\[\vec{x}\of{t} = \matrix{x\of{t} \\ y\of{t}}\]
Differential Geometry of parametric curves
Differential Geometry of parametric surfaces
Parametric representation of planar curve \(\vec{x}\of{t} = \matrix{x\of{t} \\ y\of{t}}\)
First derivative defines a tangent vector
\[\vec{t} = \vec{x}’\of{t} := \frac{\mathrm{d} \vec{x}\of{t}}{\mathrm{d} t} = \matrix{ \mathrm{d}x\of{t} / \mathrm{d} t \\ \mathrm{d}y\of{t} / \mathrm{d} t}\]
The curve normal vector is
\[\vec{n} = \text{Rot}(90) \frac{\vec{t}}{\| \vec{t} \|}\]
\[\begin{aligned}{\dfrac {d\mathbf {T} }{ds}}&=\kappa \mathbf {N} ,\\{\dfrac {d\mathbf {N} }{ds}}&=-\kappa \mathbf {T} +\tau \mathbf {B} ,\\{\dfrac {d\mathbf {B} }{ds}}&=-\tau \mathbf {N} ,\end{aligned}\]
\[\mat{I} \;=\; \matrix{ E & F \\ F & G } \;:=\; \matrix{ \vec{x}_{,u}^T\vec{x}_{,u} & \vec{x}_{,u}^T\vec{x}_{,v} \\[1mm] \vec{x}_{,u}^T\vec{x}_{,v} & \vec{x}_{,v}^T\vec{x}_{,v} }\]
\[\begin{eqnarray*} \left\langle \matrix{\alpha_1 \\ \beta_1} \,,\; \matrix{\alpha_2 \\ \beta_2} \right\rangle \;:=\; \matrix{\alpha_1 \\ \beta_1}^T \mat{I} \, \matrix{\alpha_2 \\ \beta_2} \end{eqnarray*} \]
Wikipedia: First Fundamental Form
First fundamental form allows to measure…
\(\begin{align} \vec{t}_1^T\vec{t}_2 \;&=\; \left\langle (\alpha_1, \beta_1), (\alpha_2, \beta_2) \right\rangle \\ \;&=\; E \alpha_1\alpha_2 + F\left( \alpha_1\beta_2 + \alpha_2\beta_1 \right) + G \beta_1\beta_2 \end{align}\)
\(\begin{align} \func{d}s \;&=\; \sqrt{\left\langle (\func{d}u, \func{d}v), (\func{d}u, \func{d}v) \right\rangle} \\ \;&=\; \sqrt{E\,\func{d}u^2 + 2F\,\func{d}u\func{d}v + G\,\func{d}v^2} \end{align}\)
\(\begin{align} \func{d}A \;&=\; \sqrt{\func{det}\of{\mat{I}}} \,\func{d}u\,\func{d}v \\ \;&=\; \sqrt{EG-F^2} \,\func{d}u\,\func{d}v \end{align}\)
\[\vec{x}\of{u,v} \;=\; \matrix{\cos u \sin v \\ \sin u \sin v \\ \cos v} \,,\quad (u,v) \in [0, 2\pi) \times [0,\pi) \]
\[ \begin{align} \int_0^{2\pi} 1 \,\func{d}s \;&=\; \int_0^{2\pi} \sqrt{E \, u_{,t}^2 + 2F \, u_{,t} v_{,t} + G \, v_{,t}^2} \,\func{d}t \\ \;&=\; \int_0^{2\pi} \sin v \,\func{d}t \\ \;&=\; 2\pi \sin v \;=\; 2\pi \end{align} \]
\[ \begin{align} \int_0^{\pi}\int_0^{2\pi} 1 \,\func{d}A \;&=\; \int_0^{\pi}\int_0^{2\pi} \sqrt{EG-F^2} \,\func{d}u\,\func{d}v \\ \;&=\; \int_0^{\pi}\int_0^{2\pi} \sin v \,\func{d}u\,\func{d}v \\ \;&=\; 4\pi \end{align} \]
A point \(\vec{x}\) on the surface is called
Wikipedia: Minimal Surface Explanatory Movie
Wikipedia: Developable Surface
Gaussian curvature only depends on lengths of surface curves, i.e., on the first fundamental form
\[ K(\vec{x}) = \lim_{r \to 0} \frac {6 \pi r - 3C_r(\vec{x})}{\pi r^3} \]\(C_r(\vec{x})\) is the length of geodesic circle of radius \(r\) around \(\vec{x}\).
See this link for more ways to define/compute Gaussian curvature
Wikipedia: Gradient
Wikipedia: Divergence Khan Academy: Divergence
Wikipedia: Laplace Operator
Wikipedia: Laplace-Beltrami Operator