental checkpointing, re-
cent work [6, 11] has shown that using stores oblivious to
operators characteristics adversely impacts the performance
of streaming systems. Our vision is to address this challenge
by designing state managers aware of the characteristics of
streaming systems.
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