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Problem and Motivation

o Tail latency of key-value (KV) stores
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impacts the overall performance of
high-fanout applications
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e KV store workloads have a diurnal pattern o= "
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e Service providers provide for peak load to ensure

low tail latency

e Problem: High energy consumption of ever-growing in-
memory KV stores (i.e., cache nodes) in data centers

Goal: Save power during off-peak periods while ensuring microsecond scale tail latency

Existing Solutions

Idle-state governor: Force CPU into deep idle states s
Problem: Short interarrival fragments idle periods I
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gap to slow down the request processing

Problem: Due to the high arrival rate and short service time of KV 2 o rate o aps 20
equest Rate (KRPS)
store workloads, these approaches are not able to
notably save power

The high arrival rate, short service time, and tight latency requirements make existing
solutions less effective
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Peafowl Design

Peafowl in Action

Worker Thread Scheduler Thread
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Idea: Perform scheduling in the KV store to unbalance the load during off-peak periods

Peafowl Implementation
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Peafowl saves 36% more power while keeping tail latency at microsecond scale

Peafowl Compared to Existing Approaches
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Open sourced at https://github.com/showanasyabi/peafowl-kvs
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Peafowl outperforms Rubik, uDPM, and a Clairvoyant idle-state governor with up to 40%, 54%, and 45% more

power savings respectively




