Wikipedia: Implicit Curve
Wikipedia: Implicit Surface
Wikipedia: Gradient
Gradient \(\nabla F\) is orthogonal to iso-surface
Wikipedia: Gradient
Classify grid nodes as inside/outside
Classify cell: \(2^4 = 16\) configurations
Determine vertex positions
Determine contour edges
Parametric representation \(\vec{x} \colon [a,b] \subset \R \to \R^2\) (or \(\R^3\)) \[\vec{x}\of{t} = \matrix{x\of{t} \\ y\of{t}}\]
Curve is defined as image of interval \([a,b]\) under parameterization function \(\vec{x}\).
Unit circle: \(\vec{x}\of{t} = \matrix{x\of{t} \\ y\of{t}} = \matrix{\cos\of{t} \\ \sin\of{t}}, t \in [0,2\pi]\)
Parametric representation of planar curve \(\vec{x}\of{t} = \matrix{x\of{t} \\ y\of{t}}\)
First derivative defines the tangent vector \[\vec{t} = \vec{x}’\of{t} := \frac{\mathrm{d} \vec{x}\of{t}}{\mathrm{d} t} = \matrix{ \mathrm{d}x\of{t} / \mathrm{d} t \\ \mathrm{d}y\of{t} / \mathrm{d} t}\]
The curve normal vector is \[\vec{n} = \text{Rot}(90) \frac{\vec{t}}{\| \vec{t} \|}\]
Example: \(\vec{x}\of{t} = (1+\cos(t)) \matrix{\cos(t) \\ \sin(t)}\)
Curve parameter \(t\) is time
\(\vec{x}\of{t}\) defines the position of particle at time \(t\)
Tangent \(\vec{x}’\of{t}\) defines the velocity vector at time \(t\)
Length (magnitude) of tangent vector is particle speed
\[\vec{x}\of{t} = \matrix{\cos\of{t} \\ \sin\of{t}} \qquad \vec{x}’\of{t} = \matrix{-\sin\of{t} \\ \cos\of{t}}\]