BOSTON

UNIVERSITY

"‘og PennState

JOHNS HOPKINS

UNIVERSITY

Peafowl: In-application CPU Scheduling to Reduce Power
Consumption of In-memory Key-Value Stores

Showan Esmail Asyabi, Azer Bestavros (Boston University), Erfan Sharafzadeh (Johns Hopkins University), Timothy Zhu (The Pennsylvania State University)

Problem and Motivation

o Tail latency of key-value (KV) stores

90000

impacts the overall performance of
high-fanout applications

50000

e KV store workloads have a diurnal pattern o= "

i
=
S o

§5555855352833222588 §53555555223888

e Service providers provide for peak load to ensure

low tail latency

e Problem: High energy consumption of ever-growing in-
memory KV stores (i.e., cache nodes) in data centers

Goal: Save power during off-peak periods while ensuring microsecond scale tail latency

Existing Solutions

Idle-state governor: Force CPU into deep idle states s
Problem: Short interarrival fragments idle periods I

C-State Residency Percentag

Feedback-based controllers: Monitor the load and T e e NS
adjust the number of allocated cores
G 10007 — . Threads are not pinned 7|
Problem: Controllers rely on OS for scheduling=> too slow 9 goq| = Threads are pinnes ,l
2 ,
5 600 ,/
. . g 400 -
DVFS and request delaying: Exploit the latency £ o e
< 7

gap to slow down the request processing

Problem: Due to the high arrival rate and short service time of KV 2 o rate o aps 20
equest Rate (KRPS)
store workloads, these approaches are not able to
notably save power

The high arrival rate, short service time, and tight latency requirements make existing
solutions less effective

1000

Peafowl Design

Peafowl in Action

Worker Thread Scheduler Thread
® Serve user requests A /o Schedule connections
® Learn the peak load @ Monitor workers’ loads
® Monitor the load @ |dentify off-peak periods
® Instantly scale-up when ® Gradually pack load among
| ke fewer cores
oad peaks / 0
Application
(0N
Idle-state governor is active on idle Idle-state governor is inactive on
cores active cores

Idea: Perform scheduling in the KV store to unbalance the load during off-peak periods

Peafowl Implementation

Facebook ETC Trace z
g 1250 60 E

2 — 1000 N
$2 750 - 4058
g o 500 " Hmmm\mmmm\mmmm S, ! ”HH\mmmmummmmu““ g g
z E‘, RUITTIITIILLLL i it 202 £
g7 250 2
o 0 0 o
0 5 10 o 15 20 o
Microsoft Storage Trace z
e 1250 9 60 2
2 & 1000 M— 205 é

Uty
Jg & 750 " iy, SRt 3 g‘
= % 500 g it ity 20 8 5
g 250 2
-4 0 0 o
0 5 10 15 20 o
Google Search Trace
, 1250 g 60 <
;6 __1000 T g0 O Tt e 40 = S
2 9 750 Power-Memcached(cState:Off) t “H‘H Hm“ g ‘3_
g § 5001+ — Power-Memcached(cState:On) Hm’"m M"HH 8 €
8v —— Power-Peafowl ”“‘Hmum uuummumumm””” 2023
-4 250 Offered Load e S
0 0 (&)
0 5 10 15 20

Time (m)

Peafowl saves 36% more power while keeping tail latency at microsecond scale

Peafowl Compared to Existing Approaches

=@= C|SG =wmm Rubik === UDPM =mj== Peafowl
Target Latency = 300us 500 Target Latency = 300us
A40,
= _ 400-
5 g
o 30- =
o > _
E 3300
2 g
g 20- ;_IU 200-
¢ &
g 10- 100-
[e]
a
0- .

Worker 1
Home Load
CPU Connections ~ Worker ¢~ Monitor
gstiset Wi |/ 30K reqfs
Core Core | Pinned geusen w1 l| 10K req/s
t/set
ook w2 } 20K reqls
Core [l Core ‘\ II
Pinned i
Pinned SV | | - \F -
57 ol "-
/ (a) Scale up: (2) Scale down:
I Send connection home Send connection to W1
Scheduler \ orker 2
Worker Load Load Limit /I Home Load
Wi | soK rears | 70K rears A Updet Connections { Worker ; ~ Monitor
req’s "ed’S 1% load/limit
w2 5K req/ 70K req/ . e ! il
req/s req/s
& N Update \ /l
~ —load/limit
—— e QU | G
Scale down || (1) Scale down: W2 — W1

Open sourced at https://github.com/showanasyabi/peafowl-kvs

N »\‘60 'LD‘Q ,510 D«QQ D(%Q 560 6&0 '\'LO %00

0 ,\60 'LD‘Q '5’1’0 D(QQ b‘%Q ‘)60 6&0 ,"LQ %QQ
Request Rate (KRPS)
Request Rate (KRPS)

Peafowl outperforms Rubik, uDPM, and a Clairvoyant idle-state governor with up to 40%, 54%, and 45% more

power savings respectively

