
PROBLEM AND MOTIVATION

Peafowl: In-application CPU Scheduling to Reduce Power Consumption of In-memory Key-Value Stores
Peafowl: In-application CPU Scheduling to Reduce Power
Consumption of In-memory Key-Value Stores
Showan Esmail Asyabi, Azer Bestavros (Boston University), Erfan Sharafzadeh (Johns Hopkins University), Timothy Zhu (The Pennsylvania State University)

Tail latency of key-value (KV) stores
impacts the overall performance of
high-fanout applications

Problem and Motivation

Problem: High energy consumption of ever-growing in-
memory KV stores (i.e., cache nodes) in data centers

Goal: Save power during off-peak periods while ensuring microsecond scale tail latency

Existing Solutions

Open sourced at https://github.com/showanasyabi/peafowl-kvs

Idle-state governor: Force CPU into deep idle states
Problem: Short interarrival fragments idle periods

Feedback-based controllers: Monitor the load and
adjust the number of allocated cores

Problem: Controllers rely on OS for schedulingà too slow

10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

5equest 5ate (K536)

0

20

40

60

80

100

C-
6t

at
e

5e
si

de
nc

y
3e

rc
en

ta
ge

Active C1 C1e C6

DVFS and request delaying: Exploit the latency
gap to slow down the request processing

Problem: Due to the high arrival rate and short service time of KV
store workloads, these approaches are not able to
notably save power

The high arrival rate, short service time, and tight latency requirements make existing
solutions less effective

Peafowl Design

Peafowl Implementation

Service providers provide for peak load to ensure
low tail latency

Idea: Perform scheduling in the KV store to unbalance the load during off-peak periods

Peafowl in Action

0 5 10 15 20
7iPe (P)

0
250
500
750

1000
1250

5e
Tu

es
t 5

at
e

 (K
5P

6)

)aFeERRk (7C 7raFe

0

20

40

60

PR
w

er
 C

Rn
su

P
St

iR
n

(w
)

0 5 10 15 20
7iPe (P)

0
250
500
750

1000
1250

5e
Tu

es
t 5

at
e

 (K
5P

6)

0icrRsRft 6tRrage 7race

0

20

40

60

PR
w

er
 C

Rn
su

P
St

iR
n

(w
)

0 5 10 15 20
7LPe (P)

0
250
500
750

1000
1250

5e
Tu

es
t 5

at
e

 (K
5P

6)

GRRgOe 6earcK 7race

PRwer-0ePcacKeG(c6tate:2ff)
PRwer-0ePcacKeG(c6tate:2n)
PRwer-PeafRwO
2ffereG LRaG

0

20

40

60

PR
w

er
 C

Rn
su

P
St

LR
n

(w
)

Peafowl saves 36% more power while keeping tail latency at microsecond scale

Peafowl Compared to Existing Approaches

80 160 240 320 400 480 560 640 720 800
5eTuesW 5aWe (K536)

0

10

20

30

40

3R
w
er
 C
Rn
su
P
SW
LR
n
(W
)

7argeW LaWency 300μs

80 160 240 320 400 480 560 640 720 800
5eTuest 5ate (K536)

0

100

200

300

400

500

99
th
 L
at
en
cy
 (μ
s)

7arget Latency 300μs

Peafowl outperforms Rubik, µDPM, and a Clairvoyant idle-state governor with up to 40%, 54%, and 45% more
power savings respectively

OS

Application

Scheduler Thread

Identify off-peak periods

Gradually pack load among
fewer cores

Worker Thread

Serve user requests

Instantly scale-up when
load peaks

Monitor the load

Learn the peak load

Idle-state governor is active on idle
cores

Idle-state governor is inactive on
active cores

Monitor workers’ loads

Schedule connections

KV store workloads have a diurnal pattern

Diurnal pattern of KV store workloads in
Facebook ETC datacenter

0 200 400 600 800 1000
ReTuest Rate (KRP6)

0

200

400

600

800

1000

99
tK

 L
at

en
cy

 P
er

ce
nt

Lle
 (μ

s) TKreads are nRt SLnned
TKreads are SLnned

