
A Survey on In-Memory KV Store Designs for Today’s Data
Centers

Showan Esmail Asyabi

Abstract

In-memory KV stores are non-persistent storage back-
bones of an ever-growing number of services in today’s
data centers. In-memory KV stores substantially reduce
the latency and increase throughput compared to alterna-
tive slow database systems while reducing the traffic to
those backend systems. The importance of in-memory
KV stores has sparked a lot of research works over the re-
cent years. The value of in-memory KV stores is mainly
judged by their throughput, tail latency, scalability, mem-
ory efficiency, and power consumption.

This paper highlights the characteristics of workloads
of in-memory KV stores in large-scale data centers such
as Facebook and Twitter data centers. We discuss the
shortcomings of popular production systems such as
Memcached. We then discuss the state-of-the-art attempts
in improving throughput, latency performance, scalabil-
ity, memory efficiency, and power consumption of in-
memory KV stores. Finally, we discuss open problems.

1 Introduction

In-memory KV stores such as Memcached [2] and Re-
dis [3] are non-persistent storage backbones for an ever-
growing number of large-scale applications in today’s
data centers such as Twitter, Facebook and Dropbox [8]
[15][14] [6]. They reduce latency and increase throughput
by caching objects retrieved from slow databases or stor-
age systems [8] [11]. They mitigate heavy computations
by caching the results of past computations. For example,
one Facebook Memcached pool achieves a 98.2% hit rate
with an average latency of 100 µs, while access to MySQL
takes 10 ms, supporting data retrieval more cheaply and
quickly than alternative slow backend databases [8] [15].
Therefore, a single caching server can replace tens of
backend database servers by absorbing massive database
request loads [8].

In-memory KV stores have three prominent use cases in
data centers. 1) Storage caching 2) Computation caching
3) Transient data caching [15]. Storage caches are the
most common use case of in-memory KV stores. These
caches, which are typically read-heavy, substantially re-

duce latency and increase throughput [14] [6]. Further-
more, they alleviate the load of storage and databases sys-
tems. In-memory KV stores used for computation store
past computation results (e.g., stream processing systems
or ML predictions) for later uses [15]. These caches
are typically write-heavy and ephemeral. In-memory KV
stores used for transient data hold objects that merely live
in the cache. Rate limiters are a good example of this type
of cache [15].

Given certain hardware constraints, the value of in-
memory KV stores is measured by their memory con-
sumption, throughput, scalability, and power consump-
tion [15]. Memory consumption determines the amount
of memory a KV store needs to achieve a certain miss
ratio. Throughput is measured in terms of the number of
served requests per second. Scalability indicates how well
a cache can use multiple cores on a host [15]. Power con-
sumption determines the power needed by the KV store to
achieve a specific throughput [4].

In this paper, we first highlights the characteristics of
workloads of in-memory KV stores: The object popular-
ity in most workloads follows Zipf distribution, indicating
that KV store caches have a significant role in the qual-
ity of delivered services in these data centers [11] [14]
[6]. The majority of object sizes in-memory KV stores are
small. This might lead to a situation where objects’ foot-
prints are less than metadata footprints [12] [10]. Both
Facebook [6] and Twitter [14] report that the workload of
their in-memory KV stores follows a daily pattern, pre-
senting an opportunity for elastic KV stores to rightsize
the resources allocated to the KV store. Most workloads
are read-heavy, indicating that concurrency can improve
scalability and throughput substantially [11] [15]. TTLs
are set for many objects hosted in-memory KV stores.
Timely removals of expired objects enhance memory effi-
ciency [15].

We discuss the shortcomings of current in-memory KV
store designs adopted in today’s data canters. Widely
adopted in-memory KV stores such as Memcached and
Redis suffer from internal and external memory fragmen-
tation, respectively [8]. They impose a significant mem-
ory overhead (more than 50 B) per object to implement
their policies [14]. Given that the vast majority of objects
are small, the DRAM consumption of KV stores meta-

1

data exceeds the memory consumption of objects them-
selves. Current KV stores are not elastic, leading to low
utilization and performance degradation in the presence of
load variability [8] [4]. They hamper the scalability and
throughput because of the extensive use of locking. They
are not power-aware. Given that DRAM is energy-hungry,
in-memory KV stores consume a large amount of power
[4]. Finally, the tail latency of in-memory KV stores is of
great concern as many services with high fan-out rely on
them [5] [10].

We then present the state-of-the-art studies that attempt
to address in-memory KV stores’ shortcomings. Several
works such Mica [11], Segcache [15], and Memshare [8]
mitigate fragmentation by using log-structured memory
management. Segcache [15] reduces object metadata by
macro managing objects where a bulk of objects share
metadata. Kangaroo [12] reduces the index’s memory
footprint by adopting a hierarchical design to achieve the
best of both log-structured and set-associative designs.
Memshare elastically allocates memory to enable consol-
idating multiple KV stores on the same machine to in-
crease memory efficiency. Mica increases throughput and
scalability by partitioning the key space, where each CPU
has exclusive access to its partitions. Peafowl [4] reduces
the power consumption of in-memory KV stores by trans-
ferring the CPU scheduler to the application to rightsize
the number of CPU cores allocated to KV stores based
on the load intensity, mitigating power consumption over
low periods of utilization. Didona et al. [10] decreases the
tail latency of in-memory KV stores by eliminating the
head-of-line blocking, where large requests prevent small
requests from being handled quickly.

Although the discussed research works significantly
improve performance, scalability, memory, and power ef-
ficiency, they are far from ideal. Today’s date center ap-
plication requirements (e.g., the need for non-flat data
structures), workload characteristics (e.g., the existence
of write-heavy workloads), and novel hardware (e.g., per-
sistent memory) call for the design of novel KV stores
more tailored for today’s data center requirements. We
conclude our survey with future research directions (open
problems).

2 Background
As shown in Figure 1, an in-memory KV store such as
Memcached consists of four main components [2]:

1. A dispatcher thread that gets requests from user APIs
and distributes the requests among worker threads in
a round-robin fashion.

2. The worker threads serve the user requests (e.g., get,
put, delete) using an event-driven architecture

3. The hash-table is simply an array of buckets where
each bucket holds a pointer to a chain of items hashed
to that bucket.

4. The memory component that manages the memory.

Memcached uses slab classes to allocate memory. Each
slab is simply a big chunk of memory the is divided into
smaller chunks of fixed size. Each class is responsible for
a specific size. For example, slabs in the first-class host
chunks of size 96 bytes and slabs in the second class are
responsible for chunks of size 120 bytes. Chunks in each
slab are organized as a linked list (i.e., LRU list), where
the head of the linked list is an item that is most recently
used, and the item at the tail of the queue is an item that
is least recently used. Every read and write rearranges the
LRU, moving the recently used item to the head of the list.
On eviction, items located at the tail of the LRU list have
the highest priority to be evicted from the memory.

2.1 Memcached operations

Figure 1 shows the path of read and write operations in
Memcached. On a read operation, the user request is
assigned to a worker (1)(2). The worker finds the hash
bucket of the request’s key (3). The worker then tra-
verses the bucket’s chain (4) to find the key. If found,
the worker retrieves the item pointed by the correspond-
ing hash bucket element and returns it to the user. The
read operation will finally update the LRU queue.

On write operations, the user request is first assigned to
a worker by the dispatcher thread (a) (b). The worker finds
the hash bucket of the new item (c). The key is linked
to the hash bucket’s chain (e) if the key does not exist.
The worker then finds the class of item based on its size
(d). If the class has a slab with an empty chunk, the item
will be placed there, and the hash table is updated with
the address of the item. Otherwise, a new slab must be
allocated. If there exists no new slab, eviction is triggered.
Finally, the LRU queue of the slab must be updated to
move the newly added item to the head of the LRU queue.

Besides set and get (the most common operations),
Memcached also supports Replace, Append, Cas, Delete,
Incr, and Decr. Get takes a key and retrieves its corre-
sponding item. Set stores the new item, possibly overwrit-
ing any existing data (the new item is added to the head of
the LRU list). Appends adds new data at the last byte of
an existing item. Cas (Check And Set) stores data only if
no one else has updated the data since the user read it last.
Deletes remove the item from the cache if it exists. Incr
and Decr increase and decrease the item’s value, respec-
tively (item must be an integer) [2].

2

2.2 Redis
Redis [3] is a single-threaded KV store. When used as
a cache, similar to Memcached, it leverages a hast table
for O(1) look ups. Redis uses external memory alloca-
tors such as Malloc for memory allocation. On eviction,
it randomly chooses a limited number of keys (e.g., five
keys). Redis compares these keys to a pool of best candi-
dates (typically 16 candidates) for eviction based on their
idle time. These candidates have the highest idle times.
Finally, a candidate item with the highest idle item is cho-
sen to be evicted.

3 Workload Characterization
In this section, we describe the main characteristics of
workloads of in-memory KV stores and their implication
on the design of KV stores.

3.1 Object popularity
Object popularity is an essential workload characteris-
tic of in-memory KV store caches. For example, if the
workload follows Zipf distribution, the cacheability of
the workload is much higher than the workload with uni-
form distribution. Both Twitter [14] and Facebook [6] re-
port that the majority of workloads in Twitter and Face-
book follow Zipf distribution (i.e., informally, 80% of re-
quests is for 20% of objects), meaning that Zipf distribu-
tion frequency-rank cure in log-log scale is linear. This
indicates caches have a significant role in the quality of
delivered services in these data centers.

3.2 Churn
Churn refers to the change in the working set due to the
introduction of new keys and the popularity changes of
existing keys over time. Facebook reports that there exists
a high degree of churn across all workloads in Facebook
[7]. Over two-thirds of popular objects in a given hour fall
out of the top 10% after just one hour. High churn reduces
the effectiveness of caching mechanisms that estimate ob-
ject popularity based on past access patterns.

3.3 Object Size
Several studies have reported that the majority of object
sizes in in-memory KV stores are small [14] [6]. Twitter
[14] says that 85% of key sizes are smaller than 50 bytes.
They also report that value sizes are variable and range
from 10 bytes to 10KB.

Facebook also reports that in their SocialGraph caches,
a significant fraction of objects is between 10B and 20B,
while big objects exist (e.g., 64KB and 128KB objects)

[7]. Object sizes play a crucial role in the performance of
in-memory KV stores. For instance, as the size of objects
becomes smaller, the size of the index and caching meta-
data becomes bigger, possibly occupying more space than
objects themselves [12].

3.4 Burstiness and Diurnal pattern
Both Facebook and Twitter report that the workload of
their in-memory KV stores follows a daily pattern [14]
[6]. They also note that the requests arrival rate varies
much more than Poisson suggests (default assumption in
system evaluations). Additionally, Facebook’s traffic is
quite bursty. Caches in Facebook, for instance, have sharp
bursts. Bursty arrival rates make it challenging to pro-
vide caching systems with sufficient resources to maintain
expected performance during load spikes. On the other
hand, the daily workload pattern allows elastic KV stores
(if realized) to rightsize the resource and power consump-
tion based on the offered load [4].

3.5 Workload Composition
Twitter reports that get and set are the most dominant op-
erations in-memory KV stores [14]. They note that 90%
of the operations are read operations, indicating that most
caches serve read-heavy workloads. However, a notable
portion of operations is write operations. Twitter reports
that more than 35% of Twitter cache nodes are write-
heavy1. The workload composition is an essential factor
in designing KV stores. For example, enhancing scalabil-
ity by increasing thread concurrency for caches used for
the write-heavy workloads is challenging due to the over-
head of thread synchronization [15] [11].

3.6 TTL
Memcached and Redis widely use Time-to-live (TTL)
to meet data freshness or comply with regulations such
as GDPR [15]. TTL distinguishes in-memory key-value
stores from persistent key-value stores. TTL is set when
an object is created. It indicates the expiration time of the
newly created objects. Request attempt to access an ex-
pired object is a cache miss. Hence, keeping expired ob-
jects in the cache is not valuable. In Twitter, TTLs range
from a few minutes to a month. They report that 25%
of the objects use TTL of less than twenty minutes, and
25 % of the objects have TTL of higher than two days.
Timely removal of expired objects is of great importance
as it leads to higher memory efficiency and hit rate [14]
[15].

1Twitter defines a cache node write-heavy if the percentage sum of
the set, add, cas, replace , append , pre-append, incr and decr exceeds
35%

3

Figure 1: The Architecture of Memcached

Summary: The object popularity in most work-
loads follows Zipf distribution. The majority of
object sizes are small. The workload intensity fol-
lows a daily pattern. Most workloads are read-
heavy. TTLs are set for most objects hosted in
in-memory KV stores.

4 Memory Management
Memory management is one of the fundamental design
aspects of in-memory KV stores. DRAM is expensive and
energy-hungry. Therefore, the efficient use of DRAM is
a matter of great concern [8] [12] [15]. Many studies in-
crease memory efficiency by improving the 1) admission
and 2) eviction algorithms, 3) using novel memory allo-
cators [11] 4) reducing the object metadata [12], and 5)
removing expired objects in a timely manner [15]. In this
paper, we focus on the last three techniques.

4.1 Memory Allocation Policies
In-memory KV stores mainly use three policies for mem-
ory allocation: 1) External memory allocation, 2 Slab-
based memory allocation, or 3) log-structured memory al-
location [8]. Table 1 summarizes the pros and cons of
each approach.

4.1.1 External Memory Allocators

This approach allocates the memory from the heap on
demand (e.g., using malloc). This approach is straight-
forward. However, on-demand heap memory allocation
leads to external fragmentation [11]. This is because sev-
eral research works have reported that the workload of in-
memory KV stores often consists of small and variable-
sized objects [14] [12]. Therefore, systems such as Redis
with external memory allocators are vulnerable to external
memory fragmentation and OOM (Out of memory) [14].

4.1.2 Slab-Based Memory Allocator

This approach allocates memory in fixed-sized chunks
known as slabs. As mentioned before, Memcached lever-
ages this approach. It uses the default size of 1 MB for
its slabs. Each slab is then evenly divided into smaller
chunks of memory called items. The class of each slab
determines the size of its items. Lower slab classes hold
small items (the default minimum is 88 bytes), and higher
ones keep more oversized items. An object is mapped to
a slab class that best fits it.

Slab-based memory allocation does not have external
fragmentation; however, it can lead to internal memory
fragmentation at the end of each chunk and the end of
each slab. Defragmentation can pack objects to make
free memory spaces, but it involves expensive memory
copies. In addition, slab-based allocators introduce the
slab calcification problem, where a slab class cannot get
enough memory and exhibit higher miss ratios. This is
because slabs are assigned to classes in a first-come-first-
serve manner. Therefore, the newly popular slab classes
cannot find more memory when the popularity of slabs
changes because all slabs have already been assigned. To
solve this problem, Memcached migrates slabs between
classes; however, it is not always effective. Migrating
slabs may increase the miss ratio because all objects on
the outgoing slab are evicted [15].

4.1.3 Log-Structured Memory Allocator

Log-structured memory allocators place new data items
at the end of a linear data structure called a log. To up-
date an item, the new item is inserted to the tail of the
log, which overrides the previous value. Hence, inserts
and updates access memory sequentially, incurring fewer
cache misses, making logs write-friendly particularly for
bulk data writes. More importantly, this approach leads to
lower memory fragmentation [11][15]. Nevertheless, in
log-structured designs, space occupied by overwritten and
deleted objects must be periodically reclaimed. A garbage

4

Table 1: Comparison of memory allocation policies

Memory Allo-
cator

External Frag-
mentation

Internal Frag-
mentation

Malloc-Based Yes No
Slab-Based No Yes
Log-structured No No

collector moves live objects to a new log and removes the
old log. Garbage collection is costly and often reduces
performance because of the large amount of data it must
copy [11].

Mica [11] is an in-memory KV store that employs
log-structured memory allocation to mitigate the mem-
ory fragmentation caused by malloc- and slab-based sys-
tems. Mica employs a circular log to reduce the cost of
garbage collectors. Mica’s design reduces memory frag-
mentation; however, Mica is limited to using basic evic-
tion algorithms (e.g., FIFO), which degrades the hit ratio
[15].

Summary: Malloc- and slab-based memory allo-
cators leveraged by widely used in-memory KV
stores such as Memcached and Redis lead to ex-
ternal and internal memory fragmentation. Log-
structures designs eliminate memory fragmenta-
tion at the cost of collecting garbage (dead ob-
jects) periodically.

4.2 Object Metadata
Both Twitter [14] and Facebook [6] report that the ma-
jority of objects stored in-memory KV stores are small.
For instance, Twitter’s top four production clusters’ mean
object sizes (key+value) are 230,55, 294, and 72 bytes, re-
spectively [14]. Current popular production caching sys-
tems store a relatively large amount of metadata per object
to realize their caching policies [12]. For example, both
Memcached and Redis impose over 50 bytes of memory
overhead per object [15]. These metadata are critical for
caches’ mechanisms and cannot be dropped without re-
moving some functionalities or features. Moreover, re-
search aimed at reducing the miss ratio using sophisti-
cated policies typically expands object metadata even fur-
ther [15].

Segcache [15] attempts to solve this problem by lever-
aging several techniques. It uses a log-structured design
where the log is sliced into smaller chunks of memory,
called segments. Each segment (a bulk of objects) shares
metadata, such as creation time and TTL. In addition, it
uses bulk changing (described in section 5) where per-
object pointers needed for hash table collision chains are

eliminated. Finally, it macro mange the cache (segment
granularity) to eliminate the need for per-object concur-
rency metadata. Combining these techniques, Segcache
significantly reduces object metadata.

4.3 Expired Objects
Expired objects are not valuable, quick removal of expired
objects improves memory efficiency and hit ratio [15]. In-
memory KV stores mainly take the following approaches
for expired object removal (summarized in Table 2).

Lazy expiration: This approach removes objects on
access. If an expired object is accessed, it is deleted from
DRAM. Lazy expiration is simple. However, it reduces
memory efficiency because it does not remove expired ob-
jects promptly.

LRU queue This approach checks a fixed number of
objects at the tail of the LRU queue to remove the expired
ones. This approach has several flaws: 1) Using LRU
queue hampers thread scalability due to the extensive use
of locking for concurrent accesses to LRU queue [11]. 2)
This approach is opportunistic and therefore doesn’t guar-
antee the timely removal of expired objects [15]. 3) Many
production caches track billions of objects. Therefore, the
time for an object to get to the tail of the LRU queue can
be very long, delaying the timely removal of expired ob-
jects [15].

Full cache scan is another approach adopted by Mem-
cached. This solution periodically scans all the cached
objects to remove expired ones. Frequent full cache
scans can guarantee the timely removal of expired objects.
However, this approach is costly and significantly wastes
resources [15].

Random sampling is adopted by Redis. This approach
periodically samples a subset of objects and remove ex-
pired ones. This approach is expected to be less costly
compared to a full scan. Surprisingly, the cost can be
higher than a full cache scan due to excessive random
memory access. Moreover, this approach is still oppor-
tunistic as it can not ensure the timely removal of all ex-
pired objects.

Segcache [15] is a state-of-the-art solution whose pri-
mary goal is the timely removal of expired objects with
minimum overhead. To this end, Segcache first groups
objects into segments (1 MB default size). A segment in
Segcache is similar to a small log in log-structured sys-
tems. All objects located in a segment have approximately
the same TTL.

On the other hand, Segcache breaks the spectrum of
possible TTLs into ranges. Seagate then uses an array to
index segments based on approximate TTL. Each element
in this array is called a TTL bucket. Each non-empty TTL
bucket points to the head and tail of a time-sorted segment
chain, with the head segment being the oldest.

5

Table 2: Comparison of approaches designed for removing expired objects

Expired objects re-
moval

Lazy Expiration LRU queue Full Scan Random sampling

Memory efficiency Low Medium High Medium
Scalability High Low Low Medium
Overhead Low Medium High Medium

Segcache uses a background thread to scan the TTL
buckets in order. If the first segment of a TTL bucket is
expired, the background thread removes all the objects in
the segment (macro managing). The background thread
continues down the chain until it runs into one segment
that is not yet expired. Segcache’s proactive expiration
technique promptly recycles the memory occupied by ex-
pired objects, improving memory efficiency.

Summary Since most object sizes are small, re-
ducing per-object metadata can significantly mit-
igate DRAM consumption. Additionally, given
that a vast majority of objects are associated with
TTLs, timely removal of expired objects can fur-
ther enhance memory efficiency.

5 Elastic Memory Allocation
Allocating an entire machine to a KV store to serve an
application hampers utilization. Multitenant KV store
servers are an excellent solution to enhance data center
utilization, where multiple KV stores that serve different
applications are all consolidated in one server [8].

Caching-as-a-service providers like Memcachier allow
customers purchase a fixed amount of memory. Each ap-
plication is statically allocated memory, and a separate
eviction queue for each application is maintained. Static
memory partitioning is straightforward; However, it de-
grades the memory efficiency and performance. Tenants
that do not fully utilize their share wastes memory and
tenants that temporarily need more than fair share (e.g.,
due to bursts) experience performance degradation [8].

An elastic KV store that provides performance isola-
tion is an ideal solution. This elastic KV store should
allocate unused memory resources when the application
has a burst of requests and take back memory when it no
longer needs it.

Memshare [8] is an elastic KV store designed to ad-
dress the inefficiency of static partitioning approaches.
Memshare consists of two main components. Memshare’s
judge determines how much memory should be as-
signed to each application. The second component is
Memshare’s cleaner, which dynamically allocates mem-
ory by prioritizing eviction from applications that use

memory more than they need.
Memshare cleaner is a background thread that chooses

applications with high memory consumption and evicts
their least useful items using LRU queues. Memshare
pools free memories to dynamically allocate them to ap-
plications with higher needs.

Memshare estimates the hit rate curve for each applica-
tion to find the fair share of memory for each application
dynamically. This curve indicates the hit rate the applica-
tion would achieve for a given amount of memory. Know-
ing applications’ hit rate curves, Memshare allocates more
memory to applications whose hit rate would benefit the
most.

To estimate the hit rate curve, Memshare uses shadow
queues. A shadow queue of an application holds a sub-
set of object keys of the applications. Object evicted for
an application cache is inserted to shadow queue. The
shadow queue hit rate approximates an application’s hit
rate curve. The application with the highest hit rate in its
shadow queue would benefit from a higher memory share.

Summary Elastic memory allocation allows for
multi tenancy and, therefore, higher utilization.
However, designing an arbiter that dynamically
quantifies the fair memory share and quickly allo-
cates the memory while ensuring isolation is chal-
lenging.

6 Indexing
Common choices for indexing in in-memory KV stores
are hash tables and tree-like structures. These data struc-
tures deliver better performance to reads compared to
writes. Hash tables examine several slots to find space for
the new item, and trees may require multiple operations
to maintain structural invariants [11].

Hash tables that use chaining are more writer-friendly
because they insert new items at the tail of the chain with-
out accessing many memory locations. However, they de-
grade the lookup performance because it traverses a long
chain of items, leading to multiple random memory ac-
cesses.

Besides the read and write throughput, the index size is
crucial in designing an in-memory KV store. When the

6

object sizes are tiny, the size of the index may take most
of DRAM [12].

Random-access memory of traditional hash tables ham-
pers scalability and throughput [11]. Collision resolution
requires walking down the hash chain, leading to multiple
random DRAM accesses and string comparisons. Further,
chaining imposes a memory overhead of an 8-byte hash
pointer per object, which is notable compared to small ob-
ject sizes [12].

Mica [11] and Segcache [15] solve this problem using
bulk-chaining hash tables. They allocate eight slots (64
B - a cache line) to each bucket. The first slot stores the
bucket information, the following six slots store object in-
formation. The last slot is either abject information or a
pointer to the next hash bucket. Bulk chaining decreases
object metadata by removing hash pointers and improves
lookup throughput by reducing random DRAM accesses.

Summary Traditional (chain-based) hash ta-
bles employed by Memcached and Redis reduce
throughput while increasing memory overhead.
On the other hand, bulk-chaining hash tables de-
crease metadata and improve throughput.

7 Scalability and Throughput

In-memory KV stores can leverage modern multi-core
systems to increase scalability and throughput [15]. Faster
servers reduce the number of needed machines. Conse-
quently, they mitigate the cost, power consumption, and
data center footprint. However, current KV stores do not
scale well. Memcached, for instance, cannot scale as ex-
pected because of extensive locking used for LRU queues,
free object queues, and the hash table.

Current in-memory KV stores broadly adopt two main
techniques to improve scalability: 1) Parallel Data Access
and 2) Exclusive access.

Parallel Data Access. Multiple CPU cores can access
the shared data. The integrity of the data structure is main-
tained using mutexes, optimistic locking, or lock-free data
structures. This approach increases throughput for both
reads and writes operations. However, concurrent writes
scale poorly due to locking overhead and frequent cache
line transfer between cores. Only one core can hold the
cache line of the same memory location for write opera-
tions [11].

Exclusive Data Access. This approach shards the data.
Each core exclusively accesses its own partition in par-
allel without inter-core communication. Partitioning can
lead to good throughput and scalability; however, it de-
grades performance when the load between partitions is
imbalanced (e.g., when the key popularity is skewed). Ad-

ditionally, since each core can access only data within its
partition, request direction might be needed to forward re-
quests to the appropriate CPU core, which is costly [11].

Current KV stores mitigate the lock overhead and use
opportunistic concurrency controls and epoch-based sys-
tems to increase the scalability in the parallel data access
approach. They use data partitioning and DRAM parti-
tioning to improve scalability in the exclusive access ap-
proach. All of these approaches improve scalability to
some extent; however, they all come with costs: Reducing
the locking overhead might be realized by ignoring func-
tionalities. For example, Memcached can have a simpler
eviction policy by replacing the LRU queue with FIFO
queues, improving scalability at the cost of lower memory
efficiency. Data partitioning may lead to load imbalance
and less efficient resource utilization. Static DRAM parti-
tioning uses memory inefficiently. Opportunistic concur-
rency control with lock-free data structures does not work
well with write-heavy workloads. Epoch-based systems
require a log-structured design with a sub-optimal evic-
tion algorithm [15].

Segcache [15] improves scalability by using a combi-
nation of techniques such as minimal critical sections and
optimistic concurrency control. To this end, it replaces
the object-level bookkeeping of current KV stores with
segment-level bookkeeping. In other words, only seg-
ment chain modification needs locking, notably reducing
the critical sections.

Mica[11] increases scalability by partitioning the data,
where each CPU has exclusive access to its partitions.
Mica exploits CPU caches and packet burst I/O to speed
up CPU’s responsible for more loaded partitions, reduc-
ing the impact of skewed workloads. More specifically,
Mica claims that the impact of load imbalance is not no-
table. Because hot partitions creates locality in the data
path, experiencing fewer CPU cache misses when access-
ing items.

Mica is able to fall back to concurrent reads if the load
is highly uneven. However, it avoids concurrent writes,
which are always slower than exclusive writes.

Mica improves throughput by eliminating synchroniza-
tion and inter-core communication, making Mica scale
linearly with CPU cores; however, Mica relies on Flow
Director to partition KV store requests among cores.
Therefore, Mica’s clients have to encode object-level
affinity (e.g., objects keys) information in a way Flow Di-
rector can understand.

7

Summary Scalability can be notably enhanced
by leveraging parallel data access or exclusive
data techniques. However, parallel data access
scales poorly for write-intensive workloads due to
locking overhead, and exclusive data access tech-
niques do not scale well for skewed workloads.

8 Power-proportional KV stores
Facebook’s ETC workload follows a diurnal pattern with
2× load variations over a day [6]. Twitter also reports
the same behavior [14]. Long-term variations present an
opportunity to leverage power-proportional KV stores to
rightsize resources (e.g., CPU) allocated to KV stores to
mitigate power consumption.

Energy-proportional KV stores must have three es-
sential properties: Energy proportionality, Microsecond-
scale tail latency, and ease of deployment and generality
[4].

Energy Proportionality. An energy-proportional KV
store exploits load variability to enforce energy propor-
tionality by scaling the processing capacity to match the
offered work, considerably reducing power consumption
during low utilization periods. Given the widespread
adoption of in-memory KV stores, low power consump-
tion of cache nodes will reduce costs, data-center foot-
prints, and environmental impacts.

Microsecond-scale tail latency: Many applications
with a high fan-out pattern rely on in-memory KV stores.
Therefore, the quality of delivered services is determined
by tail latency [5] [9]. Hence, an energy-proportional KV
store must keep the tail latency of KV stores at a microsec-
ond scale.

Ease of deployment and Generality Solutions that
rely on significant modifications to the OS or device
drivers are less practical as they transform general-
purpose machines to single-purpose ones. An elastic so-
lution must be readily deployable in data centers [4].

8.1 Existing Approaches
Broadly speaking, existing approaches for power-
proportional KV stores can be classified into the following
categories (summarized in Table 3):

Idle states. CPUs feature several power-saving modes
called c-states (idle-states) to save power during idle pe-
riods (e.g., C0 (shallowest), C1, C2, C6 (deepest)). C0 is
the operational mode when the CPU executes instructions
and saves no power. C6 is the deepest cState which saves
the most power; however, the CPU will require more time
to wake up from this state (133s Xeon 6130). Due to the
latency impact of deep idle states, CPUs enter a particular

c-state only when it predicts the next idle period is greater
than a threshold, known as the target residency (600 us
for C6 is Intel Xeon 6130) [13]. cStates can notably save
power for applications with long idle periods. However,
in-memory KV stores typically receive high arrival rates
that fragment idle periods into very short idle cycles that
deep states (e.g., C6) cannot exploit, making cStates no-
tably less effective for power saving [4].

Feedback-based controllers monitor and measure the
offered load to the KV store, compare it to predefined
thresholds and scale the number of allocated cores to save
power during low utilization periods. Feedback-based
controllers can adapt to diurnal variations; however, they
are too slow (operating at second-scale intervals) to cope
with short-term burstiness, lengthening tail latency.

DVFS-based approaches exploit the latency slack
(i.e., SLA latency minus current latency) so as to slow
down processing using DVFS to save power while execut-
ing requests in time. This approach saves power for appli-
cations with large service time; however, the short service
times (less than ten us) and high arrival rates of KV stores
do not provide much opportunity for power saving with
this approach.

8.2 Peafowl

Peafowl [4] transfers the scheduler from the operating
system to the application (i.e., KV store), where there is
more domain-specific knowledge and control. Peafowl
leverages a monitoring system to identify off-peak pe-
riods. Knowing off-peak periods, its scheduling pol-
icy consists of two main parts: scale-down and scale-
up. Peafowl’s scale-down process consolidates connec-
tions onto fewer CPU cores, allowing inactive cores to
exploit deep idle (e.g., C6) state to save power during low
or medium utilization periods. Peafowl’s scale-up process
expands the allocated cores to avoid increasing tail latency
when the load approaches its peak.

Peafowl Scale-down process. In Peafowl, each worker
(KV store thread) periodically reports their current load to
the scheduler. When the scheduler sees that the total load
can be packed into fewer workers (i.e., cores), it starts the
scale-down process. Peafowl uses a greedy algorithm for
the scale-down process. It chooses the worker with the
lowest load as the scale-down worker. It then instructs
the scale-down worker to give up its connection to other
workers gradually. Once all the scale-down worker’s con-
nections are migrated, Peafowl enables the idle-states on
the scale-down worker to save power.

Peafowl Scale-up process. When a worker’s load ap-
proaches its load limit (learned by Peafowl’s monitoring
system), they start transferring connections back to an-
other worker. In Peafowl, workers do not coordinate with
the scheduler for performing the scale-up migration. This

8

Table 3: Comparison of power saving approaches

Approach Power saving Tail latency
Idle states low low
DVFS and Re-
quest delaying

low medium

Feedback-based
controllers

high high

leads to immediate scale-up, thereby avoiding tail perfor-
mance degradation.

Summary The high arrival rate and short service
time of in-memory KV stores do not let traditional
power-saving approaches like idle states or DVFS
save power. These approaches might also length
the microsecond level tail latency of in-memory
KV stores.

9 Hybrid KV Stores
In today’s data centers, small objects are prevalent. The
average object size is less than 700B. At Twitter, for ex-
ample, the average tweet size is less than 33 characters
[14] [12]. While individual objects are tiny, application
working sets still add up to TBs of data, which needs a sig-
nificant amount of DRAM. DRAM is, however, expensive
and power-hungry. Therefore, the trend in data centers is
towards less DRAM and more Flash (or other medias) use
[12].

Flash is persistent, cheaper, and more power-efficient
than DRAM. Flash, however, has limited write endurance,
which means there is a limit on the number of writes be-
fore the Flash wears out. Besides, Flash suffers from write
amplification [1]. Write amplification occurs when the
number of bytes written to the underlying Flash exceeds
the original number of bytes. Finally, Flash can be read
and written only at multi-KB granularity (e.g., 4KB). For
example, writing a 100 B object requires writing a 4 KB
flash page, amplifying bytes written by 40× [12]. There
are two common approaches (Summarized in Table 4)
for caching billions of objects on Flash: log-structured
designs with index in DRAM and set-associative designs.

9.1 Log-Structured Designs

One approach to deal with billions of tiny objects is to
employ log structure designs with an index in DRAM to
track objects. This approach reduces write amplification
and works well for larger objects; However, it requires
large amounts of DRAM when objects are small, as the

index must keep one entry per object. Therefore, the total
DRAM required for a log-structured are high and there-
fore increase cost and power.

9.2 Set-Associative Designs
Another approach is to use set-associative caches with a
small DRAM footprint. In this approach, a hash func-
tion maps each object to a specific 4 KB set (i.e., a flash
page). Therefore, it reduces the metadata needed to locate
objects on Flash by restricting their possible locations.
For example, Facebook’s CacheLib [7] is a set-associative
cache that keeps only three bits per object (used for bloom
filters) in the DRAM.

Set-associative designs reduce DRAM consumption.
However, they significantly increase the write amplifica-
tion. Inserting a new object into a set means rewriting an
entire flash page, most of which is unchanged. For ex-
ample, writing 100B objects requires writing 4 KB page,
40x higher write amplification, notably reducing device
lifetime [12].

9.3 Kangaroo
Kangaroo [12] is a flash-based cache designed for billions
of tiny objects at Facebook. Kangaroo adopts a hierar-
chical design to achieve the best of both log-structured
and set-associative designs to minimize DRAM usage and
Flash writes. Kangaroo consists of two main compo-
nents: Klog (a log-structured flash cache) and Kset (a set-
associative flash cache)

Klog is a log-structured design whose goal is to reduce
write amplification. It writes objects in a circular buffer
on Flash in batch and tracks them using a small index lo-
cated in DRAM. Every once in a while, a portion of kLog
(i.e., segment) is dumped to kSet. Klog treats all objects
mapped to the same bucket in its index as an entry for
kSet. By batching all elements that can be mapped to
a position in kSet (a Flash page), Klog notably reduces
write amplification.

KSet’s role is to minimize the DRAM footprint of the
cache. KSet employs a set-associative cache design where
the cache is sliced into sets of 4KB. kSet map an object
to set by hashing its key, eliminating the need for DRAM
indexes. In Kangaroo, kSet also keeps a small bloom filter
in DRAM to reduce unnecessary flash reads.

Summary When it comes to caching of bil-
lions of tiny objects on flash, log-structured de-
sign needs significant DRAM, although they re-
duce write amplification, and set-associative tech-
niques increase write amplification while they re-
duce DRAM footprint.

9

Table 4: Comparison of Hybrid cache approaches

Approach DRAM Con-
sumption

Write Amplifi-
cation

Flash-Log
structured

High Low

Flash-Set-
associative

Low High

10 Tail Latency

Many distributed applications that use in-memory KV
stores exhibit a high fan-out pattern, i.e., they issue a large
number of requests in parallel. From the application’s
standpoint, the overall response time is determined by the
slowest responses to these requests, hence the tail latency
of in-memory KV store is critical [5] [8] .

Tail latency has many sources. One source of latency
is head-of-line blocking [10] [5]. As mentioned before,
in-memory KV store workloads consist of both small and
oversized items. Head of the line blocking is a situation in
which a request for a small item ends up waiting while a
large item is being processed, which may increase the tail
latency [10].

Didona et al. [10] introduces the notion of size-aware
sharding to address the head of the line blocking. They as-
signed objects to disjoint sets of cores, where some cores
serve small objects, and some cores are responsible for
serving large objects. By isolating the requests for small
items, they do not experience any head-of-line blocking.
Given the fact small objects are account for a substantial
percentage of requests, the corresponding percentile of the
latency distribution is improved.

To this end, Didona et al [10] classifies core into large
and small cores. Cores handling small requests are called
small cores, and core handling large requests are called
large cores. To process a request, small cores examine the
size of the object of the requests. The request is handled
in the small core if its size is smaller than a threshold.
Otherwise, the request is inserted into the request queue
for large cores. On the other hand, large cores fetch re-
quests from the request queue of large cores and process
them one by one. By doing so, they isolate small objects
from large objects, eliminating the head of the line block-
ing and improving tail latency. In addition, this approach
dynamically monitors the request size distribution to as-
sign appropriate number core to small and large objects.

Summary Many services with high fan-out pat-
terns rely on in-memory KV stores. Hence, the
tail of the latency distribution in in-memory KV
stores is a matter of great concern.

11 Future research

11.1 Elasticity

As Twitter and Facebook, note the workloads of their in-
memory KV stores follow a daily pattern, and working
set size changes over time [6] [14]. Therefore, elastic KV
stores that can rightsize both CPU and memory consump-
tion of KV stores can notably reduce the cost, power con-
sumption, and environmental impacts of KV store clus-
ters. However, realizing an elastic KV store in the pres-
ence of bursts and micro-second level SLAs is challeng-
ing. Therefore, many data centers provide more capacity
than needed to ensure high quality of user facing service,
notably wasting resources. Peafowl [4] is an attempt to-
ward elastic in-memory KV stores. It elastically assigns
CPUs based on the intensity of offered load; however, it is
agnostic of working set sizes and memory consumption.
This calls for more research toward a true elastic KV store
that rightsizes both memory and CPU while not violating
SLA.

11.2 Persistent memory

Hybrid KV stores offer significantly higher capacity than
DRAM, where a large portion of the working set size re-
sides on another medias (e.g., Flash). As a consequence,
the hit ratio is drastically increased. However, media such
as Flash has lower read and write throughput, and ran-
dom writes decreases their lifespan. Kangaroo [12] is
an attempt to build KV stores on Flash by reducing the
number of random writes and write amplification. On
the other hand, persistent memory (pMem) has its own
unique characters. Persistent memory has significantly
lower write amplification compared to Flash. They allow
for a much larger number of lifetime write cycles and thus
a higher endurance than Flash. They are byte-addressable
like DRAM, non-volatile like Flash and have a read/write
latency between the two. The reads throughput is only two
times less than DRAM, and the random write throughput
is ten times less than memory [1]. Therefore, designing
pMem-based KV stores deserves more explorations and
research.

11.3 Write-heavy workloads

As twitter reports, a significant portion of their KV stores
is write-heavy (35% of the 153 cache clusters) [14]. How-
ever, most existing systems, designs, and research work
assume a read-heavy workload. Write path is usually
costly (e.g., because of locking overhead) and can trigger
more expensive events such as eviction. Twitter reports
that serving write-heavy workloads has higher tail laten-
cies than ready-heavy ones. In addition, the scalability in

10

write-heavy caches is challenging to achieve. Mica [11],
for example, distributes the workloads among cores based
on their key hashes. Each core is exclusively responsible
for writing a portion of the key space. Mica delivers good
performance for read-heavy workloads; however, they do
not explore the scalability of Mica for write-heavy work-
loads. This calls for future research on designing systems
tailored for write-heavy workloads.

11.4 Non-flat data structures

Most of today’s in-memory KV stores are designed for
flat data structures. On the other hand, today’s application
in data centers needs complicated data structures such as
array, list, dictionary, and heap. Time series applications,
for example, keep a list of entries for each key in the mem-
ory. Redis supports time series, but it does offer any mem-
ory management strategy tailored for this data structure.
We believe that KV stores must be tailored for different
data structures based on their characteristics to achieve
better memory efficiency and higher performance.

12 Conclusion

Table 5 summarizes the research works investigated in this
paper. It broadly classifies the challenges of in-memory
KV stores in current data centers into memory efficiency,
scalability, throughput, elasticity, supporting persistent
media, offering non-flat data structures, and supporting
write-heavy workloads, and compares surveyed works to
Memcached. From the table, existing approaches are far
from ideal. Each tackles a subset of problems and im-
proves them to some extend. This calls for research on
designing more tailored in-memory KV stores for cur-
rent data centers. However, given the complexity of ap-
plication needs (e.g., non-flat data structures) and offered
workloads (e.g., write-heavy workloads), the tight SLA
requirements (e.g., micro-second level tail latency), dif-
ferent hardware characteristics (e.g., write amplification
of Flash devices), and the existence of bursty workloads
realizing an ideal KV store for data centers is challenging.

References

[1] Intel® optane™ technology de-
livers new levels of endurance.
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-technology/delivering-new-
levels-of-endurance-article-brief.html. Accessed:
December 2021.

[2] Memcached - a distributed memory object caching
system. http://memcached.org/. Accessed: Decem-
ber 2021.

[3] Redis. https://redis.io/. Accessed: December 2021.

[4] E. Asyabi, A. Bestavros, E. Sharafzadeh, and T. Zhu.
Peafowl: In-application cpu scheduling to reduce
power consumption of in-memory key-value stores.
In Proceedings of the 11th ACM Symposium on
Cloud Computing, SoCC ’20, page 150–164, New
York, NY, USA, 2020. Association for Computing
Machinery.

[5] E. Asyabi, S. SanaeeKohroudi, M. Sharifi, and
A. Bestavros. Terriertail: Mitigating tail latency of
cloud virtual machines. IEEE Transactions on Par-
allel and Distributed Systems, 29(10):2346–2359,
2018.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’12, page 53–64, New
York, NY, USA, 2012. Association for Computing
Machinery.

[7] B. Berg, D. S. Berger, S. McAllister, I. Grosof,
S. Gunasekar, J. Lu, M. Uhlar, J. Carrig, N. Beck-
mann, M. Harchol-Balter, and G. R. Ganger. The
CacheLib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 20),
pages 753–768. USENIX Association, Nov. 2020.

[8] A. Cidon, D. Rushton, S. M. Rumble, and
R. Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Techni-
cal Conference (USENIX ATC 17), pages 321–334,
Santa Clara, CA, July 2017. USENIX Association.

[9] J. Dean and L. A. Barroso. The tail at scale. Com-
mun. ACM, 56(2):74–80, feb 2013.

[10] D. Didona and W. Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-
value stores. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
19), pages 79–94, Boston, MA, Feb. 2019. USENIX
Association.

[11] H. Lim, D. Han, D. G. Andersen, and M. Kamin-
sky. MICA: A holistic approach to fast in-memory
key-value storage. In 11th USENIX Symposium
on Networked Systems Design and Implementation

11

Table 5: A classification of surveyed works compared to Memcached

Mica Kangaroo Segcache Sharding 2 Memshare Peafowl
Memory Efficiency Equal Lower Lower Equal Equal Equal

Scalability Higher Higher Higher Equal Equal Equal
Throughput Higher - Higher Higher Equal Equal

Latency Lower - - lower - equal
Elastic DRAM No support No support No support No support Support No support

Elastic CPU No support No support No support No support No Support Support
Flash support No support Support No support No support No Support No Support
pMem support No support No support No support No support No Support No Support

Write-Heavy Workloads No support No support No support No support No Support No Support
Non-flat data structures No support No support No support No support No Support No Support

(NSDI 14), pages 429–444, Seattle, WA, Apr. 2014.
USENIX Association.

[12] S. McAllister, B. Berg, J. Tutuncu-Macias, J. Yang,
S. Gunasekar, J. Lu, D. S. Berger, N. Beckmann, and
G. R. Ganger. Kangaroo: Caching billions of tiny
objects on flash. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
SOSP ’21, page 243–262, New York, NY, USA,
2021. Association for Computing Machinery.

[13] E. Sharafzadeh, S. A. S. Kohroudi, E. Asyabi, and
M. Sharifi. Yawn: A cpu idle-state governor for
datacenter applications. In Proceedings of the 10th
ACM SIGOPS Asia-Pacific Workshop on Systems,
APSys ’19, page 91–98, New York, NY, USA, 2019.
Association for Computing Machinery.

[14] J. Yang, Y. Yue, and K. V. Rashmi. A large scale
analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 20),
pages 191–208. USENIX Association, Nov. 2020.

[15] J. Yang, Y. Yue, and R. Vinayak. Segcache: a
memory-efficient and scalable in-memory key-value
cache for small objects. In 18th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 21), pages 503–518. USENIX Association,
Apr. 2021.

12

